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Data-driven Adaptive Iterative Learning Control of

a Compliant Rehabilitation Robot for Repetitive

Ankle Training
Kun Qian, Zhenhong Li, Zhiqiang Zhang, Member, IEEE,, Guqiang Li, and Sheng Q. Xie, Senior Member, IEEE

Abstract—This paper investigates the repetitive range of mo-
tion (ROM) training control for a compliant ankle rehabilitation
robot (CARR). The CARR utilizes four pneumatic muscle (PM)
actuators to manipulate the ankle with three rational degree-
of-freedoms (DoFs) and soft human-robot interaction, but the
strong-nonlinearity of the PM actuator makes precise tracking
difficult. To improve the training effectiveness, a data-driven
adaptive iterative learning controller (DDAILC) is proposed
based on compact form dynamic linearization (CFDL) with
estimated pseudo-partial derivative (PPD). Instead of using a
PM dynamic model, the estimated PPD is updated merely by
online input-output (I/O) measures. Sufficient conditions are
established to guarantee the convergence of tracking errors and
the boundedness of control input. Experimental studies are con-
ducted on ten human participants with two therapist-resembled
trajectories. Compared with other data-driven methods, the
proposed DDAILC demonstrates significant improvement on
tracking performance.

Index Terms—Ankle rehabilitation robot, pneumatic muscle,
iterative learning control, adaptive control.

I. INTRODUCTION

INTENSIVE ankle passive stretching is widely utilized in

the treatment of limited ankle range of motion (ROM) for

traumatic head injury and stroke patients [1]. To ease the great

burden of therapists, a range of platform-based ankle reha-

bilitation robots are developed for passive training purposes,

e.g., ARBOT [2] and Rutgers ankle [3]. However, existing

platform-based robots have inconsistent rotation center with

the ankle joint which discounts the recovery performance [4].

Meanwhile, a large proportion of existing devices employ non-

backdrivable rigid actuators, e.g., electric motors and cylin-

ders, which causes non-compliant human-robot interaction [5].

To overcome aforementioned limitations, a compliant ankle

rehabilitation robot (CARR) was developed by our group [6].

The CARR employs a parallel structure to achieve three rota-

tional degrees-of-freedoms (DoFs) where the required torque
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is actuated above the end effector with fixed rotation center.

Pneumatic muscle (PM) actuators are soft, light weight and

able to generate large force with short contraction. However,

PM actuators exhibit highly nonlinear dynamics, which cause

difficulties in dynamic modeling and controller design for

precise tracking [6–8]. Since the outcomes of ankle passive

training largely rely on the completion of the ROM trajectory

suggested by the therapist [9]. Therefore, it is essential to

improve the trajectory tracking accuracy of the CARR under

passive training scenarios.

Various tracking control methods have been developed for

the existing platform-based ankle robots. A torque-based ve-

locity controller was proposed in [9] to mobilize the impaired

foot with a single DOF device, while the MecDEAR [10]

achieved position tracking by a proportional-derivative (PD)

controller. An interaction controller was also constructed for

ARBOT [2], where the passive training is achieved by a

proportional-derivative-integral (PID) controller and a high-

level admittance controller processes active training. However,

the above mentioned control methods are not implementable

for CARR. The complicate nonlinear relationship between

contraction force, length and internal pressure of PM makes

the linear based method in [11] and the standard PD or PID

controller in [10] and [2] have limited performance.

Considering the modeling difficulty of CARR and the

repetitive nature of passive ROM training, iterative learning

control (ILC) shows great potential. ILC is a typical model-

free method for repetitive control object which merely relies on

system I/O information and improves the tracking performance

gradually [12]. However, studies of ILC on rehabilitation robot

are rare. ILC-driven functional electrical stimulation (FES)

have been proposed in [13]. Nevertheless, the proposed ILC

works as a “high-level” controller to adjust the magnitude of

FES while the actual position control was achieved by a PID

controller. Conventional PID-type ILC has been applied on

several rehabilitation devices because of its simple structure

and little calculation burden. A P-type ILC (P-ILC) based feed-

forward controller has been proposed in [14], and two motor-

driven rehabilitation robots [15], [16] achieved multi-joint tra-

jectory tracking by PID-type ILC. However, such contraction

mapping based ILC causes unstable transient performance

of the system output along iteration domain, meanwhile, the

fixed controller structure with unchanged learning gain also

degrades the control performance consequently [17].

Inspired by recent works on model-free adaptive control
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[18], this paper introduces a compact form dynamic lineariza-

tion (CFDL) technique in iteration domain. Instead of realizing

the nonlinear model of PM, the CFDL builds an equivalent

data model by using an iteration-dependent time-varying pa-

rameter called pseudo partial derivative (PPD). Since PPD

is unknown, a data-driven adaptive iterative learning con-

trol (DDAILC) algorithm is proposed to estimate the PPD

merely using the output measures of the position information.

Mathematical analysis is given to guarantee the convergence

of algorithm along the iteration domain and bounded-input

bounded-output stability along the time domain. Experimental

studies are conducted on the CARR for repetitive ROM

training with human participants involved. To evaluate the

tracking performance of the DDAILC, the comparisons with

P-ILC and PID controllers are given.

The main contributions of this work are listed as follows.

Instead of modeling the nonlinear PM dynamic, an equivalent

data model is established with reasonable assumptions. Only

the position measures of the CARR are required to estimate the

PPD and design controller. As a nonlinear control algorithm,

the development of the DDAILC on the CARR is the first

attempt that applying data-driven learning method to the

compliant actuator driven device. To mimic the rehabilitation

environment, two therapist-resembled trajectories are tested

with ten human participants involved. Compared to existing

methods, the DDAILC has significant improvement on the

tracking performance.

The rest of this paper is arranged as follows. Section II

introduces the CARR and formulates the problem. Controller

design and convergence analysis are given in Section III.

Experimental protocol, results and discussions are presented

in Section IV, V and VI with conclusion in Section VII.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. PM-driven CARR and Kinematic Geometry

The concept design of the CARR is shown in Figure 1

(a). It is actuated by four parallel PM actuators with three

rotational DOFs for ankle plantarflexion/dorsiflexion (DP),

inversion/eversion (IE) and adduction/abduction (AA), which

normally denotes as Euler X-, Y- and Z-axis respectively.

Each PM actuator is controlled by an independent proportional

pressure regulator (PPR). As shown in Figure 1 (b), three

rotary encoders are installed to measure angular displacement

and a six-axis load cell is installed to measure interaction

torque. An embedded controller is adopted to achieve real-

time control and three independent data acquisition modules

are used for digital I/O, analog input and analog output,

respectively. The control interface is developed on a host

computer based on LabVIEW and communicates with the

embedded controller through TCP/IP protocol.

The inverse kinematics of CARR can be easily obtained

and provides a unique solution of the length of PMs for

a given end effector posture. Details can be found in our

previous work [6]. The length variation caused by compressed

air provides actuation of PMs. In consequence, for the PM

trajectory tracking control, the internal pressure and length

are considered as control input and output respectively.

Figure 1: Configurations of the CARR. (a) Concept design.

(b) Physical layout of the CARR with three rotational DoFs.

B. Problem Formulation

Four individual PM lengths li (index i = 1, 2, 3, 4) can be

obtained via inverse kinematic [6]. Denote pi,k(t), li,k(t) ∈ R

as the input pressure and output length of i-th PM at time

instant t during k-th iteration, where t ∈ {0, 1, 2, . . . , N},

N ∈ Z
+and k = 1, 2, · · · . For an iteration invariant desired

trajectory l∗i (t), the tracking error is defined as ei,k−1(t+1) =
l∗i (t)−li,k−1(t+1). The main objective of this paper is to find

a pressure sequence pi,k(t), such that ei,k−1(t + 1) → 0 for

t ∈ {0, 1, 2, . . . , N} as k → ∞. The following discrete-time

model is constructed for each PM

li,k(t+ 1) = f
(

li,k(t), . . . , li,k(t− nl), pi,k(t), ...,

pi,k(t− np)
)

(1)

where f(· · · ) : R
nl+np+2 → R is an unknown nonlinear

function. nl ∈ Z
+ and np ∈ Z

+ are two unknown orders

of output li,k(t) and input pi,k(t+ 1), respectively.

Assumption 1. The partial derivative of f(· · · ) with respect

to the (nl + 2) th output variable is continuous.
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Assumption 2. System (1) satisfies the generalized Lips-

chitz condition along the iteration domain, that is, ∀t =
0, 1, 2, . . . , N , |∆li,k(t+1)| ≤ b|∆pi,k(t)| for each fixed k and

|∆pi,k(t)| 6= 0, where ∆li,k(t+ 1) = li,k(t+ 1)− li,k−1(t+
1),∆pi,k(t) = pi,k(t)−pi,k−1(t) and b is a positive constant.

Remark 1. The Assumptions 1 and 2 imposed on system (1)

are easy to satisfy. The Assumption 1 holds if the internal

pressure of PM is continuous, the length variation of PM is

also continuous. The Assumption 2 is a physical constraint

by the inherent nature of PM, i.e., finite change of internal

pressure would not lead to infinite change of length.

Lemma 1. [17] Suppose Assumptions 1 and 2 hold, for

any |∆pi,k(t)| 6= 0, there must exist an iteration-dependent

time-varying parameter Φi,k(t) ∈ R, called pseudo partial

derivative (PPD), such that the system (1) can be transformed

into the following compact form dynamic linearization (CFDL)

data model

∆li,k(t+ 1) = Φi,k(t)∆pi,k(t), ∀t ∈ 0, 1, 2, · · · , N,

∀k = 1, 2, · · · (2)

with bounded |Φi,k(t)| ≤ b for any t and k.

III. DATA-DRIVEN ADAPTIVE ILC AND CONVERGENCE

ANALYSIS

A. DDAILC Design

Consider the following objective function of the internal

pressure pi,k(t)

J
(

pi,k(t)
)

=|l∗i (t)− li,k(t+ 1)|2

+ λ|pi,k(t)− pi,k−1(t)|2 (3)

where λ > 0 is a weighting factor. Rewriting (2) as

li,k(t+ 1) = li,k−1(t+ 1) + Φi,k(t)∆pi,k(t). (4)

From (4) and the definition of ei,k−1(t+1), Equation (3) can

be rewritten as

J
(

pi,k(t)
)

=|ei,k−1(t+ 1)− Φi,k(t)∆pi,k(t)|2

+ λ|∆pi,k(t)|2. (5)

Differentiating (5) with respect to pi,k(t), and setting
∂J

∂pi,k(t)
= 0, we have

Φi,k(t)ei,k−1(t+ 1) = |Φi,k(t)|2∆pi,k(t) + λ∆pi,k(t). (6)

Thus, the DDAILC at the k-th iteration is constructed

pi,k(t) = pi,k−1(t) +
ρΦi,k(t)

λ+ |Φi,k(t)|2
ei,k−1(t+ 1) (7)

where ρ ∈ (0, 1] is a step factor to make the control algorithm

more general and related to the convergence properties.

Remark 2. The Φi,k(t) is an iteration-dependent time-varying

parameter, guaranteeing the algorithm convergence along the

iteration domain. The non-causal term ei,k−1(t + 1) can be

obtained from last iteration, which guarantees the stability of

the algorithm along time domain within the current iteration.

Figure 2: Control diagram of DDAILC for single PM actuator.

Remark 3. Let Φi,k(t) = ΓP , where ΓP is a positive constant,

the control law (7) becomes a traditional P-ILC law with

fixed learning gain. The tracking performance of P-ILC will

be compared with the proposed DDAILC in Section V.

Since Φi,k(t) is unknown, an estimation algorithm is then

constructed for iteratively updating its estimated value Φ̂i,k(t).
Consider the following objective function of Φ̂i,k(t),

J
(

Φ̂i,k(t)
)

=|∆li,k−1(t+ 1)− Φ̂i,k(t)∆pi,k−1(t)|2

+ µ|Φ̂i,k(t)− Φ̂i,k−1(t)|2 (8)

where µ > 0 is a weighting factor. Differentiating (8) with

respect to Φ̂i,k(t), and setting ∂J

∂Φ̂i,k(t)
= 0, we have the

following Φi,k(t) estimation algorithm

Φ̂i,k(t) =Φ̂i,k−1(t) +
η∆pi,k−1(t)

µ+ |∆pi,k−1(t)|2
×
(

∆lik−1(t+ 1)− Φ̂i,k(t)∆pi,k−1(t)
)

(9)

where η ∈ (0, 1] is a step factor, being included to make the

estimation algorithm more general and flexible.

To strengthen the tracking ability of the estimation algorithm

(9), the following reset algorithm is presented

Φ̂i,k(t) = Φ̂i,1(t), if |Φ̂i,k(t)| ≤ ε or

|∆pi,k−1(t)| ≤ ε or

sign
(

Φ̂i,k(t)
)

6= sign
(

Φ̂i,1(t)
)

(10)

where Φ̂i,1(t) is the initial value of Φ̂i,k(t), ε is a small

positive constant. Integrating the control algorithm (7) and

parameter estimation algorithm (9) with reset scheme (10), the

overall DDAILC for the PM length tracking is constructed, as

shown in Figure 2.

B. Convergence Analysis

Assumption 3. The Φi,k(t) satisfies that Φi,k(t) > σ >

0, ∀t ∈ {0, 1, 2, · · · , N} and ∀k = 1, 2, · · · , where σ is a

positive constant.

Remark 4. Assumption 3 indicates that the contractile length

of PM does not decreases as the corresponding internal

pressure increases. Such linear-like characteristic is commonly

applied on PM controller design [19].

Theorem 1. Suppose Assumptions 1-3 hold for (1). With

bounded initial error ei,1(t) and initial pressure pi,1(t), if the

DDAILC controller (7), (9) and (10) are applied and select

the weighting factor λ > b2

4 , the following results hold.

1) Estimated PPD Φ̂i,k(t) is bounded.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022

2) Tracking error ei,k−1(t+1) monotonically converge to zero.

3) Input pressure pi,k(t) and output li,k(t) are bounded.

Proof: 1) The boundedness of Φ̂i,k(t).
For any |Φ̂i,k(t)| ≤ ε or |∆pi,k−1(t)| ≤ ε or

sign
(

Φ̂i,k(t)
)

6= sign(Φ̂i,1(t)), the boundedness of Φ̂i,k(t)

is obvious. Otherwise, define the estimation error Φ̃i,k(t) =
Φ̂i,k(t) − Φi,k(t). Subtracting Φi,k(t) from both side of (9)

and substituting (2), we have

Φ̃i,k(t) =(1− η|∆pi,k−1(t)|2
µ+ |∆pi,k−1(t)|2

)Φ̃i,k−1(t)

−
(

Φi,k(t)− Φi,k−1(t)
)

. (11)

Since η ∈ (0, 1] and µ > 0, the function
η|∆pi,k−1(t)|

2

µ+|∆pi,k−1(t)|2
is

monotonically increasing with respect of |∆pi,k−1(t)|2. Thus,

there exists a positive constant d1 such that

1− η|∆pi,k−1(t)|2
µ+ |∆pi,k−1(t)|2

≤ (1− ηε2

µ+ ε2
) = d1 < 1. (12)

Substituting (12) into (11) and take absolute value on both

sides, we have

|Φ̃i,k(t)| ≤ d1|Φ̃i,k−1(t)|+ 2b ≤ dk−1
1 |Φ̃i,1(t)|+

2b

1− d1
.

(13)

From Lemma 1, |Φi,k(t)| ≤ b leads to |Φi,k(t)−Φi,k−1(t)| ≤
2b. Thus, Φ̃i,k(t) is bounded which implies that Φ̂i,k(t) is also

bounded.

2) The convergence of ei,k(t+ 1).
By Lemma 1 and (7), we have

ei,k(t+ 1) =li,d(t+ 1)− li,k(t+ 1)−
Φ̂i,k(t)|pi,k(t)− pi,k−1(t)|

=
(

1− ρΦi,k(t)Φ̂i,k(t)

λ+ |Φ̂i,k(t)|2
)

ei,k−1(t+ 1). (14)

Since λ+ |Φ̂i,k(t)|2 ≥ 2
√
λΦ̂i,k(t) and Φi,k(t) is bounded by

b, there must exist a positive constant d2 such that

0 < d2 ≤ Φi,k(t)Φ̂i,k(t)

λ+ |Φ̂i,k(t)|2
≤ b

2
√
λ
. (15)

Since ρ ∈ (0, 1] and λ > b2

4 , according to (15), there must

exist a positive constant d3 < 1 such that

0 < d2 ≤ b

2
√
λ
< 1 and

|1− ρΦi,k(t)Φ̂i,k(t)

λ+ |Φ̂i,k(t)|2
| ≤ 1− ρd2

∆
= d3 < 1. (16)

Taking absolute value on both sides of (14) and using (16),

we have

|ei,k(t+ 1)| = |1− ρΦi,k(t)Φ̂i,k(t)

λ+ |Φ̂i,k(t)|2
||ei,k−1(t+ 1)|

≤ d3|ei,k−1(t+ 1)|
...

≤ dk−1
3 |ei,1(t+ 1)|. (17)

which indicates that ei,k(t+1) converges to zero in a pointwise

manner over the finite time interval N when k → ∞.

3) The boundedness of li,k(t) and pi,k(t).
Since l∗i (t) is iteration-invariant, the convergence of ei,k(t)

implies that li,k(t) is also bounded. Using same procedure in

(16), we have

|∆pi,k(t)| =
∣

∣

∣

∣

∣

ρΦ̂i,k(t)ei,k−1(t+ 1)

λ+ |Φ̂i,k(t)|2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

ρ

2
√
λmin

∣

∣

∣

∣

|ei,k−1(t+ 1)|
∆
= d4|ei,k−1(t+ 1)| (18)

where d4 is a bounded positive constant.

Expanding pi,k(t) into following form

|pi,k(t)| =|pi,k(t)− pi,k−1(t)|+ |pi,k−1(t)− pi,k−2(t)|+ · · ·
+ |pi,2(t)− pi,1(t)|+ |pi,1(t)|

=|∆pi,k(t)|+ · · ·+ |∆pi,2(t)|+ |pi,1(t)|. (19)

According to (17), (18) and (19), we have

|pi,k(t)| ≤ d4
1

1− d3
|ei,1(t+ 1)|+ |pi,1(t)|. (20)

Since both initial error and pressure are given bounded,

the equation (20) implies that pi,k(t) is bounded ∀t ∈
{0, 1, 2, · · · , N} and ∀k = 1, 2, · · · .

IV. SUBJECTS AND EXPERIMENTAL PROTOCOL

The feasibility of DDAILC is first tested on the CARR

without human participants. Subsequently, passive training are

performed on ten healthy subjects (P1-P10 for short) with no

neurological injury or recent physical ankle impairment. This

trial has been approved by the University of Leeds Research

Ethics Committee (reference MEEC 18-001). Desired trajecto-

ries are selected as sinusoidal waveforms with t = 0.05 s. The

maximum ROM is 0.3 rad and the movement period is 20 s.
During training, subjects are asked to adjust the sitting posture

such that their ankles are fully relaxed. To imitate physical

rehabilitation procedure, two therapist-resembled movements

[20] are suggested by the therapist:

T1: Joint movement along both X and Y-axis which from

neutral position to 0.2 rad dorsiflexion/inversion and 0.2 rad
plantarflexion/eversion.

T2: First trial with 0.2 rad amplitude along X-axis and pro-

gressive training increases the amplitude to 0.3 rad.

The commonly used PID controller in compliant actuator

driven device [21–23] and P-ILC are implemented for com-

parison. Table I summarizes the well-tuned control parameters.

Table I: Designed control parameters.

Controller Control parameters

PID Kp = 20, Ki = 9× 10−3, Kd = 2.25× 10−3

P-ILC Γp = 0.8

DDAILC ρ = 1, λ = 1.5, µ = 1, η = 0.2, Φ̂i,1(t) = 2
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Figure 3: Tracking results along X-axis. (a) P-ILC. (b) Pro-

posed DDAILC. (c) Maximum error convergence. (d) The

φ̂i,k(t) of PM1 along both domains.

0 10 20 30 40

Sample time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

g
u
la

r 
D

is
p
la

c
m

e
n
t 

y
 (

ra
d
)

y

*

y
(4

th
)

y
(8

th
)

y
(13

th
)

0 10 20 30 40

Sample time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

g
u
la

r 
D

is
p
la

c
m

e
n
t 

y
 (

ra
d
)

y

*

y
(2

th
)

y
(4

th
)

y
(6

th
)

0 5 10 15

Iteration number

0

0.1

0.2

0.3

M
a
x
 t
ra

c
k
in

g
 e

rr
o
r 

(r
a
d
)

PID

P-ILC

DDAILC

15

1.8

40010

1.9

Iteration number Sample time

2

2005
0 0

(a) (b)

(c) (d)

Figure 4: Tracking results along Y-axis (0.3 rad). (a) P-ILC.

(b) Proposed DDAILC. (c) Maximum error convergence. (d)

The φ̂i,k(t) of PM1 along both domains.

V. RESULTS

A. Repetitive CARR Control

A sinusoidal trajectory along X-axis with 0.2 rad amplitude

is adopted first and ILC methods can gradually reduce the

tracking error, as shown in Figure 3(a) and (b). From error

convergence curves in Figure 3(c), the PID maintains a maxi-

mum 0.06 rad tracking error. The P-ILC and DDAILC requires

10 and 6 iterations to achieve a maximum tracking error of

0.05 rad and 0.03 rad, respectively. The value of Φ̂i,k(t) is

given in Figure 3(d) which updates in the learning stage and

maintains similar curve when the tracking error is converged.

Conducting different DoFs and ROMs training are essential

in the rehabilitation scenario. In virtue of its data-driven nature,

DDAILC is expected to adapt different trajectories. Therefore,

a sinusoidal trajectory with 0.2 rad amplitude is conducted

along Y-axis for 15 iterations, consequently, 15 more iterations

are performed that increase the amplitude to 0.3 rad. Note

that designed control parameters are remain unchanged to

eliminate the effects of controller tuning.

Tracking performances of the last 15 iterations are shown in

Figure 4. The P-ILC starts a new learning progress (pi,1(t) =
0) and requires 13 iterations for an error convergence of

0.07 rad. Although the pressure is initialized, DDAILC can use
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Figure 5: Tracking results of T1. (a) X-axis. (b) Y-axis. (c)

X-axis error convergence. (d) Y-axis error convergence.

the stored value of Φ̂i,k(t) that provides an equivalent pressure

sequence which drive the CARR to a 0.2 rad trajectory, as

illustrated in Figure 4(c). Subsequently, only 4 more iterations

are required for a 0.035 rad error. It can be also observed in

Figure 4(d) that the stored value of Φ̂i,k(t) effectively works

in the first iteration.

B. Passive Training with Human Participants

Although participants are encouraged to keep ankle joint re-

laxed, the individual passive torque produced by the stretching

of muscles, tendons and ligaments is inevitable. This passive

torque is not considered in our controller design, which can

evaluate the performance of DDAILC with uncertainties. In

our previous work [24], the PM length tracking was studied

along a vertical direction and control performance with such

uncertainties have not been validated. In this section, the

tracking performances of different controllers under T1 and T2

are compared and participants’ passive torque are discussed.

Tracking performances of P1 are chosen as an example and

presented in Figure 5 and 7, respectively. Detailed working

conditions of PMs including individual muscle length con-

vergences and the objective functions J
(

pi,k(t)
)

are given in

Figure 6 and 8. The green, black, red and blue lines represent

PM1-PM4 as shown in Figure 1. The passive torque of P1 and

P2 and the tracking performances are detailed in Figure 9.

The tracking results and error convergence along different

axes of T1 are given in Figures 5. Without any parameters

change, the DDAILC converges the tracking error to 0.03 rad
and 0.025 rad after 10 iterations. Although the P-ILC follows

the trajectory after 15 iterations, 5% and 10% increases of

tracking error along X and Y-axis are found when compared

to non-participant results. Moreover, the performance of PID

becomes worse where the tracking error for both axes have

increased 0.02 rad.

Detailed working conditions of individual PMs are pre-

sented in Figure 6. Due to the different length of contraction,

Figure 6(a) demonstrates that PM2 and PM4 have larger

control range with a 4mm tracking error, while PM1 and PM3

converge the error to 2mm. Same conditions can be found

in Figure 6(b), where PM2 and PM4 decrease the value of
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Figure 6: Muscle length convergences and objective functions

of T1. (a) Muscle length convergences. (b) The J
(
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)
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Figure 7: Tracking results of T2. (a) First trail. (b) Follow-up

trail. (c) Overall convergence curve along two trails.

J
(

pi,k(t)
)

from over 0.5 to 0.01 while PM1 and PM3 converge

it from 0.03 to 0.002.

Tracking performances of different controllers under T2 are

presented in Figure 7. With the readable value of Φ̂i,k(t), the

convergence speed of DDAILC for the progressive trajectory

has greatly improved. From Figure 7(c), we can observe that

the P-ILC and PID both have significant increase on maximum

tracking error when the control range is increased. The PID

has an increase of tracking error from 0.08 rad to 0.1 rad and

the P-ILC reduces it to 0.06 rad. However, the DDAILC shows

significant improvement with a tracking error under 0.04 rad.

The different dynamics of PMs under T2 can be clearly

observed in Figure 7(a). The maximum length error of four

PMs are around 2mm for the first trail and 3.5mm for the

progressive training. After the initial setting at 1th and 16th

iteration as shown in Figure 8(b), the values of J(pi,k(t)) for

both trail are started from 0.15 and 0.38 and converges to

0.005 and 0.01.

The PM is backdrivable due to its inherent compliance,

which makes it safer to drive when encountered with joint

resistance torque. However, the nonlinear dynamics and time-

varying property bring difficulties to precise trajectory tracking

control. Figure 9 illustrates the passive ankle torque and

tracking performance of P1 and P2 after 10 training iterations.

Due to personal differences, we observe in Figure 9(a) that P1
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Figure 9: Passive ankle torque and trajectory tracking error

of the DDAILC after 10 iterations. (a) Passive torque. (b)

Tracking error.

has a larger passive plantarflexion torque than P2, i.e., P1 has a

higher ankle stiffness than P2. Despite the difference in ankle

stiffness, the DDAILC is able to maintain a sufficiently small

tracking error, as shown in Figure 9(b).

To statistically analyze the tracking performance of different

controllers, three criteria are analyzed and calculated by

RMSE =

√

∑N
t=1

(

θ∗(t)− θ15(t)
)2

N
(21)

Peak error (PE) =

∑ |θ∗(t)− θ15(t)|
2

, t = 100, 300 (22)

Maximumerror (ME) = Max(|θ∗(t)− θ15(t)|) (23)

where Max(·) returns the largest value for t ∈ N . Statistical

analysis results of ten subjects are shown in Table II and

Figure 9 where the conventional P-ILC has improvements on

RMSE and ME when compared to the PID controller. With

the introduction of Φi,k(t), both criteria have further improved

by the DDAILC. For the PE, the P-ILC performs closely or

even worse than the PID controller. It intuitively demonstrates

the major drawback of the conventional P-ILC, i.e., the per-

formance degradation during later period of learning. On the

contrary, with the iteration-dependent time-varying Φi,k(t),
DDAILC alleviates this drawback and provides effective error
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Table II: The statistical results of three performance criteria for T1 and T2.

RMSE (rad) PE (rad) ME (rad)

T1 Trail number 5 10 15 5 10 15 5 10 15

P-ILC
X-axis 0.0607 0.0274 0.0215 0.0873 0.0327 0.0252 0.1027 0.059 0.05

Y-axis 0.0594 0.0289 0.0217 0.0852 0.0402 0.0272 0.0968 0.0503 0.0374

DDAILC
X-axis 0.045 0.0155 0.0117 0.0663 0.0184 0.0063 0.0837 0.0375 0.0272

Y-axis 0.0429 0.0121 0.0087 0.0649 0.0157 0.0085 0.0719 0.0293 0.0185

PID
X-axis 0.0403 0.0171 0.0898

Y-axis 0.0353 0.0169 0.0724

T2
Amplitude

& Trail number

0.2 rad 0.3 rad 0.2 rad 0.3 rad 0.2 rad 0.3 rad

5 15 5 15 5 15 5 15 5 15 5 15

P-ILC X-axis 0.061 0.0201 0.0918 0.0305 0.0767 0.0104 0.1253 0.0345 0.1004 0.0493 0.1509 0.065

DDAILC X-axis 0.0463 0.0128 0.0157 0.0129 0.0627 0.005 0.0101 0.0046 0.0862 0.0299 0.052 0.0444

PID X-axis 0.0471 0.0592 0.011 0.0216 0.0915 0.1122
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Figure 10: Statistical analysis of different controllers. From

top to bottom: RMSE, PE and ME. Colored bars represent the

mean value and error bars denote the standard error.

compensation with a PE under 0.007rad.

To further validate the performance of DDAILC, a compari-

son is made with published control schemes for conducting the

CARR trajectory tracking [6, 25–27]. In addition to the data-

driven tuning method [6], analytical PM model is required for

designing the position-force control scheme [25], sliding mode

controller [26] and inverse model-based ILC [27]. Due to the

difference of the predefined trajectory, tracking performance

is normalized to maximum error percentage in total movement

range as shown in Table III. It can be seen that, the tracking

performance of data-driven controllers outperform other meth-

ods, meanwhile, DDAILC has a significant improvement over

the conventional P-ILC. Considering the repetitive rehabilita-

tion scenario, the performance of DDAILC and its feasibility

in conducting ROM training are further demonstrated.

VI. DISCUSSION

The prolonged immobility of stroke survivors during their

acute period will worsen muscle weakness and joint contrac-

tures. Conducting passive training by completing a ROM tra-

jectory has shown to be effective in relieving these symptoms

[9]. Moreover, ankle stretching can effectively reduce the joint

Table III: Comparison with trajectory tracking studies for PM-

driven robots.

Control strategy Performance∗ Reference

The proposed DDAILC 9.25% -

The applied P-ILC 18.7% -

Robust IFT tuning 17.44% [6]

Hierarchical force-position 20.8% [25]

SMC with boundary layer 25.7% [26]

Inverse model-based ILC 21.3% [27]
∗ ME percentage in total movement range.

stiffness and decrease the incidence of muscle strain during

subsequent training sessions [28, 29]. As a typical repetitive

scenario, the automation capability of robotic sustains its

potential in joint stretching and passive ROM training. From a

control prospective, repetitiveness provides the task domain for

implementing the learning-based methods on the CARR, e.g.,

the conventional ILC [14–16]. However, the strong nonlinear-

ity of PM and the time-varying property of human subject limit

its tracking performance which results in inadequate training

outcomes. Considering the performance degradation with the

fixed control structure, adaptive ILC scheme and parameter

estimation algorithm are designed in this paper, as shown in (7)

and (9). Moreover, to resolve the unstable transient behavior

caused by asymptotic convergence, sufficient conditions are

given that guarantee monotonic convergence of the robot

tracking error, as proven in Theorem 1.

Unlike prototype developed in [2, 3, 22], the CARR aligns

its rotation center with the ankle joint such that synergistic

movements of the user’s lower extremity are eliminated.

This design is motivated by the clinical outcomes [30], i.e.,

isolated movements for single-joint are easier to be learned and

therefore have less reliance on neural factors than multiple-

joint exercises. Compared to an electric motor, PM can deliver

compliant actuation and provide extra ROM for the subject’s

active backdrive. Meanwhile, the passive torque provided by

the muscles, tendons and ligaments will bring uncertainties

during training. Figure 9 illustrates the personal difference in

ankle passive torque caused by different ankle stiffness and

validates the tracking performance of the DDAILC. Moreover,

the comparison results for the selected controllers under dif-

ferent tasks are summarized in Figure 10. It can be observed
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that the standard error of the PID for RMSE, PE and ME are

larger than the learning-based approaches, indicating that its

control performance is affected by task differences. For the

learning-based methods, especially the DDAILC, the standard

error is relatively small which guarantees a reliable tracking

under different training tasks.

When examining the performance of the proposed control

scheme, two movements are adopted under suggestions of

the physiotherapist while the DoF along Z-axis is not rec-

ommended. Compared to the PID controller, the P-ILC has an

improvement on the RMSE (i.e. 51.5%) and ME (i.e. 57.93%)

that represents the accuracy and stability of the trajectory

tracking. With the proposed DDAILC, these two criteria are

further improved by 29.73% and 18.36%. The completion of

a prescribed trajectory, i.e., reaching the peak ankle ROM, is

significant for improving the training effectiveness [28]. Due to

the fixed structure of the controller, the P-ILC is less effective

in the late learning period when the error is close to converge.

By constricting the Φi,k along both time and iteration domains,

the peak tracking error of DDAILC was improved by 50.3%

when compared to the PID controller.

Although our proposed control scheme has a significant

improvement in robot tracking performance, as a trade-off,

it requires 8 iterations to converge the tracking error. To

adapt a wider range of training requirements, accelerating the

convergence speed of ILC-based methods can be considered as

the next stage of study. Moreover, implementing an ILC-based

compensator alongside a well-tuned feedback controller is also

an alternative way for the robot to quickly perform the desired

trajectory and gradually enhance its training performance by

the learning-based mechanism.

VII. CONCLUSION

In summary, a data-driven adaptive iterative learning con-

troller is proposed for effective ankle stretching and pas-

sive ROM training. The dynamic linearization approach is

introduced and the rigorous mathematical proof is given to

guarantee the convergence and the boundedness of the algo-

rithm. Two rehabilitation training movements are conducted

on ten human participants. Compared to the P-ILC and PID

controllers, results show that the proposed DDAILC has

significant improvement on the tracking performance which

maintain the tracking error under 9%.
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