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Abstract

One of the fascinating aspects of sports rivalry is that anything can happen. The significant
difficulty is that computer-aided systems must address how to record and analyze many game
events, and fractal AI plays an essential role in dealing with complex structures, allowing
effective solutions. In table tennis, we primarily concentrate on two issues: ball tracking and
trajectory prediction. Based on these two components, we can get ball parameters such as
velocity and spin, perform data analysis, and even create a ping-pong robot application based
on fractals. However, most existing systems rely on a traditional method based on physical
analysis and a non-machine learning tracking algorithm, which can be complex and inflexible.
As mentioned earlier, to overcome the problem, we proposed an automatic table tennis-aided
system based on fractal AI that allows solving complex issues and high structural complexity of
object tracking and trajectory prediction. For object tracking, our proposed algorithm is based
on structured output Convolutional Neural Network (CNN) based on deep learning approaches
and a trajectory prediction model based on Long Short-Term Memory (LSTM) and Mixture
Density Networks (MDN). These models are intuitive and straightforward and can be optimized
by training iteratively on a large amount of data. Moreover, we construct a table tennis auxiliary
system based on these models currently in practice.

Keywords : Table Tennis; Deep Learning; Object Tracking; Trajectory; Fractal AI Prediction.

1. INTRODUCTION

The fractal AI method plays a significant role
in learning complex, and patterns and features
that have no characteristics length but are of self-
similarity.1–3 Therefore, in recent years, with the
development and reliability of computer vision tech-
nology, specific applications of computers in the
field of sports have also continued to appear. The
fractal method aims to estimate the fractal dimen-
sion and analyze the relationship between fractal
dimension and other parameters.4 Some are used as
auxiliary systems in sports games, such as eagle eyes
in tennis, badminton, and other games; goal deter-
mination in football matches; and as data visual-
ization and analysis tools, such as player movement
distances in football games, heatmaps, and techni-
cal statistics. Several models have been developed
to calculate fractal dimension according to different
subjects of interest, e.g. tracking algorithms in com-
puter vision and machine learning related theories.5

In table tennis, another application that requires
the use of computer vision technology is table ten-
nis robots. In this field, Zhang and Xiong,6 Mülling
et al.7 and Japan’s OMRON company developed
robot games that can fight human table tennis play-
ers. Although these applications involve computer
vision, sensors, robot control, and other theories,
computer vision plays a significant role. For exam-
ple, the accurate and fast-tracking of the ping-pong
ball and the estimation of information such as tra-
jectory, speed, and rotation speed are all crucial
to the subsequent strokes and the usability of the
entire system.

Generally, designing a table tennis robot sys-
tem must solve two fundamental problems. First,
the ping-pong ball is tracked in each frame of
the camera to record the position information of
the ball. Second, based on the sequence of posi-
tion information, it must predict the ball’s trajec-
tory and landing point on the table. The signifi-
cance of prediction is to obtain the ball’s movement
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Video-Based Table Tennis Tracking and Trajectory Prediction

information in advance to allow time for the robot
arm to move to a suitable position and determine
the way of hitting the ball. Because table tennis
has the characteristics of small size, few features,
and fast movement, a tracking algorithm needs to
be specially designed to meet these requirements.
In addition, hitting a ping-pong ball will produce
various rotations, bringing significant challenges to
trajectory prediction.

Though traditional methods have established
complete frameworks and can achieve good practi-
cal results, they still have some shortcomings. First,
the characteristics based on manually selective color
or shape indicate that the robustness is insuffi-
cient. The performance will significantly fluctuate
in video shooting conditions, the present occasion,
or a complex background. Second, the features are
fixed to form when the algorithm is designed and
cannot be flexible, and it is impossible to obtain
better characteristics by more sample training. In
addition, traditional table tennis trajectory predic-
tions include three stages, including rebound and
rebound before a rebound. For the problems men-
tioned earlier, traditional machine learning methods
show limitations.

However, deep learning-based approaches have
overcome these problems by improving the perfor-
mance of table tennis robots. With the improvement
of computer computing power and the emergence
of many labeled datasets for model training, the
potential of deep neural networks has been contin-
uously explored, and deep learning has become an
advanced research direction in recent years. Frac-
tal Net,8 first proposed by Gustav, was widely
revived due to its powerful feature learning capabil-
ity. There are two main contributions. On the one
hand, they introduce Fractal Net as the first sim-
ple alternative to ResNet. At the same time, Fractal
Net certificates that explicit residual learning is not
a requirement for building ultra-deep neural net-
works.2,8 In Ref. 9, winning the ImageNet image
classification competition, deep learning techniques
based on models such as CNN can extract better
features and are widely used in computer vision,
natural language processing, and other fields. The
problem even exceeds the traditional manual fea-
ture selection method in some respects. For exam-
ple, R-CNN 10 is used for object detection in images,
LSTM 11 is used for various sequence prediction
problems, and Q-Learning12 is used for strategy
learning problems such as game AI.

In recent years, the real-time performance of
the depth tracking framework has attracted wide-
spread attention. Researchers have proposed a
lightweight deep learning-based framework that can
be tracked in real-time. For example, in Ref. 13, a
five-layer convolutional neural network is used to
return to the location of the target in the image,
and remove the online learning step, allowing the
algorithm to process more than 100 frames per sec-
ond. On the other hand, object detection is also a
widely used area. Even if the target detection task
is primarily classified in the target object compared
to the target tracking, the object’s position is in
the image. But some of the critical techniques in
target object detection have a great inspiration to
our tracking model.

In addition to convolutional neural networks,
deep learning, a Recursive Neural Network (RNN)
is specifically used to resolve sequence prediction,
such as natural language processing. For example,
in Ref. 14, we use RNN to train on man handwrit-
ing sequences, allowing the writing to predict and
even mimic different styles to automatically gener-
ate. Likewise, in Ref. 15, training LSTM on bas-
ketball game data predicts the ball trajectory and
judges whether it goes in the hoop. Therefore, in
this work, we solve the challenges of trajectory pre-
diction of table tennis, which can be visually con-
verted to the prediction problem of the coordinate
sequence designed from deep learning, and propose
a novel table tennis tracking system. In sum, the
following are the contributions of our paper:

• CNN-based Tracking Algorithm: Based on a
structural output convolutional neural network,
our network outputs a probability map that rep-
resents the location of the tracking target in the
image. We also refer to the target assessment,
designed an enclosure back to the back lapse, and
enhanced tracking result accuracy.

• Trajectory Prediction Model Based on LSTM: We
employ a three-dimensional coordinate sequence
of table tennis to train the model, predict the
entire table tennis trajectory, and automatically
process the ball rebound on the play. Thus, it
significantly simplifies the problem of table tennis
trajectory and uses it as a tracking framework.

• Construction of Tracking Framework: We have
designed a complete tracking framework. At the
same time, we use this framework to collect a host
of table tennis trajectory data for analysis.
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H. Li et al.

2. METHODOLOGY

The framework proposed in this paper can be used
in ship trajectory classification. Taking advantage
of the high timeliness of CNN’s model construc-
tion, the modular reading and identification input
of data information are carried out. At the same
time, in order to prevent the loss of local informa-
tion in the modeling process, the data is serialized
into multiple sub-sequences and transmitted to the
CNN network to improve the integrity of prediction
data. Due to the spatial and temporal correlation of
ships in navigation, the LSTM model with memory
characteristics is used to predict the ordered data of
ships. Therefore, this combined model can not only
support more data input, but also ensure that the
predicted time state is more stable.

2.1. Tracking Algorithm Based

on Structured CNN Output

Since the table tennis tracking framework needs to
meet real-time tracking requirements, the candidate
image of the neural network needs to be as small as
possible. Due to this, the CNN model can directly
output a surrounding box indicating the target posi-
tion without a feature vector. Thus, simplifying the
network structure, avoiding more complex calcu-
lations. SO-DLT16 provides an idea to solve this
problem.

The CNN model of this paper is shown in Fig. 1.
Similarly, in SO-DLT, the network is input to an
image of 100 × 100 and outputs a probability map
of 50× 50. The convolution layer uses a pre-trained
CaffeNet and fine-tuning on a table tennis training
set. Above the convolution layer, there is a space
pyramid pooling layer, which is used to retain more
location information. Finally, two full-connection
layers output 2500-dimensional vector transform in
50 × 50 matrices. Since the CNN model outputs

more than just the target’s position, it can also dis-
tinguish between table tennis, other objects, and
non-objects. Therefore, after the convolution layer,
a classification head is added, and in the training
phase, two tasks are jointly trained. The loss func-
tion is defined as

L(p, s) = Lcls(s, s
∗) + λ

50
∑

i

50
∑

j

−(1 − tij)

× log(1 − pij) − tij log(pij), (1)

where p and s are the probability maps and cat-
egory scores of the output, respectively. s∗ is the
target output category, tij is an element of the tar-
get output probability map, with a value of 0 or
1. Lcls is a Softmax loss function, usually used for
classification tasks. λ adjusts the weight of the loss
function of the two tasks.

We employed a table tennis image from a table
tennis competition shooting from the high-speed
camera to train the network. These pictures contain
positive and antique examples. The correct exam-
ple contains images of table tennis. For the typical
example, the displacement is randomly added, mak-
ing the target (table tennis) uniformly distributed
in the picture, a scaled zoom within a certain range,
and finally the unified cut into 100× sizes. The
antique includes a background image and an inter-
ference image. Target output refers to the descrip-
tion in SO-DLT; for the typical example, the value
of the probability map is set to 1; for the reverse
example, the probability map, all values are 0. Fig-
ure 2 shows some training data. The two columns
of the left are numbered input images and tar-
get outputs, and the right side is two listed as an
example.

Figure 3 shows the performance of the model on
the validation set. It can be seen that for the input

Fig. 1 CNN model network structure.
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Video-Based Table Tennis Tracking and Trajectory Prediction

Fig. 2 Results of the CNN model on the validation set.

image containing the target, the output is displayed
as a mass consisting of a high probability value,
and the group corresponds to the position of the
table tennis in the input image. This can be more
clearly seen on the three-dimensional probability
map shown in Fig. 3b. The farther from the cen-
ter, the lower the probability value. Therefore, a
simple threshold method can be used to obtain a
surrounding box, and this enclosure is used as the
model’s output.

(a) (b)

Fig. 3 Sample figure caption. (a) For inputs containing the target, the network generates a white communication shape; for
the reverse example, the output is close to all 0. (b) 3D representation of the output probability map.

2.1.1. Regression Layer

However, from Fig. 3, the envelope from the prob-
ability map is not ideal. An incorrect surrounding
box means the error of location information, but it
will also cause drift or even loss of the entire track-
ing framework. Although the probability map can
give a more accurate estimate of the object’s posi-
tion, it is poor in the object’s border. The shape of
the probability map changes and a simple threshold
method may cause more errors. Infested envelopes
not only mean the error of location information, but
they will also cause drift or even loss of the entire
tracking framework.

We focus on the object detection field. The
enveloped box obtained after the transformation is
the output of the entire network. The high-level
semantic information (candidate area layer) and low
layer location information can correctly identify the
object in the input image and give the envelope box.
For example, the probability map’s envelope case
can be considered a candidate area in the above-
structured output CNN. Unlike the production of
this envelope, we proposed to realize this enclosure
to the low-level convolution layer. The feature is
input to the returning layer to obtain a more pre-
cise chamber.
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This paper refers to the Fast R-CNN17 design,
adding a regional pooling layer (ROI pooling layer)
to the network. This pilot layer uses the enve-
lope case obtained from the above probability map,
which is cropped on a characteristic of a low-level
convolution layer and is scaled to a new feature map
of a seven× seven size. A returning layer above this
feature is added. Considering that the positional
accuracy of the convolution layer cannot be too low,
this paper selects a circuit in Conv 1. The return-
ing layer is essentially a thorough attachment layer,
but the output is fixed to 4 real numbers, repre-
senting the displacement and long width of the XY

direction. The newly added neural network layer
is directly attached to the pre-training structured
output CNN. During training, the returning layer
will be trained separately while the other layers are
frozen. For the loss function, we refer to the method
in the R-CNN, which uses a Smooth L1 Loss layer.

First, the four simulations predicted by the
returning layer are not an absolute value of the dis-
placement and size of the target enclosure but are
a transformation of the candidate zone to the tar-
get enclosure. These indicate that the transformed
value can be normalized, and the training difficulty
can be reduced. At the same time, we refer to the
design of the R-CNN loss function, when comparing
network output and target output, the SmoothL1
process is used instead of simple L1 or L2

smoothL1(x) =

{

0.5x2 if|x| < 1

|x| − 0.5 otherwise
(2)

L2 is used in the vicinity of the origin, and the
remaining portion is the same as L1. This can effec-
tively avoid gradient explosion. The newly added
network layer is shown in Fig. 4. Like the training
data used and the previous structured output CNN,
only the target output is changed to 4 real numbers,
indicating the target enclosure’s XY coordinates
and long width. The effect of the returning layer
can be seen in Fig. 5. The returning layer can be
effectively fine-tuned to the original envelope box,
closer to the detection target.

2.2. Trajectory Prediction Model

Based on LSTM

Recurrent Neural Network (RNN) and its variant
Long Short-Term Memory (LSTM) are widely used
to solve sequence prediction. In table tennis robot
system design, two problems need to be solved by

using the new model. One is the motion model in
the tracking framework. Given the position of the
last frame of the tracking target, it predicts the
place that may appear in the next frame. The other

Fig. 4 Network structure of the returned layer. The net-
work structure of the returned layer. Use the candidate area
in the low-level convolution layer feature map cut, and the
pool is used to become a feature map of the fixed size. Sub-
sequently, four real numbers are output, indicating the inclu-
sions of the return.

Fig. 5 Results of the returning layer on the verification set.
The result of the returning layer on the verification set. The
red rectangle comes from the structured output CNN; the
green rectangle is the output of the returning layer. At this
point, this paper has implemented an end-to-end CNN model
that can directly obtain the precise position of the target
object from the input image, and only the forward operation
needs to be performed.
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Video-Based Table Tennis Tracking and Trajectory Prediction

is trajectory prediction. Given a small section of
table tennis coordinate sequence, the subsequent
coordinate sequence is automatically generated. As
we can see, these two problems are suitable for
solving a recurrent neural network model. For the
motion model, the known table tennis coordinate
sequence can be input into the neural network, and
the final output can be used to predict the coor-
dinates in the next frame. The known coordinate
series is also input into the neural network to update
the internal state vector for trajectory prediction.
Then, the new coordinates are recursively generated
and connected to the input to create a sequence.
From this sequence, the landing point information
of table tennis and some attributes in the flight pro-
cess can be calculated.

The recurrent neural network gets its name
because of its internal recursive structure. In the
most straightforward cyclic neural network, the net-
work parameters only include the state transforma-
tion matrix Whh, the input transformation matrix
Wxh, and the output transformation matrix Why.
There are only two kinds of operations: receiv-
ing input and updating status and computational
output.

ht = tanh(Whhht−1 + Wxhxt), (3)

yt = Whyht. (4)

By simply overlaying the hidden layer, a more
complex network structure can be achieved. Usu-
ally, we can also connect the output of other net-
works to the hidden layer of RNN to provide initial
information. For example, in the image capturing
task, we connect the output of CNN to RNN as the
initial state, and then make the recursive structure
of RNN to generate a text sequence to describe the
input image.

Due to structural defects, the state of RNN at one
recursion may affect the state at a future recursion.

Fig. 6 Structure of LSTM.

Fig. 7 Internal structure of LSTM.

LSTM has made a unique design for this problem.
As shown in Fig. 6, the state transition is modified
by adding a new internal state vector Ct and a path
to connect the two states so that the old information
can be passed to multiple recursions. The figure can
also show the structure of the multiplication oper-
ation of σ functions followed by an element. This
structure allows the neural network to learn what
information is retained in the previous state and
added data.

2.2.1. Trajectory Prediction Model

Design

Figure 7 shows the structure of the trajectory pre-
diction model used in this paper. The LSTM model
accepts a three-dimensional vector: the xyz coordi-
nate of the ping-pong ball at t time as the input. For
the output, we follow the practice in Ref. 15, which
is not only to output a three-dimensional coordi-
nate of the moment t + 1 but also to add a Mixture
of Density Networks (MDN) to LSTM to output
multiple parameters of multi-dimensional Gaussian
distribution, which represents the probability dis-
tribution of the next coordinate predicted by the
model on xyz. In this work, the Gaussian distribu-
tion represents the displacement from the current
coordinate to the next coordinate, the probability
distribution of velocity.

First, the model, which only outputs three-
dimensional coordinates and the loss function dur-
ing training, generally uses the Euclidean distance
between the target coordinates and the actual coor-
dinates. For the model that outputs the parame-
ters of Gaussian distribution, the probability value
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H. Li et al.

of the target results in this Gaussian distribution
can be used as the loss function to increase the
probability value as much as possible. Because there
may be some errors in the training data itself, the
Gaussian distribution can tolerate such errors more
than the absolute distance, which is helpful in the
convergence of the model. Second, hybrid density
networks are often used to model objects with mul-
tiple states. For table tennis, because the ball has
flight, collision, and other conditions, a single Gaus-
sian distribution may not be able to describe all
possible state changes. When multiple Gaussian dis-
tributions are used, the neural network can deter-
mine which state to predict by adjusting the weight
of each distribution. For example, when the ball is
about to collide with the table, the importance of
the Gaussian distribution that predicts the state
of “bounce” should be more significant, while the
weight of the distribution that indicates “keep fly-
ing” should be smaller.

MDN works like a fully connected network.
It accepts the intermediate state of LSTM as
input and outputs multiple parameters of multi-
dimensional Gaussian distribution. Seven param-
eters represent each Gaussian distribution: the
mean and standard deviation on the xyz axis
µxσxµyσyµzσz, and the correlation ρxy of the xy

axis. Because in the trajectory of table tennis, the
xy-axis is parallel to the table, while the z-axis is
perpendicular to the table, it is only assumed that
xy correlates. For a single Gaussian distribution,
the probability of input state c and output velocity
v is

p(v | c) =
1

2
exp

⎛

⎜

⎜

⎝

−
1

2

⎛

⎜

⎝

vx − µx

vy − µy

vz − µz

⎞

⎟

⎠

T

×

⎛

⎜

⎝

σ2
x σxσyσxy 0

σxσyσxy σ2
y 0

0 0 σ2
z

⎞

⎟

⎠

−1

×

⎛

⎜

⎝

vx − µx

vy − µy

vz − µz

⎞

⎟

⎠

⎞

⎟

⎟

⎠

. (5)

For multiple Gaussian distributions, the model
sets a weight for each Gaussian distribution, and
the sum of the weights is 1 so that the sum of the
whole probability distribution is 1. For example, for
MDN, input state c with K Gaussian distributions,

the probability of output velocity v is

p(v | c) =

K
∑

k

θk(c)p(v|c)

s.t.
K

∑

k

θk(c) = 1

, (6)

where θk is the weight of each Gaussian distribution,
and pk is the probability distribution function of
each Gaussian distribution.

To train the network with MDN, because the
network’s output represents a mixed Gaussian dis-
tribution, the Euclidean distance from the target
coordinates cannot be directly used as the loss
function. Instead, the network can be trained by
maximizing the probability value of the target coor-
dinates in the Gaussian distribution. The loss func-
tion is

L(v∗, x) = − log

(

K
∑

k

θk(c(x))pk(v
∗|c(x))

)

, (7)

where v∗ is the target output, x is the input
three-dimensional coordinate, and c(x) represents
the intermediate state of the output after LSTM
accepts x.

In trajectory prediction, the model takes a sam-
ple from the output mixed Gaussian distribution,
and the calculated new coordinates are re-input
to the network. A predicted trajectory is obtained
after several cycles. When LSTM is used as the
motion model of the tracking framework, it is like a
quantum filter to sample multiple candidate regions
from the mixed Gaussian distribution.

3. INTEGRATED TRACKING

FRAMEWORK

The system proposed in this paper needs to be
used in a specific actual environment configura-
tion. Specifically, two high-speed cameras are placed
on one side of the table, and the area of the
table is photographed synchronously through hard-
ware triggers in parallel and does not move in the
whole process. To ensure that the three-dimensional
coordinates can be calculated accurately later, the
models and specifications of the camera need to be
consistent. The world coordinate system is estab-
lished with a corner of the ball table as the origin,
as shown in Fig. 8. The x -axis is along the bottom
line of the table, the y-axis is along the edge of the
table, and the z -axis is perpendicular to the table.
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Video-Based Table Tennis Tracking and Trajectory Prediction

Fig. 8 World coordinate settings.

The projection matrix of the two cameras to the
ball table needs to be calculated in advance to cal-
culate the three-dimensional coordinates from the
two-dimensional coordinates obtained by the two
cameras or to project the three-dimensional coordi-
nates to the camera plane.

3.1. Framework Design

The next step is to build the entire tracking frame-
work. At each moment, it obtains an image from
two synchronous cameras, tracks and receives the
three-dimensional coordinates of the table tennis
ball after a series of calculations and predicts the
trajectory simultaneously. The whole process can
be divided into the three steps described below and
shown in Fig. 9.

3.1.1. Extract region of tracking

targets

The first thing to solve is how to get the initial
bounding box, that is, how to detect the tracking

Fig. 9 Flowchart of tracking framework.

target in the image. This framework first looks for
possible areas of table tennis. Because the camera
is permanently fixed and there are not too many
moving objects in the whole scene, the foreground
region can be extracted by background subtraction
to narrow the search range. These regions are used
as target candidate regions, and then input into the
CNN model for calculation. Finally, the candidate
image with the highest probability value is output
as the tracking target. Note that this system does
not rely heavily on background subtraction. It only
needs to find the target’s initial position in the first
few frames, and then it can continue to track using
the other steps of the algorithm. This means that
you do not need to keep the entire scene still all
the time. Of course, in the central part of the algo-
rithm, we can still use background subtraction as
an auxiliary method to provide candidate regions
for tracking or skip this step directly.

The test method is similar to the landing point
prediction, and the results are shown in Table 7.

3.1.2. Model tracking using CNN

With the candidate region obtained in the previ-
ous step, the bounding box of the target can be
obtained using the CNN model. For performance
reasons, the CNN model works in two modes. If no
target is found in the current tracking framework,
the CNN model acts as the target detector and
takes all candidate regions as input. If the target
has been found in the previous frame, as a tracker,
only the candidate area near the current target posi-
tion is taken as input. Before entering the network,
the candidate area is enlarged by several pixels to
ensure that the complete target can be included.
Then, depending on the number of candidate areas
we input into the network uniformly as one or more
batches. The bounding box with the highest proba-
bility value is taken as the final output in the output
result. After this step, the two cameras receive a
two-dimensional coordinate, respectively. Through
the camera projection matrix obtained in advance,
the three-dimensional coordinates of table tennis
can be obtained.

3.1.3. Predict trajectory using LSTM

After several cycles, the frame can get a contin-
uous sequence of coordinates. The trajectory and
landing point predictions can be carried out by
inputting this sequence into the LSTM model and
automatically generating the subsequent coordinate
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H. Li et al.

sequence. In addition, we can also use the LSTM
model as the motion model in the tracking frame-
work, input the coordinates obtained in each cycle,
and make it output by only one parameter of the
mixed Gaussian model, like the Kalman filter, to
predict the possible position of the tracking tar-
get in the next frame and reduce the search range
of the tracking. In addition, because table tennis
movement is regular, the LSTM model can directly
predict the position of the ball after several frames
through the trajectory prediction method. When an
occlusion occurs, or the speed of table tennis is too
fast, the CNN tracking model may lose the target.
At this point, the prediction of LSTM is used as the
tracking result, and when the CNN model searches
for the target again, the whole tracking framework
can continue to work.

In addition to the above main modules, the track-
ing algorithm includes some steps to deal with
exceptional cases. These steps come from many
best practices in target tracking and are critical
to the robustness of the entire tracking framework.
Algorithm 1 shows the specific steps of single view
tracking.

In the above algorithm, first, the candidate
regions of the input are screened. Since the motion
of the target object is usually continuous, the can-
didate regions far from the previous frame can be
excluded. The context of the last frame position
is also taken as a candidate region. The candi-
date region is then entered into the CNN model,
which returns the probability value and bounding
box for each region. When all probability values
are less than a set threshold, the algorithm deter-
mines that the tracking has failed. Otherwise, the
algorithm selects the highest probability value and
the corresponding bounding box. Finally, according
to the size of the probability value, the bounding
box is returned directly or the size of the bound-
ing box is averaged with the previous frames and
then returned. This step is due to the slow change
of the bounding box size in a short time, while the
bounding box size of the output of the CNN model
fluctuates to a certain extent. When the probabil-
ity value is greater than a higher threshold (such as
0.95), the framework considers the output of CNN
to be more reliable. Otherwise, based on the above
assumptions, it will be averaged with the previous
frames. In the actual measurement, when the aver-
aging method is not used, the tracker can easily fail
because the predicted bounding box is larger than

Algorithm 1. Single View Tracking Algorithm

1: Input: Proposals candidate area array
2: Output: the bounding box of the tracking target

Ensure: Augmented image Iaug

3: if last frame tracked then

4: for all p in Proposals and
TOO FAR AWAY(last box, p) do

5: remove p from Proposals
6: end for

7: Proposals Proposals+
GET CONTEXT(last box)

8: end if

9: Probabilities, Boxes CNN PREDICT( Propos-
als)

10: Max id ARGMAX(Probabilities)
11: Probability Probabilities[Max id]
12: Box Boxes[Max id]
13: if Box Boxes[Max id] then

14: execute last frame tracked false;
15: return None;
16: end if

17: if last frame tracked or Probability > thresh-
old high then

18: returnBox
19: else

20: return RUNNING AVERAGE(Box,
last box)

21: end if

the actual one such that the search box is too large
to detect the targets inside the search box.

When a single tracking fails, the algorithm will
also select the next frame of coordinates predicted
by the trajectory prediction model as the tracking
result according to the number of consecutive fail-
ures or determine the loss of the whole tracking pro-
cess and re-carry out the first step of the frame and
afterward search the tracking target in the entire
image.

4. EXPERIMENTAL RESULTS

AND ANALYSIS

4.1. Structured CNN Output

For the implementation of the CNN model, this
paper uses an open-source depth learning frame-
work Caffe,18 which is primarily used in deep learn-
ing research. Many of the famous depth learning
models are implemented on Caffe, such as AlexNet
and VGGNet19 in image classification, FCNT20

2240156-10

F
ra

ct
al

s 
2
0
2
2
.3

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

7
6
.2

5
2
.2

2
7
.1

2
4
 o

n
 1

2
/2

3
/2

2
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



Video-Based Table Tennis Tracking and Trajectory Prediction

in target tracking, and R-CNN in target detec-
tion. The network structure is modified directly
by Caffe to alter the network structure and make
fine adjustments of some network layers. Compared
with retraining the entire network, the fine-tuning
task is quite complicated, and the number of train-
ing data required is more minor, reducing the time
and effort needed to collect and label data. We used
the prototype declaration file to define the network
of the structured output CNN and the regression
layer of the box and use the Caffe command-line
interface to complete training and testing. In addi-
tion, this paper uses Caffe’s C ++ interface to
encapsulate functions using the model for use in
the production environment. First, five convolu-
tional layers are obtained. Their weights from the
pre-trained CaffeNet are fine-tuned, the original
fully connected layer is removed, the new network
layer is connected to, and training is from scratch.
The whole training is divided into two steps. First,
joint training is performed on classified tasks and
structured output CNN so that the network can
distinguish between table tennis objects and out-
put probability. The second step removes the clas-
sification layer, adding a bounding box regression
layer, freeing all the remaining network layers, and
training the regression layer.

We use learning rate 10−6 for the first layer, and
5× 10−6 for other layers. The weight decay value is
10 to prevent training. This paper collects table ten-
nis pictures from 30 table tennis videos, randomly
adds displacement and zoom, and uniformly cuts to
100 × 100 sizes. Approximately 40,000 images were
gathered, of which about 20,000 were included in
table tennis, and the rest as a background or con-
tained examples of other interferers (such as racket,
skin). For the first stage, a total of 5 cycles of train-
ing is 20,000 cycles, and the learning rate of each
cycle is multiplied by the attenuation coefficient of
0.1. In the second stage, only table tennis pictures
are used to train the regression layer, with four
cycles and 12,000 cycles. Figure 10 shows the pri-
mary interface of the tool. The upper left corner is
the input image.

The central part of the interface is the inter-
mediate result of a layer in the network, which is
the characteristic diagram of conv5 in this figure.
A significant map of the neuron generated using
the deconvolution layer is displayed in the lower-
left corner when a neuron is selected. The upper
right corner shows the image that maximizes the

Fig. 10 Deep network visualization tool interface. The
interface of the deep network visualization tool and the run-
ning status of the CNN network.

response of the neuron. The middle and lower right
are the pictures in the dataset that make the neuron
produce the maximum response and their saliency
maps.

By changing the input image, it can be found that
the No. 19 neuron in the conv5 layer responds to the
corresponding position of the target object, and it
is more evident than other neurons. The specific
observation of this neuron shows that the response
of this neuron mainly comes from the ping-pong
part of the input graph from the prominent map
in the lower-left corner of Fig. 11. The generated
image in the upper right corner also shows that the
neuron mainly learns the characteristics of “white”
and “round.”

Fig. 11 Comparison of saliency maps of different convolu-
tional layers. The three columns from left to right are the
input image, the saliency map of conv359 and the saliency
map of conv519.
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H. Li et al.

Compared with the lower layer neurons, it can be
found that the features learned by the conv5 layer
are more robust. In contrast, the No. 59 neuron,
which can also produce an obvious response in the
target object’s corresponding position, are selected
from the conv3 layer. This time we use a saliency
map calculated backward, that is, neurons, to com-
pare the gradients of the input images. As shown in
Fig. 11, for an input image (the first line) that does
not contain an occlusion, there is little difference
in the saliency map of the two neurons. However,
for the input containing interference, the confidence
map range of the conv3 neuron is more extensive;
that is, the interference will also cause the neuron’s
response, while the reaction of the conv5 neuron
is limited to the range of the target object. Thus,
it can be seen that the higher convolution layer can
learn semantic features and can distinguish between
target objects and distractors.

In addition to the internal situation of the neural
network, we can also test whether the whole neural
network has learned the ability to predict the target
object’s position in the input image. For the last
layer of the structured output CNN, that is, the
probability graph of 50 × 50 sizes, using the above
toolbox to do the same operation, you can get the
result of Fig. 12. It can be seen from the graph
that the significant image obtained by deconvolu-
tion operation on the structured output layer also
corresponds to the position of the target object in
the input image. The complete response image gen-
erated is also like a white circular object. The most
responsive picture in the dataset also happens to
contain the entire ping-pong ball. From this, it can
be inferred that the neural network has been stud-
ied effectively.

Fig. 12 Visualization results of structured output layer.

4.1.1. Performance analysis

For comparison, this paper trains a new model
based on VGGNet. VGGNet has a deeper net-
work level than CaffeNet. Therefore, more layers of
the network can learn more semantic features. The
achievements in image classification can also show
that improving the depth of the network can effec-
tively enhance accuracy. The VGGNet-16 selected
in this paper contains 13 convolution layers, which
are divided into five groups from conv1 to conv5.
Each group of convolution layers relates to a two
pooling layer. The size of the conv1-2-layer fea-
ture map used as the input of the ROI pooling
layer is 50 × 50. Compared with the 23 × 23 of
the CaffeNet, the position accuracy of the regres-
sion layer can be improved to a certain extent. But
also, because there are more layers of VGGNet, the
amount of calculation is more enormous, and the
running time will be significantly higher than that
of CaffeNet. The training of the model is also more
complex, and the super-parameters need to be fine-
tuned carefully.

First, the classification performance is tested on
the test set of the dataset mentioned above. As
shown in Table 1, because the two-classification task
itself is relatively simple, the accuracy of differ-
ent models has reached a higher value. Thus, the
classification accuracy to a certain extent ensures
that the tracking algorithm will not misclassify
interfering objects as tracking targets. Second,
Table 2 shows the IoU scores of prediction bound-
ing boxes and target bounding boxes of different
models on the test set of the above regression
tasks. The model’s score with the regression layer is
higher than that without the regression layer, while
VGGNet gets a higher score than CaffeNet with or
without the regression layer.

Table 1 Classification Perfor-
mance on Test Dataset.

CaffeNet VGGNet

0.985 0.997

Table 2 Comparison of IoU Scores of CNN Models
on the Regression Task Test Set.

CaffeNet VGGNet

Structured output CNN 0.51 0.61
Regression layer 0.61 0.75
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Video-Based Table Tennis Tracking and Trajectory Prediction

Table 3 Comparison of CNN Model Running
Speed.

CaffeNet VGGNet

Convolution layer (ms) 1 9.87
Structured output (ms) 0.47 0.61
Regression layer (ms) 1.26 1.65
Overall run time (ms) 2.93 12.63

In this paper, the time performance of the model
is tested on a host configured with GTX 1060 3G.
As can be seen from Table 3, the running speed of
CaffeNet is faster than that of VGGNet, and the dif-
ference is mainly reflected in the convolution layer.
There is little difference in time between the struc-
tured output and regression layers because they use
the same structure.

During tracking, the CNN framework often needs
to process multiple input images in one frame. Using
the parallel computing ability of GPU, putting
multiple input images into a batch, and inputting
them into the network simultaneously, instead of
processing only one idea at a time, can improve the
processing speed. This section tests the uptime of
the network under different batch size settings, as
shown in Fig. 13. It can be seen that the intercept
of the two curves on the y-axis is greater than 0,
which means that it is more efficient to process a
batch at the same time than to process a single
image multiple times.

Fig. 13 Comparison of running speeds of different batch
sizes.

4.1.2. Tracking framework

In this simple framework, only a small amount of
samples are taken at each frame near the target
position of the previous frame. The candidate region
is input into the CNN model to obtain the object’s
bounding box in this frame. Although in the follow-
ing test, the framework even carries out only one
sampling, only intercepting the context of the tar-
get location of the previous structure as a candidate
region, it can still achieve good tracking results.

The simple framework is tested on the table ten-
nis video test set, and according to the performance
index mentioned in Ref. 21, the success curve and
the precision curve are drawn, as shown in Fig. 14a.
The success curve indicates that in the tracking pro-
cess, the coincidence rate of the predicted bounding
box and the target bounding box is more signifi-
cant than a certain threshold, that is, the ratio of
the number of frames tracked successfully to the
total number of frames. The abscissa is the thresh-
old, and the ordinate is the ratio of the number of
successful frames. Usually, the curve’s Area Under
Curve (AUC) is calculated to get a number between
0 and 1. The higher the value, the better the perfor-
mance of the tracker. The accuracy curve represents
the ratio of the number of frames in which the dis-
tance between the predicted target position and the
actual place is less than a certain threshold.

This index is also significant for table tennis
tracking because of the need to obtain accurate
coordinates for trajectory prediction. Usually, the
value of the curve is selected when the threshold
is 20 pixels (precision@20) to measure the perfor-
mance of the tracker. The value range is also in the
field of 0–1. The tracking framework is tested using
the above different CNN models, and the compari-
son results are shown in Fig. 14b.

A comparison of AUC and precision 20 scores is
shown in Table 4. As can be seen from the chart
and table, the performance of the VGGNet-based
model is better than that of the CaffeNet model
in all indicators. From the tracking test of a sin-
gle video, it can be observed that due to the lower

Table 4 Target Tracking Indicators Tested on the
Table Tennis Video Dataset.

CaffeNet VGGNet

AUC 0.51 0.61
PRECISION@20 0.61 0.75
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H. Li et al.

(a) (b)

Fig. 14 Target tracking indicators tested on the table tennis video dataset. The commonly used target tracking indicators,
as well as the comparison of different models on these indicators. (a) success curve. (b) precision curve.

(a) (b)

Fig. 15 Comparison of traditional tracking algorithms and deep learning tracking algorithms. (a) success curve. (b) precision
curve.

accuracy of the CaffeNet model, it is easy to see that
the target cannot be fully included in the search
box, resulting in the loss of the target. In addition,
because the search box of the next frame is deter-
mined by the target bounding box of the previous

frame, when the predicted bounding box is larger
than the actual bounding box, it will cause the
search box to become larger and larger such that
the model cannot recognize the target objects that
are too small in the search box.
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Video-Based Table Tennis Tracking and Trajectory Prediction

Fig. 16 Visualization of the tracking performance of each
model on the table tennis video dataset.

This paper also implements a simple track-
ing framework based on color features and the
CamShift algorithm to compare with the traditional
methods. The tracking framework is compared with
the deep learning framework on the same video
data set, and the results are shown in Fig. 15b.
In the actual test, it is found that the traditional
method is easy to drift when there are background
interferers (arm, table sideline). Even if the track-
ing is successful, the target cannot be surrounded
by a small response area. In fact, in the use of
traditional methods, the environment will be con-
strained.6 For example, only shoot the still table
area, only use orange table tennis. In addition, more
auxiliary methods will be used, such as background
subtraction and motion model based on Kalman
filter.

(a) (b)

Fig. 17 Network structure and statistics generated by Tensorflow. (a) Network structure of the LSTM model generated by
Tensorflow. (b) Distribution of a certain weight in the network statistics.

Finally, Fig. 16 also shows the actual tracking
effect of each of the above models, as well as the
comparison with the actual value. It can be seen
that the traditional method easily loses the target
in the case of complex background, and in the case
of successful tracking, the output of the model based
on deep learning has a higher coincidence rate with
the real value.

4.2. LSTM: Trajectory Prediction

Model

For the implementation of the LSTM model, we use
the open-source Tensorflow1 deep learning frame-
work. Due to MDN and other operations such as
Gaussian distribution sampling, the derivation pro-
cess is more complex, so the Tensorflow framework
is chosen to implement. For example, Fig. 17a gen-
erates a network structure based on the calculation
diagram, which can help to check whether the oper-
ation is correct. With the statistics of the network
weight and the intermediate results in the training
process in Fig. 17b, we can have a more specific
understanding of the quality of the training results
and improve the efficiency of parameter adjustment.

This paper uses the Python interface of Tensor-
flow to write the structure, training, and testing
code of the LSTM model. To use it in the real envi-
ronment, we used the more efficient C++ interface
to write the code that uses the LSTM model to
predict.
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Fig. 18 Training data of LSTM model.

4.2.1. Model training

This paper trains the LSTM model on the 3D coor-
dinate dataset of table tennis trajectories. First
of all, 20,000 ping-pong trajectories are generated
using the open-source physics engine Bullet3. Then,
the initial speed, position, and direction are ran-
domly selected to diversify the data as much as pos-
sible. Part of the trajectory is shown in Fig. 18.
In addition, a small number of ping-pong tracks
are collected by high-speed cameras. In the training
process, we intercept a complete track of table ten-
nis as input and translate the same track backward

(a) (b)

Fig. 19 Trajectory prediction results. (a) The prediction result when 30 coordinates are input. (b) The result of inputting
4 coordinates.

one unit in time as the target output. Thus, for
three-dimensional coordinate information at time t,
the target output is the coordinate of the trajectory
at time t. To restore the error of the real measure-
ment trajectory, noise is added to the input data,
but the target output is not processed.

The LSTM model used in this paper contains
two hidden layers, and the length of the state
vector of each layer is 64. The mixed Gaussian net-
work predicts two multidimensional Gaussian dis-
tributions. The number of Gaussian distributions
depends on the number of states. Because table ten-
nis mainly has two conditions of flight and rebound,
two Gaussian distributions are enough to describe
these states, but too many distributions may lead
to overfitting. The model trains 30 cycles on the
training set, traverses the whole training set every
process. The initial learning rate is 5 × 10−3, and
each cycle is multiplied by the attenuation coeffi-
cient of 0.95.

4.2.2. Performance analysis

Figure 19 shows the results of the trained model
on the validation set. It can be seen that a pre-
dictable trajectory that is very close to the tar-
get trajectory can be generated by inputting the
initial coordinates into the neural network. The
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Video-Based Table Tennis Tracking and Trajectory Prediction

fewer coordinates entered means that the model can
make predictions earlier. With the increase of the
number of input coordinates, the predicted trajec-
tory is closer to the target. It can also be seen that
the model can accurately predict the collision event
and change the trajectory direction when the coor-
dinates are relative to the ball table.

As mentioned earlier, an essential task of trajec-
tory prediction of a table tennis robot is to pre-
dict the landing point accurately. The next part is
to test the performance of the LSTM model land-
ing point prediction. For a point in the sequence,
if its z coordinate is less than the z coordinate of
the two adjacent points, it will be regarded as the
landing point. The quality of the model is measured
by calculating the distance between the predicted
landing point and the target landing point. A test
is carried out on a test set containing 4000 tracks,
and a comparison is made by changing the initial
sequence length of the input. Because there is noise
in the input track, which may impact the predic-
tion results, we have carried out the same test on
the input without noise, and the results are shown
in Table 5. It can be seen that with the increase in
the number of input coordinates, the prediction is
more accurate. When the input is in an ideal state,
the prediction accuracy of different input lengths
is improved. For example, when the input sequence
size is 30, the error is less than 40 mm. The actual
diameter of the ping-pong ball is 40 mm, so this
error is acceptable.

To compare with the traditional methods, this
paper also implements a trajectory prediction
model based on the Extended Kalman Filter and
tests the landing point prediction according to
Ref. 22. The results are shown in Table 6. Compared
with the LSTM model, the traditional model has

Table 5 Performance of Landing Point Prediction
of LSTM Model.

Input Sequence Length 4 10 30

Average error (mm) 181.93 79.73 36.48
Ideal average error (mm) 162.6 73.26 33.65

Table 6 Performance of Landing Point Prediction
of LSTM Model with Extended Kalman Filter.22

Input Sequence Length 4 10 30

Average error (mm) 621.16 90.16 17.93
Ideal average error (mm) 599.28 79.38 14.05

Table 7 Performance of Landing Point Prediction of
LSTM Model with Extended Kalman Filter.22

Input Sequence Length 4 10 30

Average error (mm) 6.39 6.38 6.38
Ideal average error (mm) 0.72 0.64 0.62

higher accuracy when there are more input coordi-
nates. However, as the input decreases, the accuracy
of the conventional model falls faster. This paper
found that this is due to the lack of input informa-
tion, and the model cannot obtain additional infor-
mation from pre-training.

For the LSTM model, we also made a network
analysis to know its internal operation to observe
whether the MDN network has learned to pre-
dict the rebound of ping-pong balls on the table.
As mentioned above, the MDN model outputs two
parameters of the multi-dimensional Gaussian dis-
tribution. When a bounce occurs, the Gaussian
weight of the predicted “bounce” action should be
higher. Because it is mainly the z coordinate that
changes during the bounce, the multi-dimensional
Gaussian distribution is projected onto the z -axis.
The result is shown in Fig. 20. Because the Gaus-
sian distribution represents the displacement from
the current coordinate to the next frame, the instan-
taneous velocity on the z-axis should be less than
0 before the bounce and greater than 0 after the
bounce. The figure shows this situation correctly:
before the rebound, the mean of the two Gaussian
distributions is less than 0, but after the rebound,
the standard deviation of the Gaussian distribution
with a mean greater than 0 is more minor and has
a higher weight.

Finally, we also test the time performance of the
LSTM model. This time the model is run in CPU
mode. On the CPU of Intel i7-6700 3.40 GHz, the
average time for making a prediction is 0.35 ms.

4.3. Integrated Tracking Structure

This paper uses the Codebook 23 algorithm to sub-
tract the background on the YCrCb channel of the
image. Because the video is filmed with a high-speed
camera under indoor lighting conditions, there will
be frequent brightness changes and noise, as shown
in Fig. 21. However, by operating on the YCrCb
channel, the Codebook method can reasonably deal
with regular brightness changes and ignore the noise
generated by the light.
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(a) (b)

Fig. 20 TMDN predicts table tennis rebound action. The internal state of MDN during the rebound of the ping-pong ball.
(a) The output of MDN before rebound. (b) MDN after rebound Output.

Fig. 21 Noise of input video.

A separate candidate region is obtained from the
foreground image by morphological operation, and
the candidate region is filtered according to the
shape, size, and other features. Then the candidate
region is input into the CNN model. The result is
shown in Fig. 22.

In the stage of collecting training data, we also
use background subtraction to automatically cut
table tennis pictures in videos with less motion
interference to improve tagging efficiency.

4.3.1. 3D coordinate reconstruction

First of all, using the chessboard calibration
method, the chessboard pictures are taken from
multiple angles, and the internal parameter matrix

M3×3 and the distortion coefficient of the cam-
era are obtained by using the built-in calibration
function of OpenCV. Then, the internal parameter
matrix is used to convert the 3D coordinates of the
camera coordinate system into the 2D coordinates
of the camera plane

Zc

⎡

⎢

⎣

u

v

1

⎤

⎥

⎦
= M3×3

⎡

⎢

⎢

⎢

⎣

Xc

Yc

Zc

1

⎤

⎥

⎥

⎥

⎦

. (8)

Then, the ping-pong table region in the image is
identified by the color feature, and the boundary
line is obtained by Hough transform, as shown in
Fig. 23. The coordinates of the four corners of the
ball table are obtained through the intersection of
the boundary line. Then the external parameter
matrix from the camera to the ball table is cal-
culated, including the rotation matrix R3×3 and
the displacement matrix T3×1. Finally, the external
parameter matrix is used for the conversion between
the camera coordinate system and the world coor-
dinate system

⎡

⎢

⎢

⎢

⎣

Xc

Yc

Zc

1

⎤

⎥

⎥

⎥

⎦

=

[

R3×3 T3×1

0 1

]

⎡

⎢

⎢

⎢

⎣

Xw

Yw

Zw

1

⎤

⎥

⎥

⎥

⎦

, (9)
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(a) (b)

Fig. 22 Background subtraction result. (a) Input image. (b) The extracted foreground area.

Fig. 23 Extracting the boundary line of the table.

Zc

⎡

⎢

⎣

u

v

1

⎤

⎥

⎦
= M3×3

[

R3×3 T3×1

0 1

]

⎡

⎢

⎢

⎢

⎣

Xw

Yw

Zw

1

⎤

⎥

⎥

⎥

⎦

. (10)

Finally, combining the above two formulas, we
know the two-dimensional coordinates of a certain
point in the two camera planes and use the fol-
lowing formula to calculate the three-dimensional
coordinates.

Zc is the Z coordinate of the point in a cam-
era coordinate system, which is an unknown num-
ber, and u, v are the coordinates of the point in the
plane of the camera. R is the rotation matrix, and T

is the displacement matrix. Finally, Xw, Yw, Zw are
the three-dimensional coordinate in the world coor-
dinate system, which requires the solution. There
are four unknowns, and each of the two cameras
provides one of the above equations to solve directly
by linear algebra.

The drop-off statistics shown in Fig. 28 can better
characterize the player’s offensive options and help
players better train.

4.4. Tracking Framework

Performance

To meet the real-time requirements, this paper uses
C++ to implement the tracking framework and uses
Qt to write a graphical interface. The operation
of the program is shown in Fig. 24. The top of
the interface offers tracking from two perspectives:
table tennis’s instantaneous speed at the bottom
left. The top view of the table at the lower right
shows the position of table tennis (green) and the
actual landing point (red) in real-time, as well as
the predicted location of the impact point (yellow).
We encapsulate the CNN model based on Caffe, the
LSTM model based on Tensorflow, and the com-
puter vision method used in the framework into
dynamic libraries, which are linked in the main
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Fig. 24 Graphical interface of ping-pong tracking system.

Fig. 25 Video test taken with actual environment.

program of the framework. The program can run
successfully on Ubuntu16.04.

This work tests the reliability of the tracking
framework in a real environment. As shown in
Fig. 25, when a synchronized camera is used to
shoot a video of two table tennis players playing
against each other, there will be disturbances (play-
ers moving in the distance) and occlusion (occlu-
sion of nearby rackets) continuously throughout the
process. Figure 26 shows the trajectory prediction

Fig. 26 Trajectory prediction in actual environment.

in the virtual environment. Prediction starts when
the ball flies over the net until it bounces off the
table. It can be seen from Fig. 24 that the tracking
framework records the trajectory of the table ten-
nis relatively completely and predicts the trajectory
more accurately.

We have fully implemented the table tennis
tracking framework. However, the framework only
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Fig. 27 Instantaneous speed statistics of table tennis.

Fig. 28 Statistics of table tennis placement.

accomplishes two fundamental problems: table ten-
nis tracking and trajectory prediction. More work
can be done based on the framework. In addition
to the landing point prediction and hitting time
determination of the table tennis robot mentioned
at the beginning of this paper can also be statisti-
cally and analyzed based on many trajectory data
obtained by tracking. For example, the instanta-
neous speed curve of a table tennis ball is shown
in Fig. 27. Excluding the noise caused by a small
amount of tracking failure, some physical laws can
be observed, such as the z -axis speed (perpendicular
to the table) reverses when bouncing and decreases
linearly during flight. For example, the y-axis speed

(parallel to the sideline) is reversed when hitting the
ball and decreases during flight.

5. CONCLUSION

In this paper, fractal AI provides an effective solu-
tion to deal with the complex structural predic-
tion and tracking via designing a framework based
on deep learning, the aim of which is to replace
the traditional methods with more intuitive ideas
and more robust performance, to solve the two fun-
damental problems of table tennis tracking sys-
tem, namely, tracking and trajectory prediction.
First, we proposed a structured output CNN and
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bounding box regression model, successfully applied
to the table tennis track. In addition, we convert
the LSTM model used for sequence prediction to
the problem of ping-pong trajectory prediction and
puts forward a more straightforward and intuitive
solution than the traditional method. Finally, it
integrates each model to achieve a complete track-
ing framework. We have carried out various experi-
ments on the network model, explored the internal
operation mode of the network, and confirmed the
availability of the model. We also write a graphical
interface program to show the actual effect of the
framework.

Compared with the traditional computer vision
methods, the proposed framework does not need
to manually select features to track table tennis
and does not need to predict the trajectory based
on many physical formulas. Input and output are
clearly defined in all models, and many exceptional
cases can be solved automatically within the model.
Compared with the general tracking algorithm, the
framework is specially designed for the tracking
problem of table tennis, which solves the problem
of finding the tracking target in the first frame,
removes the online learning process through the
pre-training of a large number of table tennis pic-
tures, and improves the processing speed. A more
reasonable motion model is designed according to
the characteristics of table tennis.

These are the several future directions where
we can employ tracking and trajectory predictions;
(1) The rotation information of table tennis is mea-
sured by the method based on computer vision,
and the measurement results are integrated into the
existing framework to improve the performance of
tracking and trajectory prediction. (2) Deep learn-
ing can be used to recognize human actions. In
table tennis video, athletes’ body movements are
also an important source of information. By iden-
tifying the player’s swing, additional information
can be provided for ball tracking. It can also ana-
lyze the human body movements separately, such
as the offensive characteristics and tactical analy-
sis of athletes. Based on the strong ability of deep
learning in image recognition and the existing work
related to deep learning attitude analysis, it can
be easily transferred to table tennis video analy-
sis. (3) The reinforcement learning method is used
to realize the design of table tennis robot. In depth
learning methods, such as reinforcement learning,
can directly take the game picture pixels as input,

and ++reward or punish the network through the
game operation, so that it can learn to make correct
actions at a specific time and obtain higher game
scores. More powerful network structure and sim-
ple training methods make deep learning become
the main direction of table tennis robot design.
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