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Abstract: CUB and Sushi Multiple Domains 1 (CSMD1), a tumour suppressor gene, encodes a large
membrane‑bound protein including a single transmembrane domain. This transmembrane region
has a potential tyrosine phosphorylation site, suggesting that CSMD1 is involved in controlling cellu‑
lar functions. Although the specific mechanisms of action for CSMD1 have not yet been uncovered,
it has been linked to a number of processes including development, complement control, neurode‑
velopment, and cancer progression. In this review, we summarise CSMD1 functions in the cellular
processes involved in the complement system, metastasis, and Epithelial mesenchymal transition
(EMT) and also in the diseases schizophrenia, Parkinson’s disease, and cancer. Clarifying the associ‑
ation between CSMD1 and the aforementioned diseases will contribute to the development of new
diagnosis and treatment methods for these diseases. Recent studies in certain cancer types, e.g., gas‑
tric cancer, oesophageal cancer, and head and neck squamous cell carcinomas, have indicated the
involvement of CSMD1 in response to immunotherapy.
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1. Introduction
Research on the CUB and Sushi Multiple Domains 1 (CSMD1) gene, which is thought

to be associated with tumour suppression and the immune system, has increased recently.
Initially, the CSMD1 gene was proven to be associated with schizophrenia (SZ), though
CSMD1 is involved in many different mechanisms in the body with the discovery of its
roles in the complement system, cancer, metastasis, cell migration, and epithelial–mesench
ymal transition (EMT) [1–3]. Potentially, the CSMD1 gene may help clarify the unknown
pathologies of many diseases in the future. Consequently, a good understanding of the
structure and possible metabolism/mechanism of the CSMD1 protein is important. In this
review, we provide an overview of the general properties of the CSMD1 gene and protein
and its roles in various diseases.

2. CSMD1 Structure
The CUB and SushiMultiple Domains 1 (CSMD1) gene consists of 71 exons and spans

a 2 MB DNA region on chromosome 8p23.2 [4]. CSMD1 consists of 14 CUB domains sepa‑
rated by 14 complement control protein (CCP) domains at the N‑terminus, followed by a
tandem repetition of 15 CCP domains (Figure 1, [5]). The CSMD1 gene encodes 17 splice
variants in total [1]. The largest of these variations codes for a 3508‑amino‑acid protein
with a 383 kDa molecular mass [4]. Conservative CUB domains, which span 110 amino
acids, were first discovered in a variety of extracellular proteins, the majority of which
were known to play a role in developmental processes and immunity, as well as in vari‑
ous cancer types [6,7]. Sushi domains are extracellular motifs that are frequently found in
protein–protein interactions. Every Sushi domain has ∼60 amino acid residues with con‑
served tryptophan, glycine, proline, hydrophobic residues, and four invariant cysteines.
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Since many complement control proteins contain multiple Sushi domains, it is also re‑
ferred to as a complement control protein [8–10]. The CSMD1 protein is a membrane‑
bound protein including a single transmembrane domain [4]. A putative tyrosine phos‑
phorylation site inside this transmembrane region suggests that CSMD1 is involved in the
regulation of cellular processes [11–13]. According to the latest data based on a combina‑
tion of internally generated Human Protein Atlas RNA‑Seq data and RNA‑Seq data from
the Genotype‑Tissue Expression (GTEx) project, CSDM1 is predominantly expressed in
the epithelial cells in many tissues with high expression in the brain, male reproduction
system, and retina, followed by the breast and female reproductive system, spleen, and
kidney [14,15].
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3. CSMD Gene Family
CSMD1 is currently the best understood protein in the CSMD protein family, consist‑

ing of three structurally very similar proteins, with 14 CUB domains separated by a sushi
domain, an additional uninterrupted array of sushi domains, a single transmembrane do‑
main, and a short cytoplasmic tail. CSMD2 andCSMD3 are expressed at low levels inmany
tissues with the highest expression in the central nervous system. This expression pattern
is similar to that of CSMD1, though CSMD1 expression is lower than that of the other two
genes [16]. The striking similarity of all three CSMD genes brought up the question of
whether CSMD2 and 3 are also tumour suppressors. A colorectal cancer study revealed
that all three CSMDs were lower in colorectal carcinoma cells than in normal tissues [17].

CSMD2 is located at the 1p34 chromosomal region, which may contain an oligoden‑
droglioma suppressor, but its expressionwas found to be increased in some head and neck
cancer cell lines [16]. Reduced CSMD2 expression was linked to tumour size, lymphatic
invasion, and differentiation in colon cancer, the development of pulmonary sarcomatoid
carcinoma, livermetastasis, and pancreatic cancer [17–20]. Furthermore, CSMD2 has a role
in immature neuron development [21] and has also been identified as a risk factor for the
development of schizophrenia (SZ) [22].

CSMD3, which is located on chromosome 8q23.3‑q24.1, spans 1.2 Mb and encodes
73 exons [23]. CSMD3 expressed predominantly in the cortical neurons of the developing
cortex was associated with neurodevelopmental disorders (NDDs) such as autism spec‑
trum disorder (ASD) and SZ [24–27]. After elucidating the expression of CSMD3 in den‑
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drites and its functions for dendrite formation [28], Song et al. proved that CSMD3 plays
a critical role in early cortical neural network construction, which includes synaptogene‑
sis and glia–vascular communication [29]. In addition, it was discovered that the CSMD3
mutation is strongly associated with increased tumour mutation burden and poor clini‑
cal prognosis in ovarian cancer [30]. Furthermore, common CSMD3 gene mutations were
found in pulmonary carcinosarcomas [31] and oesophageal squamous cell carcinoma
(OSCC) [32].

4. CSMD1 Function
CSMD1 has been implicated in a variety of processes including development, com‑

plement control, neurodevelopment disorders, and cancer progression, though specific
mechanisms of action have yet to be identified (Figure 2, [5]) [3,33–38].
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CSMD1 has been shown to modulate the SMAD pathway and has potential for intra‑
cellular signalling; due to its structural features, it may operate as a co‑receptor or interact
with growth factor receptors. It has also been reported that CSMD1 interacts with ECM
components and goes through clathrin‑mediated endocytosis (Figure 3, [5]) [39]. This re‑
view will focus on CSMD1 and its roles in the complement system, neurodevelopmental
diseases, cancer and metastasis, and EMT.
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4.1. CSMD1 in Complement System
The tandem Sushi domains at the C‑terminus of CSMD1, a transmembrane protein

composed of multiple CUB and Sushi repeats, have homology to the complementary acti‑
vation of regulators (RCA) gene family [4,16,23,40]. Complement, a key part of the innate
immune system, includes more than 30 proteins grouped in a proteolytic cascade, with
effector mechanisms controlled by a variety of receptors [41]. Although complement is
most plentiful in blood, all of its components can also be found in tissues due to diffu‑
sion or local transport [42]. Complement’s primary role is to recognise pathogens and
damaged cells from an organism, induce inflammation, and destroy the pathogen’s cell
membrane [43]. Complement is structured into threemajor pathways (classical, lectin, and
alternative), each of which is inducted by sensory molecules that can detect pathogens or
undesired material. This triggers a series of proteolytic activation processes that result in
complement effector molecules such C3 fragments. The synthesis of the membrane attack
complex (MAC), which can lyse Gram‑negative bacteria and harm eukaryotic cells, is the
last stage in the complement cascade [3]. The classical pathway is initiated by the bind‑
ing of antibodies to antigens on the target cell. Complement C1s is activated as a result of
this interaction, which is mediated via C1q activation. The C1s enzyme can cleave C4 and
C2 components, resulting in the formation of C3 convertase (C4bC2b), which activates the
complement cascade [41,44,45]. The alternative pathway stimulates the membrane attack
complex by hydrolysing C3 molecules to produce a different C3 convertase (C3bBb). In
this step, CSMD1 prevents C3 from being deposited on the cell surface, effectively shut‑
ting down the traditional complement pathway [37,40,46]. Consequently, CSMD1 was
hypothesized to have a role in cell cycle regulation and apoptosis control due to its role on
complement (Figure 4, [5]) [13].
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4.2. CSMD1 in Neurodevelopment Diseases
The precise role of CSMD1 in immune responses awaits further elucidation, while

a possible association of CSMD1 in autoimmune disease (neonatal lupus) has been re‑
ported [47]. In the light of current knowledge, we know that complement activity is tightly
controlled in the brain and regulates C3/CR3‑dependent axonal pruning by phagocytic mi‑
croglia. During development, this mechanism maintains the perfect connection of neural
circuits in the visual system [48]. Therefore, it is thought that complement may lead to ab‑
normal synaptic elimination in other parts of the brain, which may affect the risk of both
neurodegenerative and psychiatric disorders [49]. Furthermore, recent GWAS and SNP
analysis have shown that CSMD1 is closely related to neurological diseases such as SZ and
Parkinson’s disease (PD) [50,51].

The discovery of a Csmd1 promoter‑associated lncRNA, which may be responsible
for brain‑specific promoter activity in the adult and developing central nervous system,
added to the importance of Csmd1 for brain functioning [52]. Athanasiu et al. (2017)
demonstrated that CSMD1 variants are associated with immediate episodic memory and
cognitive function [22]. Along with a GWAS study, it suggested that CSMD1 is expressed
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significantly in the amygdala, which affects social behaviour, and CSMD1 can be used as
a diagnostic marker for amygdala‑related disorders [53].

In a study conducted with SZ patients, higher C4A mRNA levels were associated
with more serious general psychopathology symptoms, while lower CSMD1 mRNA lev‑
els were predicted to cause worse working memory [54]. Some CSMD1 SNPs have been
shown to be associated with cognitive ability in SZ patients [55]. It was also suggested
that CSMD1 increased the risk of schizophrenia as a result of the negative effects of the
A allele in CSMD1 rs10503253 on brain activity [56]. A 2021 study by Abd El Gayed et al.
found that the CSMD1mRNA expression and protein levels were significantly lower in SZ
patients compared to the controls, suggesting that mRNA expression of the CSMD1 gene
may be a reliable and early diagnostic predictor of first‑episode SZ in familial high‑risk
Egyptian children and young adults [57].

According to the results of whole‑exome sequencing analysis performed on two Span‑
ish families diagnosed with PD, it has been suggested that mutations in the CSDM1 gene
may cause the familial PDphenotype [58]. However, a study conducted on the Iranian pop‑
ulation showed no association between CSMD1 rs12681349 polymorphism and PD [59]. A
case‑control study conducted on the Han population in northern China in 2021 showed
that polymorphisms in the CSMD1 gene were closely related to PD, and significant differ‑
ences were found in rs10503253 and rs1983474 polymorphisms between PD cases and con‑
trols. However, the researchers emphasized that studies in larger populations and other
ethnic groups are needed to confirm the correlation between the CSMD1 polymorphism
and PD [51].

4.3. CSMD1 in Cancer
Abnormalities of the short arm of chromosome 8 have been associated with many

carcinomas’ pathogenesis [60]. Toomes et al. and other scientists showed a hemizygous
or homozygous deletion of the chromosome band at 8p23 encoding the CSMD1 protein in
different cancer types such as oropharyngeal squamous cell carcinomas (OSCCs) and head
and neck squamous cell carcinomas (HNSCCs) [1,61–63]. Although the function of CSMD1
is unclear, previous studies have shown that this transmembrane protein is engaged in a
signalling cascade that regulates a variety of cell processes implicated in cancer formation
such as proliferation and cell migration [4,13,64]. In this review, the differential analysis
of CSMD1 expression between normal and cancer tissues was determined based on RNA
sequencing data using tnmplot [65]. This analysis showed that CSMD1 expression was sig‑
nificantly increased in acute myeloid leukaemia (AML), liver, pancreas, skin, thyroid, and
uterine corpus (EC) endometrial carcinoma compared to controls. However, adrenal, blad‑
der, breast, colon, ovary, prostate, rectum, renal chromophobe (CH) cell carcinoma, renal
clear cell carcinoma (CC), renal papillary cell carcinoma (PA), and lung adenocarcinoma
(AC) had less CSMD1 expression compared to controls (Figure 5, [65]).

Previously, we identified reduced CSMD1 expression in 79/275 (28.7%) of invasive
ductal breast cancer patients, which were associated with high tumour grade and poor
overall survival. More importantly, CSMD1 was also an independent predictor of overall
survival [66]. An mRNA study by Escudero‑Esparza et al. in 127 breast cancer samples
also found that low levels of CSMD1 expression was associated with statistically signifi‑
cant lower survival compared to those with high levels [67]. In a later study, we created a
three‑dimensional culture model of MCF10A cells with decreased CSMD1 expression that
indicated that the reduction of CSMD1 expression resulted in the formation of bigger and
less differentiated breast ductal structures [35]. A recent deep whole‑genome sequencing
study identified CSMD1 deletions in 50% of breast cancer patient‑derived xenografts, sug‑
gesting a role in driving aggressive breast cancer. The low expression of CSMD1 was also
associated with reduced survival in the breast cancer METABRIC study [68]. Gialeli et al.
suggested that CSMD1 provides tumour suppression by interacting with the EGFR path‑
way and can be used as a biomarker for predicting chemotherapy response in highly inva‑
sive breast cancer [69]. Additionally, Tang et al. discovered that the decreased expression
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of CSMD1 in melanoma cells has a lower influence on melanoma cell migration and pro‑
liferation, and that CSMD1 can serve as a tumour suppressor gene in melanoma cells [13].
Furthermore, Zhang et al. discovered that CSMD1 expression in colorectal cancer is low, is
linked to overall survival, can be utilised as a predictor of colorectal cancer, and plays a vi‑
tal part in the prognosis of the disease [17]. Additionally, reducedCSMD1 gene expression
was associated with poor prognosis in HNSCC and prostate cancer [38,70]. A further HN‑
SCC study interrogating three publicly available genome‑wide expression datasets found
CSMD1‑inactived cancers demonstrated a reduced prognosis [12].

Genes 2022, 13, x FOR PEER REVIEW 7 of 13 
 

 

[13]. Furthermore, Zhang et al. discovered that CSMD1 expression in colorectal cancer is 
low, is linked to overall survival, can be utilised as a predictor of colorectal cancer, and 
plays a vital part in the prognosis of the disease [17]. Additionally, reduced CSMD1 gene 
expression was associated with poor prognosis in HNSCC and prostate cancer [38,70]. A 
further HNSCC study interrogating three publicly available genome-wide expression da-
tasets found CSMD1-inactived cancers demonstrated a reduced prognosis [12].  

 
Figure 5. CSMD1 differential gene expression in normal and tumour tissues. CSMD1 is overex-
pressed in a number of tumour types compared to normal tissue, with AML and liver being the 
highest. However, CSMD1 expression is not strongly observed in renal and prostate tumours. A 
Mann–Whitney U test was performed to mark the significant difference in expression between nor-
mal and tumour samples depicted by red colour. 

Similarly, Fan et al. showed that the CSMD1 mutation status was an independent 
predictor of prognosis in oesophageal cancer patients. This study also found CSMD1 wild-
type oesophageal cancer patients were more susceptible to paclitaxel chemotherapy [71]. 
It has shown that CSMD1 is dramatically downregulated in gastric cancer (GC) tissues 
compared to normal tissues via RT-PCR, and the overexpression of microRNA-10b, a di-
rect target of CSMD1 in GC cells, was found to increase GC cell vitality, migration, and 
invasion [72-74]. Another study discovered that miR-642b-3p acts as an oncomiR that pro-
motes tumour progression in GC by repressing CSMD1 expression and inactivating the 
Smad signalling pathway, which could contribute to the development of potential thera-
pies for GC treatment [75]. 

A study on hepatocellular carcinoma (HCC) identified lncCSMD1-1 upregulated in 
HCC and directly binding to the MYC protein in the nucleus of HCC cells, promoting 
HCC progression and the upregulation of MYC protein. Furthermore, lncCSMD1 has 
been shown to act as an oncogene, promoting HCC cell proliferation, migration, invasion, 
and EMT. As a result, it was speculated that lncCSMD1 could be a novel and reproducible 
prognostic biomarker for HCC patients, as well as playing an important role in HCC pro-
gression [76]. Using the GEO and TCGA databases, a study identified several novel driver 
genes including CSMD1 associated with HCC and demonstrated that this gene was 
strongly related to the prognosis of early recurrence and an effective prognostic marker 
for HCC [77]. 

4.4. CSMD1 in Metastasis and EMT 
Metastasis is a complex process that includes events such as loss of adhesion, in-

creased invasiveness, and motility to perform intravasation, joining the circulation 
through lymph nodes and blood vessels, and connecting to blood vessels [78]. Tumour 
cells transform from an epithelial phenotype to a mesenchymal phenotype to acquire in-

Figure 5. CSMD1 differential gene expression in normal and tumour tissues. CSMD1 is overex‑
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Similarly, Fan et al. showed that the CSMD1 mutation status was an independent
predictor of prognosis in oesophageal cancer patients. This study also found CSMD1wild‑
type oesophageal cancer patients were more susceptible to paclitaxel chemotherapy [71].
It has shown that CSMD1 is dramatically downregulated in gastric cancer (GC) tissues
compared to normal tissues via RT‑PCR, and the overexpression of microRNA‑10b, a di‑
rect target of CSMD1 in GC cells, was found to increase GC cell vitality, migration, and
invasion [72–74]. Another study discovered that miR‑642b‑3p acts as an oncomiR that pro‑
motes tumour progression in GC by repressing CSMD1 expression and inactivating the
Smad signalling pathway, which could contribute to the development of potential thera‑
pies for GC treatment [75].

A study on hepatocellular carcinoma (HCC) identified lncCSMD1‑1 upregulated in
HCC and directly binding to the MYC protein in the nucleus of HCC cells, promoting
HCC progression and the upregulation of MYC protein. Furthermore, lncCSMD1 has
been shown to act as an oncogene, promoting HCC cell proliferation, migration, inva‑
sion, and EMT. As a result, it was speculated that lncCSMD1 could be a novel and re‑
producible prognostic biomarker for HCC patients, as well as playing an important role
in HCC progression [76]. Using the GEO and TCGA databases, a study identified several
novel driver genes including CSMD1 associated with HCC and demonstrated that this
gene was strongly related to the prognosis of early recurrence and an effective prognostic
marker for HCC [77].

4.4. CSMD1 in Metastasis and EMT
Metastasis is a complex process that includes events such as loss of adhesion, in‑

creased invasiveness, andmotility to perform intravasation, joining the circulation through
lymph nodes and blood vessels, and connecting to blood vessels [78]. Tumour cells trans‑
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form froman epithelial phenotype to amesenchymal phenotype to acquire invasive charac‑
teristics, andmetastasis is one of the key points in the formation of this epithelial–mesench
ymal transition (EMT). Significant evidence indicates that the tumour suppressor gene
CSMD1 plays an important role in metastasis. Deletions of the CSDM1 locus chromosome
8p23 appear to be clinically important because an allele deficit at this coding region has
been linked to poor prognosis, recurrence, and metastasis in many cancer types [79]. Pre‑
viously, we demonstrated that CSMD1 knockdown using short hairpin RNA in three dif‑
ferent cell lines (breast MCF10A, prostate LNCaP, and metastatic MDA‑MB‑435) resulted
in striking morphological changes similar to those previously reported in EMT. Further‑
more, functional assays on theMCF10A breast cancer line found loss of CSMD1 expression
enhancedmigration and invasionwhile reducing adhesion toMatrigel and fibronectin [35].

In melanoma cells, an increased expression of CSMD1 reduces the rate of cell migra‑
tion [13]. In a xenograft model of human breast cancer, mice injected with MDA‑MB‑231
breast cancer cells, either alone orwith artificially increased CSMD1 expression, found that
there was a significant reduction in lung metastasis in the CSMD1‑expressing group when
compared to the controls. This study also demonstrated that the overexpression of CSMD1
in breast cancer cell lines BT20 andMCF7 inhibited migration, adhesion, and invasion [67].

EMT is a normal biological process driving mammary gland development. In order
to investigate the association between CSMD1 and EMT further, mammary gland devel‑
opment during puberty was studied in a Csmd1 knockout (KO) mouse model. Our study
identified increased ductal development during the early stages of puberty in the KOmice,
characterised by increased ductal area and terminal end bud number at 6 weeks. The in‑
creased expression of various proteins (Stat1, Fak, Akt, Slug/Snail, and Progesterone recep‑
tor) was identified in the Csmd1 KOmice mammary glands at 4 weeks, followed by lower
expression levels from 6 weeks in the KO mice compared to the wild‑type control mice.
This study found an association between Csmd1 and cell invasiveness regulation, which
might be regulated by changes in cell adhesion processes (Figure 6, [5]) [33]. Our study
indicates a novel role for Csmd1 in mammary gland development, with Csmd1 KO caus‑
ing significantly more rapid mammary gland development, suggesting an earlier adult
mammary gland formation [33].
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4.5. CSMD1 Inactivation
There are many different ways that CSMD1 might be dysregulated, including epi‑

genetic silencing, CSMD1 gene deletions and mutations, and microRNA interference. In‑
terrogation of the Cancer Genome Atlas (TCGA) has identified alterations in CSMD1 in
many malignant tumours such as breast cancer (~5%), prostate cancer (5.7%), bladder
urothelial carcinoma (8%), lung cancer (7%), ovarian cancer (7%), liver cancer (7%), and
colorectal adenocarcinoma (7.4%) (Figure 2). It was discovered that miR‑10b reduces the
expression of CSMD1 and that it is substantially expressed in HCC compared to healthy
tissue [64]. Similarly, the downregulation of CSMD1 in glioblastoma was associated with
the overexpression of miRNA‑10a and miRNA‑10b [80]. MiR‑137, which was discovered
through genome‑wide association studies in SZ, is another microRNA that specifically tar‑
gets CSMD1 [81]. BothmiR‑10b andmiR‑137 have been found to bind to the 3′ untranslated
region of the CSMD1 gene [80,81].

4.6. CSMD1 and Immunotherapy
Recently, several studies have suggested that CSMD1‑inactivated cancers may

respond to immune checkpoint inhibitors [12,71–73]. An oesophageal cancer study found
CSMD1 mutated cancers were associated with a high tumour mutation burden (TMB). As
expected, the high TMB correlated with high expression of PD‑1, suggesting that these pa‑
tients may benefit from PD‑1 inhibitor immunotherapy [71]. Furthermore, a large‑scale ge‑
nomic study onHNSCCcancers demonstrated an association betweenCSMD1‑inactivation
and tumour immunity [12]. Similarly, a GC study revealed that patients with CSMD1
mutations had significantly higher TMB and better prognoses than CSMD1‑wild patients.
Following that, it showed that several immune‑related signalling pathways were upregu‑
lated in the CSMD1‑mut samples; that there was a higher proportion of anti‑tumour im‑
mune cells, such as CD4+ Th1 cells, NK cells, M1 macrophage cells, and PDC; a lower
proportion of tumour‑promoting immune cells, such as Treg cells, M2 macrophage cells,
and endothelial cells; and that PD‑L1 was upregulated [73]. Another GC study confirmed
the association between CSMD1 mutation with TMB and high PDL1 expression and in‑
creased survival supporting the potential of CSMD1 as a biomarker for assessing immune
checkpoint inhibitor therapy in GC patients [74].

5. Conclusions
Elucidating the relationship of CSMD1 with the aforementioned diseases in this re‑

viewmay be important in terms of both treatment and diagnosis in the future. Recent stud‑
ies have revealed a possible role for CSMD1 in immunotherapy for some cancer
types [73–82]. The determination of the factors affecting the expression of CSMD1 and the
clarification of the signalling pathways it affects will increase the clinical utility of CSMD1.
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