
This is a repository copy of Evolving Design Modifiers.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/194347/

Version: Published Version

Proceedings Paper:
Hickinbotham, Simon John orcid.org/0000-0003-0880-4460, Dubey, Rahul orcid.org/0000-
0003-1524-7797, Friel, Imelda et al. (3 more authors) (2022) Evolving Design Modifiers. In:
2022 IEEE Symposium Series on Computational Intelligence (SSCI). 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Evolving Design Modifiers

Simon Hickinbotham∗, Rahul Dubey∗, Imelda Friel†, Andrew Colligan†, Mark Price†, and Andy Tyrrell∗

∗Intelligent Systems & Robotics Research Group, School of Physics, Engineering and Technology

University of York, UK
†School of Mechanical & Aerospace Engineering, Queen’s University Belfast

Email: ∗simon.hickinbotham, rahul.dubey, andy.tyrrell(@york.ac.uk), †I.Friel, A.Colligan, M.Price(@qub.ac.uk)

Abstract—Evolutionary Developmental biology (EvoDevo) is a
process of directed growth whose mechanisms could be used in an
evolutionary algorithm for engineering applications. Engineering
design can be thought of as a search through a high-dimensional
design space for a small number of solutions that are optimal
by various metrics. Configuring this search within an EvoDevo
algorithm may allow developmental processes to provide a facility
to give more immediate, localised feedback to the system as it
grows into its final optimal configuration (form). This approach
would augment current design practices. The main components
needed to run EvoDevo for engineering design are set out
in this paper, and these are developed into an algorithm for
initial investigations, resulting in evolved neural network-based
structural design modifying operators that optimise the structure
of a planar truss in an iterative, decentralized manner against
multiple objectives. Preliminary results are presented which show
that the two levels feedback at the Evo and Devo stages drive
the system to ultimately produce feasible solutions.

Index Terms—genetic algorithms, neural networks, evodevo,
generative design, structural engineering

I. INTRODUCTION

The design of engineering solutions seeks to select a small

number of near-optimal designs from a huge but finite space

of possible designs. The traditional approach is manual (often

with the assistance of complex simulators) and reliant on

individual or team expertise, resulting in a time consuming

and highly involved process. Recent advances in computation

allow more complex algorithms to be developed which can

explore the vast search space in support of designers to

expedite this process and improve design outcomes. Although

there have been some attempts to use evolutionary algorithms

to search these design spaces [1]–[5], these approaches tend

to be reductive, gradually restricting the design space through

exploration of topology, shape and size in turn. They do this

with good reason: the total search space is vast, and feedback

from generation to generation via a fitness function (even

a multi-objective fitness function) may not be sufficiently

detailed to direct the search. The issue with this reductive

approach is that once the domain is defined and a small set of

viable structural topologies is chosen, any further optimisation

of shape and size is limited to perturbations on this original

set. Generative design systems build solutions using a bottom

up approach where there is more opportunity to explore a

design space, and critically, to allow that space to expand

as more is learned about the design. Price et al. [6] show

This work was funded by EPSRC, UK, grant reference EP/V007335/1

how a biological development analogy can be usefully applied

in a generative design system for the creation of a single

component. There is significant potential to combine such

development processes with evolutionary algorithms to offer

new potential in engineering design.

The model application domain of the work reported here

is that of optimising the design of planar trusses. Deb and

Gulati [1] approach the design problem from the perspective

of canonical genetic algorithms with fixed-length encoding.

To achieve this, only a small number of joint positions is

permitted for any given design problem, and the algorithm

searches for connections between this set of joints. Whilst

good solutions are found within this framework, the design

space is too constrained to find a true optimum. In addition,

the single-objective optimisation incorporates several penalty

constraints which must be manually tuned to obtain good per-

formance. More recently, Tejani and co-workers [3] explored

a range of metaheuristic algorithms, using a single objective

function and optimising node position and member thickness

to evolve structures with the least weight that do not violate

other performance constraints. These metaheruistics augment

the core evolutionary algorithms with other techniques, but a

development stage is not tested.

This contribution describes a new approach to engineering

design, inspired by concepts originating in the study of evo-

lutionary development (EvoDevo). In biological EvoDevo, the

development of an organism from a single cell to its final

(adult) form is governed by a gene regulatory network (GRN),

which turns genes ON and OFF during different stages of

development in a co-ordinated manner, without reference to a

global controller [7]. Algorithms inspired by EvoDevo aim to

augment an evolution component (Evo) with a development

component (Devo). For a good overview of the issues in

EvoDevo see [8] and for a review of the relation between

generative design and evolution see [9]. Wolpert’s french

flag model (FFM) [10], [11] was amongst the first Devo

algorithms: the task was to colour in a rectangular field of cells

of arbitrary size with red, white and blue in equal proportions,

as seen in the national flag of France. In the absence of central

control, the algorithm does not contain explicit instructions

regarding what colour a cell should be. Instead, the decision

about colouration of a particular cell is made by reference

to a gradient of signal strengths emanating from either end

of the tricolore. The FFM is informative in terms of the

principles of using development towards achieving a particular



design goal, but it makes no reference to external physical

conditions and it does not specify how the GRN can evolve.

These aspects are key when applying the methodology to real

engineering design problems, because evolution is needed to

discover and fine tune the appropriate developmental strategy

on the growing design as it interacts with its environment.

Navarro et al discuss the challenges of implementing EvoDevo

for design problems [12]. They use the Devo concept to drive

the production of a wide range of coloured shapes, but whilst

the process is efficient, an evolutionary component has not yet

been implemented. Walker et al [13] try a similar idea with

robots, but the growth routine is fixed and evolution is only

applied to the weights of the neural network controller: there

is no mechanism to update the topology of the network.

In the current work, the design challenge is re-cast as one of

selecting an appropriate developmental pathway for a growing

entity whose structure is iteratively updated until the final

design is arrived at. In a developing system, the concept

of “growth” covers a number of options which change the

structure: through a change (normally an increase) in a key

parameter such as cross-sectional area, or material density;

via change in the positioning of joints in the structure, which

changes the overall size of the structre without adding new

structures; or via the addition of new cells to the developing

entity. These options emulate growth, spatial positioning, and

division of cells in biological systems. As a proof of concept,

the work presented here focuses on the positioning of the

joints, but the process is readily extendable to both of the

other structural changes just described.

In order to apply the EvoDevo model to engineering design,

the following components are needed: a configurable model

of a ‘seed’ engineering structure which can be decomposed

into one or more ‘cells’; a means to generate or simulate

forces on the cells in the model via the complete structure; a

methodology for converting these forces to updates via a GRN

within each cell; a method of formulating a consensus on the

GRN outputs from each cell that can be used to update the

structure; a means of measuring the fitness of the final form;

an evolutionary algorithm that can use fitness values to select

and mutate the genome from which the GRN is constructed.

In order to meet these challenges, a novel EvoDevo algo-

rithm for applied engineering is described below. The three key

components are a decomposition of an engineering structure

into a cellular representation, feedback to the Devo stage via

simulation of the current state of the system, and the emulation

of GRN function to direct the modifications to the design. The

model application domain was chosen such that the cellular

representation could be mapped to obvious sub-assemblies in

the structure, namely triangular arrangements of members in a

truss structure. These structures can be described simply, and

simulated in software-based Finite Element Analysis (FEA)

to measure forces acting on the structure for feedback to the

GRN. The function of the GRN is emulated via a multi-

objective implementation of NeuroEvolution of Augmenting

Topologies (NEAT) [14]. The latter allows GRNs of sufficient

complexity to be evolved to generate appropriate Devo for a

given engineering task.

The advantage of incorporating a Devo stage into the

process is that it provides a facility to calculate and incorporate

simulated physical forces into the discovery of a design solu-

tion. The update process is akin to Lomas’s generative art [15],

[16], but the way it accesses real physical properties is akin

to Adrian Thompson’s direct encoding with real signals via

Field Programmable Gate Aarrays (FPGAs) [17]. The Devo

stage gives the system multiple opportunities to explore its

response to local physical conditions during growth. Indeed, in

the current implementation, the physical forces on the system

act as a proxy for the enzyme signalling gradient used in

Wolpert’s French Flag mode and the “state” of the cell/GRN

subunit.

The cells in biological organisms all share the same genome,

but are able to express different genes depending on the current

state of the cell. It is unclear how best to implement this in the

prototype system for design. In this initial configuration, ex-

periments were devised to verify whether the local conditions

pertaining to each cell in the structure drive the evolution of

appropriate non-linearities in the NEAT network to emulate

switching in GRNs and thus generate appropriate updates to

the truss design.

The main novel contribution highlighted in this paper is

an algorithm that drives the evolution of an appropriate gene

regulatory response to physical simulation, which delivers

improvements to the design of the structure without manual

supervision. The resulting algorithm evolves neural network-

based structural design modifying operators that can adjust

the structure of a 2D planar truss in an iterative, decentralized

manner, inspired by structural/physiological adaptation in a

biological organism.

II. METHODS

The EvoDevo technique discussed here is best approached

from the perspective of an individual design specification,

through its development into its final form, and then how

populations of such forms are evolved into the final designs.

The way the components of this process are combined into a

novel algorithm is described at the end of this section, along

with details of the experimental design.

A. Fitness in Static Truss Design

In order to evaluate the approach, a ‘Goldilocks‘ application

framework was devised: not so simple that the algorithm has

limited scope for improvement, but not so complex that the

results cannot be interpreted straightforwardly. It was also

important that the design problem had physical parameters that

can be easily simulated and understood. For these reasons, a

classic engineering design problem was selected: load-bearing

static trusses, a well-known and proven example of which is

the Warren Truss shown in figure 1.

Our experimental goal is to improve the design of a simple

seven-segment truss, where a segment is an equilateral trian-

gle. The truss is fixed and pinned at either end, and a load

of 17000 Newtons is applied in the centre of the structure.



Fig. 1. Engineering description of the seven-segment truss. The top figure
shows the arrangement of loads and supports. The resulting loading is shown
in the bottom figure. Members coloured in orange are in tension, those in blue
are in compression. The thickness of a member is proportional to the force
acting on it.

This structure is simulated in Calculix [18] as a planar static

truss in 3D. The material is aluminium, with a circular cross

sectional area of 1m2. The equilateral triangles forming the

truss have a side length of 25m. Thus the total volume is

375m3. Simulation returns forces on the truss members, from

which other properties can be calculated, e.g. stress, strain

energy, buckling of the members, or indeed properties of the

entire structure, e.g. total strain energy.

The fitness measures are used in the process of selection.

Multi-objective measures were used to drive the system to

generate a range of design solutions. Here, the two objectives

were to minimise the total volume of material V , and the total

strain energy U . The total volume V of the structure is the

sum of the volume of each member:

V =

∑

m∈M

AmLm (1)

where m is a single member of the structure in the set M ,

Am is the cross-sectional area of m and Lm is the length of

m. The strain energy is a measure of the work done to deform

the structure under load, and is calculated using:

U =

∑

m∈M

F 2
mLm

2EmAm

(2)

where Fm is the force acting on member m (derived via

simulation), and Em is Young’s modulus of elasticity for the

material of which m is made.

B. Gene Regulatory Network (GRN)

The development process aims to improve on this basic

design by iteratively moving the joints in the truss to redis-

tribute the forces around the structure. Physical properties of

the members and joints are used as inputs to the GRN, which

produces a set of “output deltas” (δ) – small changes to the

X,Y position of each joint forming the same triangle. This

Algorithm 1: EvoDevo for Generative Design. The

algorithm is an iteration over generations and popu-

lation as in a common genetic algorithm. The Devo

stage performs iterative growth on the individual using

feedback derived from forces on the structure, and

calculates the fitness of the final form of the structure,

which is used in a selection process to evolve the next

generation.

Input : G = number of generations

P = population size

D = number of development steps

S0 = initial seed structure

1 Genomes gp∈P = RandomNEAT()

2 for g in 1..G do

3 for p in 1..P do

4 GRN γp = CreateGRNFromNEATGenome(gp)

5 Structure Sd = InitialiseStructure(S0,γp)

6 for d in 1..D do

7 Forces F = CalculateForces(Sd)

8 Cells C = CellsInStructure(Sd)

9 for c in C do

10 fc = LocalForces(c,F )

11 δc = RunGRN(fc)

12 end

13 Sd = UpdateStructure(∀δc ∈ C)

14 (delta fitness qd,f = StructureFitness(Sd))

15 end

16 fitness pf = StructureFitness(SD)

17 end

18 Pareto φ = ParetoFront(∀pf ∈ P )

19 Pg+1 = evolveNEATPopulation(φ,P )

20 end

Return: φ

approach is directly extendable to any 2D truss structure, and

also to 3D structures where the ’cell’ would be formed from

tetrahedra instead of triangles.

Since it was necessary to be able to evolve the topology of

the GRN, an evolvable variable-length encoding was needed

which could emulate the complexities of gene regulation and

be amenable to the evolutionary operators of crossover and

mutation. In the absence of an appropriate GRN model, it

was decided to emulate its function via a readily-available

neural network system with the desired properties: NEAT [14].

Using NEAT, it was possible to specify the inputs and outputs

of the GRN, and then initialise an evolutionary run with a

population of randomly-configured NEAT networks to test the

concept that this could drive the development of appropriate

truss structures via selection. The inputs to the GRN were the

strain energy values for each member in the triangle and the

X and Y positions of the vertices of the triangle. (Additional

inputs and outputs on the Z axis were implemented as required

by the Calculix software, but updates on the Z axis were

always zero-valued in this experiment to restrict the design



Fig. 2. Initial population of developed designs. Each design is achieved by passing position and strain energy data from each triangle through a randomly
generated NEAT GRN. The output of the GRN consists of update δ values for X and Y of each point around the cell. These δ values are consolidated into
updates to the structure. The process is repeated D = 10 times. The small graphic above each truss image shows the relative values of U (top, blue) and V
(bottom, orange) normalised by the respective values for the initial structure in figure 1 (V = 375.0, U = 0.641), shown as a tick mark.

to 2D). The outputs from the GRN are the δ values in X and

Y of each vertex in the triangle. Where vertices were shared

between triangles, the update to the position of the vertex is

the mean of all δ values pertaining to that point. Note that

these point movements encode the morphological change in

the design that are analogous to the concept of growth in

biological EvoDevo, but the structure does not necessarily

increase in size – especially since one of the fitness measures

seeks a reduction in the material volume of the structure.

Fig. 3. Change in the Pareto front over 100 generations. Every individual
from every generation is shown in grey. Overlaid are the Pareto fronts from
every 20 generations. The goal is to minimise both the total strain energy and
the total volume of the structure after growth. The final Pareto front (shown
in gold) yields a set of designs that are improved in both objectives over the
initial, Pareto front (shown in red).

C. Devo Stage

The structural components of the Devo stage described

above now need to be assembled into an iterative algorithm.

This forms the inner two loops shown in lines 4-16 of Algo-

rithm 1. There are three stages to Devo, which are executed

for every individual in each generation of the evolutionary run:

1) Initialisation: Every individual in these experiments

starts with the same structure, composed of equilateral tri-

angles as described in section II-A. However, the GRN of

each individual is unique, and is set up from the NEAT

genotype. The initialisation stage sets up the initial structure

for simulation, defines the cells within that structure, and

organises the manner in which the inputs to the GRN are

calculated and arranged. The initial structure illustrated in

figure 1 consists of 7 equilateral triangles, so 7 cells were

needed in the inner Devo loop for this experiment. Each cell

accesses individual structure’s associated GRN, which drives

the growth stage. Each cell sends its data to the GRN and

receives output values from the GRN, emulating the biological

situation where each cell contains its own physical copy of the

GRN.

2) Iteration: Having set up the initial structure, the algo-

rithm iterates over a preset number of development steps. The

first part of this process involves setting up and running a

simulation of the loading environment shown in figure 1 to

determine the properties of each member. From here, each

cell in the structure is considered independently by passing the

properties through the NEAT GRN in order to obtain local δ

values for repositioning the joints around each cell. Once all

the cells have been processed in this manner, the final Devo

step is to consolidate the δ values pertaining to each joint in

the structure to obtain a new position.

3) Interrogation: Having completed growth, the final step

in the Devo stage is to determine the fitness of the resulting

structure. Note that the fitness measures do not need to have

any particular relationship to the inputs and outputs of the

GRN. The algorithm has two levels of feedback: one at the

cell level via the GRN; and one at the complete design level

via the fitness measures.



D. Evolutionary Stage

The heart of this algorithm is the evolvable GRN, which is

mostly handled using NEAT-Python [19]. The main change to

this algorithm has been to extend it to handle multi-objective

fitness functions. This has been achieved in a similar manner

to the functioning of the NSGA-II algorithm [20], whereby

fitness ranking of an individual is determined by its Pareto rank

and its crowding distance measure. Note that the crowding

distance and speciation both aim to improve the diversity of

the population. Multi-objective optimisation is highly desirable

in generative design (indeed in any real-world design). In

the example used here, minimising (or maximising) a single

objective such as volume can drive the system to select for

unrealistic designs. The Pareto front is intended to capture a

range of design options ranging from high-volume solutions

which are strong but expensive to low-volume solutions which

are relatively cheap but also relatively weak. In between these

extrema lies a ‘sweet spot’ where improvements on the initial

structure in more than one fitness objective can be found.

For the experiment reported here, a population size of 50

evolved over 100 generations, using 10 Devo steps to improve

the initial structure.

Fig. 4. Trajectories of development in fitness space for all individuals on the
final Pareto front (shown in grey). Fitness of the initial structure is shown
as a black point and each individual (coloured lines) grows from here to its
final position on the Pareto front. The points along each coloured line show
the way growth changes the fitness of each individual. The individual whose
growth is further described in figure 5 is shown in red, with a circle around
its final position on the Pareto front.

E. Algorithm

Algorithm 1 gives pseudocode which summarises how the

operations described above are combined programatically. The

two outer loops, which iterate over the population for each

generation handles the evolution of the GRN. The two inner

loops iterate over the cells in the structure for each Devo

growth step to generate the final structure from its initial state1.

1Source code for the python implementation of this algorithm will be made
available on publication

Fig. 5. Development of the design on the midpoint of the Pareto front,
indicated by the red ring in figure 4. Steps are ordered left to right, top
to bottom. Values of V and U are shown graphically, as described for figure
2. Each Devo step shows a reduction in the volume V of the structure, but
also a decrease in the total strain energy U , indicating that the GRN guides
the growth of the structure to a state which better distributes the load.

III. RESULTS

This initial experiment is demonstrates the concept that

a single run of the algorithm can deliver improved designs

of the truss. Figure 2 shows the developed structures for

every member of the population at generation 0. 22 of the

50 structures show a decrease in volume and 24 showed

a decrease in strain energy. Only 7 showed a decrease in

both volume and strain energy, and only 2 of these 7 points

were members of the intial Pareto front. This demonstrates

that randomly-configured GRNs are unlikely to generate good

designs, and acts as a benchmark against which to measure

the effectiveness of the evolutionary process.

The evolution of the Pareto front towards GRNs that are

capable of reducing both the material volume and the total

strain energy of the structure is shown in figure 3. The GRNs

evolve rapidly to generate better solutions from generations 0

to 40, but show relatively little improvement from generation

40 to 100. This is to be expected since there are limits on the

absolute value of δ, meaning that each joint in the truss can

move a maximum of 10 metres during development. There is

also a limit in terms of how small a value of strain energy can

be obtained using a seven-segment truss with this topology.

Note also that the Pareto front at generation 0 has only 7

points, whereas that for generation 100 has 24, meaning that

there are many more non-dominated solutions by the time

evolution reaches the final generation.

Although not required by the Evo stage, it is possible to

calculate and record the fitness of an individual at each growth

iteration during Devo. This action is indicated in brackets

on line 14 of algorithm 1. This change in fitness can be

recorded to see how growth manifests itself in fitness space.

This is shown for all individuals on the final Pareto front

in figure 4. The trajectories are generally linear in nature,

reflecting the fact that growth is via the iterative firing of the

same GRN. Some curvature in these trajectories indicate non-

linear changes in the way the GRN fires, which is the sort of



Fig. 6. Final Pareto front of developed designs, ranked by total strain energy. Steps are ordered left to right, top to bottom. Values of V and U are shown
graphically, as described for figure 2. The first six designs show an increase in material volume, but have the best reduction in strain energy. The final four
designs show the lowest volume, but an increase in strain energy. All other designs show an improvement on the original in structure on both objectives,
transitioning from lower to higher strain energy whilst going from higher to lower material volume

behaviour that may be needed with more complex structures. It

is striking how some groupings of trajectories have a common

early path and then diverge, and some trajectories cross the

path of others, again indicating non-linear responses to the

range of input vectors generated during growth.

An example of the developmental updates to the structure

is shown in figure 5, which corresponds to the red trajectory

in figure 4, indicated with a red ring around it’s final position

along the Pareto front. It is clear that the GRN is guiding

the upper horizontal towards a semi-circular shape, which is

known to be the most appropriate way of handling compressive

loads. Recall that the support and loading points are fixed, but

the remaining two points on the lower horizontal tend to move

upwards, with the effect of shortening the cross bracing and

reducing the overall volume of the structure. The resulting

forms are only approximately symmetrical, but this is to be

expected because of the way the output nodes of the GRN are

interpreted as pertaining to the X,Y positions of each joint in

the triangle, clockwise from the leftmost point, so the GRN

has no information about the symmetry of the structure.

The final state of each individual design on the evolved

Pareto front is shown in figure 6, ranked by the total strain

energy of each design. The top and bottom rows of this figure

show structures in which only one of the objectives is better

than those of the initial structure – in the top row, it is the total

strain energy that is minimised, whereas in the bottom row, it

is the total material volume that is minimised. The middle rows

show evolved designs that are better in both objectives than

the initial structure, demonstrating that the algorithm is capable

of evolving GRNs that can drive the design of a structure to

optimal solutions.

IV. DISCUSSION

In the absence of a designer in biology, the development of a

multi-cellular organism from a single cell is governed by gene

regulatory networks, which through evolution have gained the

capability to grow organisms with a level of sophistication

that can be seen in all facets of the living world around us.

It has been shown in this paper how this phenomenon can

be emulated in an artificial organism, and used to generate

appropriate structures in the absence of a design engineer.

It is remarkable that the same network used over each cell

and over each Devo step can evolve to generate better designs

by generating an appropriate response to the local physical

forces. One useful feature of this approach is that the Devo

part of the process allows for a broad range of individuals

to be created in a range of environments (e.g. load cases)

and so introduce more variance in the generations with a

corresponding variety in the resulting solutions.

The novelty in this work lies in the combination of physical

simulation, EvoDevo and multi-objective NEAT. Of these



components, the NEAT-based GRN is perhaps the best candi-

date for further experimentation. It is reasonable to expect that

other evolvable paradigms could be used as proxies for GRNs

such as Genetic Programming [21] or Artificial Chemistries

[22].

This approach has the following advantages: firstly, it adds

an inner feedback loop (the Devo process) which can be

used for local optimisation; secondly, a wide range of inputs

and outputs can be used within this framework, meaning the

technique can be used on varied design challenges; thirdly,

the resulting GRNs have the potential generalise over different

families of problems without the need to retrain.

Having successfully proved the overall concept, new re-

search goals arise, central among them being how to add

new topology to the structure, how and whether to induce cell

differentiation (by introducing more statefulness to the NEAT

GRN representation), how easily to extend the work to three-

dimensional trusses and how this will fit into an engineering

design process. Another option is to examine how successfully

evolved networks can be applied to other structures, to explore

how well the GRNs generalise. In order to apply this approach

to real engineering problems, it will be important to compare

evolved design strategies with current design practice.

V. ACKNOWLEDGEMENTS

This work was supported by EPSRC programme Grant Ref

is EP/V007335/1, “RIED: Re-Imagining Engineering Design”.

The authors thank Kate van Lopik, Paul Goodall and Peter

Kilpatrick for comments on an early draft of this manuscript.

REFERENCES

[1] K. Deb and S. Gulati, “Design of truss-structures for minimum
weight using genetic algorithms,” Finite Elem. Anal. Des.,
vol. 37, no. 5, pp. 447–465, May 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0168874X00000573

[2] P. Nanakorn and K. Meesomklin, “An adaptive penalty function in
genetic algorithms for structural design optimization,” Comput. Struct.,
vol. 79, no. 29, pp. 2527–2539, Nov. 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045794901001377

[3] G. G. Tejani, V. J. Savsani, V. K. Patel, and P. V.
Savsani, “Size, shape, and topology optimization of planar
and space trusses using mutation-based improved metaheuristics,”
Finite Elem. Anal. Des., vol. 5, no. 2, pp. 198–214,
Apr. 2018. [Online]. Available: https://academic.oup.com/jcde/article-
pdf/5/2/198/33135953/j.jcde.2017.10.001.pdf

[4] N. D. Lagaros, M. Papadrakakis, and G. Kokossalakis, “Structural
optimization using evolutionary algorithms,” Comput. Struct.,
vol. 80, no. 7, pp. 571–589, Mar. 2002. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045794902000275

[5] J. J. McKeown, “Growing optimal pin-jointed frames,” Structural

Optimization, vol. 15, no. 2, pp. 92–100, Apr. 1998. [Online].
Available: http://link.springer.com/10.1007/BF01278495

[6] M. Price, W. Zhang, I. Friel, T. Robinson, R. McConnell, D. Nolan,
P. Kilpatrick, S. Barbhuiya, and S. Kyle, “Generative design for additive
manufacturing using a biological development analogy,” Finite Elem.

Anal. Des., vol. 9, no. 2, pp. 463–479, Mar. 2022. [Online]. Available:
https://academic.oup.com/jcde/article-abstract/9/2/463/6547705

[7] Vijesh, Chakrabarti, and Sreekumar, “Modeling of gene regulatory
networks: A review,” J. Biomed. Sci., 2013. [Online]. Available:
https://www.scirp.org/html/28365.html?pagespeed=noscript

[8] R. Doursat, H. Sayama, and O. Michel, “A review of morphogenetic
engineering,” Nat. Comput., vol. 12, no. 4, pp. 517–535, Dec. 2013.
[Online]. Available: https://doi.org/10.1007/s11047-013-9398-1

[9] P. Bentley, “An introduction to evolutionary design by computers,”
Evolutionary design by computers, 1999.

[10] L. Wolpert, “Positional information and the spatial pattern of cellular
differentiation,” J. Theor. Biol., vol. 25, no. 1, pp. 1–47, Oct. 1969.
[Online]. Available: http://dx.doi.org/10.1016/s0022-5193(69)80016-0

[11] J. Sharpe, “Wolpert’s french flag: what’s the problem?”
Development, vol. 146, no. 24, Dec. 2019. [Online]. Available:
http://dx.doi.org/10.1242/dev.185967

[12] D. Navarro-Mateu and A. Cocho-Bermejo, “Evo-Devo strategies
for generative architecture: Colour-Based patterns in polygon
meshes,” Biomimetics, vol. 5, no. 2, May 2020. [Online]. Available:
http://dx.doi.org/10.3390/biomimetics5020023

[13] K. Walker, H. Hauser, and S. Risi, “Growing simulated robots
with environmental feedback: an eco-evo-devo approach,” in
Proceedings of the Genetic and Evolutionary Computation Conference

Companion, ser. GECCO ’21. New York, NY, USA: Association for
Computing Machinery, Jul. 2021, pp. 113–114. [Online]. Available:
https://doi.org/10.1145/3449726.3459514

[14] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127, 2002.
[Online]. Available: http://dx.doi.org/10.1162/106365602320169811

[15] A. Lomas, “Species explorer: An interface for artis-
tic exploration of multi-dimensional parameter spaces,”
Electronic Visualisation and the Arts, pp. 95–102,
2016. [Online]. Available: https://www.scienceopen.com/hosted-
document?doi=10.14236/ewic/EVA2016.23

[16] ——, “Cellular forms: an artistic exploration of morphogenesis,” in ACM

SIGGRAPH 2014 Studio, ser. SIGGRAPH ’14, no. Article 1. New York,
NY, USA: Association for Computing Machinery, Jul. 2014, p. 1.

[17] A. Thompson, “An evolved circuit, intrinsic in silicon, entwined with
physics,” in Evolvable Systems: From Biology to Hardware. Springer
Berlin Heidelberg, 1997, pp. 390–405.

[18] Dhondt, “Calculix crunchix user’s manual version 2.12,”
Munich, Germany, accessed Sept, 2017. [Online]. Available:
http://www.dhondt.de/ccx 2.19.pdf

[19] McIntyre, Alan and Kallada, Matt and Miguel, Cesar G. and Feher
de Silva, Carolina and Netto, Marcio Lobo, “neat-python.” [Online].
Available: https://github.com/CodeReclaimers/neat-python

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.

Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002. [Online]. Available:
http://dx.doi.org/10.1109/4235.996017

[21] M. T. Ahvanooey, Q. Li, M. Wu, and S. Wang, “A
survey of genetic programming and its applications,” KSII

Transactions on Internet and Information Systems (TIIS),
vol. 13, no. 4, pp. 1765–1794, 2019. [Online]. Available:
https://www.koreascience.or.kr/article/JAKO201919761177651.page

[22] W. Banzhaf and L. Yamamoto, Artificial Chemistries.
MIT Press, Jul. 2015. [Online]. Available:
https://play.google.com/store/books/details?id=oI4jCgAAQBAJ


