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Real-Time Infrared Spectroscopic Measurement
of Natural Moisturizing Factor
Journal of Investigative Dermatology (2023) 143, 676e679; doi:10.1016/j.jid.2022.10.005

TO THE EDITOR
The quantification of natural moistur-
izing factor (NMF) is of value to scien-
tists and clinicians with an interest in
dry skin disorders such as atopic
dermatitis (AD). Hygroscopic amino
acids and their derivatives, originating
from FLG catabolism, represent a pre-
dominant component of NMF main-
taining the physical permeability
barrier of the skin (Scott et al., 1982),
that when deficient are synonymous
with xerosis and greater AD severity
(Horii et al., 1989; Nouwen et al.,
2020). Tape stripping with

chromatography is a fully quantitative
assessment of NMF ex vivo but is time
consuming and labor intensive in larger
cohorts. In this pilot study, we tested a
portable, handheld Attenuated Total
Reflectance Fourier Transform Infrared
(ATR-FTIR) spectrometer as an alterna-
tive in vivo measure of NMF by
modeling chemometric absorption us-
ing a single, quantitative composite
value obtained by established ex vivo
laboratory assay. The spectroscopic
model was verified by examining
known scenarios of reduced NMF
abundance in the skin such as the

established FLG pathophysiology in
AD.

A cohort of 26 participantswith healthy
skin (n ¼ 15) or a history of AD (n ¼ 11;
two with mild active disease) were
recruited and completed the single study
visit. Written, informed consent was ob-
tained, and approval was granted by the
University of Sheffield Research Ethics
Committee (reference 021945). Four
sampling data points across the ante-
cubital fossa and forearm were split
equally between model calibration and
validation,eachconsistingof fourbaseline
ATR-FTIR measurements performed
contiguously to three serial tape strips
collected in duplicate (n ¼ 6) for labora-
tory NMF analysis (Supplementary
Figure S1). On average, the three pre-
dominant components of NMF analyzed
ex vivo—total free amino acid pool, pyr-
rolidone carboxylic acid, and urocanic

Abbreviations: AD, atopic dermatitis; ATR-FTIR, Attenuated Total Reflectance Fourier Transform Infrared
Spectroscopy; NMF, natural moisturizing factor
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acid—were significantly reduced in the
AD group compared to healthy skin
(SupplementaryTableS1). Transepidermal
water loss and capacitancemeasurements
to assess barrier function were similar be-
tween groups, and the proportions of FLG
loss-of-functionvariantswere20 and36%
respectively. A plot of ex vivo versus
in vivo modeled NMF is presented in
Figure 1a and b. Using a six-factor pre-
dictive model, the coefficient of determi-
nation for calibration (R2

¼ 0.73) and
validation (R2 ¼ 0.70) sampling data
points indicate satisfactory accuracy and
precision (�0.35 mmoles mg‒1) denoted
by the root mean square error of

calibration. A plot of model loading—the
strength of association between wave-
number absorption and latent factor
(Figure 1d)—corresponded to an in vitro
NMF profile collected by the same spec-
trometer (Figure 1c and e). Similar outputs
were obtained by amide I (1,640 cm‒1)
and amide II (1,540 cm‒1) normalization
(Supplementary Table S2). To verify the
spectroscopic technique, NMF was
modeled before and after bathing the
antecubital fossa inan independentcohort
of volunteers (n ¼ 5) (Supplementary
Figure S2a), with on average, a 67%
reduction inNMF inducedbya20-minute
water soak (P¼ 0.0036). Furthermore, the

main studycohort (n¼26)was stratified in
two ways (healthy skin/AD and wild type/
FLG loss-of-function variants) and the
modeled NMF abundance compared, to
assess the inherited and acquired FLG
defect (Kezic et al., 2011). In all scenarios,
similar changes in absorbance were
observed that matched an in vitro NMF
spectrum (Supplementary Figure S2b‒h).
These regions were indicative of the
carboxylate (-COO-) asymmetric or sym-
metric stretch (1,580/1,400 cm‒1) and
methylene group (CH2) vibrations around
1,480 cm‒1 (Takada et al., 2012). Inter-
estingly, 1,340 cm‒1 is assigned to the
hydroxyl group (C-OH) bending mode of

Figure 1. PLS chemometric modeling of surface NMF in the mid-infrared spectral region. (a) Plot of ex vivo quantified versus in vivo ATR-FTIR‒modeled NMF

(the sum of fAA, PCA, and UCA) for calibration and (b) validation data sets (see Supplementary Materials and Methods for further details). R2
¼ coefficient of

determination denoting linear regression model goodness of fit. Respective residual plots inset. Individuals with active AD are shaded red. (c) Image of the

spectrometer used. (d) Loading plot associating wavenumber absorption to latent factor (six in total, color coded) with (e) an in vitro NMF absorbance spectrum

presented for reference. AD, atopic dermatitis; ATR-FTIR, Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy; fAA, free amino acid pool;

NMF, natural moisturizing factor; PCA, pyrrolidone carboxylic acid; PLS, partial least squares; UCA, urocanic acid.
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serine, an abundant amino acidwithin the
stratumcorneum (Nakagawa et al., 2011).
At theantecubital fossabutnot the forearm
(Supplementary Figure S3a and b), in vivo
modeled NMFwas on average 0.64 mmol
mg‒1 lower in AD than in healthy skin,
with all values measured in FLG loss-of-
function variants being below the wild-
type mean, regardless of AD history
(Figure 2a and b). This discrimination be-
tween groupswas supported by a receiver
operating characteristic area under the
curve of 0.81 and 0.83, respectively
(Figure 2c and d).

This methodology was limited to the
discrimination of subclinical AD and
requires further validation owing to the
absence of more active disease.
Compare this with in vivo Raman
Spectroscopy where a more

comprehensive classification of FLG
genotype by NMF (area under the
curve ¼ 0.94) was reported in adults
with moderate‒severe disease
(O’Regan et al., 2010). Our work is
ongoing to replicate this ATR-FTIR
methodology in a more diverse AD
cohort of greater severity, but a key
limitation may be the shallow sampling
depth (approximately 1.5 mm) of the
evanescent wave (Brancaleon et al.,
2001), whereas Raman Spectroscopy
permits composite NMF profiling
across the full stratum corneum depth
without the requirement of tape strip-
ping. This surface constraint may also
render the current ATR-FTIR method-
ology susceptible to patients washing or
applying topical treatments before
measurements in the clinic. On the flip

side, it can be argued that ATR-FTIR is
comparatively the more affordable
technology that permits the rapid sam-
pling of multiple anatomical sites, with
a real-time NMF output displayed by
the device.

In summary, we provide preliminary
evidence to suggest that the mea-
surement of NMF in vivo using ATR-
FTIR is robust and comparable with
an established ex vivo technique.
Considering the portable device used
with no sample preparation required,
this methodology has the potential to
offer new opportunities for clinical
research where laboratory access is
not feasible. The technology has many
potential uses; knowledge of FLG
variant status may predict a patient’s
response to emollients (Danby et al.,
2022) or systemic immunosuppres-
sives (Roekevisch et al., 2017) indic-
ative of future personalized treatment
strategies. Our data is also suggestive
of attenuated NMF in patients gener-
ally clear of symptoms (Engebretsen
et al., 2018). Tracking this defect
longitudinally with further novel
measures of subclinical inflammation
may be of clinical value for moni-
toring remission post treatment of
active disease (Byers et al., 2018).
Another use is in predisposed neo-
nates who possess a skin barrier
defect long before the onset of clin-
ical AD (Horimukai et al., 2016).
There is evidence to suggest that low
NMF associates with skin barrier
breakdown at birth (Chittock et al.,
2016). Therefore, as presented by
this study in adults with unaffected
skin, the hypothesis that NMF abun-
dance may also be discriminative in
neonates and predictive of AD onset
either alone, or in conjunction with
other biomarkers is an intriguing
proposition yet to be determined.
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Figure 2. In vivo modeled NMF discriminates AD and FLG null genotypes from controls. Cohort

stratification (n ¼ 26) to compare mean in vivo NMF at the antecubital fossa between (a) healthy skin/AD

and (b) WT/FLG LOF variants. Only the model validation data points are presented (see Supplementary

Materials and Methods for further details). Individuals with active AD are shaded red. P-values denote the

result of an unpaired Student’s t test. A ROC curve of modeled NMF is presented below the corresponding

graph. (c) AD/healthy: area under the curve ¼ 0.81, 95% CI ¼ 0.63‒0.99, P ¼ 0.008. (d) FLG/WT: area

under the curve ¼ 0.83, 95% CI ¼ 0.66‒0.99, P ¼ 0.01). AD, atopic dermatitis; LOF, loss-of-function;

NMF, natural moisturizing factor; ROC, receiver operating characteristic; WT, wild type.
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Macrophage Migration Inhibitory Factor Restriction
of HIV-1 Transinfection from Dendritic Cells to
CD4D T Cells through the Regulation of Autophagy
Journal of Investigative Dermatology (2023) 143, 679e682; doi:10.1016/j.jid.2022.09.655

TO THE EDITOR
At mucosal surfaces, immature resident
dendritic cells (DCs) and Langerhans
cells (LCs) are among the first cell types
to encounter and be infected by HIV-1
virus (Ahmed et al., 2015; Pena-Cruz
et al., 2018). LCs and myeloid DCs
can restrict early HIV-1 infection

through active mechanisms of viral
entry restriction owing to their primary
autophagic functions (Blanchet et al.,
2010). During early-stage infection,
the recognition of virus by DCs results
in the release of cytokines: IFN-
stimulated genes and TGF-b have
shown their contribution to the control

of HIV-1 infection (Czubala et al.,
2016; Soper et al., 2017). Cell-to-cell
models of early HIV-1 infection have
established the role of DCs in HIV-1
transfer to T lymphocytes (Garcia
et al., 2005).

To better understand the contribution
of cytokines in the regulation of HIV-1
transinfection, we performed a small
interfering RNA (siRNA) screen in
monocyte-derived DCs (MDDCs) in a
DC-to-CD4þ T cell transfer system and
monitored the transfer of HIV-1 in
CD4þ T cells. Using the Dharmacon

Abbreviations: CQ, chloroquine; DC, dendritic cell; LC, Langerhans cell; MDDC, monocyte-derived
dendritic cell; MIF, migration inhibitory factor; siRNA, small interfering RNA
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SUPPLEMENTARY MATERIALS AND
METHODS
Participants
A cohort study was designed to
compare surface NMF levels between
volunteers with either atopic dermatitis
or healthy skin using a portable infrared
specrometer for in vivo quantification.
Volunteers were recruited from the
local community of the city of Shef-
field, United Kingdom between
November 2017 and October 2018. A
diagnosis of atopic dermatitis was made
using the United Kingdom working
party criteria (Williams et al., 1994).
Healthy volunteers had no history of
skin disease. An additional cohort of
five healthy volunteers was recruited to
investigate the effect of a short water
soak (20 minutes, 1 ml distilled water
warmed to 37 oC contained by an open
chamber) on NMF. All volunteers were
asked not to apply any topical products
or shower on the morning of the study
visit.

Skin assessments
All skin assessments were performed
during a single visit to our dedicated,
climate-controlled skin barrier suite
located at the University of Sheffield
(Sheffield, United Kingdom). Room
conditions were maintained at 20 � 2
�C and 38‒50% relative humidity. The
volar aspect of the forearm and the
antecubital fossa were the designated
study sites. The Eczema Area and
Severity Index score was employed as a
measure of atopic dermatitis severity.
Transepidermal water loss was assessed
using an AquaFlux AF200 closed
chamber condensing device (Biox Sys-
tems, London, United Kingdom). Skin
capacitance was measured using a
Corneometer CM825 probe (Coura-
geþKhazaka electronic GmbH, Co-
logne, Germany). Volunteers
acclimatized to the room conditions for
20 minutes before assessment.

Infrared spectroscopy
A portable 4300 handheld Fourier
Transform Infrared spectrometer with
mercury cadmium telluride detector
(Agilent Technologies, Santa Clara, CA)
was equipped with a 3-bounce/two-
pass diamond Attenuated Total Reflec-
tance accessory to collect absorption
spectra at the skin surface in the mid-

infrared region from 32 scans at 4
cm‒1 resolution. The area of the sam-
pling probe that contacts the skin is
approximately 79 mm2.

NMF laboratory analysis ex vivo by
tape stripping
Adapted from a published assay
(Takada et al., 2012), stratum corneum
collected by tape stripping the skin
surface (three serial 22-mm tape strips
in duplicate per sampling data point,
see Supplementary Figure S3) was cut
and pooled in 750 ml methanol. Sam-
ples were then subjected to an ultra-
sonic bath (20 minutes) agitated at 4 �C
(20 minutes) filtered using a 0.2 mm
syringe filter and dried. Distilled water
(200 ml) was used to resuspend samples
before analysis. Isocratic elution of
pyrrolidine carboxylic acid (peak at
210 nm) and urocanic acid (peak at 270
nm) was performed in 0.1 M phosphate
buffer (pH 2.75) containing 1% aceto-
nitrile using a Shimadzu high-
performance liquid chromatography
system (Shimadzu, Kyoto, Japan)
equipped with Synergi Hydro RP col-
umn (Phenomenex, Macclesfield,
United Kingdom). A sample volume of
25 ml was injected in duplicate. The
same extract was used to quantify the
total free amino acid pool by o-phtha-
laldehyde derivatization in triplicate
(Nakagawa et al., 2004). Quantification
of each NMF component was achieved
by standard curve interpolation. The
sum of all components (free amino acid
pool, pyrrolidine carboxylic acid, and
urocanic acid) was calculated and
normalized relative to the amount of
stratum corneum removed by tape
stripping (Voegeli et al., 2007) to pro-
duce a single composite measure of
NMF.

FLG genotyping
Genomic DNA was extracted from
buccal swabs using the QIAamp DNA
mini kit (Qiagen, Hilden, Germany).
The four common European mutations
were screened by Taqman (R501X and
2282del4) or sequencing (R2447X and
S3247X) using established primer and
probe sets (Sandilands et al., 2007).

Chemometric modeling
To evidence regions of infrared ab-
sorption by NMF components in vitro,
chemicals were purchased from Sigma

(Merck Life Science UK, Dorset, United
Kingdom) dissolved in water at the
following mole percent: serine, 31%;
glycine, 16%; pyrrolidine carboxylic
acid, 13%; histidine, 8%; citrulline,
6%; ornithine, 6%; threonine, 6%;
urocanic acid, 4%; arginine, 3%;
alanine, 3%, and analyzed using the
same spectrometer. For the in vivo
quantification of NMF by Attenuated
Total Reflectance Fourier Transform
Infrared spectroscopy, partial least
squares regression modeling using the
chemometrics software package
Microlab Expert (Agilent Technologies)
was employed to calibrate infrared ab-
sorption across the fingerprint spectral
region (1,090‒1,653 cm‒1) using a
single, composite, quantitative measure
of NMF (see NMF laboratory analysis
ex vivo by tape stripping discussed
earlier). For each volunteer, four sam-
pling data points consisting of Infrared
Spectroscopy performed before tape
stripping were entered into the
modeling, split equally between cali-
bration and validation sets
(Supplementary Figure S1). Four spec-
tral repeats were averaged for each
sampling data point. Before modeling,
all spectra were normalized relative to
amide III at 1,245 cm‒1 (Zhang et al.,
2006).

Statistical analysis
Results were collated in Excel, and all
tests performed using GraphPad Prism 9
(GraphPad Software, San Diego, CA).
Group means were compared using a
Student’s t test. The coefficient of
determination assessed the linear
regression model fit of ex vivo and
in vivo NMF. Discrimination of atopic
dermatitis phenotype and FLG loss-of-
function genotype by in vivo modeled
NMF was explored using binary logistic
regression and receiver operating char-
acteristic curve.
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Supplementary Figure S1. Overview of the model build. ATR-FTIR, Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy; LCF, left antecubital

fossa; LFA, left forearm; RCF, right antecubital fossa; RFA, right forearm; TS, tape stripping.
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Supplementary Figure S2. Correlating spectral regions with NMF abundance. (a) In vivo modeled NMF

before (T0) and after (H2O) soaking the antecubital fossa with water (20 minutes) in an additional cohort

of five healthy volunteers. A significant reduction in NMF was observed using a paired Student’s t test. (c)

Mean ATR-FTIR spectra and (d) mean difference spectra (T0‒H20) showing the changes in absorbance

after the water soak. (e) Mean ATR-FTIR spectra and (f) mean difference spectra (n¼ 26) at the antecubital

fossa obtained from healthy subjects (blue line) and AD subjects (red dotted line). (g) Mean ATR-FTIR

spectra and (h) mean difference spectra (n ¼ 26) at the antecubital fossa obtained from wild-type carriers

(blue) and FLG LOF variants (red dotted line). Consistent changes in absorption were observed around (i)

1,580 cm‒1, (ii) 1,480 cm‒1, (iii) 1,400 cm‒1, and (iv) 1,340 cm‒1 that correspond to (b) an in vitro

spectrum of NMF. AD, atopic dermatitis; ATR-FTIR, Attenuated Total Reflectance Fourier Transform

Infrared Spectroscopy; H2O, water; LOF, loss-of-function; NMF, natural moisturizing factor.
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Supplementary Figure S3. Evaluation of in vivo modeled surface NMF at the forearm. No significant difference in mean NMF was found at the forearm using an

unpaired Student’s t test for (a) healthy compared with AD and (b) wild type compared with FLG LOF variants. Corresponding mean ATR-FTIR spectra are shown

below each graph. Blue line ¼ healthy (left) and WT (right). Red dotted line ¼ AD (left) and FLG LOF variants (right). Please refer to Figure 1 for the key. AD,

atopic dermatitis; LOF, loss-of-function; NMF, natural moisturizing factor; WT, wild type.
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Supplementary Table S1. Study Cohort Characteristics

Characteristics Healthy AD P-Value

N 15 11

Age (y) 37 � 14 36 � 13 —

Sex (% female) 66 45 —

TEWL (g/m2/hour)1 13.17 � 3.05 14.52 � 4.21 0.37

Capacitance (units)1 33.71 � 6.83 29.48 � 7.12 0.14

EASI score2 — 2.53 � 0.39 —

FLG LOF (%)3 3/15 (20) 4/11 (36) —

NMF (mmoles mg‒1)1,4 1.28 � 0.67 0.77 � 0.25 0.02

fAA (mmoles mg‒1)1,4 1.05 � 0.53 0.66 � 0.22 0.04

PCA (mmoles mg‒1)1,4 0.18 � 0.11 0.08 � 0.03 0.01

UCA (mmoles mg‒1)1,4 0.05 � 0.03 0.03 � 0.01 0.03

SC mass (mg‒1)5 0.47 � 0.08 0.45 � 0.05 0.63

Abbreviations: AD, atopic dermatitis; EASI, Eczema Area and Severity Index; fAA, free amino acid pool; LOF, loss-of-function; NMF, natural moisturizing
factor; PCA, pyrrolidone carboxylic acid; SC, stratum corneum; TEWL, transepidermal water loss; UCA, urocanic acid.

P-values denote the result of an unpaired Student’s t test to compare groups. Significant results shown in bold. Mean � SD is presented.
1Averaged across all sampling data points per person (see Supplementary Materials and Methods).
2Whole-body EASI scores averaged from two individuals with active AD.
3Carrying at least one FLG LOF allele.
4Ex vivo laboratory quantification of fAA, PCA, and UCA from tape strips. NMF is the sum of these three components.
5Cumulative mass of SC removed by tape stripping determined by densitometry averaged across all sampling data points.

Supplementary Table S2. Model Outputs Using Alternative Amide Normalization Modes

Model Output

1,640 cm‒1 Normalization 1,540 cm‒1 Normalization

Healthy AD WT FLG Healthy AD WT FLG

Calibration (R2) 0.72 0.71

Validation (R2) 0.72 0.71

In vivo NMF FA site 1 (mmol mg�1) 0.97 0.70 0.91 0.71 0.97 0.71 0.90 0.77

In vivo NMF CF site 2 (mmol mg�1) 1.38 0.741 1.27 0.662 1.37 0.731 1.25 0.712

Abbreviations: AD, atopic dermatitis; CF, antecubital fossa; FA, forearm; LOF, loss-of-function; NMF, natural moisturizing factor; WT, wild type.

Asterisks denote the result of an unpaired Student’s t test to compare groups (healthy/AD and WT/FLG LOF mutation carriers).
1P¼<0.05 healthy compared to AD.
2P ¼ 0.05 WT compared to FLG LOF variants.
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