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Abstract
Given a narrow signal over the real line, there is a limit to the localisation of its
Fourier transform. In spaces of prime dimensions, Tao derived a sharp state-
independent uncertainty relation which holds for the support sizes of a pure
qudit state in two bases related by a discrete Fourier transform. We generalise
Tao’s uncertainty relation to complete sets of mutually unbiased (MU) bases
in spaces of prime dimensions. The bound we obtain appears to be sharp for
dimension three only. Analytic and numerical results for prime dimensions up
to nineteen suggest that the bound cannot be saturated in general. For prime
dimensions two to seven we construct sharp bounds on the support sizes in
(d+ 1) MU bases and identify some of the states achieving them.

Keywords: uncertainty relations, support size, support inequality,
mutually unbiased bases, prime dimensions, support uncertainty relation

1. Introduction

No quantum particle can reside in a state with both its position and momentum distributions
being localised arbitrarily well. For these incompatible observables, Heisenberg’s uncertainty
relation [1, 2] establishes a finite lower bound for the product of their variances. This result
relies on a fundamental property of Fourier theory: a real (or complex) function with finite
support on the real line has a Fourier transform which must be non-zero almost everywhere
[3]. It is, however, difficult to quantify the support of functions on unbounded intervals. Using
variances instead of the supports of probability distributions circumvents this difficulty.
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The situation is different for quantum systems with finite-dimensional Hilbert spaces since
the support (size) of a pure state—defined as the number of non-zero components in a given
orthonormal basis—is always finite. A computational basis state in Cd, say, has support equal
to one, and the support of its (discrete) Fourier transform equals d since all basis states contrib-
ute. Thus, the product of the support sizes equals d which turns out to be its smallest possible
value [4].

The underlying product inequality has been generalised in a number of directions [5, 6]. Tao
derived an additive inequality [7] which is valid in spaces Cd of prime dimensions d= p: the
sum of the supports of a state and its discrete Fourier transform is bounded from below by the
value (p+ 1). This bound is sharp since a computational basis state and its Fourier transform
saturate it.

Support inequalities and their generalisations have found applications in signal processing
[8, 9], for example, and they can be used to identify non-classical quantum states [10] whose
Kirkwood–Dirac quasiprobability distribution [11, 12] is not a probability distribution. Such
states provide an advantage in quantum metrology [13] and play a role in weak measurements
[14–16] and contextuality [17].

Using the support size of a quantum state as a measure of uncertainty has an unexpected—
and previously unnoticed—operational advantage. Quantum supports take a finite set of integer
values only, in stark contrast to other measures. Variances of observables in a given state or
its von Neumann entropy take real numbers as values which demands many measurements
to determine experimentally. However, a finite number of measurements may already suffice
to determine the exact support size of a quantum state. This situation occurs whenever the
state at hand has (a) ‘full’ support in the basis considered and (b) each outcome has been
registered at least once. Conformity with a given support inequality may be verified by a finite
number of measurements as small as the bound itself. This property depends, of course, on the
assumption that outcomes with probability zero never occur; limited detection efficiency does
not invalidate the argument, however.

Variance-based uncertainty relations also exist for more than two observables associated
with multiple orthonormal bases [18–21]: position and momentum may be supplemented by
a third continuous variable which is canonical to each of them. The eigenbases of these three
observables are mutually unbiased (MU) and related by fractional Fourier transforms. The
product of their variances satisfies a triple uncertainty relation [18]. Importantly, the lower
bound of this inequality does not follow from the pair uncertainty relations but must be determ-
ined independently. No quantum state exists which satisfies all three pair uncertainty relations
simultaneously. In a similar vein, entropic uncertainty relations capture the incompatibility of
up to (d+ 1) observables in finite-dimensional systems, linked to a complete set of MU bases
known to exist in prime-power dimension [22–24].

The main goal of this paper is to extend Tao’s additive support uncertainty relation to the
case ofmore than two bases, inspired by the triple uncertainty relation for continuous variables.
The focus will be on prime-dimensional spaces where (p+ 1)MU bases exist, known as com-
plete sets. The support sizes of a state in any pair of MU bases from such a set are expected to
satisfy Tao’s bound but it is unlikely that they will saturate all pair bounds simultaneously.

This paper is structured as follows. Section 2 sets up notation by briefly describing known
product and sum inequalities for the support of a vector, and the properties of complete sets of
MU bases are summarised. In section 3, Tao’s additive uncertainty relation for the support of
quantum states is shown to hold for any pair of MU bases in the complete set considered, and
the generalised additive support inequality involving all (p+ 1) MU bases is established as
a direct consequence. According to section 4 the bounds provided by the generalised support
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inequality cannot be saturated for prime dimensions 2⩽ d⩽ 19, except d= 3. Higher achiev-
able bounds are derived in section 5, for prime numbers up to d= 7. In the last section, we
summarise and discuss the results obtained. The proofs of some lemmata are relegated to an
appendix.

2. Preliminaries

2.1. Support inequalities for a Fourier pair of bases

The support (size) of a Hilbert-space vector ψ ∈Hd is given by the number of its non-zero
expansion coefficients ψv = 〈v|ψ 〉 in an orthonormal basis B = {|v〉,v= 0,1, . . . , d− 1},

|supp(ψ,B)|=#(ψv 6= 0,v= 0 . . .d− 1) ∈ {0 . . . d} . (1)

The only vector with vanishing support is the zero vector. Due to normalisation, the support
of a quantum state must be at least one, and the maximum is achieved whenever the state ψ
is a linear combination of all d basis states. The support size of a state clearly depends on the
chosen basis. Formally, the support size can be obtained as a limit of the Rényi entropy [25]
of the probability distribution

{
|ψv|2,v= 0 . . .d− 1

}
.

Thinking of the support size as the (improper) L0-‘norm’ of ψ, we will use the notation

|supp(ψ,B)|= ‖ψ‖B . (2)

The set of expansion coefficients {ψv,v= 0 . . .d− 1} has three obvious support-conserving
symmetries. The support size is invariant (a) under rephasing each expansion coefficient sep-
arately,

‖ψ‖B = ‖Rψ‖B , R= diag(eiτ0 ,eiτ1 , . . . ,eiτd−1) , (3)

with real numbers τv,v= 0, . . . , d− 1; (b) under permuting the components of any state among
themselves

‖ψ‖B = ‖Pψ‖B , P ∈ Sd , (4)

where Sd is the permutation group acting on sets of d elements; and (c) under the complex
conjugation of some (or all) of its components,

‖ψ‖B = ‖Kψ‖B , K=
∏

some v∈{0...d−1}

Kv , (5)

where each operator Kv,v= 0, . . . , d− 1, maps one expansion coefficient of the state ψ in the
basis B to its complex conjugate, Kvψv = ψ∗

v , and does not change the others. In the basis B,
the permutations P are represented by a matrix of order d containing exactly one unit entry in
each row and column; hence the unitary invariances of rephasing and permuting coefficients
are conveniently combined into monomial matrices M≡ RP. The third invariance described
by the operators Kv will play no role.

Given two distinct orthonormal bases B and B′ of Hd, one may ask to which extent a state
can be ‘localised’ in both of them. Clearly, the product of its support sizes in B and B′ may
take values between one and d2. If the bases are related by B′ = FB, where F is the discrete
Fourier transform with matrix elements (in the B-basis)

Fvv ′ =
1√
d
e−2π ivv ′/d v,v ′ ∈ {0 . . . d− 1} , (6)

3
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then the product of the support sizes of a state ψ and its Fourier transform ψ̃ = F†ψ is bounded
from below [4],

‖ψ‖B ‖ψ‖B ′ ⩾ d , (7)

where we use the fact that the support size of the Fourier transformed state ψ̃ in the basis B is
equal to the support size of the state ψ in the basis B′, i.e.

‖ψ̃‖B = ‖F†ψ‖B = ‖ψ‖B ′ . (8)

The inequality (7) represents a finite-dimensional equivalent of Heisenberg’s uncertainty rela-
tion for position andmomentum observables of a quantum particle: quantum states localised in
position, say, necessarily come with a broad variance in momentum, the Fourier-transformed
position observable.

For spacesHd with prime dimensions d, an additive inequality for the supports of a quantum
state in a pair of Fourier-related bases is known [7],

‖ψ‖B + ‖ψ‖B ′ ⩾ d+ 1 , (9)

which is stronger than themultiplicative relation (7), as follows from the inequality d+ 1− x⩾
d/x, for x ∈ [1,d]. In the terminology of [10], any two bases B and B′ are said to be completely
incompatible if and only if the support sizes of the expansion coefficients of any (non-zero)
vector ψ ∈Hd satisfy this bound.

The inequality (9) is a special case of a theorem valid for finite additive Abelian groups
G with |G| elements and trivial subgroups only which necessitates the restriction to prime
dimensions [7]. Consider a complex-valued function f : G→ C and its transform f̃ : G→ C,
defined by

f̃(v ′) =
1√
|G|

∑

v∈G

f(v)e(v,v ′) , (10)

where e(v,v′) is a ‘bi-character’ ofG satisfying e(v1 + v2,v′) = e(v1,v′)e(v2,v′) and an analog-
ous relation for its second argument. In the particular case of e(v,v′) = e−2π ivv′/d, one obtains
an inequality for the supports of f and f̃ ≡ F† f .

Theorem 1 (Tao’s theorem). If f : G→ C is a non-zero function and the cardinality |G| of
the group G is prime, then

|supp( f)|+ |supp( f̃)|⩾ |G|+ 1 . (11)

Upon identifying f (v) with 〈v|ψ 〉 and f̃(v′) with 〈v′|ψ 〉, respectively, we obtain the
inequality (9) relative to the bases B and B′ introduced via F in equation (6).

The main ingredient of Tao’s proof is a fundamental property of the Fourier matrix in prime
dimensions [7, 26, 27] which dates back to the 1920s: all its square submatrices are invertible.

Theorem 2 (Chebotarëv’s theorem). If d is prime, then all minors of the Fourier matrix F in
equation (6) are non-zero.

The inequalities (7) and (9) involve a pair of MU bases of Hd, namely the computational
basis B and its Fourier transform. We will now introduce larger sets of MU bases to formulate
more general support inequalities. Not surprisingly, Chebotarëv’s theoremmust be generalised
to other matrices which emerge when establishing bounds on support sizes of quantum states
in multiple bases (cf section 3.1).
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2.2. MU bases in prime dimensions

Two orthonormal bases of the spaceHd = Cd are said to be MU if the inner products between
any two states (not of the same basis) havemodulus 1/

√
d. Then, to know the outcome of a pro-

jective measurement performed in one basis implies complete uncertainty about the outcome
of a subsequent projective measurement performed in the other.

When d is a power of a prime number p, i.e. d= pn, sets of (d+ 1) MU bases have been
constructed [28–31]. Such complete sets are both maximal—in the sense that no additional
MU basis can be added to it—and tomographically complete: the probability distributions
of outcomes in the (d+ 1) bases uniquely encode an unknown quantum state. It is an open
problem whether complete sets of MU bases exist in composite dimensions, d 6= pn.

For d= 2, the eigenstates of the Pauli operators Z2,X2 andX2Z2 =−iY2 form a complete set
which has a simple structure. Representing the computational basis B0 by the identity matrix
H0 = I(2×2), the following two Hadamard matrices encode the bases which are MU to B0,

H1 = F=
1√
2

[
1 1
1 −1

]
, H2 = DF where D=

[
1 0
0 i

]
. (12)

If d is an odd prime, the eigenstates of the (d+ 1) generalised Pauli operators Zd, Xd, XdZd,
XdZ2

d, …, XdZ
d−1
d , represent a maximal set of MU bases. The kth state of the jth basis is given

by

|ϕ j
k〉=

1√
d

d−1∑

x=0

ω−kxω( j−1)x2 |ϕ0
x〉 , j ∈ {1 . . . d} , k ∈ {0 . . . d− 1} , (13)

where the states
{
|ϕ0

x〉 ≡ |x〉,x= 0 . . .d− 1
}
form the computational basis B0 and ω ≡ e2iπ/d

is a dth root of the number 1 [31]. For each value of j, the equimodular expansion coefficients

[H j]xk = 〈x|ϕ j
k〉=

1√
d
ω−kxω( j−1)x2 , j ∈ {1 . . . d} ,x,k ∈ {0 . . . d− 1} , (14)

define a complex-valued Hadamard matrix. These are unitary matrices since their columns
are given by the components (in the computational basis B0) of d orthogonal vectors. When
combined with the computational basis B0, the states given in equation (13) form a complete
set of MU bases for Hilbert spaces of prime dimensions, which we will refer to as the standard
set. In this paper, all MU bases will be taken from the standard set.

The Hadamard matrix H1 in (14) coincides with the discrete Fourier matrix F given in
equation (6). The remaining Hadamard matrices Hj map the computational basis B0 of Hd to
other orthonormal bases denoted by B j. Adopting an active view of these transformations, the
state ψ is mapped to the state H†

jψ. The relation between the supports of the state ψ in B0 and
the jth MU basis B j reads,

‖H†
jψ‖0 = ‖ψ‖ j , (15)

abbreviating the notation introduced in (8), i.e. ‖ψ‖B j ≡ ‖ψ‖ j, j ∈ {0 . . .d}.
The columns of the d Hadamard matrices Hj in (14) are related in a simple way to each

other, namely by

|ϕ j
k〉= D j−1Bk|ϕ1

0〉 , j ∈ {1 . . . d} , k ∈ {0 . . . d− 1} , (16)

with two diagonal (d× d) matrices B and D; in other words, all states of the complete set of
MU bases can be generated easily from any given state such as |ϕ1

0〉—except for the states

5
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of the computational basis B0. Within each Hadamard matrix, the matrix B cyclically shifts a
given column to the right,

B|ϕ j
k〉=

{
|ϕ j

k+1〉 , k= 0, . . . , d− 2 ,

|ϕ j
0〉 , k= d− 1 ;

(17)

its entries are given by the components of the second column of the Fourier matrix F= H1,

B= diag
(
1,ω−1, . . . ,ω−(d−1)

)
, (18)

except for the factor
√
d.

The matrixD is given by the components of the first column of the second Hadamard matrix
H2, i.e.

D= diag
(
1,ω1, . . . ,ω(d−1)2

)
, (19)

cyclically mapping a state of the jth MU basis to the corresponding one of the MU basis with
label ( j+ 1),

D|ϕ j
k〉=

{
|ϕ j+1

k 〉 , j= 1, . . . , d− 1 ,

|ϕ1
k〉 , j= d .

(20)

In terms of Hadamard matrices, this property reads

DH j =

{
H j+1 , j= 1, . . . , d− 1 ,

H1 , j= d .
(21)

Writing H j = D j−1H1 ≡ D j−1F, Chebotarëv’s theorem is seen to imply that the minors of
all Hadamard matricesHj, j = 1 . . .d, are non-zero: the ranks of the minors of F do not change
uponmultiplying their rows with non-zero scalars. In view of equation (12), this generalisation
is also valid for the case of d= 2.

3. Support inequalities. . .

Howwell can one localise quantum states simultaneously in (d+ 1)MUbases? To answer this
question, we need to minimise the support sizes of a state relative to the complete set. In a first
step, we now show that the support sizes of a quantum state relative to any pair of standard
MU bases also satisfy Tao’s bound (9). Second, by combining the resulting pair inequalities,
we establish a state-independent lower bound.

3.1. . . . for arbitrary pairs of MU bases

Tao’s result establishes—for a space of prime dimension d supporting a cyclic abelian group—
a sharp inequality for the support sizes of a quantum state and its Fourier transform. Most pairs
of the MU bases introduced in equation (13) are, however, not related by a Fourier transform.
Nevertheless, Tao’s bound also holds for the supports of the images of any quantum state
generated by two Hadamard matrices as we will show now.

Theorem 3. Given any pair of distinct standard MU bases associated with matrices Hj and
Hk, j,k ∈ {0 . . . d}, the support sizes of a quantum state |ψ 〉 ∈ Hd satisfy the state-independent
sharp bound,

‖ψ‖ j+ ‖ψ‖k ⩾ d+ 1 , (22)

where d is any prime number.
6
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It is important to realise that theorem 3 does not cover arbitrary pairs of MU bases in prime
dimensions but only those defined in equation (14). Nevertheless, all pairs of MU bases in
dimensions d= 2,3 and 5 are found to be completely incompatible since in these dimensions
all Hadamard matrices are equivalent to the Fourier matrix. Already for the next prime, d= 7,
other types of Hadamard matrices exist [32].

Proof. The case of dimension d= 2 is straightforward. If a state |ψ 〉 ∈ H2 has support one in
oneMU basis, it must have support two in both other bases, due to beingMU to their members.
Thus, the sum of the supports of any state in two bases must be at least three.

For odd primes d, we will consider two cases separately: either (a) one of the bases in
equation (22) is the computational basis, so that j= 0, say, or (b) neither of them.

(a) Defining the vector ϕ = D1−kψ, we obtain

‖ψ‖0 + ‖ψ‖k = ‖ψ‖0 + ‖H†
kψ‖0 = ‖ψ‖0 + ‖F†D1−kψ‖0

= ‖Dk−1ϕ‖0 + ‖F†ϕ‖0 ,
(23)

recalling that Hk = Dk−1F holds according to equation (21). Since D is a diagonal unitary
hence a support-conserving unitary matrix (cf (3)), we obtain

‖ψ‖0 + ‖ψ‖k = ‖ϕ‖0 + ‖F†ϕ‖0 ⩾ d+ 1 , (24)

where Tao’s theorem was used in the last step.
(b) Now consider the case where the non-zero labels j and k differ from each other. Defining

the vector ϕ = H†
jψ, the sum of the support sizes can be written as

‖ψ‖ j+ ‖ψ‖k = ‖H†
jψ‖0 + ‖H†

kψ‖0 = ‖ϕ‖0 + ‖H†
kH jϕ‖0 . (25)

The product H†
kH j of two distinct Hadamard matrices is, in fact, always equal to another

Hadamard matrix H†
t , t 6= 0, up to a monomial matrix M( j,k); this result is the content

of lemma 1 stated directly after the proof. As the matrix M( j,k) is support-conserving
(cf equations (3) and (4)) for all states of the space Hd, we find

‖ϕ‖0 + ‖M( j,k)H†
t ϕ‖0 = ‖ϕ‖0 + ‖H†

t ϕ‖0 ⩾ d+ 1 , (26)

where (24) of part (a) has been used in the final step.

The proof just relies on dissolving products of the Hadamard matrices Hj which encode a
complete set of MU bases. Clearly, products of the form H†

kH j, j 6= k, are Hadamard matrices
since their matrix elements, being overlaps of MU vectors, have modulus 1/

√
d,

[
H†
kH j

]

ℓℓ ′

= 〈ϕkℓ|ϕ j
ℓ ′〉 . (27)

When d= 2, one finds explicitly that H†
1H2 =MH†

2 and H†
2H1 =M′H†

2, with monomial
matrices M and M′. In other words, the phases of the matrix elements (27) coincide with
those of the adjoint of another transition matrix after permuting and rephasing its rows. This
property actually holds for any prime dimension.

Lemma 1. Let d be an odd prime and j,k ∈ {1 . . . d} with j 6= k. Then

H†
kH j =M( j,k)H†

t (28)

for a monomial matrix M( j,k) if and only if t= 1+χ ∈ {1, . . . ,d}where the integer χ satisfies
4( j− k)χ = 1 mod d.

7
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Proof. See appendix.

Furthermore, lemma 1 allows us to generalise Chebotarëv’s theorem to the product
matrices H†

kH j, for distinct indices j and k.

Corollary 1. If d is prime, then all minors of the Hadamard matrices H†
kH j, j,k ∈ {0 . . .d} and

j 6= k, are non-zero.

Proof. Let d be an odd prime. Any Ht, t ∈ {1 . . .d}, has only non-zero minors, as was men-
tioned after equation (21), as do the adjointsH†

t . Therefore, the claim holds if one of the labels
j,k, is zero. For both j,k 6= 0, lemma 1 applies. Since rephasing and permuting the rows of
a matrix do not change the rank of any submatrix, we can conclude that the matrices H†

kH j,
j,k 6= 0 and j 6= k also have non-zero minors only.

In dimension d= 2, the result follows from inspecting the products H†
1H2 =MH†

2 and
H†

2H1 =M′H†
2.

According to corollary 1 the vectors formed by the columns (or rows) of all square submatrices
of the Hadamard matrices H†

kH j, j 6= k, are linearly independent. What is more, up to d vectors
taken from any twoMU bases are linearly independent.

Corollary 2. Given a complete standard set ofMUbases in the spaceHd of prime dimension d,
up to d vectors taken from any two MU bases are linearly independent.

Proof. See appendix.

Theorem 3 also demonstrates that all pairs of MU bases taken from the complete standard set
in prime dimension are completely incompatible, in the sense of section 2.1. This statement is
stronger than the results of [7, 10] since the bases we consider are not necessarily related by
the Fourier matrix F.

3.2. . . . for complete sets of (d+ 1) MU bases

Let us denote the sum of the numbers of non-zero expansion coefficients of a state ψ ∈Hd in
a complete standard set of MU bases by

S(d) = ‖ψ‖0 + ‖ψ‖1 + · · ·+ ‖ψ‖d . (29)

Then, the inequalities (22) imply that the overall support size S(d) cannot fall below a certain
threshold. This is a central result of our paper.

Theorem 4. For any prime d, the overall support S(d) of a quantum state |ψ 〉 ∈ Hd in a
complete standard set of MU bases satisfies the additive state-independent bound

S(d)⩾ (d+ 1)2

2
≡ T(d) . (30)

Proof. Write down (d+ 1) copies of the support inequality (22) with indices ( j, j+ 1), j =
0, . . . d− 1, and (d,0), respectively. Adding them up, the right-hand-sides of (22) give (d+ 1)2,
and since each term ‖ψ‖ j ≡ ‖H†

jψ‖0, j = 0, . . . , d, occurs twice on the left, one obtains the
inequality (30).

An alternative proof treats all pair supports equally: write down (22) for all d(d+ 1) distinct
pairs of indices (j, k) and consider the sum of the supports. After removing common factors,
the bound (30) on S(d) follows.

8
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Support inequalities other than equations (22) and (30) exist. They may involve any number
between two and (d+ 1)MUbases. For example, picking the first threeMU bases and combin-
ing the associated pair inequalities from (22) leads to the additive ‘triple support inequality’,

S(d;3)≡ ‖ψ‖0 + ‖F†ψ‖0 + ‖H†
2ψ‖0 ⩾

3
2
(d+ 1) . (31)

Clearly, this inequality cannot be saturated for dimension d= 2 because the overall support
S(2) of a state is always an integer number. Taking only two possible values, the smallest
achievable value of the triple support size S(2;3)≡ S(2) equals Ts(2) = 5; here and in the
following, achievable—or sharp—bounds of S(d) are denoted by Ts(d).

The lower bound on the triple uncertainty relation for continuous variables [18], derived
similarly by combining pair uncertainty relations, can also not be reached. Theorem 4 is not
constructive, hence it is not obvious whether the case of d= 2 represents an exception or
whether the inequalities (30) are never sharp. In the next section we will first derive some
general results about multiple-support inequalities, followed by a closer look at dimensions
3⩽ d⩽ 19.

4. Saturating support inequalities for MU bases

To saturate the bound of the inequality (30) means to identify states that minimise all support
pair relations simultaneously. We present a number of rigorous results for prime dimensions
d⩽ 7. Numerical methods are then used to determine whether the generalised inequality can
be saturated for dimensions up to d= 19.

4.1. Constraints on saturating states

Our first general result is a necessary and sufficient condition that the support inequality (30)
involving a complete set of (d+ 1) MU bases be saturated.

Theorem 5 (Equal support sizes). The additive support inequality for a complete standard
set of MU bases (30) is saturated by a state ψ ∈Hd if and only if it has the same support in
all (d+ 1) MU bases, i.e.

‖ψ‖ j =
d+ 1
2

, j ∈ {0 . . . d} , (32)

where d is an odd prime.

Proof. Substituting the values (32) into (30) directly produces the lower bound.
For the converse, we show that the supports must have the values given in (32) if equality

holds in equation (30). Noting that the support of any state ψ ∈Hd ranges from 1 to d, i.e.

‖ψ‖0 =
d+ 1
2

±∆ , ∆ ∈
{
0,1, . . . ,

1
2
(d− 1)

}
, (33)

we will proceed by exhausting all its values in the computational basis B0. It turns out that
the minimum in (30) cannot be reached if the support is either (a) smaller or (b) larger than
(d+ 1)/2, leaving (c) the values in (32) as the only option.

9
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(a) If ‖ψ‖0 = (d+ 1)/2−∆, ∆> 0, then (22) implies that ‖ψ‖ j ⩾ (d+ 1)/2+∆, j =
{1 . . . d}. Hence, the sum of the supports in all (d+ 1) MU bases equals

S(d) =
d∑

j=0

‖ψ‖ j ⩾
d+ 1
2

−∆+ d

(
d+ 1
2

+∆

)

⩾
(d+ 1)2

2
+(d− 1)∆>

(d+ 1)2

2
.

(34)

Therefore, the inequality cannot be saturated by a state which has support smaller than
(d+ 1)/2 in the basis B0.

(b) Assume that ‖ψ‖0 = (d+ 1)/2+∆, ∆> 0. Clearly, the lower bound of the sum in
equation (30) can only be reached if the support of the state ψ is smaller than (d+ 1)/2 in
at least one of the MU bases, ‖ψ‖ j∗ < (d+ 1)/2, j∗ ∈ {1 . . . d}, say. Repeating the argu-
ment from (a) relative to the MU basis B j∗ instead of B0 implies that the inequality (30)
cannot be saturated.

(c) If ‖ψ‖0 = (d+ 1)/2 then (22) implies that ‖ψ‖ j ⩾ (d+ 1)/2, j = {1 . . . d}. However,
given these bounds, the minimum of S(d) in (30) can be achieved only if the support of
the state ψ ∈Hd takes the value (d+ 1)/2 in all other MU bases as well.

The second general result states that a specific dth root of unity can appear at most twice in
the columns of the Hadamard matrices Hj, j = 2 . . .d, given in (14). The proof of another
necessary–but not sufficient–condition for saturating the generalised inequality (30) will rely
on this limit of the occurrences of roots. The property also applies to to H1 ≡ F where each
root appears exactly once in every column, as is seen by inspecting (6).

Lemma 2 (Frequency of roots). Let d be prime and consider the states |ϕ j
k〉, j = 2, . . . , d,

in equation (13) forming the bases B j which are MU to both the identity and the Fourier
matrix. Any dth root ωn, n ∈ {0 . . .d}, figures at most twice among the numbers

√
d〈x|ϕ j

k〉,
x ∈ {0 . . . d− 1}.

Proof. Weneed to determine the number of solutions of the equationω−kx+( j−1)x2 = ωn which
becomes ( j− 1)x2 − kx− n mod d= 0 upon taking the logarithm and rearranging. Since
j 6= 1, the equation is quadratic for each n and there can be at most two integer solutions for
the unknown x. The extension to the special case of d= 2 is trivial.

According to theorem 5, a state saturating (30) must have (d− 1)/2 vanishing expansion
coefficients in each MU basis of the standard set, in any odd prime dimension. A third general
result is that there are constraints on the distributions of these zeroes when expanded in the
MU bases of a complete set.

To spell out these constraints, let us introduce the zero distributions Z j of a state ψ ∈Hd

which list the indices of the vanishing expansion coefficients in the (d+ 1) bases of the com-
plete set,

Z j =
{
κ ∈ {0 . . . d− 1} : 〈ϕ j

κ|ψ 〉= 0
}
, j= 0, . . . , d . (35)

Using the relation 〈ϕ j
κ|ψ 〉= 〈ϕ0

κ|H†
j |ψ 〉, one can also think of Z j as the set of vanishing coef-

ficients of the state H†
j |ψ 〉 in the computational basis.

Two zero distributions of vectors in the same Hilbert space are said to be compatible,
Z ∼ Z ′, if they are equal up to a cyclic shift. In other words, two compatible distributions
Z = {κ1,κ2, . . . ,κδ} andZ ′ = {κ′1,κ′2, . . . ,κ′δ}must have the same number δ of elements and
the mapping κi 7→ κi+µ mod d for some fixed integer µ must be a bijection from Z to Z ′.
Compatibility of zero distributions is an equivalence relation between classes of d elements.

10
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The extension of Chebotarëv’s theorem shown in section 3.1 and lemma 2 imply a constraint
on zero distributions for all prime dimensions d > 3. This property will be used in section 4.3
to prove that the support inequality (30) cannot be saturated in dimensions d= 5 and d= 7.

Theorem 6. Let d> 3 be prime and ψ ∈Hd be a state with (d− 1)/2 expansion coefficients
vanishing in the computational basis and in two more standard MU bases, i.e.

‖ψ‖0 = ‖ψ‖ j1 = ‖ψ‖ j2 =
d+ 1
2

, j1 > j2 6= 0 . (36)

Then the zero distributions associated with the vectors H†
j1 |ψ 〉 and H†

j2 |ψ 〉, respectively, are
incompatible.

Proof. Since the state ψ has d− ≡ (d− 1)/2 vanishing components in three bases with labels
j = 0, j1, j2, it satisfies 3d− conditions,

〈ϕ0
κ0

1
|ψ 〉= 〈ϕ0

κ0
2
|ψ 〉= . . .= 0 , Z0 =

{
κ0
1,κ

0
2, . . . ,κ

0
d−

}
,

〈ϕ j1
κ1

1
|ψ 〉= 〈ϕ j1

κ1
2
|ψ 〉= . . .= 0 , Z j1 =

{
κ1
1,κ

1
2, . . . ,κ

1
d−

}
, (37)

〈ϕ j2
κ2

1
|ψ 〉= 〈ϕ j2

κ2
2
|ψ 〉= . . .= 0 , Z j2 =

{
κ2
1,κ

2
2, . . . ,κ

2
d−

}
.

We proceed by contradiction. To assume that the zero distributionsZ j1 andZ j2 are compatible
means that they are related by a cyclic shift by some integer µ ∈ {0 . . .d− 1}. In particular,
we can arrange the elements in the two sets such that

κ2
i = κ1

i +µ modd for all i ∈ {1 . . .d−} . (38)

Then, according to equation (16), the corresponding states must be related by powers of the
matrices D and B,

|ϕ j2
κ2
i
〉= D j2−1Bκ2

i |ϕ1
0〉= D j2−1Bκ2

iD− j1+1B−κ1
i |ϕ j1

κ1
i
〉= D j2− j1Bµ|ϕ j1

κ1
i
〉 , (39)

where we have used the fact that D and B commute. Defining V†
µ = D j2− j1Bµ, the third set of

conditions in (37) turns into

〈ϕ j2
κ2
i
|ψ 〉= 〈ϕ j1

κ1
i
|Vµψ 〉= 0 for all i ∈ {1 . . .d−} . (40)

Since Vµ is diagonal in the computational basis, we have

〈ϕ0
κ0
i
|ψ 〉= 〈ϕ0

κ0
i
|Vµψ 〉= 0 for all i ∈ {1 . . .d−} , (41)

which means thatZ0 andZ j1 are zero distributions for the pair of vectors ψ and Vµψ. In other
words, these two states are both orthogonal to the same set of 2d− = (d− 1) vectors

{
ϕ0
κ0

1
, . . . ,ϕ0

κ0
d
−

,ϕ j1
κ1

1
, . . . ,ϕ j1

κ1
d
−

}
, (42)

stemming from the computational basis B0 and the basis B j1 . According to corollary 2, this is
a set of (d− 1) linearly independent vectors so that only one unique ray inHd can exist that is
orthogonal to all of them. Therefore, the vectors ψ and Vµψ must be collinear, i.e. Vµψ = λψ
for some non-zero scalar λ ∈ C.

Since Vµ = D j1− j2B−µ is diagonal in B0, the computational basis states are eigenvectors of
Vµ. By assumption, the state ψ has d+ ≡ (d+ 1)/2 non-zero coefficients in this basis. Thus,
the state ψ will be an eigenvector of the unitary Vµ only if λ is an eigenvalue with multiplicity
of d+ (at least). However, this is impossible for prime dimensions d > 3: the non-zero matrix

11
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elements on the diagonal of Vµ coincide with the components of the vector
√
d|ϕ j1− j2+1

−µ 〉 in
the computational basis but for j1 > j2 6= 0 (modd) no more than two of the components may
coincide according to lemma 2. Thus, at most two of the eigenvalues of Vµ can coincide. No
contradiction arises for dimension d= 3 where ψ has exactly two non-vanishing coefficients
in the computational basis.

4.2. Dimension d= 3

To prove that the bound (30) can be achieved in the space H3, we exhibit the states which
minimise the support inequality.

Theorem 7. The state ψ saturates the generalised support inequality (30) in dimension d= 3
if and only if it is one of the following nine (non-normalised) qutrit states,




1
−ωm
0


 ,




1
0

−ωm


 ,




0
1

−ωm


 , m ∈ {0,1,2} , (43)

with ω ≡ e2iπ/3 being a third root of unity.

Proof. Theorem 5 implies that a stateψ saturates equation (30) w.r.t. a complete standard set of
MUbases if and only if it has support two in each of them, i.e. ‖ψ‖ j ≡ ‖H†

jψ‖0 = 2, j = 0 . . .3.
First, we assume that the third component of a candidate state vanishes in the computational
basis, i.e. ψ =

(
a,b,0

)T
, with non-zero complex numbers a and b. Applying the matrices H†

j ,
j = 1,2,3, to it, we find four vectors,




a
b
0


 ,




a+ b
a+ωb
a+ω2b


 ,




a+ω2b
a+ b
a+ωb


 ,




a+ωb
a+ω2b
a+ b


 . (44)

The components of the last three vectors agree, except for permutations. Hence, support size
two can occur in three different ways: one component of each vector vanishes if

b=−ωma , m ∈ {0,1,2} , (45)

holds for some value of m. After removing an irrelevant phase, we obtain the first three vec-
tors given in equation (43). Second, repeating this argument for initial vectors of the form
ψ =

(
a,0,b

)T
and ψ =

(
0,a,b

)T
, respectively, leads to the remaining six vectors in (43).

Having exhausted all three-component vectors in the computational basis with support two,
we have shown that the nine vectors in (43) are the only states saturating the support inequal-
ity (30) for d= 3.

4.3. Dimensions d= 5 and d= 7

We will show that it is impossible to reach the lower bound of the support inequality (30) in
dimensions d= 5 and d= 7. The proof relies on a property of the zero distributions of the
vectors H†

jψ, j = 0 . . .d, which were introduced in section 4.1.

Theorem 8. The additive support uncertainty relation (30) cannot be saturated in dimensions
d= 5 and d= 7.

Proof. Let Zd
n be the set of the zero distributions with n zeroes among the computational-

basis coefficients of qudit states in the Hilbert space Hd. These distributions are determined
by choosing n out of d indices; hence, there are |Zd

n |=
(d
n

)
such sets. Recalling that compatible

12



J. Phys. A: Math. Theor. 55 (2022) 495305 V Fiorentino and S Weigert

sets of zero distributions form equivalence classes, obtained from rigidly shifting a given one,
only |Zd

n/∼ |=
(d
n

)
/d inequivalent zero distributions exist.

According to theorem 5, a state |ψ 〉 ∈ Hd saturating (30) for d > 3, must have n= (d− 1)/2
zeroes in each basis. In addition, a saturating state requires the existence of at least d incompat-
ible zero distributions as theorem 6 does not allow compatible zero distributions for more than
two bases. In other words, the inequality |Zd

(d−1)/2/∼ |⩾ d must hold. Clearly, this does not

happen for d= 5 and d= 7 since |Z5
2/∼ |= 2< 5 and |Z7

3/∼ |= 5< 7 , respectively. When
d⩾ 11, however, the inequality is satisfied, with |Z11

5 /∼ |= 42> 11, for example.

4.4. Numerical results for 5⩽ d⩽ 19

For prime numbers d greater than seven, more than d incompatible zero distributions exist
which removes the bottleneck we exploited to prove theorem 8. In the absence of an analytic
handle on the problem, we will use numerical means to check whether the bound imposed
by (30) can be reached for dimensions larger than d= 7.

A saturating state necessarily has (d− 1)/2 zeroes in eachMU basis. Thus, if one picks two
distinct MU bases with labels j1, j2 ∈ {0 . . . d}, say, with corresponding zero distributionsZ j1

and Z j2 , the state will have vanishing scalar products with a total of (d− 1) states which—in
view of corollary 2—are known to be linearly independent. Consequently, there is a unique
ray ψ⊥ ∈Hd associated with any two zero distributions of the type considered. If the support
size of the states ψ⊥ generated in this way (i.e. for all possible choices of initial zero distribu-
tions Z j1 and Z j2) is always larger than (d+ 1)/2 in some third MU basis, then the support
inequality (30) cannot be saturated: if no state with support size (d+ 1)/2 in threeMU bases
exists, then no state with support size (d+ 1)/2 in (d+ 1) MU bases will exist. Since only a
finite number of zero distributions needs to be checked for a given dimension d, this approach
actually represents an algorithm to check whether the lower bound can be reached.

Running the program for prime numbers with 5⩽ d⩽ 19 means to check an exponentially
increasing number of cases. On a standard PC, the program ran about a second for d= 5 and
d= 7 while it took about a week for d= 17. No state has been found which would display
(d− 1)/2 zeroes in threeMU bases. For dimensions d= 5 and d= 7, this result is stronger than
that of section 4.3 since the non-existence of a state with two and three zeroes, respectively,
is sufficient to derive theorem 8, but not vice versa. Due to the exponential increase in the
number of zero distributions, dimensions larger than d= 19 were out of reach.

4.5. Dimensions d>19

To satisfy the additive support inequality (30) relative to (d+ 1) MU bases, a state needs to
satisfy more than one pair relation (22) simultaneously which seems unlikely. It is all the more
surprising that for dimension d= 3 the bound T(3) = 8 is actually sharp, i.e. Ts(3) = T(3).
Our results for prime dimensions up to d= 19 suggest that this case is exceptional.

We conjecture that the generalised uncertainty relation (30) in prime dimensions can only
be saturated when d= 3. Here is a plausibility argument to support this view. Assume that
a saturating state ψ ∈Hd exists for some prime dimension d⩾ 3. According to theorem 5,
the state must be orthogonal to exactly (d− 1)/2 vectors from each of the (d+ 1) MU bases.
Corollary 2 implies that orthogonality with respect to just two such sets—i.e. (d− 1) vectors—
already determines a unique state. Therefore, the remaining (d− 1)2 /2 vectors (one set of
(d− 1)/2 vectors is associated with each of the (d− 1) MU bases not yet considered) must
all lie in the same (d− 1)-dimensional subspace orthogonal to the state ψ. This is known to
happen for d= 3 but seems hard to satisfy for larger dimensions.
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5. Sharp lower bounds

According to the results presented in section 4, no states exist which would saturate the lower
bounds (30) for the support sizes in dimensions up to d= 19, with the exception of d= 3. The
focus of this section will be on identifying achievable bounds.

5.1. Dimension d= 3

Theorem 7 in section 4.2 displays the states which achieve the lower bound (30) in dimension
d= 3. In other words, the bound for the overall support of qutrit states ψ is sharp, S(3)⩾ 8,
where S (d)≡

∑d
j=0 ‖ψ‖ j for ψ ∈Hd.

5.2. Dimension d= 5

Theorem 8 shows that, for any stateψ ∈H5, the overall support of the statesH
†
jψ, j = {0 . . .d},

must satisfy S(5)> 18. In this section, we will prove a sharp lower bound, namely S(5)⩾
22≡ Ts(5).

To begin, we generalise lemma 2 which will be necessary for the proof of lemma 4.

Lemma 3. Let d be an odd prime and ω ≡ e
2iπ
d . Consider two states |ϕ j1

k1
〉, |ϕ j2

k2
〉 ∈ Hd taken

from different standard MU bases, j1, j2 6= 0, and let {|x〉} be the computational basis. Then
there can be at most two values of x ∈ {0 . . .d− 1} such that

〈x|ϕ j1
k1
〉= ωn〈x|ϕ j2

k2
〉 (46)

for the same value of n ∈ {0 . . .d− 1}. If two different states are taken from the same basis,
j1 = j2, then the equation has exactly one solution for each value of n.

Proof. See appendix.

Now consider a state with two vanishing expansion coefficients in both the computational basis
and a second basis of the complete set. It turns out that such a state can have only non-zero
coefficients in the remaining four bases, resulting in a total support size of 26.

Lemma 4. If the support of a state ψ ∈H5 equals three in both the computational basis and
another standard MU basis with label j 6= 0, i.e. ‖ψ‖0 = ‖ψ‖ j = 3, then its support size in
each of the remaining four bases equals five, ‖ψ‖ j′ = 5, with j′ 6= 0, j.

Proof. The proof, given in the appendix, uses corollary 1 and lemma 3.

This result allows us to determine a sharp bound Ts(5) for the support size S(5).

Theorem 9. Given a state ψ ∈H5, the sharp bound on its overall support size S(5) in a
complete standard set of MU bases is given by Ts(5) = 22.

Proof. To construct the bound, we go through all possible values of the support size of the
state ψ in the computational basis, i.e. ‖ψ‖0 ∈ {1 . . . 5}.

For ‖ψ‖0 = 1, the pair inequalities (22) imply that the state ψ must have full support in
all other five MU bases, i.e. ‖ψ‖ j̸=0 = 5. Hence, the overall support of a computational basis
state is given by S(5) = 26.
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For ‖ψ‖0 = 2, the pair inequalities (22) imply that the state ψ can have at most one zero in
each of the other five MU bases, i.e. ‖ψ‖ j̸=0 = 4. Hence, the overall support of ψ is given by
S(5) = 22. All 300 states of the form

|ψ 〉= 1√
2

(
|ϕ j

k1
〉−ωn|ϕ j

k2
〉
)
, j ∈ {0 . . .5} , k1,k2,n ∈ {0 . . .4} , k1 6= k2 (47)

achieve this bound. More generally, for primes d > 3, there are

(d+ 1)d

(
2
d

)
=

1
2

(
d2 − 1

)
d2 (48)

such states as j takes (d+ 1) values, n takes d values and there are
(2
d

)
different pairs of k1 and

k2. The three-dimensional case is an exception, as demonstrated by theorem 7.
For ‖ψ‖0 = 3, the pair inequalities (22) rule out a support size lower than three in any basis

from the set. We apply lemma 4: the support size of ψ can equal three in only one other
MU basis while the state must have full support in the others, leading to S(5) = 26. It is
also possible to have ‖ψ‖ j = 4 in all bases but the first one, i.e. for j 6= 0. In this case seven
expansion coefficients would vanish over the complete set, resulting in an overall support size
of S(5) = 23. This bound is larger than the one already obtained for the case of ‖ψ‖0 = 2.

If ‖ψ‖0 = 4 and all other support sizes are also equal to four, the resulting overall support
of S(5) = 24 is again larger that the previous bound of S(5) = 22 obtained for ‖ψ‖0 = 2. To
improve on the value of S(5) = 24, at least one of the other norms must fall below four, i.e.
1⩽ ‖ψ‖ j∗ ⩽ 3 for some j∗ 6= 0. This assumption, however, sends us back to one of the cases
already discussed: we formally map j∗ 7→ 0 and repeat the arguments given for 1⩽ ‖ψ‖0 ⩽ 3.

Similarly, full support in all six MU bases cannot beat any of the bounds given so far.
Improving on the value of S(5) = 30 is only possible by decreasing some of the support sizes,
so that we will end up in one of the previously discussed cases. Having considered all support
sizes of a state in a basis, we have exhausted all possibilities and conclude that the bound on
the overall support of a state ψ ∈H5 in six MU bases is indeed given by Ts(5) = 22.

5.3. Dimension d= 7

Our aim is to identify states which minimise the overall support S(7) =
∑7

j=0 ‖ψ‖ j. To
determine the sharp bound for d= 7, we will proceed as in the previous section. However,
since no equivalent to lemma 4 is known, we will partly rely on numerical results.

For ‖ψ‖0 = 1, the pair inequalities (22) imply that the state ψ must have full support in all
other seven MU bases,‖ψ‖ j̸=0 = 7. Hence, the overall support of ψ is given by S(7) = 50.

For ‖ψ‖0 = 2, the pair inequalities (22) imply that the state ψ can have at most one zero in
each of the other seven MU bases, i.e. ‖ψ‖ j̸=0 = 6. Hence, the overall support of ψ is given
by S(7) = 44, achieved by states of the form

|ψ 〉= 1√
2

(
|ϕ j

k1
〉−ωn|ϕ j

k2
〉
)
, j ∈ {0 . . .7} , k1,k2,n ∈ {0 . . .6} , k1 6= k2 . (49)

According to equation (48), there are 1176 such states.
For ‖ψ‖0 = 3, the smallest possible value of S(7) compatible with the pair inequalities

is S(7) = 38, as the states in the other bases must have support size at least five each, i.e.
‖ψ‖ j̸=0 = 5. However, no state achieving this bound has been found (numerically). The com-
putations show that a state with support sizes three and five in two MU bases must have full
support in the remaining six MU bases so that S(7) = 50. Assuming support size six in all but
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Table 1. Lower and sharp bounds T(d) and Ts(d), respectively, on the support sizes of
states ψ ∈Hd when expanded in the complete standard set of (d+ 1) MU bases, for
small prime dimensions (numerical results in parentheses).

d 2 3 5 7 11 13 17 19

T(d) 9/2 8 18 32 72 98 162 200
T(d) achievable? × ✓ × × (×) (×) (×) (×)
Ts(d) 5 8 22 (44) ? ? ? ?

the first MU basis, the overall support would be S(7) = 45 which is higher than the bound of
S(7) = 44 achievable for ‖ψ‖0 = 2 .

Given a support size of four in the first MU basis, ‖ψ‖0 = 4, not all other support sizes
can be equal to four according to theorem 8. One case corresponds a state having support size
four in the first and one other MU basis. It is possible to (numerically) construct states for
which the remaining six supports sizes must be equal to six, leading to S(7) = 44. We neither
know analytic expressions for these states nor their total number. The other scenario com-
patible with ‖ψ‖0 = 4 corresponds to the remaining seven support sizes each equalling five,
i.e.‖ψ‖ j̸=0 = 5, leading to S(7) = 39 but we have obtained no evidence for a state achieving
this value.

Assume now that ‖ψ‖0 = 5 and that the support of ψ in the other MU bases is also at least
five (we exclude all cases with ‖ψ‖ j∗ < 5 for some j∗ 6= 0 since—upon relabeling the MU
bases—they have effectively already been considered). An overall support of S(7) = 40 res-
ults, below the previously obtained value of S(7) = 44 for ‖ψ‖0 = 2. Numerically searching
for states achieving this bound, we find that pairs of states with support size five in two MU
bases exist but no triples, ruling out the value S(7) = 40. Assuming support size five in two
bases and at least six in the remaining six MU bases leads to a higher support size, S(7) = 46.

Starting out with a support size of ‖ψ‖0 > 5, no smaller lower bound will exist if all other
support sizes take a value of at least six as S(7)⩾ 48 follows immediately. If not all support
sizes take a value of at least six we are being sent back to a previously discussed case. Thus,
we have established the sharp bound of Ts(7) = 44 on the overall support of seven-component
vectors in eight MU bases, partly relying on numerics.

6. Summary and conclusions

Tao’s uncertainty relation provides a lower bound on the sum of the support sizes of a state
ψ ∈Hd in the standard basis and its Fourier transform, for prime dimensions d. By generalising
the bound to arbitrary pairs of MU bases (cf theorem 3), we show in theorem 4 that the sum
of the support sizes of a state ψ in a complete standard set of (d+ 1) MU bases cannot fall
below T(d)≡ (d+ 1)2/2. The bound is found to be sharp for d= 3, and proofs were given
that it cannot be saturated for dimensions d= 2, 5 and 7. Numerical results indicate that no
states exist which achieve the bound for prime numbers up to d⩽ 19. Table 1 summarises
these results. We conjecture that the inequality is saturated in dimension d= 3 only.

Tao’s pair support inequality has been used to identify KD-nonclassical states, i.e. states
whose Kirkwood–Dirac quasiprobability distribution has negative or complex contributions
[10]. Given two orthonormal bases of a finite-dimensional space Hd,d ∈ N, with no common
elements, a state ψ is found to be KD-nonclassical if the sum of its support sizes in these bases
is greater than (d+ 1). KD-classicality is readily generalised to complete sets of MU bases
instead of pairs only. In this context, the results of section 4 mean that no states exist which are
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KD-classical with respect to the standard set of (d+ 1) MU bases in small prime dimensions.
When d= 3, the claim follows by directly computing the complex KD distributions of the nine
minimal uncertainty states of equation (43).

The uncertainty of quantum states involving more than two MU bases has been studied
before. Building on a result for a pair of MU observables [33], entropic uncertainty relations
have been found which involve (d+ 1)MUbases [22, 23]. Similarly, Heisenberg’s uncertainty
relation for continuous variables has a counterpart based on three observables satisfying the
canonical commutation relation pairwise [18]. Often, the generalisations are straightforward
but the resulting inequalities tend not to be achievable. Sharp bounds and the minimising states
are usually difficult to find (see e.g. [19, 34] and the review [35]). In this respect, the additive
inequality proposed here is no exception.

Support uncertainty relations for multiple MU bases have many interesting features. As
for the pair inequalities, a finite number of measurements can be sufficient to confirm that a
quantum state satisfies a specific bound. The minimum number of required measurements is
simply given by the value of the relevant bound, be it sharp or not: it is sufficient that T(d)
different outcomes be registered when measurements in the MU bases are performed on the
state ψ. This property also ensures that KD-nonclassicality may sometimes be detected with a
finite number of measurements.

Furthermore, the lower bounds of support inequalities neither depend on the state con-
sidered nor on the value of Planck’s constant. The absence of ℏ as a parameter suggests that
no support inequalities for continuous variables will emerge in the limit of systems with ever
larger dimensions d. The maximal support size of a quantum state grows without bound and,
therefore, does not approach a well-defined quantitative measure for uncertainty. Finally, we
would like to point out that determining bounds on support sizes is technically difficult since
they are basis-dependent quantities.

Establishing sharp bounds for dimensions d⩾ 11 remains an open question which will
require new insights since numerical approaches become unfeasible with increasing dimen-
sions. Other directions of future work will be to study support uncertainty relations for smaller
sets of MU bases such as triples, for example. The simplification stems from the considerably
smaller number of parameters in comparison to complete MU sets. Preliminary analytical and
numerical results for small prime dimensions 3⩽ d⩽ 19 suggest that no state can saturate the
bound T(d;3) on the triple uncertainty relation (31) for d 6= 3.
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Appendix

We present proofs of lemma 1, corollary 2 and lemmata 3 and 4, in this order.
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Lemma 1. Let d be an odd prime and j,k ∈ {1 . . . d} with j 6= k. Then

H†
kH j =M( j,k)H†

t (28)

for a monomial matrix M( j,k) if and only if t= 1+χ ∈ {1, . . . ,d}where the integer χ satisfies
4( j− k)χ = 1 mod d.

Proof. Using equation (14), we calculate the matrix elements of the productH†
kH j, with j,k 6=

0 and j 6= k,

[
H†
kH j

]

ℓℓ ′

= 〈ϕkℓ|ϕ j
ℓ ′〉=

1√
d
Gd( j− k, ℓ− ℓ ′) , (50)

with the generalised Gauss sum [36]

Gd( j, ℓ) =
1√
d

d−1∑

x=0

ω jx2+ℓx . (51)

Using 1= ω(ℓ−ℓ′)
2
χω−(ℓ−ℓ′)

2
χ in (50) and letting χ be an integer satisfying 4( j− k)χ≡ 1

mod d, we obtain a standard Gauss sum Gd ( j− k,0) with known closed form. Explicitly, for
j 6= k, we obtain

Gd( j− k, ℓ− ℓ ′) = ω−(ℓ−ℓ ′)
2
χ 1√

d

∑

x

ω( j−k)x2+(ℓ−ℓ ′)xω(ℓ−ℓ ′)
2
χ

= ω−(ℓ−ℓ ′)
2
χ 1√

d

∑

x

ω( j−k)[x+2 ( j−k)(ℓ−ℓ ′)]
2

= ω−(ℓ−ℓ ′)
2
χ

[
1√
d

∑

x

ω( j−k)x2

]
= ω−(ℓ−ℓ ′)

2
χGd ( j− k,0)

= ω−(ℓ−ℓ ′)
2
χ

(
j− k
d

)
εd , (52)

where ā denotes the multiplicative inverse of a, āa≡ 1 mod d, while
(
a
b

)
denotes the Jacobi

symbol of the integers a and b, and

εd =

{
1 if d≡ 1 mod 4 ,

i if d≡ 3 mod 4 .
(53)

The sum Gd ( j− k, ℓ− ℓ′) in (52) reduces to a phase factor as it should since the components
of the matrix H†

kH j are given by the overlap of states stemming from different MU bases.
Combining (50) and (14), we now determine the elements of the matrix V≡ H†

kH jHt for
arbitrary t 6= 0:

Vℓℓ ′ =
d−1∑

ℓ ′ ′=0

〈ϕkℓ|ϕ j
ℓ ′ ′〉〈ℓ ′ ′|ϕtℓ ′〉

=
1
d

d−1∑

ℓ ′ ′=0

Gd( j− k, ℓ− ℓ ′ ′)ω−ℓ ′ℓ ′ ′+(t−1)ℓ ′ ′2

.

(54)
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We can simplify this expression by substituting (52) into it, to find

Vℓℓ ′ =
1
d

(
j− k
d

)
εd

d−1∑

ℓ ′ ′=0

ω−(ℓ−ℓ ′ ′)
2
χω−ℓ ′ℓ ′ ′+(t−1)ℓ ′ ′2

=
1
d

(
j− k
d

)
εdω

−ℓ2χ
d−1∑

ℓ ′ ′=0

ω(t−1−χ)ℓ ′ ′2+(2ℓχ−ℓ ′)ℓ ′ ′

.

(55)

Letting t= 1+χ, we obtain sums over all dth roots of one which vanish unless the exponents
of ω vanish,

d−1∑

ℓ ′ ′=0

ω(2ℓχ−ℓ ′)ℓ ′ ′

=

{
d if ℓ ′ = 2ℓχ mod d ,

0 otherwise .
(56)

Thus, for this value of t, the matrix elements of V take the form

Vℓℓ ′ =

{(
j−k
d

)
εdω

−ℓ2χ if ℓ ′ = 2ℓχ mod d ,

0 otherwise ,
(57)

so that the only non-zero elements of the matrix V are those with indices (ℓ,2ℓχ mod d). Each
row ℓ has exactly one non-zero entry and the map ℓ 7→ 2ℓχ mod d constitutes a permutation
of the elements of {0 . . . d− 1} since d is a prime number and 2χ 6= 0 mod d. (Assume this
was not the case, i.e. 2χx mod d= 2χy mod d for some x,y ∈ {0 . . . d− 1}, x 6= y. Then
2χ(x− y) = nd for some integer n which is never the case whenever d is prime and χ 6= 0
mod d.) As a consequence, each column will also display exactly one non-zero entry.

Therefore, the product V of three Hadamard matrices is equal to a monomial matrixM( j,k)
if t= 1+χ, i.e.

H†
kH j =M( j,k)H†

1+χ . (58)

We complete the proof by showing that the matrix V= H†
kH jHt is not monomial for any

other value of t. For t 6= 1+χ, the sum on the right-hand side of (55) represents another gen-
eralised Gauss sum so that

Vℓℓ ′ =
1√
d

(
j− k
d

)
εdω

−ℓ2χGd (t− 1−χ,2ℓχ− ℓ ′) (59)

with Gd (t− 1−χ,2ℓχ− ℓ′) =
√
d〈ϕ1+χ

2ℓχ |ϕtℓ′〉. We can now substitute the expression (52) and
obtain

Vℓℓ ′ =
1√
d
ε2d

(
j− k
d

)(
t− 1−χ

d

)
ω−ℓ2χω−(2ℓχ−ℓ ′)2χ̃ (60)

where χ̃ ∈ {1 . . . d} is an integer satisfying 4(t− 1−χ) χ̃= 1 mod d. Hence, the matrix ele-
ments Vℓℓ′ are all non-zero confirming that the matrix V is not monomial unless t= 1+χ.

An alternative, shorter proof of lemma 1 can be given by representing the Hadamard
matrices Hj as 2× 2 matrices in SL(2,Z/dZ) (cf [37]).

Corollary 2. Given a complete standard set of MU bases in the spaceHd of prime dimension
d, up to d vectors taken from any two MU bases are linearly independent.
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Proof. Construct a matrixM of order d× (d1 + d2) from any (d1 + d2)⩽ d column vectors—
expressed in the computational basis—from the twoMU bases B j1 and B j2 . Then left-multiply
M by H†

j1 . Since 〈x|H†
j1 |ϕ

j1
k 〉= 〈x|k〉, the first d1 columns will be elements of the computa-

tional basis, while the remaining d2 columns will be taken from H†
j1H j2 since 〈x|H†

j1 |ϕ
j2
k 〉=

〈x|H†
j1H j2 |k〉. By swapping rows appropriately via a permutation operator P which does not

change linear independence of column vectors, the top left square can be mapped to the d1-
dimensional identity. For example, if we consider d= 5 and d1 = d2 = 2, we obtain a 5× 4
matrix,

PH†
j1M=




1 0 ∗ ∗
0 1 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗



, (61)

where the asterisks refer to the elements of H†
j1H j2 .

The (d1 + d2)⩽ d vectors are linearly dependent only if M does not have full rank, i.e.

rank(M)< d1 + d2. Since PH
†
j1 is unitary, it follows that rank

(
PH†

j1M
)
< d1 + d2. Given the

form of the matrix (61), the bottom-right part of PH†
j1M must contain a (d2 × d2) submatrix

with vanishing determinant. However, this is prohibited by corollary 1 which ensures for all
prime numbers d that H†

j1H j2 has non-vanishing minors if j1 6= j2. Thus, all (d1 + d2) column
vectors of M must be linearly independent.

Lemma 3. Let d be an odd prime and ω ≡ e
2iπ
d . Consider two states |ϕ j1

k1
〉, |ϕ j2

k2
〉 ∈ Hd taken

from different standard MU bases, j1, j2 6= 0, and let {|x〉} be the computational basis. Then
there can be at most two values of x ∈ {0 . . .d− 1} such that

〈x|ϕ j1
k1
〉= ωn〈x|ϕ j2

k2
〉 (46)

for the same value of n ∈ {0 . . .d− 1}. If two different states are taken from the same basis,
j1 = j2, then the equation has exactly one solution for each value of n.

Proof. By substituting (13) into (46) and taking the logarithm, one obtains ax2 + bx− n= 0
modd where a= j1 − j2 and b= k2 − k1. This quadratic equation can have no more than two
integer solutions. Thus, at most two components of the states |ϕ j1

k1
〉 and |ϕ j2

k2
〉 can be identical

in the computational basis, up to multiplication by ωn. If j1 = j2, then a= 0 and the equation
is linear with a single solution for each value of n.

Lemma 4. If the support of a state ψ ∈H5 equals three in both the computational basis and
another standard MU basis with label j 6= 0, i.e. ‖ψ‖0 = ‖ψ‖ j = 3, then its support size in
each of the remaining four bases equals five, ‖ψ‖ j′ = 5, with j′ 6= 0, j.

Proof. Four scalar products with the state ψ vanish,

〈x1|ψ 〉= 〈y1|ψ 〉= 〈ϕ j
x2 |ψ 〉= 〈ϕ j

y2 |ψ 〉= 0 , (62)

two for each of the bases. Hence, the zero distributions of the states ψ and H†
jψ, are given by

Z0 = {x1,y1} and Z j = {x2,y2} respectively, with four integer numbers x1, . . . ,y2 ∈ {0 . . .4}.
Now suppose that there is a third MU basis B j′ , different from both B0 and B j, in which
the state ψ does not have full support. In other words, there is at least one vanishing scalar
product, 〈ϕ j′

x3 |ψ 〉= 0, say, where x3 ∈ {0 . . .4}. Expressing the components of the five vectors
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|x1〉, |y1〉, |ϕ j
x2〉, |ϕ j

y2〉, |ϕ j′
x3〉 with respect to the computational basis and arranging them into a

5× 5 matrix, we find, after permuting the rows and rephasing the last three vectors,

M=
1√
5




√
5 0 ∗ ∗ ∗
0

√
5 ∗ ∗ ∗

0 0 1 1 1
0 0 ωa ωc ωe

0 0 ωb ωd ω f



, a, . . . , f ∈ {0 . . .4} . (63)

Being elements of the Hadamard matrices Hj and H j′ , the entries of the last three columns are
powers of ω, a fifth root of one. Corollary 2 ensures the linear independence of the first four
vectors.

If the determinant of M does not vanish, detM 6= 0, then the five column vectors forming
it are linearly independent, thus spanning H5. However, the only state being orthogonal to
all of H5 is ψ= 0 which does not represent a quantum state. Thus, for an acceptable state
ψ producing the given five vanishing expansion coefficients, the five vectors involved must
be linearly dependent, i.e. detM= 0. Consequently, the determinant of the bottom right 3× 3
matrix of M must vanish,

∆≡ det




1 1 1
ωa ωc ωe

ωb ωd ω f




= ωa+d+ωe+b+ωc+ f −ωc+b−ωe+d−ωa+ f = 0 .

(64)

Each of the six terms in this expression is a power of a fifth root ω of unity, hence non-
zero. It is well known that the set {ωn |n= 0, . . . ,3} is linearly independent over the rational
numbers Q. As a consequence, every non-zero complex number that is expressible as a linear
combination (over Q) of these roots of unity has a unique expression. Since ω4 =−1−ω−
ω2 −ω3, it must follow that the only decomposition of zero over Q in terms of fifth roots of
1 is 0= q

(
1+ω+ω2 +ω3 +ω4

)
, with some rational number q ∈Q. In other words, for the

sum to vanish all five roots must be multiplied to the same rational coefficient.
We distinguish two cases: either q 6= 0 or q= 0. Since (64) involves six terms with coeffi-

cients±1, we conclude that the case of q 6= 0 cannot be realised: it is impossible to get all five
roots to appear with the same non-zero coefficient. For example, let (a+ d) = (e+ b) mod 5,
then equation (64) reduces to

∆= 2ωa+d+ωc+ f −ωc+b−ωe+d−ωa+ f . (65)

Since all roots must appear, the exponents in (65) are all different. However, the coefficients
are not equal throughout and the sum cannot vanish. A similar argument holds for any other
equality between exponents.

The case of q= 0 must therefore apply: the determinant ∆ vanishes if and only if the six
terms in equation (64) cancel each other in pairs, i.e. the powers of ω must occur an even
number of times, and with an equal number of positive and negative coefficients. Hence, the
first term in (64) is necessarily paired up with one of the powers with a negative coefficient
leading. Three cases arise which we will consider separately.

(a) For the first and the fourth term to cancel, we must have (a+ d) = (c+ b) mod 5 , or

(a− b) = (c− d) mod 5 , (66)
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relating the expansion coefficients of two vectors of the same basis, namely |ϕ j
x2〉 and

|ϕ j
y2〉. Consequently, the third and fourth column vectors in the matrix M in (63) have (at

least) two equal entries in identical positions, up to an irrelevant common phase factor. This
would result in a vanishing 2× 2 submatrix ofHj contradicting corollary 1 (and lemma 3).
Thus the determinant ∆ cannot vanish in this case.

(b) For the first and the fifth term to cancel, we must have (a+ d) = (e+ d) mod 5 , or

a= e mod 5 , (67)

relating the expansion coefficients of two vectors of different bases, namely |ϕ j
x2〉 and |ϕ j′

x3〉.
Corollary 1 does not apply to this case. We do know, however, that the fourth term in the
sum (64) must pair up with either the second or the third term of the sum in (64). In the
first case, we find (c+ b) = (e+ b) mod 5 ,or

c= e mod 5 . (68)

Given the constraint (67), we we obtain the identity

a= c mod 5 , (69)

again relating the expansion coefficients of two vectors of the same basis, namely |ϕ j
x2〉

and |ϕ j
y2〉. As in the Case (a), a contradiction to corollary 1 arises.

In the second case, we pair up terms three and four of the sum (64), leading to the identity
(c+ b) = (c+ f) mod 5, or

b= f mod 5 . (70)

Together with equation (67), it follows that the last three elements of the third and fifth
columns of M are identical. However, according to lemma 3, two vectors stemming
from two different bases MU to the computational basis can have at most two identical
components.

(c) Assuming that the first and the sixth term of the sum (64) cancel again leads to a contra-
diction along the lines of the argument considered in Case (b).

Thus, we are forced to conclude that the determinant ∆ cannot not vanish for any j′ 6= 0, j
and any x3, which implies that the state ψ must have full support.
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