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Abstract

Sensory information is conveyed by populations of neurons, and coding strategies cannot

always be deduced when considering individual neurons. Moreover, information coding

depends on the number of neurons available and on the composition of the population when

multiple classes with different response properties are available. Here, we study population

coding in human tactile afferents by employing a recently developed simulator of mechano-

receptor firing activity. First, we highlight the interplay of afferents within each class. We

demonstrate that the optimal afferent density to convey maximal information depends on

both the tactile feature under consideration and the afferent class. Second, we find that

information is spread across different classes for all tactile features and that each class

encodes both redundant and complementary information with respect to the other afferent

classes. Specifically, combining information frommultiple afferent classes improves infor-

mation transmission and is often more efficient than increasing the density of afferents from

the same class. Finally, we examine the importance of temporal and spatial contributions,

respectively, to the joint spatiotemporal code. On average, destroying temporal information

is more destructive than removing spatial information, but the importance of either depends

on the stimulus feature analyzed. Overall, our results suggest that both optimal afferent

innervation densities and the composition of the population depend in complex ways on the

tactile features in question, potentially accounting for the variety in which tactile peripheral

populations are assembled in different regions across the body.

Author summary

Touching an object elicits neural responses from hundreds or thousands of individual tac-

tile receptors of different classes embedded within our hand. Information about the extent

of contact, the strength of the touch, and its temporal profile are carried jointly in this

population response to be processed further by the central nervous system. However,
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studying the nature of the population code is empirically challenging, as electrophysiologi-

cal recordings are typically obtained from single or a small number of neurons at most.

Here, we make use of a computer simulation to recreate the population activity of large

numbers of tactile neurons and examine how information is spread across different neu-

rons. We find that tactile information increases with afferent density, but the saturation

point depends on both the tactile feature and afferent class. Importantly, information is

generally spread across multiple afferent classes, such that a combination of afferents from

multiple classes yields higher information than the same number of neurons from a single

class. These results will be useful to guide future experiments and theoretical work on the

processing of tactile information by the central nervous system.

Introduction

The brain processes information and makes decisions based on the activity of populations of

neurons [1]. Studying population activity can reveal aspects of the neural code that are

obscured when only individual neurons are considered [2]. For example, the well-known pop-

ulation vector technique has shown that the direction of arm movements can be precisely

decoded from a population of cortical motor neurons, even though individual neurons are

only broadly tuned to direction [3]. Moreover, some coding strategies will become evident

only if the responses of multiple neurons are considered. For example, while a neuron that

remains silent to a certain stimulus might not appear to convey any information at all, when it

is part of a larger population where other neurons are responding, this silence can be meaning-

ful [4]. Response correlations between neurons also affect decoding (see [5] for an example).

Furthermore, populations often consist of heterogeneous classes of neurons, especially in sen-

sory systems, such as the diversity of retinal ganglion cells in the visual pathway [6] or the dif-

ferent classes of tactile neurons in the somatosensory periphery [7]. Theoretical studies have

shown how response properties and class membership of individual neurons can be optimized

to maximize joint information coding in the population [8–10]. However, because this optimi-

zation relies on the full population, predicting how or to what extent an individual neuron

contributes to population coding becomes impossible without considering the properties of

other neurons that make up the population. Given these findings, it is thus paramount to

study the population activity of sensory neurons in order to understand what stimulus infor-

mation is available at subsequent processing stages.

Tactile interactions are mediated by mechanoreceptive afferents and the glabrous skin of

the human hand is innervated by approximately 17,000 fibers [11]. These are divided into dif-

ferent classes based on their response properties and receptive fields. Three classes are mainly

involved in discriminative touch: slowly adapting type 1 afferents (SA1) exhibit small receptive

fields and respond to static or low-frequency indentations, rapidly adapting afferents (RA)

possess slightly larger receptive fields and respond to dynamic flutter stimuli, and Pacinian

afferents (PC) exhibit extremely large receptive fields and are most responsive to high fre-

quency vibrations. These classes also differ in the density with which they innervate the skin,

both compared to each other and at different locations on the skin [11]. A stimulus applied to

a specific skin area will typically activate hundreds if not thousands of afferents of different

classes all responding with distinct spiking responses [12]. However, peripheral neurophysio-

logical measurements are subject to technical limitations, and typically only one or a small

number of afferents are recorded at once. Moreover, many studies place the stimulus directly

above the targeted afferent’s receptive field hotspot, in an effort to maximize neural responses
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within the limited recording window, but such a setup implies that responses from receptors

located away from the contact location will be neglected. Given these constraints, afferent

activity on a population level has scarcely been investigated, and, consequently, our under-

standing of how tactile information is represented in the peripheral population is limited

(though see [13] for a summary of tactile population codes).

A particular source of debate in the tactile literature has been the role of different afferent

classes. Traditionally, each afferent class was thought to carry information about different and

complementary stimulus features [14]. However, more recently, it has become clear that most

natural stimuli elicit responses from multiple afferent classes simultaneously (see summary in

[15]), for example, in texture perception [16]. Furthermore, both experimental evidence [17]

and computational modeling [18] suggest that information from multiple classes of afferents is

integrated in cortex, if not before, and psychophysical studies have revealed that the quality of

a tactile percept does not necessarily depend on receptor class [19]. However, to what extent

peripheral tactile population activity carries complementary information about relevant stimu-

lus features in different afferent classes has not been quantified and it is therefore unclear

when and how it would be beneficial to integrate such information.

Here, we investigate the contribution of large neural populations in tactile stimulus coding

and examine the interplay of tactile submodalities in this process. Because the lack of popula-

tion level data currently precludes empirical study, we used a large-scale computational model,

Touchsim [20], to simulate the activity of hundreds of peripheral tactile afferents of three clas-

ses in response to naturalistic stimuli, similar to those commonly used in experimental set-

tings. First, we parametrically studied the role of afferent density in single-class afferent

populations to explore if and how the composition, and particularly the number of afferents,

affects the stimulus information encoding. Secondly, we considered the three classes together

and asked whether each class encoded complementary or redundant information regarding

stimulus features. Finally, we assessed the importance of temporal and spatial encoding preci-

sion when considering afferents on a population level. Overall, our work demonstrates that a

population-level view of tactile coding is crucial for a thorough understanding of tactile infor-

mation processing.

Results

We used a large-scale neural simulator [20] to simulate the spiking activity of individual affer-

ents belonging to three afferent classes (SA1, RA, PC) jointly spanning the range of tactile sen-

sitivity. In our setup, we simulated the responses of a population of receptors placed along a

line extending outwards from the contact location of the stimulus probe (see Fig 1A). This spa-

tial arrangement of receptors allowed for systematic manipulation of the receptor density in

the simulations. Sixteen different afferent populations with a density ranging between 1 and

140 afferents/cm2 were considered for each afferent class. Therefore, we could test the effect of

low, medium, and high densities (Fig 1B) on information encoding and also directly examine

natural innervation densities, such as those encountered on the palm or finger (Fig 1C). The

simulated stimulus was a circular probe indented into the skin and then vibrated. We varied

four stimulus features systematically across trials: the probe size (1–4 mm), the ramp ampli-

tude (0.3–1.2 mm), the ramp length (10–50 ms), and the vibration frequency (0–200 Hz) (see

Fig 1D and Methods). These parameters were chosen to span the range of tactile stimuli that

are typically experienced. They are also similar to stimuli commonly employed in neurophysi-

ological experiments, such as those used to fit the initial Touchsim model [20], and simulated

responses can therefore be expected to be a close match to what would be recorded in an actual

experiment. Finally, varying the stimulus across multiple parameters simultaneously ensures
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that the complexity of everyday tactile interactions is reproduced in the resulting population

responses.

To analyze the simulated responses, we coupled advanced machine learning techniques

with information-theoretic analysis to compute how much information about each stimulus

feature was encoded in the activity of different populations of afferents (see Methods). In brief,

after simulating the spiking responses (Fig 2A), we first used Non-Negative Matrix Factoriza-

tion (NMF) [21] to succinctly capture the spatiotemporal patterns of neural responses for each

afferent class (Fig 2B). This technique linearly decomposes each single-trial spatiotemporal

sequence of spike trains into a sum of non-negative spatiotemporal modules (describing com-

monly occurring population activity patterns across neurons and time) and non-negative acti-

vation coefficients (describing how strongly each pattern is recruited in a given trial). For this

first stage, we chose an unsupervised technique that did not take into account the specific stim-

ulus features used to generate the responses in each trial, because this provides an effective and

relatively hypothesis-free way to describe neural responses to all possible stimuli. The specific

Fig 1. Simulation setup. (A) Example of afferents terminating along a line, radiating outwards from the probe center (indicated by the arrow). The
probe has circular shape (of varying size) and is centered on the origin of the line. Dots of different colors correspond to different afferent classes
(separated in the illustration to facilitate visualization). (B) Example of afferent populations with different densities. (C) Representation of afferent
densities measured on the human hand and corresponding simulated populations distributed over a line that mimic the densities observed in the palm
and finger. (D) Illustration of the different stimulus features considered: probe size, vibration frequency, ramp length, and ramp amplitude.

https://doi.org/10.1371/journal.pcbi.1010763.g001
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choice of NMF was made because this technique provides a natural decomposition for spike

trains, which are by nature non-negative, because it can give accurate single-trial representa-

tions of activity even when neural responses are non-orthogonal and overlapping from trial to

trial, and because both its basis functions and coefficients are biologically interpretable in

Fig 2. Analysis pipeline and calculation of information. (A) Spike trains are generated using the Touchsim simulator. (B) The spike matrices are then
decomposed using the Non-Negative Matrix Factorization (NMF) method, obtaining a set of non-negative activation coefficients and modules. (C) A
Generalized Linear Model (GLM) fed with the neural activity captured in the NMF activation coefficients gives the probability of observing each
stimulus feature. (D) Probabilities are used to compute mutual information (MI), representing the information that the neural activity carries about the
stimulus.

https://doi.org/10.1371/journal.pcbi.1010763.g002
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terms of commonly occurring activity patterns and their activation strength in each trial,

respectively [22, 23]. We decided on using spatiotemporal decompositions for this stage, as

used in previous studies [24–26], rather than e.g., decompositions along only the spatial or

temporal dimension, or tensor decompositions that assume separability in space or time [22,

23], in order to avoid introducing strong hypotheses about the spatiotemporal nature of neural

population responses, which may be difficult to test or which may bias comparisons across

afferent classes that may have different degrees of interdependence between spatial and tempo-

ral structure.

In the second stage, we extracted specific features from the NMF representation using a

supervised technique. Following previous work [27], we approximated the probabilities of

occurrence of the NMF activation coefficients using a Generalized Linear Model (GLM; see

Fig 2C). We then used this probabilistic model to compute the posterior probability of each

stimulus feature given the observation of the spatiotemporal population spike train in each

trial. Finally, we computed the information using the posterior probabilities between the pre-

sented and the decoded stimulus (Fig 2D). This procedure provides a data-robust but effective

lower bound to the total information carried by population activity [2]. We also checked the

robustness of our main findings using a control analysis employing a simpler decomposition

model (see Methods and S2 Fig), where the NMF decomposition is only applied along the spa-

tial axis [28], yielding a larger number of coefficients for the classifier. This analysis shifts part

of the analysis from unsupervised to supervised and can therefore be expected to extract more

information overall, but it makes strong assumptions about the separability of the spatial

dimensions (as it decomposes only simultaneous responses across neurons), which may not be

suitable for some afferent classes for which spatial and temporal response profiles may be non-

separable (see below for some examples).

Information carried by individual afferent populations

In a first analysis, we investigated the information carried by each of the three afferent popula-

tions separately. To understand which afferent population best encoded any given feature, and

how the information depended on the spatial density of the afferents, we calculated the total

information carried by each population (Fig 3A) by simulating responses with different spatial

receptor densities.

For encoding stimulus size, we found that SA1 afferents were most informative, with infor-

mation increasing and then saturating at a density of 40 afferents/cm2. RA afferents provided

more information at very low densities and saturated at a lower level (20 afferents/cm2). In

contrast, PC afferents did not carry any information about stimulus size at any of the densities

considered. This result can be explained by the fact that PC afferents exhibit extremely large

receptive fields [29], certainly larger than the differences in size between the stimuli we

applied.

Next, we considered the encoding of the frequency of stimulation. PC afferents provided

the highest frequency information, as predicted by the fact that PC afferents are well known to

carry frequency information in vibrotactile stimulation [14]. Given their large receptive field

size, frequency information of PC cells already saturated with the lowest density of afferents

considered. In agreement with previous studies, RA afferents also carried considerable infor-

mation about frequency [14]. SA1 populations carried low amounts of frequency information

at small spatial densities, but slightly exceeded the frequency information of RA afferents at

higher spatial densities. This result may appear to contradict earlier empirical studies, where

SA1 afferents were shown to respond only to the lower extreme of the range examined in our

study [30]. However, in our simulations, the sinusoidal wave is superimposed on a ramp-and-
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hold indentation. This sustained indentation causes low spiking activity in the SA1 afferents,

with spikes aligned to the vibration (see panel B in S1 Fig). Our finding suggests that this infor-

mation emerges when taking into account the activity of SA1 afferents on a population level

rather than single afferents separately.

PC afferents were also the most informative class about the stimulus ramp length, followed

by SA1 and RA afferents, which provided similar levels of information, but required higher

densities than PCs to reach saturation. Finally, SA1 afferents carried the highest amounts of

information about ramp amplitude, with PC afferents not encoding any information. RA affer-

ents again provided higher information than SA1 ones at the lowest density, but adding more

fibers did not increase information for this class.

Fig 3. Effect of afferent density on stimulus feature coding. (A) Information content (normalized by the stimulus entropy) for different stimulus features provided
by single-class afferent populations of varying density. Solid lines represent the average over 40 trials, shaded regions represent standard deviation across NMF
instantiations. Dotted vertical lines indicate information saturation points. (B) Saturation densities for each feature and afferent class. (C)Maximum information
content provided by each afferent class at the saturation density for each feature. Error bars represent standard deviation across NMF instantiations.

https://doi.org/10.1371/journal.pcbi.1010763.g003
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The information saturation density, which we defined as the smallest value of density at

which the population carried the asymptotic value of information reached for the highest sim-

ulated density, was the highest across classes for SA1 afferent for all considered stimulus fea-

tures. Conversely, the information saturation density was the smallest for PC afferents in all

cases (Fig 3B). Notably, when considering purely spatial features such as the stimulus size, the

population encoding the highest asymptotic information level corresponds to the one with the

highest saturation density (Fig 3B and 3C). Consequently, a high density of afferents is

required to extensively innervate a skin area and discriminate between fine differences in the

shape of stimulation. On the other hand, when looking at temporal features such as the fre-

quency or the ramp length, sparsely distributed PC afferents overcome the information con-

tent encoded by the other more densely packed afferent classes.

Finally, our result shows that the RA class at saturation density always encodes less informa-

tion than the SA1 and PC populations about any feature considered in this study (Fig 3C).

However, at low densities (<10 afferents/cm2), RA afferents were more informative than SA1

for all features considered, suggesting that the optimal way to encode a tactile feature might

depend on the number of neurons available.

Information encoded by multiple afferent classes

Next, we investigated how tactile stimulus information was encoded in the joint activity of

multiple afferent classes. In particular, we asked whether the information about stimulus fea-

tures carried by an afferent class adds to and complements the information carried by other

classes or whether the information carried by different afferent classes is redundant. To answer

this question, we computed the information carried about each stimulus feature by the joint

activity of populations of two or three afferent classes and compared the resulting values with

the single-class information calculated above. Specifically, we used the concept of complemen-

tary information [31]: we defined the complementary information carried by additional affer-

ent classes over that of a reference class as the information carried by all considered classes

jointly subtracted by the information carried by the reference class alone. All possible combi-

nations of classes were considered. In these calculations, unless otherwise stated, we set the

density of each class to the one measured on the glabrous skin of the human finger (see Meth-

ods for details). This allowed us to compare the information contribution of different classes

in a realistic and biologically relevant setting.

We first considered whether afferent classes that were not the principal source of informa-

tion about a stimulus feature added information that was complementary to that of the princi-

pally contributing afferent class. To do so, for each feature, we quantified the amount of

complementary information that the less informative classes add to the information carried by

the most informative class (Fig 4A). The amount of this complementary information was nor-

malized to the amount of stimulus information carried by the most informative class. For all

features, we found that the second and third most informative classes added information that

complements the information carried by the most informative class alone. On average, the sec-

ond most informative class added between 12 and 25% complementary information, depend-

ing on the feature considered. When considered jointly, the second and third most

informative classes added, on average, between 15 and 30% of complementary information,

compared to the most informative class alone. This result indicates that for each tactile stimu-

lus feature, each class encodes some amount of complementary information about the stimu-

lus that cannot be found in the activity of the other two classes.

Next, we investigated which amount of each afferent class’s information contribution was

complementary or redundant when considered against the information contribution of the
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other afferent classes. For each stimulus feature and each individual afferent type, we com-

puted the fraction of the information carried by the considered afferent that is complementary

with respect to the information already carried by the other two afferent classes. This fraction

is an index of the specific novelty of the information of a given afferent class with respect to all

others (Fig 4B). In general, a significant fraction of information carried by each afferent class

was complementary to that of other classes. In most cases, however, this fraction was not close

to 1, meaning that there was also redundancy between the information carried by afferent clas-

ses. When examining how this fraction varied across stimulus features, interesting patterns

emerged.

For vibration frequency and ramp length, the two stimulus features for which all three affer-

ent classes encoded considerable information, we found mostly redundant coding, with rela-

tively small fractions of complementary information (on average 13% for frequency and 23%

for ramp length, Fig 4B). All three classes encode vibratory stimuli by locking their spiking

activity to the sinusoidal traces, which explains the redundancy across classes. However, the

fact that the frequency ranges encoded by each class do not completely overlap explains the

Fig 4. Integrating information across afferent classes. (A) Information gain considering the two and the three most informative classes together with
respect to the most informative class alone. The density measured on the human finger was taken for each afferent class. Thin lines correspond to
different instantiations of the NMF decomposition, and the thick dashed lines correspond to their averages. (B)Decomposition of information into
redundant and complementary contributions of each class with respect to the remaining two classes together. Information for each afferent class has
been normalized to 100% and was calculated at the density measured on the human finger. Note that in both panels (A) and (B) only two afferent
classes were considered for the analyses regarding stimulus size and ramp amplitude since the third class (PC) was carrying null information (see Fig
3C).

https://doi.org/10.1371/journal.pcbi.1010763.g004
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existence of significant fractions of complementary information across all three afferent clas-

ses. Given that all three classes encoded large amounts of frequency information, the actual

amount of complementary information added by each class was surprisingly large (Fig 4B). A

similar pattern of complementarity and redundancy of information was observed for ramp

length, which like frequency is a dynamic feature that depends on timing.

For stimulus size, the SA1 afferent population carried most of the information (Fig 3), and

this information had a high value of complementarity (72%), indicating that it could not be

found in other afferent types (Fig 4B). The RA afferent population added less information (Fig

3), but also exhibited a relatively large fraction of complementarity (48%) (Fig 4B). The encod-

ing of size for SA1 and RA afferents seems to depend on the number of afferents that are acti-

vated by the stimulus (Fig A), and the observed complementarity between RA and SA1

afferents is partly due to differences in spatial sensitivity across the two populations. Informa-

tion carried by PCs about probe size was negligible and therefore this class was not considered

in the complementarity analysis for this feature.

Finally, for ramp amplitude we found results that resemble those for stimulus size. The SA1

population carried most information, which was largely complementary (63%) to that of other

classes. RA afferents carried less information than SA1 afferents, but part of this information

(43%) was complementary to that of SA1 afferents. In this case, the encoding appears again to

depend on the fraction of afferents that are activated by the stimulus, as was the case for stimu-

lus size. This is a genuine form of population coding that would not be evident from single

afferent analyses. PCs again provided negligible information (see Fig 3C), and thus were not

taken into account.

Effect of afferent density on complementary information

Having established that information about individual stimulus features is carried by multiple,

rather than single, afferent classes and that different afferent classes often carry complementary

stimulus information, we next asked how the complementarity of information depends on the

spatial density of afferents. We were especially interested in whether, given the functional

properties of afferents in each class, it would be more efficient to allocate all receptors to the

most informative class or spread the receptors across different classes to take advantage of the

complementarity of different classes. To address these questions, we systematically analyzed

the information carried by individual afferent classes and their combination at different densi-

ties (Fig 5A). We tested the same upper and lower density limits as used previously. For a

more realistic comparison with human biology, we also considered two other cases of spatial

density arrangements, in which each population has a density equal to that experimentally

found either in the palm or in the finger of the human hand (see Methods for precise

numbers).

A substantial increase in the amount of encoded information was found for all features

when increasing the density from the lower limit to realistic densities. Conversely, increasing

the densities from the finger values further to the upper limit did not lead to additional

increases of encoded information, neither when considering individual classes nor their com-

bination, suggesting that the information in multi-class population coding saturates similarly

to single-class coding. The only exception was probe size, for which information content at the

upper limit was higher than at the finger density. As shown in Fig 5B and summarized in

Table 1, stimulus size is also the only feature for which increasing the density of the most infor-

mative class, SA1, improves the information content more than combining different classes.

As discussed previously, stimulus size is a purely spatial feature, and a high density of afferents

is necessary to discern small differences in the shape of the stimulus. In contrast, for all other
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Fig 5. Information gain at different afferent densities. (A) Radar plot of the information content provided by single and combined classes at different
densities for individual tactile features. Each radial axis represents the information content of a single afferent class or combination of two classes.
Dotted circular lines correspond to the information given by the three afferent classes together. Information is normalized for each stimulus feature
with respect to the information provided by the three classes altogether at the upper-limit density (i). Four different density sets were considered: (i)
lower limit, (ii) human palm, (iii) human finger, and (iv) upper limit as reported in the Methods. (B) Comparison of the information gained when
doubling the density of the most informative class (central bar) or when combining with a different population (right bar). The baseline density (left
bar) was set at 10 afferents/cm2. Error bars represent standard deviation across different NMF instantiations.

https://doi.org/10.1371/journal.pcbi.1010763.g005
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features considered, combining the content of the two most informative afferent classes yields

more information than doubling the afferent density of the most informative class alone.

Together, these results show the advantages for information encoding at the population

level of spreading information across classes of receptors with complementary information

rather than simply packing more receptors of a given class into the skin, even if receptors of

this class are highly informative about the stimulus.

Contributions of the spatial and temporal organization of population
activity to population coding

After establishing how much information is encoded by each afferent class and their combina-

tions, we investigated the nature of the population coding in more detail. In particular, we

asked two questions relevant to understanding the spatial and temporal organization of the

population code. First, how important is the precise temporal structure of the population activ-

ity for decoding stimuli from spatiotemporal patterns of neural population activity? Second,

how important are differences in spatial neuron-to-neuron response profiles to decode stimu-

lus information from spatiotemporal population activity?

The importance of the spatial structure of the afferent population code for information cod-

ing, that is, the afferent-to-afferent difference in stimulus tuning properties at different spatial

locations, is supported by the finding that natural tactile stimuli elicit specific firing patterns in

afferents located in different places [13, 32]. A critical role for the temporal structure of indi-

vidual afferent activity has been demonstrated in previous studies [16, 33, 34] and is also sup-

ported by the fact that thalamic and cortical somatosensory neurons also encode tactile

information with millisecond-scale spike timing precision [35–38]. However, it is unknown

whether these expectations would hold at the level of afferent population coding. For example,

precise spike timing might be less important when considering a full population of afferents

rather than a single one. Furthermore, information in the spatial and the temporal structure

might be redundant, such that for example information contributed by the spike timing of the

population may be redundant with the information encoded in the spatial structure, or vice

versa. Addressing these questions, therefore, requires a direct test with a large population.

First, we evaluated whether the distribution of afferents in space, parameterized in the sim-

ulation as the distance of the afferent location from the stimulation site, impacts the population

coding capabilities. To do so, we kept the NMF spatiotemporal modules computed on the orig-

inal data and recomputed the NMF activation coefficients on the spiking activity obtained

after destroying spatial information by randomly shuffling the neural responses across neurons

for all time bins. Then we used the classifier trained on the original data to compute how

much information about each stimulus feature could be decoded (see Methods). We called this

Table 1. Information maximizing encoding strategies for each stimulus feature trading off increases in innervation density for a single afferent class versus adding
fibers from a different class.

Stimulus size Frequency Ramp length Ramp amplitude

Most
informative class

SA1 PC PC SA1

Optimal
encoding
strategy

Increase density of SA1 population Add SA1 population Add SA1 population Add RA population

Underlying
rationale

Highest gain in information by
increasing SA1 density, PC provide

no information

SA1 adds more information than
RA, PC information is density

independent

SA1 adds more information than
RA, PC information is density

independent

SA1+RA reaches the highest
information content, PC provide

no information

https://doi.org/10.1371/journal.pcbi.1010763.t001
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“space-coding removed” information. The difference between the original and the space-cod-

ing removed information quantifies how much of the information in the original, unshuffled

spike trains can only be expressed and decoded because of the spatial structure of the code.

Note that this quantification is performed at a fixed spatial density, and it is thus different

from the previous analyses of the effect of changing the spatial density. We found that, after

destroying the spatial structure, information content dropped, averaged across classes and fea-

tures, by 19% (Fig 6A). The loss of information was higher for SA1s (30%) compared with RAs

(5%) or PCs (25%). Thus, the nature of how information is distributed across neurons at dif-

ferent locations provides a contribution to population coding that is lost and cannot be recov-

ered by the temporal organization of activity when the spatial structure is destroyed.

Next, to quantify the specific contribution of temporal structure to decoding information

from the spatiotemporal population activity, we computed a “time-coding removed” informa-

tion value from the population responses. To do so, we randomly shifted the spikes with each

shift independently drawn from a uniform distribution with range ±2, ±5, and ±10 ms before

recomputing the NMF activation coefficients and estimating the information content (see

Methods). The difference between the original and the time-coding removed information

quantifies how much of the information that was decoded from the spatiotemporal population

activity is contributed by the millisecond-scale temporal structure of the code. We found that,

after destroying the temporal structure of the data with time shifts, the information decoded

from spatiotemporal neural activity dropped, averaged across classes and features, by 7% with

the 2 ms shift, 19% with the 5ms shift, and 28% with the 10 ms shift (Fig 6B). Information loss

was highest for PCs (24%, 41%, and 61%, respectively, for the different time shifts) and rela-

tively lower for RAs (5%, 15%, and 20%) and SA1s (2%, 12%, and 20%). Notably, across our

set of stimuli, we found higher information loss when neglecting the temporal resolution of

spike trains rather than the spatial distribution. This result indicates that even in large afferent

populations spike timing with high temporal precision remains an important part of the spa-

tiotemporal neural code. In particular, when examining features that can be expected to mostly

rely on temporal structure, such as vibration frequency, information dropped significantly

already with the smallest jitter of 2 ms. In contrast, other features, such as stimulus size, appear

to rely more on spatial than temporal activation. For these features, information content was

preserved when disrupting the temporal code but decreased abruptly when destroying the spa-

tial structure in the data. Finally, we noticed that for some stimulus features the information

content increased slightly after destroying spatial or temporal structure. These small increases

should not be interpreted as indicating that more information is available at lower temporal

resolutions (which would contradict the Data Processing Inequality), but rather indicating

that in such cases we could not find evidence of timing information contributing at a finer

scale. These effects arise spuriously in any decoding method that computes a lower bound on

the population information, whose tightness may vary to some extent across conditions. They

might also reflect how we simulated noise: since we simulated motor noise by varying parame-

ters such as indentation depth, most of the neural noise in the afferent responses is likely corre-

lated; adding a small, uncorrelated temporal jitter might have helped with decoding in some

cases.

Discussion

This study is based on a simulation paradigm, which provides novel insights on stimulus cod-

ing by tactile afferent populations. Much of our current understanding of encoding mecha-

nisms of tactile stimuli derives from electrophysiological studies. However, these are severely

limited in the number of afferents that can be recorded at a time. In addition, many previous
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Fig 6. Information recovered after destroying spatial or temporal coding. (A) Information recovered for each afferent class after
neglecting afferents’ spatial organization normalized with respect to the maximum information content in the original data at the
saturation level (see Fig 3C). (B) Information recovered for each afferent class after destroying precise spike timing at different
timescales. Again, information is normalized with respect to the maximum information content in the original data at the saturation
level. Error bars represent standard deviation across different NMF instantiations. Note that for both stimulus size and ramp
amplitude, information carried by PC class was null (see Fig 3C) and such class was excluded from these analyses.

https://doi.org/10.1371/journal.pcbi.1010763.g006
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studies have focused only on those afferents terminating directly at the stimulus contact loca-

tion. Thus, a biased picture of tactile coding might have emerged. In fact, to our knowledge,

population coding of tactile afferents, taken as the spatiotemporal activation of multiple affer-

ents belonging to one ormore classes, has scarcely been investigated before. Here, we used a

recently developed computational model that allows simulation of tactile neural responses at

the population level with high accuracy. Although any putative population-level coding mech-

anisms derived from modeling would need to be experimentally verified, this approach allows

investigating aspects of the neural code that are currently experimentally intractable and can

therefore generate ideas for potential downstream decoding mechanisms.

Single-class coding and receptor density

We first investigated how the density of afferents from a single class plays a role in the encod-

ing process. We showed that the information content of both SA1 and RA populations

increases asymptotically with afferent density until saturation. This effect was consistent for all

features considered, although the specific saturation densities varied between features. This

result highlights that tactile information is generally spread across a population of multiple

afferents, even for features that are not explicitly spatial. Furthermore, the afferent class most

informative about a tactile feature at low innervation densities might be different from the

most informative class at high densities. Consequently, judging or predicting the information

content of a population from recordings of single afferents only might be misleading and pro-

vide a biased picture of how information is represented in full populations.

In contrast to SA1 and RA afferents, the information level for PC afferents was essentially

constant for all density values considered across all tactile features. While this result might be

taken to suggest that the PC population does not contribute information above that of a single

afferent, there is evidence to suggest that PC populations might be important in different tac-

tile contexts than the ones explored here: making contact with surfaces causes mechanical

waves to spread throughout the hand, activating PC afferents as far away as the palm and their

joint population activity carries information about how contact is made and other aspects of

the grasp [39].

It should be noted that for all afferent classes, the minimum density needed to recover the

maximum information for any tactile feature is lower than the empirical afferent densities esti-

mated for the human hand [11]. We speculate that the minimum density of afferents required

to reach the information saturation might be higher for more complex features. Indeed, as an

initial investigation into the power of large-scale neural simulations on a population level, this

study considered relatively simple stimulus features compared to the complexity of realistic

tactile interaction. Similarly, previous studies showed a strong relationship between SA1 den-

sity and tactile spatial acuity [11]: afferents, particularly of SA1 type, need to be densely packed

in the skin to resolve and discriminate extremely fine features. While our setup included one

clearly spatial stimulus (probe size), none of the others were purely spatial. Finally, afferent

innervation densities across most of the skin of the human body are much lower than those in

the hand and indeed within the range identified in the current study, suggesting that our stim-

ulus set was covering a large part of the physiologically relevant range.

Interestingly, we found that the RA class at saturation density tended to encode less infor-

mation than the SA1 and PC populations, but in contrast, was more informative than SA1s at

low densities (<10 afferents/cm2). This result suggests that the way information is spread

across afferent classes depends in part on receptor density, and in turn, should affect optimal

decoding downstream. Indeed, tactile innervation density changes dramatically across differ-

ent body areas, both in terms of the absolute number of afferents and relative innervation
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densities of different classes [11], and it is possible that changes in the class composition at dif-

ferent skin sites partially reflect density-dependent optimal allocation of afferent classes. Our

findings also suggest that tactile information need not be linked firmly to a given receptor

type, but that information is spread in a dynamic way across different afferent classes (see [19]

for a concrete example in frequency coding).

Complementarity and redundancy across afferent classes

The second step of our analysis was to consider combinations of afferent classes and to evalu-

ate their information content with respect to different stimulus features. Here, we found both

redundant and complementary contributions to the information across afferent classes. All

afferent classes generally provided at least some complementary information about stimulus

features, suggesting that downstream areas should integrate information from different classes

to maximize information (see also [15]). Quantifying such complementary information is a

necessary first step towards further study of submodality convergence in the stimulus encod-

ing process, especially considering that directly accessing the integration mechanisms in

humans is complicated. Convergence has previously been inferred from cortical recordings in

primates for multiple individual stimulus attributes [18, 40, 41], but here we quantitatively

demonstrate that information is spread across afferent types in most cases, and therefore, sub-

modality integration can be expected to be a general feature of downstream processing.

Not all information was complementary however, and we also found considerable degrees

of redundancy between afferent classes. Redundancy in neural coding has been extensively

debated (see [42] for a review) and can be a strategy for robust stimulus encoding. Indeed,

over-representing stimulus information using large populations of neurons increases the prob-

ability of having a relevant impact in downstream neurons, guaranteeing—or, at least, making

more plausible—that critical information is processed while negligible information is dis-

carded—or less likely used—. Redundancy can rank information according to relevance, over-

coming the associated coding inefficiency in favor of a significant performance increase [43].

Furthermore, redundancy could be interpreted as a strategy to make the neural code resilient

in the event of temporary or permanent lack, shortage, or failure of input from an afferent

class. This theory is supported by recent findings in an experimental study in mice that showed

that the use of genetic ablation strategies to suppress the response of either rapidly or slowly

adapting afferents leaves responses in the somatosensory cortex mostly unchanged [17], which

implies that the required information can be recovered from the remaining afferent input.

This would not have been possible if the two classes had encoded complementary information

only. Such a process might be beneficial when several features are processed simultaneously,

and redundancy between classes might help to disambiguate the stimulus.

Information maximizing receptor selection

We investigated whether increasing the density of afferents of a given class or combining them

with afferents of a different class yields higher information gain. We found that adding affer-

ents belonging to a different class was generally more efficient than increasing the density of

the most informative class by the same amount, confirming that the information about stimu-

lus features is not segregated in single afferent classes, but is spread across them. Indeed, while

absolute tactile innervation densities vary widely across the body, the fraction of slowly adapt-

ing afferents at any given site varies only between 40 and 70% and is relatively evenly split for

most body regions [11], especially for those with lower innervation. Our results suggest that

such a composition increases information transmission, while minimizing fiber count. The

number of tactile fibers that can fit into the nerves and spinal cord is naturally constrained,
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and consequently, extensive skin areas are innervated at low density. Neurons are also energet-

ically expensive, and therefore it is plausible that evolutionary optimization might have maxi-

mized the ratio between information and energy consumption by spatially distributing the

mechanoreceptors and diversifying response properties across different receptor classes.

In several sensory systems other than touch neural populations are also composed of multi-

ple cell classes with distinct response properties. Indeed, early sensory pathways frequently

split into different classes with disparate response properties (e.g., the large number of retinal

ganglion cell classes [6]). According to the efficient coding hypothesis, sensory systems have

evolved to optimally transmit information about the surrounding world, given constraints on

their biophysical components and energy use [44]. This theory also explains splitting a popula-

tion into two or more cell classes as a strategy to maximize information transmission, as

shown in previous studies for different sensory systems [8–10]. Our findings support this

hypothesis, showing that, in most cases, a combination of classes was more informative than a

single class higher-density population.

Limitations and future work

Our study focused on the three main classes of tactile afferents that mediate discriminative

touch. However, other classes also contribute to tactile coding, such as SA2 afferents, which

are thought to primarily signal skin stretch but are consciously perceivable [45]. Furthermore,

tactile innervation and neural response properties differ somewhat in the hairy skin [11],

which covers most of the human body. Thus, our results will most directly reflect tactile coding

on the human hand, but future studies should consider how these results might extend to

other regions of the body.

As the findings are based on computer simulations, the veracity of the results will depend

on the accuracy with which the spiking responses can be replicated in the computational

model. The stimuli we used, namely indentations by a single probe orthogonal to the skin sur-

face with a superimposed vibration, are similar to those on which the original model was fit

and fall into the range where it has been validated most extensively [20]. Still, by combining

multiple tactile features, we believe that our simulated stimuli are sufficiently complex, varied,

and natural that the resulting findings can be considered of behavioral importance. One ave-

nue for future research would be to investigate information transfer on tactile inputs arising

from natural behaviors such as grasping and manipulating objects, which include multiple

contacts, shear forces, and movement between the object and the skin. However, this would

require further work on the precise spatiotemporal force patterns on the hand during such

behaviors and spiking models that take into account more complex afferent response proper-

ties (see [46] for an example).

To study the effects of different innervation densities, we considered a simplified setup, dis-

tributing the afferents over a single dimension while neglecting some properties affecting the

spatial distribution of afferents, for example the complex shape of the human hand. Future

studies should take this aspect into account to reveal how the shape of the hand, the different

afferent densities, and the composition of the population in different areas of the hand plays a

role in stimulus encoding. In the same direction, population coding strategies and afferent dis-

tribution might be coupled with natural stimulus statistics in different body areas to deepen

the understanding of how the human somatosensory system is optimized to receive and pro-

cess natural tactile stimuli.

Finally, as in other information-theoretic analyses on large-dimensional neural response

spaces, our analysis can only provide a lower bound on the true information contained in the

population spiking patterns. As direct calculation of the information is prohibitive with respect
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to the amount of data that would be required, we chose a method that decomposes the high-

dimensional responses, with information values subsequently estimated in the lower-dimen-

sional space. An additional benefit of this method is that the initial unsupervised decomposi-

tion of the neural responses reflects aspects of neural processing in sensory pathways.

However, the resulting information values will be affected by choices regarding this decompo-

sition specifically, and the information calculation more generally, and different choices might

yield somewhat different outcomes. To directly test the robustness of our method, we com-

pared our method with a different analysis pipeline. We found qualitatively very similar

results, suggesting that our main findings, for example regarding the benefits of integrating

across different afferent classes, hold generally, rather than being dependent on the specific

analysis method chosen.

Methods

Simulation of spiking activity

To generate the spiking activity of tactile afferents, we used a previously published and vali-

dated model called Touchsim [20]. We employed the model to simulate populations of SA1,

RA, and PC afferents terminating along a line of 1 cm for SA1s and RAs, and 5 cm for PCs

radiating outwards from the stimulus location. The density of afferents varied between 1 and

140 afferents/cm2 for a total of 16 different populations per afferent type. This range includes

the physiological innervation densities estimated for the human hand [29]. In some analyses,

we also directly set individual class densities to those of the human palm or finger (see Table 2

for precise values).

We designed stimuli with circular shapes, which are indented in the skin following a ramp-

and-hold function (see Fig 1 B). When the maximum amplitude of the ramp is reached, a sinu-

soidal wave is superimposed. This setup simulates well-established psychophysical setups in

which a probe is brought into contact with the skin and then vibrated at a set frequency. It also

includes many aspects of natural tactile stimulation: indentation, retraction, and constant stim-

ulation at different depths and spatial scales, as well as vibrations at different frequencies. Indi-

vidual stimuli are created by varying 4 different features: 1) the stimulus size (4 conditions:

[1:1:4] mm), 2) the maximum ramp amplitude (4 conditions: [0.3:0.3:1.2] mm), 3) the ramp-up

time (5 conditions: [0.01:0.01:0.05] s), and 4) the frequency of the superimposed sinusoidal

wave (10 conditions: [0, 10, 20, 40, 60, 80, 100, 130, 160, 200] Hz). This setup yielded 800 unique

stimuli, and the afferent response to each was simulated for 40 trials. The model included simu-

lated neural noise. Additionally, in order to simulate environmental noise such as motor noise

during active touch, we jittered the stimulus location (by ± 0.3 mm), the amplitude of the sinu-

soidal wave (by ± 0.05 mm), and the ramp amplitude (by ± 0.1 mm) on every trial.

Unsupervised spatiotemporal NMF

Information calculations from high dimensional data require prohibitively large datasets. A

common strategy to address this issue is by first performing unsupervised dimensionality

Table 2. Estimated innervation densities of afferent classes (afferents/cm2) for different regions of the human
hand [29].

Class Palm Finger Fingertip

SA1 10 30 70

RA 25 40 140

PC 10 10 25

https://doi.org/10.1371/journal.pcbi.1010763.t002
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reduction on the data. Here, we used spatiotemporal Non-Negative Matrix Factorization

(NMF) to decompose the spatiotemporal matrix of spiking responses across the population.

Responses were discretized by binning the spike trains into 2-ms intervals and counting the

number of spikes falling into each bin. This resulted in a matrix R 2 RM × TN, whereM is the

total number of trials, T the number of time bins, and N the number of afferents in the popula-

tion. NMF decompositions are naturally suited to describe spatiotemporal matrices of spiking

responses, because spike trains are non-negative, and because commonly occurring spike pat-

terns may be non-orthogonal and partly overlapping, and NMF does not require assumptions

of orthogonality or non-overlap of different activity modules. NMF describes a single trial

spike train as a sum of trial-independent non-negative spatiotemporal modules (describing the

most often recurring spatiotemporal firing patterns) and trial-dependent non-negative activa-

tion coefficients representing the strength of recruitment of each module in the considered

trial [22, 23]:

R ¼ HW þ residuals; ð1Þ

whereH 2 RM × K contains the non-negative activation coefficients for the Kmodules in each

trial andW 2 RK × TN contains the non-negative modules. We used the function NMF

included in the scikit-learn Python library [47] to calculate the NMF decomposition.

We performed the NMF decomposition separately for each of the three afferent classes at

each density value considered. Beforehand, we randomly separated the whole set of trials into

balanced sets with a 25/75 split. We used the 25-set to determine the number of modules K as

the minimum number of modules capable of explaining a selected level of variance of the orig-

inal data in R, as follows. First, to consistently select the level of variance explained between

populations of the same class but with different densities, we calculated the saturation level of

the accounted variance for each population considered (tolerance<1%). We averaged the sat-

uration levels across populations of the same class with different densities and used this value

as the new threshold for the explained variance. Finally, we calculated kmodulesW and activa-

tion coefficientsH on the same 25-set. Given theWmodules from the 25-set, we computed

the activation coefficients H on the remaining 75-set. Given the random initialization of the

spatiotemporal basis functions with the NMF decomposition, we computed 50 instantiations

of the NMF to account for the variability of the method.

Stimulus decoder

After dimensionality reduction, we fed the activation coefficients H computed with the NMF

to a stimulus decoder. We used multinomial logistic regression to decode each stimulus feature

separately on a trial-by-trial basis based on the neural activity (similarly to [27]). The scikit-

learn Python library [47] was used for the implementation. This type of classifier uses a linear

function f(s, i) to predict the probability of outcome s for trial i such that:

f ðs; iÞ ¼ bs �Hi ð2Þ

whereHi is a vector containing the NMF activation coefficients for trial i and βk stores the
coefficients associated with outcome s. When generalizing to Sn features, the multinomial

logistic regression model consists of Sn − 1 independent logistic regression models regressed

against the remaining Sn outcomes. Note that outcomes correspond to the possible values that

the stimulus features could take and vary for each feature.

The 75-set was divided equally and stratified into training and test sets. We trained the clas-

sifier on the activation coefficients of the training set and evaluated performance using the

activation coefficients of the test set. The training procedure was performed using a stratified
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5-fold cross-validation. This process was repeated for each population of afferents (both for

single and combined classes) and all afferent densities. The solver used for the fitting proce-

dure was lbfgs in combination with L2 regularization. We selected the parameter C for the reg-

ularization by performing grid search. The scoring of the classifier was the negative log-

likelihood, also known as the cross-entropy loss.

The final fitted model outputs the posterior probability of observing each stimulus feature

given the neural activity captured in the NMF activation coefficients [27]. From this posterior

probability, we decoded the stimulus ŝ that was most likely given the observed afferent activity.

Mutual information

Next, we computed the mutual information [48] from the confusion matrix of the decoder as

follows [2]:

IðS; ŜÞ ¼
X

s2S

X

ŝ2Ŝ

pðs; ŝÞ log
2

pðs; ŝÞ

pðsÞpðŝÞ

� �

ð3Þ

where S, Ŝ stand for the set of all possible presented and decoded stimuli, respectively. pðs; ŝÞ

denotes joint probability distribution, which is derived from the confusion matrix obtained

empirically across all trials, of presenting stimulus s and decoding stimulus ŝ in a given trial. p

(s) and pðŝÞ correspond to the marginal probabilities of s and ŝ, respectively. The information

in the confusion matrix is a data-robust lower bound to the total information carried by popu-

lation activity. This approximation is tight when neural activity can be categorically binned

into as many values as the number of distinct stimuli without losing considerable information.

The information in the confusion matrix captures aspects of information processing, such as

the distribution of decoding errors, which are not captured by simple measures such as the

fraction of correctly decoded stimuli [2]. Since the information upper bound is the entropy of

the stimulus set (indicating perfect single-trial stimulus discrimination), we normalized infor-

mation values by dividing them by the entropy of the stimulus set:

HðSÞ ¼ log
2
ðSnÞ ð4Þ

where Sn is the number of values that the stimulus can take.

Computation of complementary information

To assess the complementarity of stimulus information carried by different classes, we com-

puted the information carried about each stimulus feature by the joint activity of populations

of two or three afferent classes and compared it to the information carried by a single-class

population. We defined the amount of information carried by the pair of afferent classes that

is complementary to that of a reference class as the difference between the information carried

by all the classes (including the reference class and the additional ones) and the information

carried by the reference class. We repeated this process, taking each class as the reference class

in turn. As an example, for SA1 afferents as the reference class, the complementary informa-

tion is computed as:

IcompðS; SA1Þ ¼ IðS; fSA1;RA; PCgÞ

� IðS; fRA;PCgÞ
ð5Þ

We defined the redundant information between the additional classes and the reference

class as the sum of the information carried individually by the reference class and the
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additional ones minus the information carried by all the classes together, such that (again, tak-

ing SA1s as the reference class):

IredðS; SA1Þ ¼ IðS; SA1Þ

þ IðS; fRA;PCgÞ

� IðS; fSA1;RA; PCgÞ

ð6Þ

The sum of redundant (Eq 6) and complementary (Eq 5) information for a class equals the

total information carried by that class.

Contribution of spatial and temporal structure of neural activity to
population coding

We assessed the contribution of fine temporal and spatial resolution within the spiking activity

to information coding by destroying the temporal and spatial structures in the data. To destroy

the spatial structure, we randomly permuted the order of afferents in the spiking matrix R.

Then, keeping the non-negative modulesW obtained with the NMF decomposition on the

original, non-shuffled data, we computed the activation coefficients on the spatial-shuffled

data. We finally used these activation coefficients to feed the classifier previously trained on

the original activation coefficients. To destroy the temporal structure in the data, we randomly

shifted the spikes with a uniform distribution of ±2, ±5, and ±10 ms. Then, as for the spatial

case, we obtained the activation coefficients on the time-shuffled data and used those to feed

the classifier trained on the original data and estimate the residual information content after

disrupting the data temporal structure.

Control analysis using spatial NMF and supervised decoding of temporal
structure

To test the robustness of the analysis pipeline with respect to the choice of low-dimensional

representation, we calculated information values from an alternative NMF decomposition of

the data. We first computed the spike count over the whole trial, Rcount. We then applied the

NMF decomposition on Rcount to find spatial modulesWspace capturing which afferents are fir-

ing together, such that:

Rcount ¼ HcountWspace þ residuals: ð7Þ

The tolerance criterion for selecting the number of modulesM was the same as described

above for the spatiotemporal NMF.

We computed a single set of spatial modules using the population activity pooled over all

time bins. We then calculated a different activation coefficient Ht for each spatial module and

time bin producing in total a number of activation coefficients per trial equal to the product of

the number of modulesM times the number of time bins T, a larger number than the activa-

tion coefficients per trial of the spatiotemporal NMF decomposition described above (which

only producedM activation coefficients per trial).

For the supervised decoding of the activation coefficients in each trial, we used the same

GLM decoder described above.

Supporting information

S1 Fig. Illustrative examples of simulated spiking activity. Responses are shown for the

three afferent classes as a function of (A) stimulus size, (B) frequency, (C) ramp length,
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and (D) ramp amplitude. Note that we have conditioned on the remaining features for each

panel and that the afferent densities chosen in this example correspond to the ones in the fin-

ger.

(TIF)

S2 Fig. Robustness of findings using a spatial NMF decomposition of neural responses.

The analysis presented in Fig 5A (panel iv) was redone using a spatial NMF (rather than the

spatiotemporal version) to test the robustness of the results. While this analysis extracts some-

what different information values, the main result that afferent classes working together

increase the overall information content is preserved.

(TIF)
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