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 19 

Abstract 20 

The late Pliensbachian to early Toarcian was characterized by major climatic and 21 

environmental changes, encompassing the early Toarcian Oceanic Anoxic Event (T-22 

OAE, or Jenkyns Event, ~183 Ma) and the preceding Pliensbachian–Toarcian boundary 23 

event (Pl/To). Information on seawater redox conditions through this time interval has 24 

thus far come mainly from European sections deposited in hydrographically restricted 25 

basins, and hence our understanding of the redox evolution of the open ocean (and in 26 
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particular Panthalassa – the largest ocean to have existed) is limited. Here, we present 27 

high-resolution Fe-speciation and redox-sensitive trace metal data from two 28 

Panthalassic Ocean sections across the Pl/To and the T-OAE intervals, one deposited 29 

in deep water (paleo-water depth >~2.7 km) and the other on a shallow margin (paleo-30 

water depth likely <~50 m). Data from the deep-water open-ocean site indicate anoxic-31 

ferruginous conditions from the late Pliensbachian to the end of the T-OAE, with 32 

potentially more intense development of sulfidic pore waters at the sediment-water 33 

interface around the Pl/To boundary. At least intermittent bottom-water euxinia 34 

characterized the T-OAE, followed by a subsequent transition toward more oxygenated 35 

conditions. By contrast, trace metal data from the shallow margin site indicate that 36 

oxygenated to possibly suboxic conditions prevailed. However, elevated highly reactive 37 

iron contents, dominated by Fe (oxyhydr)oxides, characterize this shallow-water site. 38 

These observations suggest that upwelling, driven in part by increased sea level and 39 

prevailing winds from the open ocean, brought anoxic-ferruginous waters onto the 40 

shelf, whereupon Fe2+ oxidation was initiated in oxic shallow waters. 41 

 42 

1. Introduction 43 

The early Toarcian Oceanic Anoxic Event (T-OAE; ~183 Ma) was one of the most 44 

significant environmental perturbations of the Phanerozoic, and was associated with 45 

widespread deposition of organic carbon-rich sediments in low-oxygen environments 46 

(Jenkyns, 1988), a minor mass extinction (Little and Benton, 1995), and a pronounced 47 

negative carbon-isotope excursion (CIE) linked to a substantial injection of 12C-48 

enriched carbon into the biosphere, termed the Jenkyns Event (Hesselbo et al., 2000; 49 

Erba et al., 2022). A smaller magnitude carbon-cycle perturbation occurred at the 50 

preceding Pliensbachian–Toarcian boundary (Pl/To), and this has been similarly linked 51 
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to carbon release (e.g., Littler et al., 2010). Sulfur- and Mo-isotope data support a global 52 

expansion of anoxic seawater conditions across the T-OAE (Gill et al., 2011; Newton 53 

et al., 2011; Dickson, et al., 2017), while Tl-isotope data suggest globally protracted 54 

reducing conditions that initiated at the Pl/To (Them et al., 2018). Nevertheless, the 55 

extent and significance of deoxygenation in individual sites and basins was 56 

geographically variable during the T-OAE (e.g., Remírez and Algeo, 2020; Chen et al., 57 

2021; Kemp et al., 2022a), and a paucity of marine redox analyses across the Pl/To 58 

means that the redox response across this event is unclear. 59 

Information on open-ocean redox changes across the Pl/To and T-OAE intervals, 60 

and the effects of these events on the global Fe cycle, is limited owing to a lack of deep-61 

water sections best suited to reveal changes in Fe cycling representative of the pelagic 62 

realm. Here, we report Fe-speciation data and redox-sensitive trace element 63 

concentrations from two Panthalassic Ocean records across the Pl/To and T-OAE 64 

intervals; one deposited in the deep ocean and the other on a shallow-water continental 65 

margin. These data provide a unique window into the redox evolution of the extensive 66 

Panthalassa from the late Pliensbachian to the early Toarcian, allowing us to place new 67 

constraints on the behavior of the Fe cycle during these two ancient episodes of 68 

potentially significant widespread anoxia. 69 

 70 

2. Geological setting and age control 71 

2.1 Sakuraguchi-dani section, Toyora area 72 

Lower Jurassic shallow marine siliciclastic sedimentary rocks of the Toyora Group 73 

are exposed in the northern part of the Tabe Basin in the Toyora area of Yamaguchi 74 

Prefecture, SW Japan (Fig. 1). These strata were deposited on an active continental 75 

margin, paleogeographically close to the northern extremity of the South China Craton 76 
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(northwestern margin of Panthalassa), based on provenance analysis of detrital zircon 77 

U-Pb data (Izumi et al., 2020). The Sakuraguchi-dani section is well exposed in 78 

streambeds close to Toyota Town (34°08′N 131°03′E; Fig. 1C). The Nishinakayama 79 

Formation at this section consists primarily of silty mudstones and fine-grained 80 

sandstones deposited above storm wave base (i.e., likely <50 m water depth). An ~3.5‰ 81 

negative excursion in organic-carbon isotopes (13Corg) occurs across an ~35 m thick 82 

interval of the Nishinakayama Formation (Izumi et al., 2012; Kemp and Izumi, 2014; 83 

Izumi et al., 2018a; Fig. 2A). This excursion can be unambiguously correlated with 84 

similar excursions in Europe and elsewhere, which characterize the T-OAE (see Fig. 5 85 

in Izumi et al., 2018a). Additionally, detailed ammonite biostratigraphy of this section 86 

also supports an early Toarcian age coeval with the T-OAE in Europe (Izumi et al., 87 

2012; Kemp and Izumi, 2014 and references therein). A CIE associated with the Pl/To 88 

boundary is not recognized, most likely due to a lack of outcrop. 89 

2.2 Sakahogi section, Inuyama area 90 

Deep-sea thinly bedded radiolarian cherts of Early Triassic to Early Jurassic age, 91 

and hemipelagic siliceous mudstones of Middle Jurassic age, occur north of Inuyama 92 

city along the banks of the Kiso River in Gifu Prefecture, central Japan (Fig. 1), and are 93 

repeated as thrust sheets named CH-1, CH-2, CH-3, and CH-4 in structurally ascending 94 

order (Fig. 1D). The Katsuyama and Sakahogi sections are located in CH-2 and CH-3, 95 

respectively (Fig. 1D). Paleomagnetic data suggest a low-latitude depositional location 96 

during the Jurassic, close to the equatorial divergence zone and thousands of kilometers 97 

from the Pangean landmass (Ando et al., 2001). The studied Sakahogi section near 98 

Inuyama (35°25'N 136°58'E) was deposited in the deep Panthalassa below the calcite 99 

compensation depth (CCD), and is preserved as part of a subduction-accretion complex 100 

(Matsuda and Isozaki, 1991). Deposition in Panthalassa below the CCD implies a 101 
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minimum paleodepth of ~2.7 km for the cherts, assuming that the sediments do not 102 

derive from a seamount (e.g., Gröcke et al., 2011). At the Sakahogi section, green-grey 103 

bedded carbonate-free radiolarian cherts are interrupted by two distinctive black chert 104 

intervals, both associated with CIEs that are interpreted to represent the Pl/To and T-105 

OAE, respectively (Ikeda et al., 2018; Kemp et al., 2022b; Fig. 2B). These age 106 

interpretations are constrained by radiolarian biostratigraphy and cyclostratigraphy 107 

(e.g., Ikeda and Hori, 2014; Ikeda et al., 2018 and references therein).  108 

 109 

3. Materials and Methods 110 

3.1 Samples 111 

At the Sakuraguchi-dani section, 77 samples were analyzed for Fe-speciation and 112 

bulk elemental concentrations through the ~70 m sectionn encompassing the T-OAE 113 

CIE interval. Average sampling resolution was ~0.9 m though the entire succession, 114 

with higher resolution (~0.7 m) sampling within the CIE interval. At the Sakahogi 115 

section, 43 samples spanning the Pl/To CIE and the T-OAE CIE intervals (across an 116 

~250 cm interval) were analyzed for Fe-speciation, with an average sampling resolution 117 

of ~6 cm. Elemental concentration data for the Sakahogi samples are from Kemp et al. 118 

(2022b).  119 

3.2 Iron-speciation analysis 120 

Fe-speciation has been widely used to identify water-column redox conditions in 121 

modern and ancient marine settings (e.g., Lyons and Severmann, 2006; Poulton and 122 

Canfield, 2011). Redox states are determined by evaluating the abundance of the highly 123 

reactive iron (FeHR) fraction relative to the total iron (FeT) pool. Highly reactive iron 124 

refers to the iron minerals that react with aqueous sulfide to form pyrite on diagenetic 125 

timescales (Canfield et al., 1992; Poulton et al., 2004), and comprises operationally 126 
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defined Fe pools that target carbonate-associated Fe (FeCARB; including siderite and 127 

ankerite), ferric (oxyhydr)oxides (FeOX; including ferrihydrite, lepidocrocite, goethite 128 

and hematite), mixed ferrous–ferric minerals (FeMAG; dominantly magnetite), and Fe 129 

sulfides (FePY; including iron monosulfides and pyrite) (Poulton and Canfield, 2005). 130 

FeHR/FeT ratios ≤0.22 generally indicate oxic bottom-water conditions, whereas 131 

FeHR/FeT ≥0.38 generally reflect anoxic conditions (Raiswell and Canfield, 1998; 132 

Poulton and Raiswell, 2002). In addition, the extent of pyritization of highly reactive 133 

Fe (FePY/FeHR) can discern whether the bottom water was ferruginous (anoxic waters 134 

containing aqueous Fe2+; FePY/FeHR <0.6) or euxinic (anoxic and containing free H2S; 135 

FePY/FeHR >0.6–0.8) (Poulton, 2021). 136 

Iron speciation analyses were conducted via standard techniques (Poulton and 137 

Canfield, 2005) in the Cohen Geochemistry Laboratory, University of Leeds and the 138 

State Key Laboratory of Biogeology and Environmental Geology, China University of 139 

Geosciences (Wuhan). In detail, ~0.1 g of sample powder was reacted with a 10 mL 140 

solution of 1M sodium acetate and acetic acid at 50°C for 48 h to extract iron in 141 

carbonates. Subsequently, the residue was mixed with a 10 mL solution of sodium 142 

dithionite and sodium citrate for 2 h to dissolve Fe (oxyhydr)oxides. The FeMAG pool 143 

was then extracted through the addition of a 10 mL solution of ammonium oxalate for 144 

6 h. FePY was determined by the chromium reduction method on separate splits of each 145 

sample (Canfield et al., 1986). Here, the sample powder (1–2 g) was treated with ∼40 146 

mL of 1 M reduced chromium chloride (CrCl2) solution and 20 mL of 6 M HCl for 1 h, 147 

and the produced hydrogen sulfide (H2S) was purged under a nitrogen atmosphere 148 

before being trapped as Ag2S by bubbling through an AgNO3 solution (0.1 M). The 149 

amount of sulfide in the sample was then determined by gravimetry after filtration and 150 

drying of the Ag2S. The amount of pyrite iron hosted in the original sample was then 151 
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calculated stoichiometrically. The iron concentration of each sequential extract was 152 

obtained using a ThermoFisher iCE 3300 atomic absorption spectrometer (AAS). 153 

Replicate extractions of samples and reference material WHIT (a Lower Jurassic fine-154 

grained, laminated, organic carbon-rich mudstone deposited in an anoxic water column; 155 

see Alcott et al., 2020 for details) yielded relative standard deviations (RSDs) of <5% 156 

for all highly reactive Fe phases at both the University of Leeds and the China 157 

University of Geosciences (Wuhan). Silicate-hosted iron (Fesil) reflective of detrital iron 158 

influx was determined as the difference between total iron and highly reactive iron. 159 

3.3 Bulk elemental concentrations 160 

Approximately 80 mg of each powdered sample was dissolved in a HNO3–HF–161 

HClO4 mixture, followed by evaporation to dryness. Boric acid was then added to the 162 

residue and heated to dryness, and the samples were then re-dissolved in hot HNO3. 163 

Major (Al, Ca, Na, and K) and trace elements (Mo and U) were measured using a 164 

ThermoFisher iCAP 7400 radial inductively coupled plasma optical emission 165 

spectrometer (ICP-OES) and a ThermoFisher iCAP Qc inductively coupled plasma 166 

mass spectrometer (ICP-MS), respectively, in the Cohen Geochemistry Laboratory, 167 

University of Leeds. Total Fe concentrations (FeT) were measured using a 168 

ThermoFisher iCE 3300 atomic absorption spectrometer (AAS). Accuracy was 169 

monitored by analyzing the certified reference material USGS Eocene Green River 170 

Shale (SGR-1). Multiple replicate analyses of samples yielded RSDs for all elements 171 

of better than 3%. 172 

To provide further insight, we utilized enrichment factors (EFs) to evaluate the 173 

abundance of redox-sensitive trace elements (RSTEs) Mo and U, quantified as XEF = 174 

(X/Al)sample/(X/Al)UCC, where UCC refers to average upper continental crust 175 

composition (from McLennan, 2001; Fig. 3) 176 
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The CIA (chemical index of alteration) parameter has been widely used to reflect 177 

changes in continental chemical weathering (see Nesbitt and Young, 1982), and is 178 

calculated based on the formula: CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)] ×100. The 179 

molecular proportions of the metal oxides used here to calculate CIA are converted 180 

from the respective metal element concentrations. The correction to CaO* was made 181 

by assuming reasonable Ca/Na ratios in silicate material following methods in 182 

McLennan (1993).  183 

 184 

4. Results 185 

At the Sakuraguchi-dani section, FeHR/FeT ratios are broadly stable (median 0.45) 186 

and generally >0.38 through the succession (69 out of 77 samples), notwithstanding 187 

two outlying values (~1.0 at 12.41 m and ~0.1 at 28.90 m) within the T-OAE CIE 188 

interval (Fig. 3A). FePY/FeHR ratios are mostly <0.6, ranging from approximately 0 to 189 

0.74 (median 0.13), with generally relatively higher values through the lower part of 190 

the T-OAE CIE interval (-4.28–3.15 m, Fig. 3A). FePY/FeHR values are >0.6 at three 191 

levels, two of which (0.67 at -2.38 m; 0.73 at 19.90 m) are within the CIE interval, and 192 

one (0.74 at 39.4 m) which occurs above the CIE interval (Fig. 3A). An increased Fesil 193 

fraction (up to ~3.5 wt%) is observed from the onset of the CIE interval to ~5 m. 194 

Subsequently, Fesil fraction decreases to ~1.7 wt% at ~11 m and remains relatively 195 

stable up-section (Fig. 3A). FeOX dominates the unsulfidized FeHR phases. The 196 

proportion of FePY varies considerably through the succession. Relatively high FePY is 197 

observed at three levels, with two of them (~-4–3 m and ~14–23 m) in the CIE interval, 198 

and one (39.4 m) above the CIE interval. The proportions of FeCARB and FeMAG remain 199 

largely stable through the succession (Fig. 3A).  200 
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UEF values are low and relatively stable, ranging from 0.3 to 1.1 (median 0.4) 201 

throughout the succession (Fig. 3A). MoEF values are also low, but are more variable 202 

than UEF values, ranging from 0.2 to 1.2 (median 0.7). There is a slight increase in MoEF 203 

from the onset of the CIE interval (~-5 m) to ~10 m, over which MoEF increases to a 204 

maximum of 1.2. Subsequently, MoEF gradually decreases and remains relatively stable 205 

(~0.5) up-section (Fig. 3A). CIA values (median 71) range from 61.1 to 76.2 for the 206 

Sakuraguchi-dani sediments, with an increase (up to 76) from the onset of the CIE 207 

interval, followed by a drop to ~70 up-section with fluctuations (Fig. S1).  208 

At the Sakahogi section, FeHR/FeT values are considerably higher than 0.38 209 

throughout most of the succession, ranging from approximately 0.5 to 1 (median 0.87), 210 

with a decreasing trend above the T-OAE CIE interval (i.e., above ~240 cm; Fig. 3B). 211 

FePY/FeHR ratios are <0.6 throughout much of the succession, ranging from 212 

approximately 0 to 0.82 (median 0.14), but are higher and commonly exceed 0.6 in the 213 

T-OAE CIE interval. There is also an increase up to ~0.6 well below the Pl/To CIE 214 

interval, with values decreasing to <0.2 across the stage boundary (Fig. 3B). The Fesil 215 

fraction is generally low (median 0.3 wt%) through the succession, albeit with some 216 

high-value (>0.9 wt%) levels (e.g., 37–39 cm, 99–100 cm, 174.5–175 cm, 224 cm, and 217 

248–278 cm; Fig. 3B). The samples are generally significantly enriched in ferrous-Fe 218 

phases, particularly FeCARB and FePY, up to the end of the T-OAE CIE interval (234.5 219 

cm). However, there are intervals where FeOX commonly dominates, particularly in the 220 

upper part of the Pl/To CIE interval (~100 cm) and in the sediments between the Pl/To 221 

and the T-OAE CIE intervals, as well as above the T-OAE CIE interval (Fig. 3B).  222 

UEF values range from 0.8 to 38.6 (median 8.8) through the succession. Values 223 

increase markedly from the upper Pliensbachian to the base of the Toarcian and stay at 224 

a high level (i.e., well in excess of average UCC) upwards, before decreasing abruptly 225 



Chen et al. 2022 Page 10 18/12/2022 

 10 

above the T-OAE CIE interval. MoEF values range from 0.2 to 623.1 (median 48.4) 226 

through the succession and show a similar general trend to UEF values (Fig. 3B).  227 

 228 

5. Discussion 229 

5.1 Marine redox conditions in the deep Panthalassa from the late Pliensbachian to the 230 

early Toarcian 231 

At the Sakahogi section, high FeHR/FeT and low FePY/FeHR ratios through the 232 

succession indicate largely ferruginous bottom water at least in the Panthalassic deep 233 

ocean around the paleo-equator from the late Pliensbachian until the onset of the T-234 

OAE CIE interval (Fig. 3B). Such strong and prolonged deep-water reducing conditions 235 

within the equatorial divergence zone could have been attributable at least in part to 236 

high productivity associated with wind-driven divergence of surface waters and 237 

consequent upwelling of bio-limiting elements to surface waters (e.g., Gröcke et al., 238 

2011). This effect would have enhanced primary productivity, and the subsequent rain 239 

of excess organic carbon would then have accelerated the consumption of seawater 240 

dissolved oxygen, leading to an expanded oxygen minimum zone. Previous work on 241 

redox- and productivity-sensitive element proxies at the Sakahogi section has also 242 

emphasized the likely importance of anoxia for promoting the preservation of organic 243 

matter at this location (Kemp et al., 2022b).  244 

The slight increase in FePY/FeHR to ~0.6 well below the Pl/To boundary may 245 

potentially indicate sporadic water-column euxinia, but could also reflect an interval of 246 

more extensive diagenetic pyrite formation (see below). The pronounced rise in 247 

FePY/FeHR ratios (to values >0.8) coincident with continually elevated FeHR/FeT ratios 248 

across the T-OAE CIE interval suggests the development of at least intermittent euxinia 249 

in the water column, which terminated at the end of the T-OAE CIE interval, when 250 
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FePY/FeHR ratios returned to low levels (Fig. 3B). The close coincidence between 251 

increased TOC and pyrite content across the T-OAE CIE interval at the Sakahogi 252 

section (Fig. 3B) suggests the redox change from anoxic-ferruginous to euxinic deep-253 

water conditions was likely linked to enhanced organic matter loading. Increased 254 

organic matter supply to the seafloor during the T-OAE CIE interval could have 255 

significantly accelerated microbial sulfate reduction and yielded more sulfide in deep 256 

waters (Fig. 2B; Chen et al., 2022). A generally low Fesil fraction through the Sakahogi 257 

succession suggests a negligible associated detrital flux of Fe (oxyhydr)oxide minerals 258 

to the deep-water sediment, thus providing favorable conditions for the potential 259 

development of water-column euxinia (Fig. 3B; Poulton and Canfield, 2011). 260 

Independent evidence from trace metals (i.e., U and Mo) provides additional 261 

support for anoxia and potential euxinia during the T-OAE (see also Kemp et al., 262 

2022b). Uranium enrichments are common beneath anoxic bottom waters, regardless 263 

of whether euxinic or ferruginous conditions dominate (Anderson et al., 1989). By 264 

contrast, when a critical threshold of free H2S is met under euxinic conditions, 265 

formation of particle-reactive thiomolybdates (Helz et al., 1996) can result in significant 266 

Mo enrichment in the sediment (Helz et al., 1996; Erickson and Helz, 2000).  267 

UEF values are high until the end of the T-OAE CIE interval (Fig. 3B), supporting 268 

persistent anoxia. Very low sedimentation rates at the Sakahogi section (e.g., Ikeda et 269 

al., 2018) could have partly aided enrichment of Mo and U (Liu and Algeo, 2020) and, 270 

in particular, this may be an explanation for relatively high MoEF values in non-euxinic 271 

parts of the deep Panthalassic Ocean section. However, a combination of high MoEF 272 

and commonly high FePY/FeHR ratios (Fig. 3B) supports the presence of at least 273 

intermittent euxinia during the T-OAE CIE interval, in line with MoEF-UEF co-274 

variations (Fig. 4A; see also Kemp et al., 2022b). Black chert deposition and TOC 275 
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enrichments of up to ~34 wt% (Fig. 3B) accompany these elevated Mo and U 276 

enrichments (Kemp et al., 2022b), with high TOC being consistent with more reducing 277 

conditions.  278 

Additionally, an increase in pyrite sulfur concentrations (SPY) and a positive shift 279 

in pyrite sulfur isotopes (δ34Spyrite) across the T-OAE CIE interval has been interpreted 280 

as a consequence of enhanced pyrite burial associated with an expanded extent of 281 

anoxia/euxinia (Fig. 2B; Chen et al., 2022), although increased regional TOC loading 282 

may have also impacted the δ34Spyrite values through accelerating microbial sulfate 283 

reduction (Chen et al., 2022). Nevertheless, these combined observations support 284 

development of at least intermittent euxinia in the deep Panthalassa during the T-OAE 285 

CIE interval. Further independent evidence for anoxia and possible euxinia in the 286 

present-day Inuyama area during the early Toarcian derives from the occurrence of the 287 

gray-black pyrite-bearing cherts and the predominance of micron-scale (4.5–6.3 μm) 288 

framboidal pyrite at the nearby Katsuyama section (Wignall et al., 2010; Fig. 1D), as 289 

well as from redox-sensitive trace element data from the Katsuyama section through 290 

the Pl/To black chert interval (Fujisaki et al., 2016).  291 

By contrast, intervals of higher FePY/FeHR below the Pl/To CIE interval do not 292 

coincide with elevated MoEF values (Fig. 3B), and SPY concentrations are also low (Fig. 293 

2B). This evidence supports enhanced diagenetic pyrite formation, rather than euxinic 294 

water-column conditions. Similarly, elevated MoEF values in a limited number of 295 

samples across the Pl/To CIE interval do not coincide with elevated FePY/FeHR (Fig. 296 

3B), while SPY values are also low (Fig. 2B). However, a decrease in reduced non-297 

sulfidized iron phases (i.e., FeCARB) also occurs across the Pl/To boundary, concurrent 298 

with an increase in the FeOX fraction (Fig. 3B). These combined signals are complex 299 

and suggest redox fluctuations, with transitions between oxic and sulfidic conditions at 300 
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the sediment-water interface and/or sulfidic bottom-waters. In this scenario, periodic 301 

oxygen diffusion into the sediment facilitated pyrite and FeCARB oxidation near the 302 

sediment-water interface, consistent with a large decrease in TOC (sandwiched by two 303 

high TOC levels) at a depth of 101.5 to 104.5, which occurs coincident with a 304 

particularly low pyrite concentration (Figs. 2 and 3). The Mo and U drawn down during 305 

anoxic/sulfidic intervals would be retained in this interval via re-adsorption to Fe 306 

oxides.  307 

Subsequently, a large increase in TOC above 104.5 cm occurs coincident with 308 

increases in MoEF values and a slight increase in pyrite, suggesting a return to more 309 

sulfidic conditions. This is followed by another decline in TOC and pyrite up to the end 310 

of the Pl/To boundary interval, concurrent with increased FeOX, again suggesting 311 

oxygenation. In addition, the likely oxidation of organic matter within the Sakahogi 312 

sediment would lower pore-water pH, therefore lowering the saturation state of the 313 

carbonate-hosted iron phase and inhibiting FeCARB precipitation. Collectively, a 314 

fluctuating redox state, alternating between short-lived oxic and more sulfidic 315 

conditions likely occurred across the Pl/To boundary (Fig. 3B), and intervals of 316 

enhanced sulfide generation likely drove the relative increase in 34Spyrite across the 317 

Pl/To boundary (Fig. 2B; Chen et al., 2022). 318 

Above the T-OAE CIE interval, there is a progressive drop in both FeHR/FeT (to 319 

values that begin to approach the oxic-anoxic threshold value of 0.38) and FePY/FeHR 320 

ratios (Fig. 3B), consistent with abrupt coeval decreases in MoEF and UEF. This pattern 321 

suggests gradual contraction of water-column anoxia/euxinia and the onset of more 322 

oxygenated conditions in the Panthalassic deep water. This interpretation is also 323 

supported by multi-site Mo-isotope analyses, which indicate a contraction in the 324 

worldwide extent of seafloor euxinia after the T-OAE (Dickson et al., 2017). Taken 325 
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together, the deep-water Panthalassa was dominated by, at least locally/regionally, 326 

anoxic-ferruginous conditions from the late Pliensbachian to the onset of the T-OAE 327 

CIE interval. Enhanced sub-seafloor sulfidic conditions (intercalated with possible 328 

short-lived oxic episodes) occurred around the Pl/To boundary. This redox state was 329 

followed by the development of intermittent water-column euxinia during the T-OAE 330 

CIE interval, and more oxygenated conditions thereafter. 331 

5.2 Marine redox conditions on the shallow Panthalassa shelf in the early Toarcian 332 

At the Sakuraguchi-dani section, FeHR/FeT values are high (generally in excess of 333 

the anoxic threshold of 0.38) through the succession, despite a likely dilution effect on 334 

FeHR enrichment due to higher sedimentation rates in the more proximal shelf 335 

environment (e.g., Lyons and Severmann, 2006). Ostensibly, these FeHR/FeT data 336 

indicate continuous anoxic-ferruginous conditions on the shallow Panthalassa shelf 337 

during the T-OAE CIE interval (Fig. 3A). However, generally low MoEF and UEF values 338 

(Fig. 3A), combined with MoEF-UEF co-variation (Fig. 4B), suggest that oxic–suboxic 339 

conditions were predominant at the Sakuraguchi-dani section. 340 

The relatively shallow water depth (likely <50 m) at the Sakuraguchi-dani section, 341 

coupled with evidence for turbulent-water conditions (Izumi et al., 2018a), would likely 342 

have prevented development of a stable chemocline, thus helping to maintain 343 

oxygenated conditions or highly dynamic/fluctuating states between oxic and suboxic 344 

conditions during the T-OAE CIE interval. This supposition is also supported by 345 

previously published sedimentological data that indicate the common occurrence of 346 

unlaminated and bioturbated strata in the succession, particularly over the T-OAE CIE 347 

interval (Izumi et al., 2018a). In addition, previously published elemental data showed 348 

negligible enrichment of Mo, V and Cr at the Sakuraguchi-dani section, suggestive of 349 

largely oxic–suboxic conditions (Kemp and Izumi, 2014). Moreover, marked 350 
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fluctuations in ichnofabric index data during the T-OAE CIE interval (Fig. 2A) also 351 

argue for a lack of sustained anoxia and frequent re-oxygenation, as illustrated by 352 

moderate to strong bioturbation (ichnofabric index ≥3) (Izumi et al., 2012; Kemp and 353 

Izumi, 2014). 354 

A slight increase in MoEF values, combined with generally higher FePY/FeHR ratios, 355 

through the lower part of the T-OAE CIE interval (Fig. 3A) potentially indicates 356 

deoxygenation with enhanced sulfide production, which may have included transient 357 

intervals of bottom-water euxinia. This suggestion is consistent with sparse framboidal 358 

pyrite and ichnofabric data (Izumi et al., 2012, 2018b). Such conditions could have led 359 

to the slight upward trend in SPY observed at the onset of the T-OAE CIE interval, 360 

although the positive shift in δ34Spyrite between approximately -0.5 and 8 m in the CIE 361 

interval is likely primarily attributable to high sedimentation rates (Fig. 2A; Chen et al., 362 

2022). High sedimentation rates reduce the connectivity of sedimentary pore waters to 363 

the overlying waters, limiting the resupply of seawater for microbial sulfate reduction 364 

through diffusion (Chen et al., 2022). These data notwithstanding, the clear disconnect 365 

between the Fe-speciation data (indicating persistent anoxia) and elemental, 366 

sedimentological and paleoecological information (indicating largely oxic–suboxic 367 

conditions) at the Sakuraguchi-dani section requires further analysis on the controls 368 

governing the marine Fe cycle. 369 

5.3 Source and enrichment mechanism of highly reactive iron on the Panthalassa shelf  370 

Previous studies have demonstrated a global enhancement of chemical weathering 371 

and hydrological cycling during the T-OAE CIE interval (e.g., Izumi et al., 2018a; 372 

Kemp et al., 2020). At the Sakuraguchi-dani section, increased advective sediment 373 

transport and the delivery of terrestrial plant detritus during the Toarcian CIE interval, 374 

coupled with evidence for sediment coarsening and the occurrence of possible 375 
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hyperpycnites (Fig. 2A), represent a regional signature of this warming-induced 376 

enhancement of the hydrological cycle (Izumi et al., 2018a; Kemp et al., 2019). 377 

Enhanced chemical weathering increases the proportion of FeHR in terrestrial sediments, 378 

although in general FeHR enrichments are not transferred to the marine realm because 379 

of extensive preferential trapping in inner-shore regions (Poulton and Raiswell, 2002). 380 

However, recent analysis of Fe-cycle behavior has indicated a possible chemical 381 

weathering control on FeHR enrichments in marine sediments adjacent to mountainous 382 

regions that discharge sediment directly onto the continental shelf (Wei et al., 2021). 383 

At the Sakuraguchi-dani section, the Fesil fraction is generally ~2 wt%, with an 384 

increase at the onset of the T-OAE CIE interval, diagnostic of an enhanced detrital iron 385 

influx (Fig. 3A). However, a negligible correlation (R2 = 0.08, p = 0.04) is observed 386 

between the relative proportions of Fesil and FeHR across the T-OAE CIE interval (Fig. 387 

S2). There is only a relatively weak correlation between FeHR/FeT and CIA (chemical 388 

index of alteration, a proxy for continental weathering; Nesbitt and Young, 1982) (R2 389 

= 0.12, p = 0.01, Fig. 5) across the T-OAE CIE interval, and a similarly weak correlation 390 

occurs through the entire succession (R2 = 0.13, p = 0.0015, Fig. 5). These data indicate 391 

that the observed FeHR enrichments were unlikely to have been derived primarily from 392 

enhanced chemical weathering and terrestrial input during the T-OAE CIE interval. 393 

Increased input of terrestrial organic matter during the T-OAE CIE interval has been 394 

demonstrated based on previously published TOC/N from the Sakuraguchi-dani section, 395 

coincident with a sediment-coarsening trend inferred from Rb/Zr data (Kemp and Izumi, 396 

2014). However, negligible or weak correlations are observed between FeHR/FeT and 397 

TOC/N or Rb/Zr (Fig. 6). These data thus support our inference that enhanced chemical 398 

weathering or terrigenous flux across the T-OAE CIE interval at the Sakuraguchi-dani 399 

section had only a limited influence on the FeHR enrichments we observe. 400 
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The hydrography in the Panthalassa, partly responsible for controlling regional 401 

circulation and sites of upwelling (Parrish and Curtis, 1982), could have been altered 402 

due to a global sea level rise during the Toarcian (Hallam, 1981) – although coeval 403 

ocean circulation of Panthalassa, particularly at margins such as at the Sakuraguchi-404 

dani section, is poorly understood. Currents distributed at mid-latitudes in the northern 405 

hemisphere may have flowed towards the Sakuraguchi-dani section, owing to 406 

prevailing winds from Panthalassa towards the eastern margin of Pangea in the late 407 

Early Jurassic (Parrish and Curtis, 1982; Scotese and Moore, 2014). Currents could then 408 

have flowed parallel with the coast after reaching the shore, undergoing Ekman 409 

transport and potentially promoting regional upwelling. Additionally, enhanced 410 

hydrological cycling at the Sakuraguchi-dani section, including evidence for storm 411 

activity and high-energy sediment transport (Izumi et al., 2018a), would have facilitated 412 

water-column mixing. Therefore, regional upwelling and water-column mixing on the 413 

Panthalassic margin around the Sakuraguchi-dani depositional site could have been 414 

promoted. Under these conditions, the strongly anoxic-ferruginous deep waters 415 

(saturated with dissolved Fe2+) we document from the Sakahogi section could have been 416 

upwelled onto the shelf (Fig. 7). Oxidation of this Fe2+ in oxic shallow waters, and 417 

subsequent deposition largely in situ, would thus be responsible for the enhanced 418 

FeHR/FeT ratios (with FeHR being dominated by Fe (oxyhydr)oxides; Fig. 3A).  419 

Although a potentially viable mechanism, the lack of paleo-productivity data or 420 

detailed information on regional paleoceanography at the Sakuraguchi-dani section 421 

makes it difficult to accurately assess any change in local/regional 422 

upwelling/productivity. In addition, seawater anoxia associated with intense upwelling 423 

tends to occur on the slope (i.e., relatively deeper waters) like the Peru Margin (e.g., 424 

Arthur et al., 1998), while much shallower waters on the shelf could be more susceptible 425 
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to perturbations and remain relatively oxygenated (e.g., the manganese flux analysis of 426 

California Margin sediment indicating oxic waters on the shallow continental shelf; 427 

Johnson et al., 1992), similar to the scenario at the Sakuraguchi-dani section. Thus, 428 

local factors can significantly influence seawater redox conditions even in an area of 429 

upwelling. 430 

Hydrothermal activity in the deep sea can also introduce reduced iron (Fe2+) and 431 

Si-rich fluids, and this phenomenon could have affected our Sakahogi data. No visible 432 

mineralization in our analyzed samples was observed, however, and deposition of the 433 

bedded cherts at Inuyama was likely well away from the influence of any hydrothermal 434 

venting (Matsuda and Isozaki, 1991). The preservation of primary and globally 435 

representative geochemical signals such as osmium-isotope ratios (e.g., Kuroda et al., 436 

2010) in the Inuyama area further suggests limited influence from hydrothermal fluids. 437 

5.4 Redox conditions of Panthalassic deep waters during hyperthermal events in the 438 

Mesozoic 439 

In addition to the T-OAE, other hyperthermal events occurred in the Mesozoic that 440 

were accompanied by marked global perturbations to the carbon cycle, severe 441 

environmental changes, and mass extinctions. These phenomena include the Permian–442 

Triassic boundary event (PTB), the Triassic–Jurassic boundary event (TJB), and the 443 

early Aptian oceanic anoxic event (OAE1a, Early Cretaceous) (Korte et al, 2018; Hu et 444 

al., 2020). All of the above events were associated to a greater or lesser degree with the 445 

development of marine anoxia, which is often cited as playing a key role in driving 446 

ecosystem collapse (e.g. Meyer and Kump, 2008). Nevertheless, there exists significant 447 

spatiotemporal redox variability, especially in global open-ocean settings such as 448 

Panthalassa, which may obscure the redox control on bio-extinction. 449 
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The role and driving mechanisms of deep-ocean anoxia during these events is 450 

poorly studied. Pyrite framboid size analysis of Permian to Jurassic samples from the 451 

Mino-Tamba terrane of Japan indicates overall long-term (~80 Myr) oxygenation of 452 

Panthalassic deep waters, with three intervals (PTB, Spathian stage, and Toarcian stage) 453 

characterized by anoxic/euxinic conditions (Wignall, et al., 2010). The marine 454 

extinction at the PTB, the largest mass extinction of the Phanerozoic, has previously 455 

been attributed to widespread anoxia (Wignall and Twitchett, 1996). Sedimentological 456 

and geochemical evidence from Japan and British Columbia indicates an ~20 Myr 457 

suboxic to anoxic interval in Panthalassic deep waters, punctuated by water-column 458 

euxinia across the PTB (Isozaki, 1997). This low-oxygen state is consistent with a 459 

coeval expansion of seawater euxinia to the outer shelf associated with an active marine 460 

phosphorus cycle at the northern margin of Pangaea (Schobben et al., 2020). This study 461 

site (Festningen) connected the Boreal Sea and Panthalassa, suggesting development of 462 

seawater anoxia on a global scale (Schobben et al., 2020).  463 

Across the TJB, high-resolution inorganic and organic geochemical proxies (Fe-464 

speciation, redox-sensitive trace elements, and biomarkers) from Europe argue for 465 

expanded shallow-water anoxia, and even photic-zone euxinia, leading to the end-466 

Triassic mass extinction (e.g., Fox et al., 2022; He et al., 2022). However, redox-467 

sensitive elements and nitrogen isotopes from the Panthalassic pelagic section at 468 

Inuyama suggest more oxic conditions in Panthalassic deep waters across the TJB 469 

(Fujisaki et al., 2016). Redox conditions in the pelagic Pacific Ocean varied spatially 470 

during the OAE1a in the Cretaceous (e.g., Dumitrescu and Brassell, 2006; Bauer et al., 471 

2022). Lower Cretaceous Pacific Ocean pelagic sediments at Site 1207 from the 472 

Shatsky Rise around the paleo-equator record organic matter-rich deposition at the 473 

onset of the OAE1a, and TOC/S ratios from this site likely reflect deep-water Fe-limited 474 
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and euxinic conditions (Dumitrescu and Brassell, 2006). Such redox change around the 475 

paleo-equator may have resulted from enhanced productivity on the basis of biomarker 476 

analyses from Sites 1207 and 1213 in the west-central Pacific Ocean (Dumitrescu and 477 

Brassell, 2005), consistent with the common occurrence of organic-rich sediments 478 

within this area (e.g., Dean et al., 1981; Baudin and Sachsenhofer, 1996). However, 479 

redox-sensitive element and Fe-speciation data from DSDP Site 463 indicate persistent 480 

anoxic-ferruginous conditions in Pacific deep waters during OAE1a, associated with a 481 

significant drop of seawater sulfate concentration (Bauer et al., 2022). 482 

Our analysis of the Panthalassic redox record suggests that a prolonged deep-water 483 

anoxic-ferruginous interval spanned the time interval from the late Pliensbachian to the 484 

onset of the T-OAE CIE interval, and at least local/regional Panthalassic deep-water 485 

euxinia occurred during the T-OAE CIE interval, in line with the findings of Kemp et 486 

al. (2022b). However, the scale of the biological response does not clearly map onto the 487 

occurrence of deep-ocean anoxia. For instance, both the T-OAE and PTB have evidence 488 

of deep-water anoxia but the scale of extinction is markedly different (see Hu et al., 489 

2020 for a review). Indeed, the deep ocean apparently remained oxygenated across the 490 

TJB (Fujisaki et al., 2016), despite this event being one of the Phanerozoic ‘big five’ 491 

extinctions. The mechanisms that are able to drive the deep-ocean anoxia are also a 492 

matter of debate, since the relative contributions from a warming-driven slowing of 493 

circulation resulting in isolation and deoxygenation of the vast ocean interior, and the 494 

transport of sufficient nutrients across large distances from their weathering source to 495 

fuel enhanced productivity are difficult to evaluate. Nutrients seem to be key, but 496 

exactly how the open ocean comes to be nutrient rich is not yet well understood (see 497 

Winguth and Winguth, 2012; Meyer et al, 2008). Some of these questions may only be 498 

resolved by a better understanding of the spatial distribution of deep-sea anoxia, 499 
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something that is only accessible via modelling approaches unless more deep-water 500 

sections are identified. 501 

 502 

Conclusions 503 

Our data indicate that the Panthalassic deep-water site of Sakahogi, characterized 504 

by radiolarian cherts, was predominantly anoxic-ferruginous from the late 505 

Pliensbachian to the onset of the T-OAE CIE interval. Enhanced sulfide production 506 

occurred in sediments around the Pl/To boundary (intercalated with possible oxic 507 

episodes), and the development of at least intermittently euxinic bottom waters 508 

occurred across the T-OAE CIE interval. Conditions became more oxygenated 509 

thereafter. On the Panthalassic margin at the Sakuraguchi-dani section, the ostensible 510 

evidence for pervasive anoxia indicated by Fe-speciation data is at odds with 511 

independent geochemical, sedimentological, and paleoecological evidence for 512 

predominantly oxygenated conditions. We suggest that the shallow-water environment 513 

received upwelled deep waters rich in Fe2+, which was oxidized and deposited in situ, 514 

thus leading to the distinct Fe-speciation signature. The deep-water euxinia in the 515 

Panthalassa revealed by our analysis contrasts with evidence from the older Triassic–516 

Jurassic boundary event, where deep ocean waters may have remained largely oxic. 517 
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Figures 747 

 748 

Fig. 1. (A) Paleogeographic map showing the locations of the Toyora (red star, 749 

Sakuraguchi-dani section) and Inuyama (brown star, Sakahogi section) sites in the 750 

Jurassic. Modified from Golonka (2007) and Scotese (2001). (B) Map of Japan showing 751 

the modern locations of the Toyora (red star) and Inuyama (brown star) field areas. (C) 752 

Geological map showing the Sakuraguchi-dani section in the Tabe Basin, Toyora area. 753 

Redrawn from Kemp and Izumi (2014). (D) Geological map showing the Sakahogi 754 

section and Katsuyama section of the Inuyama area. Redrawn from Ikeda et al. (2018). 755 
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 757 

Fig. 2. Stratigraphy, organic-carbon isotopes (13Corg), total organic carbon (TOC), 758 

pyrite sulfur isotopes (δ34Spyrite), pyrite sulfur concentrations (SPY), and ichnofabric 759 
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index data from Sakuraguchi-dani (A) and Sakahogi (B) sections. 13Corg, TOC and 760 

litho-/biostratigraphy at the Sakuraguchi-dani section are taken from Kemp and Izumi 761 

(2014) and Izumi et al. (2018a). Ichnofabric index data are from Izumi et al. (2012): 1 762 

= no bioturbation, well laminated, 2 = weak bioturbation, laminated, 3 = bioturbated, 763 

poorly laminated, 4 = bioturbated, few laminations, 5 = well bioturbated, not 764 

laminated. 13Corg and lithostratigraphic units at the Sakahogi section are from Ikeda et 765 

al. (2018) and references therein. Lithostratigraphy and TOC data at the Sakahogi 766 

section are from Kemp et al. (2022b). δ34Spyrite and SPY data from both sections are from 767 

Chen et al. (2022). Note that the unfilled blue circle in the Sakuraguchi-dani pyrite 768 

sulfur isotope profile represents the outlying value (see Chen et al., 2022 for details). 769 

The vertical dashed line represents the average value of each proxy at these sections. 770 

The T-OAE interval at the Sakuraguchi-dani section, and the Pl/To and T-OAE 771 

intervals at the Sakahogi section (shaded areas) are defined based on the carbon-isotope 772 

excursions (CIE) recorded at these sections. 773 

774 
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 775 
 776 

Fig. 3. Stratigraphy, 13Corg, Fe-speciation, and redox-sensitive trace element data from 777 

the Sakuraguchi-dani (A) and Sakahogi (B) sections. Note that the colored bar on the 778 

far right of the figure indicates water-column redox conditions. Mo and U data at the 779 

Sakahogi section are from Kemp et al. (2022b). 780 
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 782 

Fig. 4. Cross-plots of MoEF and UEF data from the Sakahogi section (A) and the 783 

Sakuraguchi-dani section (B). Enrichment factors (EFs) herein are defined on the basis 784 

of average upper continental crust composition from McLennan (2001). See main text 785 

for details. Sakahogi data are from Kemp et al. (2022b). Cross-plots show the expected 786 

trends in MoEF versus UEF for different redox scenarios. The dashed lines represent 787 

multiples (0.3, 1, and 3) of the Mo/U ratio of present-day seawater. See Algeo and 788 

Tribovillard (2009) for more details. 789 

 790 
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792 

Fig. 5. Cross-plot of CIA (chemical index of alteration) versus FeHR/FeT through the 793 

Sakuraguchi-dani succession. The R2 values represent the coefficient of determination 794 

for the correlations and p-values are the probability that an R2 value at least as high 795 

would arise by chance. The black trend line, R2 value, and p-value highlight the 796 

correlation for the entire succession. See Fig. S1 for the stratigraphic variation of CIA 797 

values at the Sakuraguchi-dani section. 798 
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 800 
 801 

Fig. 6. Cross-plots of TOC/N versus FeHR/FeT (A) and Rb/Zr versus FeHR/FeT (B) 802 

through the Sakuraguchi-dani succession. The R2 values represent the coefficient of 803 

determination for the correlations across the T-OAE CIE interval, and p-values are the 804 

probability that an R2 value at least as high would arise by chance. TOC/N and Rb/Zr 805 

data are from Kemp and Izumi (2014), and stratigraphic variations of these data are 806 

shown in Fig. S1. 807 

808 
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 809 

Fig. 7. Conceptual model of the Panthalassic Ocean chemistry during the T-OAE CIE 810 

interval. Deep-water euxinia occurred concurrent with oxic–suboxic conditions on the 811 

shelf and presumably anoxic-ferruginous intermediate waters. Upwelling could have 812 

brought deeper anoxic waters saturated with Fe2+ to the shelf area as a consequence of 813 

transgression and prevailing wind activity. The spiral lines denote frequent storm 814 

activity. See main text for further details. 815 


