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Ligancy effects on nucleation kinetics
L. G. Rizzi,1, a) G. Viegas,1 and S. Auer2
1)Depto. de F́ısica, Universidade Federal deViçosa, CEP: 36570-000,Viçosa,MG,Brazil.
2)School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.

(Dated: 7 September 2022)

Nucleation of particles into crystalline structures can be observed in a wide range of systems from metallic and
metal-organic compounds to colloidal and polymeric patch particles. Here we perform kinetic Monte Carlo
simulations to study the nucleation kinetics of particles with different ligancies z at constant supersaturation
s. This approach allows one to determine several physico-chemical quantities as a function of s, including the
growth probability P (n), the critical nucleus size n∗, and the stationary nucleation rate Js. Our numerical
results are rationalized in terms of a self-consistent nucleation theory where both n∗ and Js present a non-
trivial dependence on s, but which can be determined from the values of effective z-dependent parameters.

I. INTRODUCTION

Ligancy, also known as the coordination number in
condensed matter physics; or functionality in polymer
and colloidal physics; can be defined as the number of
bonds that the individual building blocks of a substance
can form with each other and/or with other chemical
species. It is a microscopic feature of the individual parti-
cles that is intrinsically related to the collective phase be-
haviour of the corresponding solution; and it can be used
to infer important physico-chemical properties, e.g. sol-
ubilities and latent heats of solidification, of many sub-
stances1.

The self-assembly of particles with controlled ligancy
is of particular interest to the design of novel materials
with tailored responses. For instance, recent experiments
have shown that a class of metal-organic compounds
with different architectures has emerged as promising
and versatile systems with potential applications in coat-
ings, optics, photovoltaics, and magnetism2. However,
unlike studies on the equilibrium phase diagrams of
patch-interacting particles, the effects of ligancy on self-
assembly kinetics are still poorly explored3,4.
Here we perform a numerical study to investigate the

effects of different ligancies z on the nucleation kinetics
and develop a theoretical framework to rationalize their
influence on the critical nucleus size n∗ and on the sta-
tionary nucleation rate Js as a function of the supersat-
uration s.

II. MODEL AND SIMULATIONS

As shown in Fig. 1, our model is defined by parti-
cles with different ligancies z which form clusters in two
dimensions (d = 2). In addition to the particles that
present one-particle unit cells with z = 4 and z = 6,
we include two kinds of particles (i.e., isomers or poly-
morphs) with z = 5, that nucleate into crystals which

a)Corresponding author: lerizzi@ufv.br

display unit cells with more than one particle. Those par-
ticles resemble motifs observed not only in experiments
with metal-organic coordination networks2,5, and in bi-
nary mixtures of nanoparticles6; but also in simulations
on star-like patch particles with five-fold symmetry7,8.
In order to perform kinetic Monte Carlo (KMC) sim-

ulations, we consider a system that is similar to one im-
plemented in early studies9–12, where there is only one
cluster with n particles, so that either a particle (from
an implicit bath) could attach to it or a particle that be-
longs to the cluster could detach from it and go to the
solution (which maintains a constant supersaturation s).
The microscopic attachment and detachment frequencies
can be written9,10, respectively, as k+(C1) = k+ref C1 and

k−(bi) = k−ref exp (−2biω), where C1 is the concentra-
tion of (isolated) particles in solution, bi is the number
of neighbours connected to the i-th particle that belongs
to the cluster, and ω = ε/2kBT is the ratio between the
effective binding energy13 ε > 0 and the thermal energy
(kB is the Boltzmann’s constant and T is the absolute
temperature). The factor in the exponential of k−(bi)
is related to the work W (bi) = biε = 2biωkBT required
to detach a particle from the surface of the cluster14. It
is assumed that k+ref is a reference frequency which does

not depend on the value of the ligancy z, while k−ref is a
reference frequency which does not depend on the super-
saturation s, which is defined as s = ln (C1/Ce), with Ce
being the solubility of the particles in solution.
At equilibrium, C1 = Ce, then the equilibrium fre-

quency can be defined as ke = k+(Ce) = k+ref Ce, so that
the attachment frequency can be rewritten as9

k+(s) = ke exp(s) . (1)

The equilibrium condition between the cluster and the
particles at solution should also ensures that s = 0,
and that the attachment and detachment frequencies
are equal, i.e., k−(b∗z) = k+(0), where b∗z is determined
by the average number of bonds of the particles at
the surface of the cluster, which can be estimated by
b∗z = (z − 1)−1

∑z−1
i=1 i = z/2. The equilibrium condition

leads to k−ref = ke exp (2b
∗
zω), so that the detachment fre-

quency can be rewritten as

k−(bi) = ke exp[−2ω(bi − z/2)] . (2)
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Equations 1 and 2 allow us to implement the KMC
simulations by using the same procedure established in
previous studies9–12. In summary, for a given configu-
ration of the cluster with n particles, one must list all
the l+n attachment and n detachment events that can oc-
cur, then the j-th event is randomly selected so that the
configuration is modified according to attachment and
detachment probabilities defined, respectively, as

p+ =
k+

l+n k+ +
∑n
i=1 k

−(bi)
(3)

and

p−j =
k−(bj)

l+n k+ +
∑n
i=1 k

−(bi)
, (4)

with k+ given by Eq. 1 and k−(bi) by Eq. 2, so that the
probabilities do not depend on the frequency ke.
Our analysis starts by considering the growth proba-

bilities, which can be defined as12 P (n) = N(nc)/N(n),
where N(n) is the number of runs that grow to a cluster
with n particles, and N(nc) is the total number of runs
that reached a size nc. For all simulations, we take the
initial growth condition as a single particle (n = 1), and
consider that the cluster will form a macroscopic crystal
if its size reaches, at least, nc = 200 particles. In order
to have reasonable statistics, we evaluate P (n) from sim-
ulations where at least 103 successful runs in which the
cluster reached nc particles (e.g., we run at least 107 runs
for simulations where P (1) ≈ 10−4).
In Fig. 1 we illustrate the growth probabilities P (n)

obtained for the particles with different z for ω = 1. For
all kinds of particles, the curves display the same quali-
tative behaviour, with P (n) displaying a more noticeable
sigmoidal-like shape when the supersaturation s is low-
ered (rightmost curves). Figures 1(a) and (b) show that
there is a distinct behaviour for the particles with z = 6
and z = 4. At the same supersaturation s, the growth
probabilities P (n) indicate that a system formed by par-
ticles with higher ligancy (z = 6) needs to grow to larger
cluster sizes in order to reach nc, and thus a macroscopic
cluster size. Interestingly, the results in Figs. 1(c) and
(d) for the two kinds of particles (i.e., isomers or poly-
morphs) with z = 5 indicate that, although they present
the same ligancy, the difference between their shapes is
sufficient to change their nucleation kinetics.
In order to further characterize the nucleation of the

different particles, we evaluate the critical nucleus size n∗,
which is determined numerically from the inflection point
of the growth probability P (n). As illustrated in the inset
of Fig. 1(b) for z = 4, this is done by considering a fit of
the numerical data to the derivative of the approximated
function15

P (n) =
erf[ν(n− n∗)] + erf[ν(n∗ − 1)]

1 + erf[ν(n∗ − 1)]
, (5)

where erf(x) is the error function and ν is a free param-
eter which can be related to the Zeldovich factor16. As

shown in Fig. 1(b), the derivative of expression 5 fits the
numerical data well when P (n) displays a sigmoidal-like
curve. However, for non-sigmoidal curves the fitting pro-
cedure becomes poor, and we then estimate n∗ from the
condition where the growth probability is P (n∗) = 0.5,
as in Ref.12 (if P (1) > 0.5 we just assume n∗ = 1).

The evaluation of the growth probability curves P (n)
also allow us to determine the one-component station-
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FIG. 1. Growth probabilities P (n) for particles with dif-
ferent z for ω = 1. (a) and (b) show particles with lig-
ancies equal to z = 6 and z = 4, respectively; (c) and
(d) display the two kinds of particles (i.e., isomers or poly-
morphs) that have z = 5. From right to left the different
curves indicate increasing values of the supersaturation s:
0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, and 2. Inset panel in (b) illus-
trates the determination of n∗ for z = 4 and s = 0.4 through
the derivative of P (n): filled squares denote the numerical
data while the continuous line denotes the fit to a Gaussian
function obtained from expression 5.
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ary nucleation rate Js = Js(s), which gives the number
of clusters of size n > n∗ that are steadily nucleated
per unit of time and per unit of volume, in the super-
saturated old phase. As discussed in Refs.9,11,15, Js can
be conveniently evaluated from the dimer growth prob-
ability P (2), that is, Js = f1C1P (2), where f1 is the
monomer-to-monomer attachment frequency. We note
that all simulations start with n = 1 particles in order
to avoid biases in the evaluation of P (2) caused by any
specific choice of a dimer configuration, specially in the
case of the isomers with z = 5.

III. RESULTS

As discussed in Ref.13 for z = 4, the behaviour of Js(s)
and n∗(s) can be qualitatively different depending on the
the value of ω, so we first include results for the case
of weak interacting particles where ω = 1.4, and later
for the case where ω = 3. Nevertheless, we show that
both cases can be well described by the same theoretical
framework developed here.
For ω = 1.4, in particular, Fig. 2(a) shows that there

is a common qualitative behaviour for all z with n∗(s)
decreasing as the supersaturation s increases. Also, it
shows that the smaller the ligancy, the smaller the value
of n∗. Figure 2(b) shows that the reduced stationary rate
J̄(s) = Js/f1C1 presents a behaviour that is opposite but
consistent to what is observed for the critical nucleus size
n∗(s), where J̄(s) displays larger values for smaller lig-
ancies, with the curves for z = 5 presenting intermediary
values between z = 4 and z = 6. As illustrated in the lin-
ear plot presented in inset of Fig. 2(b), the curves for the
reduced nucleation rate J̄(s) present a similar sigmoidal-
like behaviour for all z, with the curve for z = 6 being
the one which saturates at the largest values of s.
Now, in order to obtain expressions for n∗(s) and J̄(s)

which are general enough to incorporate the ligancy ef-
fects that are observed even for the isomers with the same
z, we adopt a Zeldovich-like approach, and assume n as
a continuous variable16. In that case, we demonstrate
in Appendix A that the reduced stationary rate can be
estimated as

J̄(s) =
1

1 + r(s)
, (6)

with

r(s) ≈ f1C1

∫ Mz

2

dn

f(n)C(n)

≈ υz

(π

s

)1/2

exp

(

s− 2zψβz +
(zψβz)

2

s

)

×
[

erf

(

s
√
Mz − zψβz
s1/2

)

− erf

(

s
√
2− zψβz
s1/2

)]

, (7)

where βz, υz, and Mz are z-dependent parameters that
are assumed to be independent of the supersaturation s,
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FIG. 2. (a) Critical nucleus size n∗(s), and (b) reduced sta-
tionary nucleation rate J̄(s) = Js/f1C1, obtained for particles
with different ligancies z with ω = 1.4. Filled symbols corre-
spond to numerical results extracted from KMC simulations,
while continuous lines denote the best fit to the z-dependent
expressions: J̄(s) is given by Eq. 6 with r(s) given by Eq. 7,
and n∗(s) is evaluated directly from J̄(s) through Eq. 12 with
the derivative of r(s) given by Eq. 13. Inset panel in (a) in-
cludes a comparison between Eq. 12 and the approximated
expression, Eq. 14, for z = 6. The inset panel in (b) shows
just the linear plot of the data displayed in the main panel.
The parameters βz and υz obtained from the fitting procedure
considering Mz = nc are displayed in Table I. Error bars in
(a) are used just to indicate the deviation of a half of a unit.

and ψ = σ/kBT is related to the effective surface energy
per particle13,17 σ, and is roughly proportional to the ra-
tio ω defined in KMC simulations (see Appendix B). As
detailed in Appendix A, Mz denotes a characteristic size
which is determined by the asymptotic limit for which
the growth probability P (n), Eq. A1, tends to 1; υz is
a dimensionless parameter used to define the solubility
Ce (see Eq. A3), which, as discussed in Ref.18, might
be related to the ligancy z but should not depend on ψ;
the parameter βz is related to the function l(n) which
describes the number of non-connected bonds at the pe-
riphery of the cluster. As discussed in Ref.13, the specific
behaviour of this function is crucial in obtaining Eq. 7, as
it is used to define both the attachment frequency f(n) of
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ω z ψβz υz Mz ψ
1.4 4 0.565 (10) 2.1 (3) 200 0.87 (4)
1.4 5(c) 0.639 (16) 2.3 (5) 200 0.86 (5)
1.4 5(d) 0.636 (15) 5.0 (5) 200 0.88 (5)
1.4 6 0.755 (6) 6.0 (5) 200 0.91 (4)
3 4 1.719 (22) 2.1 (3) 6.9 (3) 2.64 (12)
3 5(c) 1.952 (38) 2.3 (5) 3.8 (1) 2.64 (12)
3 5(d) 1.906 (18) 5.0 (5) 3.4 (1) 2.65 (10)
3 6 2.177 (15) 6.0 (5) 2.7 (3) 2.63 (9)

TABLE I. z-dependent values determined from the fit of Eq. 6
to the numerical estimates of J̄(s) obtained from the KMC
simulations and presented in Fig. 2(b) for ω = 1.4, and in
Fig. 3 for ω = 3. The values of ψ in the last column were
obtained from the product ψβz (third column) by consid-
ering the values of βz extracted from the data displayed in
Fig. 4. The values inside the parentheses indicate rough es-
timates of the maximum deviations that can be made in the
last digits that do not significantly alter the numerical fit.

particles to a n-sized cluster, and the equilibrium cluster
concentration (for n > 1)

C(n) = C0 e
−w(n) , (8)

where w(n) is the dimensionless work to form a cluster
with n particles, and C0 = 1/v0, so that v0 sets a charac-

teristic length ℓ = v
1/3
0 related to the size of a monomeric

particle which can be used to define the physical units for
the concentrations and for the solubility Ce (see Eq. A3).
As detailed in Appendix B, we assume that the above
mentioned quantities are given by (see Eq. B5)

f(n) = f1l(n)/z = f1

[

1 + 2βz(n
1/2 − 1)

]

, (9)

and (see Eq. B6)

w(n) = −sn+ψl(n) = −sn+2zψβz(n
1/2−1)+zψ , (10)

where the exponent α = 1/2 is chosen because the model
is defined in two-dimensions. It is worth noting that the
value βz = 1/2 leads Eqs. 9 and 10 to be the somewhat
expected expressions for the regular lattice with z = 4,
i.e., a two-dimensional Kossel crystal (see Ref.13 and Ap-
pendix B). However, as the numerical results displayed
in Fig. 2 suggest, different values for βz should be con-
sidered if one aims to describe the different behaviours
that are observed for the isomers with z = 5.
In order to validate our theoretical approach, we first

consider Eq. 6 to analyse the data obtained for J̄(s) with
ω = 1.4 that are displayed in Fig. 2(b). To do so, we
assume that Mz = nc, so that the first error function in
Eq. 7 tends to 1 and our expression for J̄(s) is left with
just “two” free parameters: ψβz and υz (i.e., the product
ψβz can be thought as a single parameter). Figure 2(b)
indicates that there is a remarkable agreement between
the numerical data extracted from the KMC simulations
and the best fit using Eq. 6. As shown in Table I, higher
ligancies z lead to higher values of ψβz and υz. Interest-
ingly, the values of ψβz found for the isomers with z = 5

4 6 8 10 12
s

1

2

3

4

5

6

n
*
( s

) 
- 

1

z = 4

z = 5(c)

z = 5(d)

z = 6

4 6 8 10 12 14 16 18
s

10
-2

10
-1

10
0

J
(s

)

~e 1.2 s~e 1.5 s~e 1.7 s
~e 2.8 s

FIG. 3. Reduced stationary nucleation rate J̄(s) = Js/f1C1

(main panel) for particles with different ligancies z and for
ω = 3. Filled symbols correspond to results extracted from
KMC simulations, while continuous lines denote the best fit
of the numerical data to the z-dependent expression for J̄(s)
given by Eq. 6 with r(s) given by Eq. 7. Continuous lines in
the inset panel denote n∗(s)−1, with the critical nucleus size
evaluated from J̄(s) through Eq. 12 with the derivative of r(s)
given by Eq. 13 using the parameters βz, υz, and Mz, that
are listed in Table I. Filled symbols and horizontal error bars
in the inset panel denote, respectively, the values of n∗

− 1
and the validity ranges that were estimated from the fits of
the data to exponential functions, i.e., ∝ e(n

∗
−1)s, which are

displayed as dashed lines in the main panel. Dash-dotted line
in the corresponds to n∗(s) − 1 with the critical nucleus size
n∗(s) given by Eq. 14 for z = 6.

are very close to each other. Hence, the slightly differ-
ences observed in Fig. 2 for z = 5 can be associated to
the values of υz, with the isomer with z = 5(d) display-
ing values of υz closer to the values found for the particle
with ligancy z = 6.

It is worth mentioning that, although there is some
freedom granted by a fitting procedure involving a func-
tion either with two or three parameters (i.e., including
Mz as a free parameter), we did it in a way that the val-
ues of J̄(s) also provide a consistent description for the
numerically determined values of critical nucleus sizes n∗

displayed in Fig. 2(a). In order to do that in a consis-
tent way, we first assume that the stationary nucleation
rate can be written as Js = Ae−w

∗

, with the pre-factor
A being independent of the supersaturation, and with
w∗ = w∗(s) being the work to form the critical nucleus.
Hence, by recalling that Js = f1C1J̄ with C1 = Cee

s, one
can invert the relationship between Js and w∗ and com-
pute the critical nucleus size n∗(s) through the so-called
nucleation theorem16, which establishes that

n∗(s) = −dw
∗

ds
≈ 1 +

d ln[J̄(s)]

ds
. (11)

Thus, by assuming that the reduced stationary nucle-
ation rate J̄(s) is given by Eq. 6, one can rewrite the
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above equation as

n∗(s) ≈ 1− 1

1 + r(s)

dr(s)

ds
, (12)

with the derivative of the function r(s), Eq. 7, given by

dr(s)

ds
= r(s) + υz exp

(

s− 2zψβz +
(zψβz)

2

s

)

×
{(

s
√
Mz + zψβz

s2

)

exp

(

− (s
√
Mz − zψβz)

2

s

)

−
(

s
√
2 + zψβz
s2

)

exp

(

− (s
√
2− zψβz)

2

s

)

−
(π

s

)1/2
(

1

2s
+

(zψβz)
2

s2

)[

erf

(

s
√
Mz − zψβz
s1/2

)

− erf

(

s
√
2− zψβz
s1/2

)]}

. (13)

Figure 2(a) shows that, although in a non-trivial manner,
the critical nucleus size n∗(s) evaluated through Eqs. 12
and 13 lead to a remarkable agreement with the numer-
ical data extracted from the KMC simulations. Alter-
natively, one can use the condition of maximum work13,
(dw(n)/dn)n=n∗−1 = 0, with w(n) given by Eq. 10, to
obtain an approximated (but simpler) expression for the
critical nucleus size, that is

n∗(s) =
(zψβz)

2

s2
+ 1 . (14)

Indeed, as illustrated in the inset of Fig. 2(a), Eq. 14 can
be used with the same parameters listed in Table I to
provide a good description of the numerical data obtained
for ω = 1.4, just like the lengthy expression, i.e., Eq. 12
with 13. However, as we will discuss next, such simpler
expression for n∗(s) turned out to be inappropriate for a
higher value of ω.
The results presented in Fig. 3, in particular, indicate

that the numerical estimates obtained for the reduced
stationary nucleation rate for ω = 3 display the same
trend as the results presented in Fig. 2(b), i.e., the higher
the ligancy z, the lower the values of J̄(s), however, the
qualitative behaviour of J̄(s) curves at low supersatu-
ration s are clearly different. As previously suggested
in Ref.13, higher values of ω may lead J̄(s) to display
an exponential-like behaviour, where curves with nearly
linear portions can be observed in a log-linear plot. As
indicated by the dashed lines in Fig. 3, these regions can
be identified from a fit of the numerical data to a single
exponential function. Interestingly, the atomistic nucle-
ation theory (ANT) discussed in Ref.13 predicts that the
exponential should be directly related to the critical nu-
cleus size n∗ as J̄(s) ∝ e(n

∗−1)s, from where one can also
determine numerical estimates for n∗. Although Eq. 12
is a non-linear function which yields continuous values
for n∗(s), the numerical data shown in the inset of Fig. 3
indicate that, as the supersaturation s is lowered, n∗(s)

1 2 3 4 5 6 7 8 9
n

0

2

4

6

8

10

l(
n

)/
z

1 2 3 4 5 6 7 8 9
n

0

2

4

6

8

10

l(
n

)/
z

1 2 3 4 5 6 7 8 9
n

0

2

4

6

8

10

l(
n
)/

z

1 2 3 4 5 6 7 8 9
n

0

2

4

6

8

10

l(
n
)/

z

0.549 0.88 1.4 2.2 3
ω

0

1

2

3

ψ

z = 4

z = 6

a

z = 6 z = 4

z = 5(c) z = 5(d)

b

c d

e

β
6
=0.83 β

4
=0.65

β
5(c)

=0.74 β
5(d)

=0.72

FIG. 4. Panels (a)-(d) show the normalized number of non-
connected bonds at the periphery of the cluster, l(n)/z, for
different ligancies z. Continuous lines with open symbols cor-
respond to fit of Eq. B5 to the values averaged over several
curves obtained from KMC simulations under different satu-
ration conditions (filled grey symbols). Configurations illus-
trate shapes with the βz obtained from the fit. Inset panels
show zoomed in regions indicating the unit cells of each lattice
(cyan). Panel (e) displays the ratio ψ between the effective
surface energy per particle σ and the thermal energy kBT as
a function of the effective value ω defined in KMC simula-
tions; filled symbols are the values listed in Table I, dashed
(black) line is a reference curve ψ = ω, continuous (blue) line
corresponds to13,17 ψ = ω+ln[(1− e−ω)/(1+ e−ω)] for z = 4,
and dash-dotted (red) line to ψ = ω + 0.5 ln[(1 − e−2ω)/2]
for z = 6 (see Ref.19 for details). The values ω ≈ 0.88 and
ω ≈ 0.549 correspond to the theoretically predicted critical
ratios ωz

c where ψ = 0 for z = 4 and z = 6, respectively (see
Appendix B for details).

go to values which are in good agreement with the values
we have obtained from the fit to the exponential function
based on ANT. It is worth mentioning that we only found
that this saturation-like behaviour occurs when we con-
sider finite values forMz, i.e., right above n

∗. The values
of Mz presented in Table I for ω = 3 are consistent with
the step-like behaviour observed for the growth proba-
bilities P (n) in a wide range of supersaturations (data
not shown) where n∗ < Mz. This behaviour also corrob-
orates the fact that, indeed, for higher values of ω, the
estimates for the critical nucleus size n∗(s) from Eq. 12
can be different from the values computed from the ap-
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proximated expression given by Eq. 14 (as illustrated in
the inset of Fig. 3).
Finally, in order to test the expression B5 that we pro-

pose for the number of non-connected bonds, we present
in Fig. 4 the results for l(n) obtained from KMC simu-
lations for the different values of z. The numerical data,
which were extracted from independent simulations for
both values of ω and at several supersaturations s, indi-
cate that l(n) is approximately independent of ω and s
(at least for small values of n). Accordingly, by consider-
ing a fit of expression B5 to the numerical data one can
directly determine the values of βz for the different ligan-
cies z, and those can be used to estimate the values of the
ratio ψ which are related to the effective surface energy
per particle. The values listed in Table I indicate that
the higher the ligancy z, the higher the parameter βz,
with the isomers characterized by z = 5 displaying sim-
ilar values which are smaller than β6 = 0.83 but higher
than β4 = 0.65. It is worth noting that, indeed, the val-
ues of ψ differ from the values of the ratio ω which are
related to the effective binding energy, and the data ob-
tained for the different ligancies yield similar values, i.e.,
ψ ≈ 0.88 for ω = 1.4 and ψ ≈ 2.64 for ω = 3. As we
indicate in Fig. 4(e), the values of ψ are in a range which
is consistent with the behaviour theoretically predicted
for the the two-dimensional square13,17 and triangular19

lattices.

IV. CONCLUDING REMARKS

In summary, we have implemented KMC simulations
using simple model particles to investigate the effect of
their ligancies z and isomerism on the stationary nucle-
ation rates Js and on the critical nucleus size n∗. The
numerical results obtained from simulations allowed us
to validate the theoretical framework developed here for
different values of z. In particular, by considering an ap-
proximated expression for the number of non-connected
bonds at the periphery of the cluster l(n), Eq. B5 with
α = 1/2, we were able to determine z-dependent ex-
pressions for the concentration C(n), Eq. 8, the attach-
ment frequency f(n), Eq. 9, and the (dimensionless) work
w(n), Eq. 10, from where z-dependent expressions for the
reduced stationary nucleation rate J̄(s), Eq. 6, and for
the critical nucleus size n∗(s), Eq. 12, were evaluated. In
addition, our numerical results helped us to demonstrate
the validity of the nucleation theorem16, which was used
to indicate that the simpler expressions for the critical
nucleus size n∗(s) obtained from the condition of maxi-
mum work (i.e., Eq. 14 and Eq. B7), are not valid in gen-
eral, specially for larger values of ω (i.e., when ε≫ kBT ).
Interestingly, it seems that, for the larger value of ω, our
expression for J̄(s) agreed with the numerical results in
displaying an exponential-like behaviour where n∗(s) is
approximately constant, a result which is also corrobo-
rated by the ANT theory13.
By validating the theoretical approach developed here,

we are also generalising some of the results discussed in
Ref.13 derived specifically for the models based on the
Kossel crystal (see Appendix B for details) to particles
with different z, including their isomers (or polymorphs).
It is worth mentioning that, at present, our approach
does not provide a way to estimate the values of the pa-
rameters βz and/or υz, but further developments will be
focused on that issue. Even so, our z-dependent expres-
sions helped us to clarify the role of the ratio ψ = σ/kBT
and also its relationship to the ratio ω that is used to im-
plement KMC simulations.
Finally, we note that, although the expressions in the

main text are specific for the nucleation that occurs pre-
sumably in two-dimensions (i.e., where it is assumed that
α = 1/2), we believe that the expressions presented in
the Appendices for the concentration C(n), Eq. A4, the
number of non-connected bonds l(n), Eq. B5, and the
(dimensionless) work w(n), Eq. B6, can be used to de-
scribe the nucleation of particles with different values of
that exponent, e.g., α = 2/3, as well as other effective
values observed in experiments16,20.
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APPENDIX

Appendix A: Demonstration of r(s) given by Eq. 7

As mentioned in the main text, in order to obtain r(s)
given by Eq. 7, we consider a Zeldovich-like approach16,
and assume the size n of the cluster as a continuous vari-
able. In that case, the growth probability can be written
as15

P (n) = J̄

[

1 + f1C1

∫ n

2

dm

f(m)C(m)

]

, (A1)

which is strictly valid for n ≥ 2. Hence, since the reduced
stationary nucleation rate J̄(s) is related to r(s) through
Eq. 6, one must have that

r(s) ≈ f1C1

∫ Mz

2

dn

f(n)C(n)
, (A2)

so that the parameter Mz ≥ 2 is related to a character-
istic size determined by the asymptotic limit for which
P (Mz) = 1.
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Here one can consider that C1 = Cr e
−w(1) = Cee

s,
which is consistent not only with the dimensionless work
w(1) = −s+zψ computed from Eq. 10, but also with the
solubility given by18,21

Ce = Cr e
−zψ , (A3)

with Cr = υz/v0, and zψ give an estimate for the la-
tent heat of crystallization per particle (see Appendix B).
Hence, the concentration C(n) given by Eq. 8 can be
rewritten as

C(n) = (C1/υz) exp{−[w(n)− w(1)]} . (A4)

By considering the definitions 9 and 10 for f(n) and w(n),
respectively, one can use the above relation to evaluate
expression A2 as

r(s) ≈ υz

∫ Mz

2

dn ew(n)−w(1)

1 + 2βz(n1/2 − 1)

≈ υze
s−2zψβz

∫ Mz

2

dn e−sn+2zψβzn
1/2

1 + 2βz(n1/2 − 1)
, (A5)

which can be rewritten by setting n = u2, so that

r(s) ≈ υze
s−2zψβz+(zψβz)

2/s

βz

∫

√
Mz

√
2

du e−s(u−zψβz/s)
2

1 + (1− 2βz) /(2βzu)
.(A6)

Now, by considering the expansion (1+xz)
−1 = 1−xz+

x2z − . . . , with xz = (1− 2βz) /(2βzu) ≪ 1, the above
integral turns into a sum of integrals, i.e.,

∑∞
k=1 Ik, with

Ik ≈ (−1)k−1

(

1− 2βz
2βz

)k−1 ∫
√
Mz

√
2

du e−s(u−zψβz/s)
2

uk−1
.

(A7)
Unfortunately, such k-dependent integrals are not eas-
ily computed for k ≥ 2, even so, one might approxi-
mate the sum of them by

∑∞
k=2 Ik ≈ κzI1, where κz is

a s-independent correction factor which takes into ac-
count the integrals corresponding to the higher order
terms; here I1 denotes the lowest order term (i.e., for
k = 1), which can be readily evaluated by setting y =
u− zψβz/s, that is,

I1 =

∫

√
Mz−zψβz/s

√
2−zψβz/s

dy e−sy
2

=
1

2

(π

s

)1/2

×
[

erf

(

s
√
Mz − zψβz
s1/2

)

− erf

(

s
√
2− zψβz
s1/2

)]

.(A8)

With that, Eq. A6 becomes

r(s) ≈ υz
(1 + κz)

βz
I1 exp

(

s− 2zψβz +
(zψβz)

2

s

)

.

(A9)
Finally, by using tz = (1 − 2βz)/(2βz), the correction
factor can be estimated as κz ≈ ∑∞

k=2(−1)k−1tk−1
z =

−tz/(1 + tz) = 2βz − 1, so that (1 + κz) ≈ 2βz, and
expression A9, together with the result A8, leads to our
main result, i.e., Eq. 7.

Appendix B: Work to form a n-sized cluster

Following the framework discussed in Refs.13,16, we
consider that the work to form a cluster with n parti-
cles can be written as

W (n) = −n∆µ+Φ(n) , (B1)

where ∆µ = kBT ln(C1/Ce), and

Φ(n) = ψkBT l(n) (B2)

is the effective excess energy, with l(n) being the num-
ber of non-connected bonds at the periphery of the clus-
ter, and ψ = σ/kBT is a dimensionless ratio defined in
terms of the effective surface energy per particle σ (see,
e.g., Refs.13,17). Ideally, ψ should be proportional to the
ratio ω = ε/2kBT defined in KMC, where ε is the ef-
fective interaction energy13. However, at finite tempera-
tures, ψ can be significantly lower than ω, and even close
to zero as T goes to the critical temperature, i.e., as ω
goes to the corresponding critical ratio ωzc . In partic-
ular, for the lattices formed by the model particles de-
fined here those values are estimated as22 ω4

c = 0.88137,

ω
5(c)
c = 0.68346, ω

5(d)
c = 0.69314, and ω6

c = 0.54931 (see
the caption and the panel (e) in Fig. 4).
In general, the number of non-connected bonds at the

periphery of the cluster can be written as13

l(n) = zn− 2g(n) , (B3)

with the term zn being the total number of bonds avail-
able for n particles with ligancy z, and g(n) the number
of bonds in the n-sized cluster. Importantly, the num-
ber of bonds can be used to define the effective inter-
action energy of the n-sized cluster as Eb(n) = −εg(n),
with ε = 2ωkBT . Hence, in order to obtain g(n) and
l(n), we consider that nb < n particles contribute with
energy λ, and ns particles, which are at the periphery
of the cluster, contribute with energy λ′ < λ, that is,
Eb(n) = −λnb − λ′ns. In addition, we assume that
ns(n) = cz(n

α − 1), with 0 < α ≤ 1 and cz > 0 be-
ing a parameter that should dependent on the ligancy z.
Since the condition nb = 0 and ns = 0 should be satisfied
for n = 1, one must have that nb + ns = n − 1, hence
Eb(n) = −λ[(n−1)−(1−δz)cz(nα−1)], where it was as-
sumed that λ′ = δzλ with δz < 1. Finally, by considering
(1− δz)cz = βz/α and λ = zε/2, with ε = 2ωkBT being
the effective binding energy13, one can rewrite the total
binding energy as Eb(n) = −εg(n), where the number of
bonds in the n-sized cluster is

g(n) =
z

2

[

(n− 1)− βz
α
(nα − 1)

]

. (B4)

Thus, by considering expression B3 for the number of
non-connected bonds, Eq. B4 leads to

l(n) = z

[

1 +
βz
α
(nα − 1)

]

. (B5)



8

Accordingly, the above expressions generalise the results
for the square (2D, d = 2) and cubic (3D, d = 3) regular
lattices that are somewhat expected from a Kossel crystal
(KC), see Ref.13. To retrieve those expected values, one
can simply set αKC = (d − 1)/d, βKC = αKC, and z =
2d, so that Eqs. B4 and B5 yield, respectively, b2D(n) =
2(n− n1/2) and l2D(n) = 4n1/2, for d = 2, and b3D(n) =
3(n− n2/3) and l3D(n) = 6n2/3, for d = 3.

Finally, by considering Eqs. B1 and B5, one has that
the (dimensionless) work to form a cluster with n parti-
cles is given by

w(n) =
W (n)

kBT
= −sn+

zψβz
α

(nα − 1) + zψ , (B6)

where s = ∆µ/kBT is the supersaturation. We note that
Eq. 10 is obtained from the above equation by setting α =
1/2. Additionally, one can use the condition of maximum
work13, (dw(n)/dn)n=n∗−1 = 0, to obtain the corrected
estimate for the critical nucleus size, that is,

n∗(s) =
Qz
sγ

+ 1 (B7)

with Qz = (zψβz)
γ
and γ = 1/(1 − α). By choosing

α = 1/2 one has that γ = 2, which corresponds to Eq. 14
in the main text. In particular, the corrected expression
for n∗ for the two-dimensional Kossel crystal obtained in
Ref.13 can be recovered by assuming that βz = 1/2.
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