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Abstract
The SARS-CoV-2 coronavirus is responsible for the COVID-19 outbreak, which overwhelmed millions of people worldwide; 
hence, there is an urgency to identify appropriate antiviral drugs. This study focuses on screening compounds that inhibit 
RNA-dependent RNA-polymerase (RdRp) essential for RNA synthesis required for replication of positive-strand RNA 
viruses. Computational screening against RdRp using Food and Drug Administration (FDA)-approved drugs identified ten 
prominent compounds with binding energies of more than − 10.00 kcal/mol, each a potential inhibitor of RdRp. These com-
pounds’ binding energy is comparable to known RdRp inhibitors remdesivir (IC50 = 10.09 μM, SI = 4.96) and molnupiravir 
(EC50 = 0.67 − 2.66 µM) and 0.32–2.03 µM). Remdesivir and molnupiravir have been tested in clinical trial and remain 
authorized for emergency use in the treatment of COVID-19. In docking simulations, selected compounds are bound to the 
substrate-binding pocket of RdRp and showed hydrophobic and hydrogen bond interaction. For molecular dynamics simu-
lation, capmatinib, pralsetinib, ponatinib, and tedizolid phosphate were selected from the initial ten candidate compounds. 
MD simulation indicated that these compounds are stable at 50-ns MD simulation when bound to RdRp protein. The screen 
hit compounds, remdesivir, molnupiravir, and GS-441524, are bound in the substrate binding pocket with good binding-free 
energy. As a consequence, capmatinib, pralsetinib, ponatinib, and tedizolid phosphate are potential new inhibitors of RdRp 
protein with potential of limiting COVID-19 infection by blocking RNA synthesis.
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Introduction

The global pandemic of SARS-CoV-2 has been a global health 
emergency caused by the 2019 novel coronavirus (COVID-
19). As of 7 July 2021, it has infected over 184.32 million 
globally, with 3.99 million deaths [1]. This COVID-19, that 
caused a pneumonia outbreak and caught attention world-
wide in December 2019, is a newly identified β-coronavirus, 
first reported in Wuhan, China [2–5]. It has subsequently 

spread across 230 countries in a growing pandemic that has 
developed into a global health emergency. The World Health 
Organization (WHO) declared COVID-19 a global pandemic 
on 11 March 2020 [6, 7]. In 2002, a coronavirus outbreak in 
China caused a fatal respiratory illness and hence was referred 
to as severe acute respiratory syndrome coronavirus (SARS-
CoV) [8, 9]. SARS-CoV killed around 750 people [10]. In 
2012, another coronavirus outbreak in the human population 
of the Middle East, called Middle East respiratory syndrome 
(MERS), caused similar severe respiratory symptoms [11]. 
MERS-CoV killed around 866 people [12]. SARS-CoV-2 is 
reported to be more infectious than MERS-CoV or SARS-
CoV [13].

The novel 2019 coronavirus SARS-CoV-2 belongs to the 
β-coronavirus (β-CoV) family, mainly infecting the gastro-
intestinal and respiratory tract. Coronavirus particles contain 
crown-like spikes on the surface, which can interact with the 
angiotensin-converting enzyme isoform 2 (ACE2) to facili-
tate infection [14–18]. The mortality rate for SARS-CoV-2 
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is 2.3%, considered to be lower in comparison with MERS 
(34.4%) and SARS (9.6%). However, SARS-CoV-2 does 
more rapidly infect and has caused greater mortality in a 
short period [10, 12, 13]. SARS-CoV-2 transmission from 
person to person, asymptomatic transmission, and prolonged 
symptomatic development substantially increase mortal-
ity in the older population [19–21]. Anti-coronaviral drug 
therapy approaches aim to inhibit viral RNA synthesis and 
hence virus replication, block the virus from interacting with 
human cell receptors, or restrain the virus self-assembly pro-
cesses [22–24].

Coronavirus belongs to the Coronaviridae family, which 
is sub-classified into alpha (α), beta (β), gamma (ɣ), and 
delta (δ) coronavirus [24, 25]. Among these subclasses, 
alpha (α) and beta (β) types are responsible for infections 
in mammals. Gamma (ɣ) and delta (δ) cause infection in 
birds [26]. The SARS-CoV-2 genome is 29.8 kb in size and 
belongs to the genus β-coronavirus. It encodes four struc-
tural proteins, Spike (S), Envelope (E), membrane (M), and 
Nucleocapsid (N), and 16 non-structural proteins (NSPs), 
NSP1-10 (ORF1a) and NSP12-16 (ORF1b) [27–30]. Nsp12 
is the RNA-dependent RNA polymerase (RdRp) enzyme 
that carries out RNA synthesis in all positive-strand RNA 
virus replication processes [31, 32]. Two  Zn2+ ions are pre-
sent in the RdRp structure, and these ions play a critical role 
in the stability of the RdRp tertiary structure. RdRp supports 
RNA synthesis by catalysing the RNA-template-dependent 
formation of phosphodiester bonds [30, 31, 33–37]. All the 
important functional sites are highly conserved among coro-
naviruses, including SARS-CoV-2 (Fig. 1). These include 
sites for template entry and binding, the polymerase reaction 
site (palm and finger domain comprising residues 398–814), 
and the product exit site through the tunnel (thumb) present 
in the residue 815–919 region [38, 39]. Studies examining 
the roles of NSPs in coronavirus replication have underlined 
the importance of RdRp, demonstrating that it makes an 

attractive potential target for anti-coronavirus drug design. 
Targeting NSP12 (RdRp) may therefore lead to potential 
treatment for COVID-19 [40, 41].

Coronavirus is one of the few RNA viruses to have a 
genomic regulation mechanism. Consequently, identifying 
nucleoside analogues that inhibit SARS-CoV-2 RNA replica-
tion has been difficult due to its unique exoribonuclease (ExoN) 
activity, which corrects errors in the growing RNA chain [42, 
43]. Generally, the rate-limiting step for activating nucleoside 
analogues is the production of the nucleoside monophosphate. 
Nucleoside phosphoramidites such as remdesivir, favipiravir, 
and ribavirin are bioisosteres of monophosphates and bypass 
this rate-limiting step. Studies of FDA-approved compounds 
with antiviral activity have shown that efficacy can be highly 
variable and is dependent on the cell line used in the study. 
Tetrandrine, berbamine hydrochloride, abemaciclib, cepharan-
thine, and chloroquine showed four-fold higher IC50 values 
in a SARS-CoV-2-infected Calu-3 human lung carcinoma cell 
model, compared to a Vero primate epithelial model, whereas 
remdesivir, camostat mesylate, nafamostat mesylate, and cyclo-
sporine show lower IC50 in Calu-3 cells [44]. For example, the 
IC50 for remdesivir in Vero cells is 11.41 µM, but in Calu-3 
cells is 1.3 µM, which shows the 0.11 fold change. Nafamostat 
mesylate shows IC50 values of 13.88 µM and 0.0022 µM IC 
50 in Vero and Calu-3 cells, respectively, and fold change is 
0.00016 [44]. Hence, it is clear that quantitation of antiviral 
drug efficacy is highly dependent on the cell model being used.

Repurposing FDA-approved drugs is a fast-track option 
to identify new inhibitors of essential SARS-CoV-2 protein 
functions. At the initial stage of the pandemic, the WHO 
launched a trial treatment against COVID-19 using remde-
sivir, lopinavir plus ritonavir, chloroquine, and Interferon-β 
[45]. Lopinavir plus ritonavir and chloroquine were sub-
sequently removed from the list of potential therapeutics 
because of uncertainty over benefits and possible risks of side 
effects, although they are still being actively investigated. To 

Fig. 1  Structural model of 
SARS-CoV-2 RNA-dependent 
RNA polymerase. A RdRp 
protein structure in the right-
handed form with three domains 
highlighted: finger domain 
(violet), palm domain (blue), 
and thumb domain (pink). The 
N-terminal region of RdRp is 
also shown (cyan). B Space fill 
model highlighting the RNA 
template binding tunnel/active 
site presence between three 
domains. Colouring scheme as 
in A 
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date, remdesivir (Veklury) is the only FDA-approved com-
pound for the treatment of COVID-19 [46]. Remdesivir is a 
single Sp isomer of 2-ethylbutyl L-alanine phosphoramidate 
pro-drug that inhibits RNA synthesis and hence viral repli-
cation [47, 48]. The efficacy of chain-terminating nucleotide 
analogues requires viral RdRp to recognize and successfully 
incorporate the active form of the inhibitors into the growing 
RNA strands. Remdesivir diphosphate binding to COVID-
19 virus RdRp/NSP12 has been modelled by superposition-
ing with sofosbuvir bound to HCV NS5b. Remdesivir is 
a metabolically active form that works by inhibiting viral 
RNA-dependent RNA-polymerase even with proofreading 
by viral exoribonuclease, which facilitates premature ter-
mination of viral RNA. Molnupiravir, which also inhibits 
RdRp, is a biological pro-drug of β-D-N(4)-hydroxycytidine 
(NHC), a nucleoside analogue with antiviral activity against 
SARS-CoV, SARS-CoV-2, MERS-CoV, respiratory syn-
cytial virus, influenza virus, hepatitis C virus, bovine viral 
diarrhoea virus, and Ebola virus [47, 49]. Molnupiravir has 
shown beneficial effects in mildly and moderately sympto-
matic COVID-19 patients. Remdesivir, being a pro-drug, 
is metabolized into its active form, GS-441524 [50]. This 
metabolite, which is the predominant metabolite of remdesi-
vir in plasma, is an effective inhibitor of RNA replication of 
SARS-CoV-2 in Vero E6 and other cells.

The aim of this study was to conduct an initial virtual screen 
of FDA-approved compounds in the DrugBank database, using 
2D similarity screening to identify molecules with similar 
characteristics to remdesivir and molnupiravir. Subsequently, 
molecular docking was used to narrow the search to com-
pounds with binding interactions comparable to remdesivir 
and molnupiravir. We then selected the most promising hit 
compounds to check the stability of protein–ligand interaction 
through molecular dynamic (MD) simulation.

Material and methods

FDA‑approved compound preparation

FDA-approved compounds for high-throughput virtual 
screening against RdRp protein were downloaded from 
DrugBank (https:// go. drugb ank. com/). The compounds were 
converted to 3D and mol2 file format by adding hydrogen 
molecules through the molconvert tool of InstJChem, Che-
mAxon software (http:// www. chema xon. com). Remdesivir 
[51] was used as a reference compound against RdRp.

2D similarity screening

The similarity between the reference compound remdesivir 
and FDA-approved compounds was calculated using the 

ScreenMD programs of InstJChem software (ChemAxon) 
[52]. Tanimoto coefficients (Tc) to quantify dissimilarity 
between reference and FDA-approved compounds were gen-
erated and ranked according to the Tc value. The threshold for 
Tanimoto coefficients (Tc) was set at ≥ 0.50. The dissimilarity 
score was then converted to a compound similarity score by 
subtraction (1-dissimilarity). The Tc molecular descriptor is 
a set of values associated with the compound’s structure. In 
this Tc calculation, we used a 2D fingerprint-based similarity 
search, the fastest and most robust compound-based approach, 
to screen the compounds from the multi-million compound 
database.

Preparation of the RdRp structural model

The RdRp 2.95 Å resolution structural model determined 
by cryo-electron microscopy was downloaded from Pro-
tein Data Bank (PDB) (PDB id: 7BTF). RdRp RNA poly-
merase is a complex of three subunits: Non-Structural Pro-
tein 7 (NSP7, chain-C), Non-Structural Protein 8 (NSP8, 
chain-B and D), RNA-directed RNA-polymerase (NSP12, 
chain-A), and zinc ions  (Zn2+) [53]. From the structural 
model, we removed water molecules,  Zn2+, NSP7, and 
NSP8. The protein structure containing NSP12 (chain-A; 
Fig. 1) was prepared by adding missing unresolved resi-
dues using Swiss Model [54]. However, some residues 
from the N-terminal and C-terminal regions remained 
unresolved, but did not affect binding interactions because 
of their distance from the active site. After that, we added 
hydrogen atoms and subjected them to energy minimiza-
tion using UCSF Chimera [55]. For MD simulation, two 
 Zn2+ ions that contribute to RdRp were added to the struc-
tural model using MODELLER [56].

Prediction of the active binding site

Residues involved in the RdRp active site were identified 
by literature survey [57]. Along with this, we cross-verified 
predictions of the binding site using the COACH meta-
server [58]. Predicted residues and residues identified from 
the literature [57] were used to perform molecular docking.

Molecular docking

Molecular docking was performed using AutoDock tools 
for the reference compounds and screen hit compounds. 
For docking purposes, the 3D formats of the reference 
compound and lead compounds were prepared by adding 
hydrogen bonds using the ‘Molconvert’ tool in ChemAxon 
software. AutoDock Tools (ADT) 1.5.6 [59] was used for 
the RdRp structure preparation, in which we added polar 

https://go.drugbank.com/
http://www.chemaxon.com
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hydrogen and charges by Kollman charges methods [60]. 
The grid points 102 (x) × 108 (y) × 112 (z) and grid cen-
tre point 174.056 × 180.193 × 210.798 with a spacing of 
0.375 Å were assigned to the protein. We kept all other 
docking parameters for this study as a default value. Grid 
maps were calculated using Autogrid4, and docking was 
performed using Autodock4 [61]. A total of 10 conforma-
tions were generated and sorted according to binding energy. 
Compounds that show the highest binding energy were 
selected for further study. Interactions between the selected 
compounds and RdRp were checked using protein–ligand 
interaction profile (PLIP) [62].

Clustering

After molecular docking, we performed clustering for the 
selected hit compounds using the online ChemBioServer 
[63], based on the hierarchical clustering methods. Cluster-
ing was performed using the Clustering Linkage Selection-
Ward linkage clustering method and Distance Selection-
Soergel Distance method. For this clustering method, we 
used the 166-bit Open Babel MACCS fingerprint to generate 
the compound fingerprint. Through this hierarchical cluster-
ing approach, data were analysed iteratively, such that at 
each step, a pair of similar clusters were merged or a large 
cluster divided. This gives the ability to analyse large hetero-
geneous datasets. We identified homogeneous subsets from 
the heterogeneous datasets based on the similarity measures 
[64]. Selected compounds were compared with the refer-
ence compounds to check the difference in structure using 
ProFit server [65]. The most basic ProFits function is the 
superimposition of two ligand structures with provision for 
entering the zones over which the fitting and RMSD calcu-
lation is performed. The compounds that fell into the top 
ranked cluster were selected for further study by molecular 
dynamics simulation.

MD simulation

Reference and screen hit compounds were used for 50-ns MD 
simulation using GROMACS (Version-5.1.4) [66]. GRO-
MOS 53A6 force fields were used to generate the topology of 
protein [67]. The binding orientation of hit compounds was 
obtained after from the docking approach described above. 
The topology for the selected hit compounds was created 
using the PRODRUG online tool [68]. The simple point 
charge (SPC216) water molecules were used in solving the 
RdRp-hit compound complexes. All systems were neutral-
ized by  Na+ or  Cl− ions and energy minimization performed 
to relax the overall system. Temperature and pressure were 
stabilized with NVT and NPT. After 50-ns simulation, we 
calculate the root mean square fluctuation (RMSF) (g_rmsf), 
root mean square deviation (RMSD) (g_rms), and radius of 

gyration (Rg) (g_gyrate). Finally, we calculated the hydro-
gen bonds formed between compound and RdRp and protein 
solvation.

Binding‑free energy calculation

BFE plays a significant role in drug discovery, giving a 
quantitative estimation of the ligands binding to the protein. 
After completion of the MD simulation, we used the sta-
ble region of the RdRp-compound complex to calculate the 
binding-free energy (BFE), essential for studying the recip-
rocal recognition and binding of protein and ligands. The 
binding-free energy value is an accurate standard for evalu-
ating the bending degree of proteins to accommodate ligands 
[69, 70]. The binding-free energy for selected hit compounds 
was calculated using molecular mechanics energies com-
bined with Poisson-Boltzmann (MM-PBSA) method using 
the g_mmpbsa tool [71]. We used the g_mmpbsa module in 
GROMACS for energy change under vacuum conditions, 
calculated using molecular mechanics (MM) methods. PB 
shows the polar part of solvent-free energy of systems cal-
culated by the Poisson-Boltzmann equation. The non-polar 
part of solvent-free energy systems is fitted by the solvent-
accessible surface area (SASA).

where ΔEele and ΔEvdW are electrostatic and Van der 
Waals components, respectively. ΔGpol and ΔGnonpol are 
polar and non-polar components, respectively. TΔS is the 
temperature and entropic contribution toward binding-free 
energy (BFE).

Tools and software used for data analysis

The RdRp-ligand complex interaction was visualized through 
PyMOL (https:// pymol. org/2/). The 2D plot of RMSD, RMSF, 
Rg, RdRp-solvent hydrogen bond interaction, and RdRp-ligand 
hydrogen bond interaction of MD simulation graph was gener-
ated by Xmgrace (https:// plasma- gate. weizm ann. ac. il/ Grace/).

Results and discussion

Compound screening using 2D similarity search

A total of 2509 compounds approved by FDA were down-
loaded from DrugBank in SDF format (https:// go. drugb ank. 
com/) and converted to 3D mol2 format by adding hydro-
gen. All compounds were converted in 3D mol2 format 
without error, ready for high-throughput virtual screening 
against RdRp. These 2509 compounds were used for the 

ΔGbind = ΔEvdW + ΔEele + ΔGpol + ΔGnonpol − TΔS

https://pymol.org/2/
https://plasma-gate.weizmann.ac.il/Grace/
https://go.drugbank.com/
https://go.drugbank.com/
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2D similarity search, with remdesivir drug as a reference 
(query) compound. This reduced the library to 1299 com-
pounds with Tc values ≥ 0.50 (Fig. s1). From this set of com-
pounds, we selected the compounds with Tc values ≥ 0.8. 
There were 269 compounds within the score range 0.8–0.9, 
with a further 51 in the Tc range 0.9–1 score range. This 
average chemical fingerprint (CF) Tanimoto (Tan) score 
ranges between 0 and 1 Tc, with a higher Tc score indicat-
ing that the compound is more similar to the reference com-
pound and vice versa. We selected 320 compounds applying 
the criterion of Tc value ≥ 0.80 (Fig. s1), and the selected 
compounds were used for molecular docking.

Preparation of the RdRp structural model 
and validation

The three-dimensional co-ordinates of the RdRp structural 
model were downloaded from PDB (PDB ID: 7BTF). After 
modelling missing residues, we analysed the protein structure 
by Ramachandran plot (Fig. s2A). RdRp consists of a total 
of 928 amino acids. Of these, 760 residues (89.5%) are in the 
most favoured region, 82 residues (9.7%) are present in the 
additional allowed region, five amino acids (0.6%) fall in a 
generously allowed region, and two (0.2%) residues belong to 
the disallowed region (Fig. s2A). The modelled protein was 
energy minimized after addition of hydrogen atoms using 
the steepest descent steps = 100, steepest descent step size 
0.02 Å, conjugate gradient steps = 10, and conjugate gradient 
steps size of 0.02 Å. The final energy minimized structure is 
shown in Fig. s2B. Further analysis of the modelled protein 
using Verify3D to determine the compatibility of the atomic 
model based on the location and environment showed that 
modelled protein passed the quality criteria with 88.12% of 
residues having an average 3D-1D score of 0.2 or better.

Finding active binding sites

Active site residues in RdRp were identified through an anal-
ysis of the literature and cross-verified the binding site using 
the COACH meta-server. Residues involved in the substrate/
template binding tunnel are V588, I589, G590, K593, W598, 
M601, G616, W617, D618, Y619, C622, S681, S682, G683, 
D684, A685, T686, T687, A688, Y689, N691, N695, M755, 
I757, L758, S759, D760, D761, A762, V763, K798, W800, 
E811, F812, C813, S814, Q815, and P830. This binding 
tunnel includes elements of the finger, thumb, and palm 
domains (Fig. 1B). The binding residues identified from 
the literature survey were also predicted using the COACH 
meta-server. We selected the top two consensus binding resi-
dues predicted by the COACH server, which show C-scores 
of 0.08 (1st site) and 0.06 (2nd site). This C-score is the 
confidence score of the prediction, ranging from 0 to 1 with 
a higher score indicating a more reliable prediction.

Molecular docking conformation analysis

The 320 FDA-approved compounds identified by 2D simi-
larity to remdesivir were used for molecular docking using 
AutoDock. Before that, we added hydrogen atoms to the 
RdRp protein, and the RdRp protein was neutralized by add-
ing gasteiger charge molecules. The binding energies (BE) for 
these compounds were calculated, and the best performing 
compounds were selected on the basis of a BE cut-off value 
of − 10.00 kcal/mol (Table 1). For comparison, the reference 
compound remdesivir shows a binding energy of − 3.84 kcal/
mol. Remdesivir forms hydrogen bond interactions with 
RdRp via residues G590, K593, and S759 with a distance 
of 3.2 Å (Table s1). There are also hydrophobic interactions 
with A688, D760, and D761 (Table s1). The active metabo-
lite GS-441524 forms hydrogen bonds with residues K593 
(3.8 Å), Q815 (3.3 Å), D865 (3.6 Å), and Y925 (2.7 Å) and 
hydrophobic interactions with P832 and D865. Both remde-
sivir and GS-441524 bind into the substrate/template binding 
tunnel (Fig. 2).

The 320 lead compounds were also docked into the bind-
ing tunnel. The top ten compounds with the lowest binding 
energy were selected (Table 1) and subsequently docked into 
the same position as remdesivir (Fig. 3). Previous studies 
have shown that some compounds from the list of hits do 
interact with RdRp [72–77]. Among the selected ten com-
pounds, risperidone (DB00734) shows the lowest binding 
energy of − 12.07 kcal/mol, and the highest binding energy 
is shown by tedizolid phosphate (DB09042), the binding 
energy of which is − 10.06 kcal/mol. All ten docked com-
pounds docked in the binding tunnel with significant overlap 
(Fig. 3).

Risperidone (DB00734) shows the lowest binding energy, 
which forms putative hydrophobic interactions with L614, 
D618, W800, H810, and E811 and H-bonds at D618 (3.5 Å), 
Y619 (3.1 Å), and E811 (3.6 Å) (Table s1). This compound 
also forms salt bridges at D761 (5.0 Å) and E811 (3.4 Å) 
(Fig. 4). Risperidone is a second-generation anti-psychotic 
medication used to treat mental health disorders such as 
bipolar mania, schizophrenia, and psychosis or as an adjunct 
in severe depression [52, 78]. Compared with remdesivir, it 
shows a 0.85 average chemical fingerprint Tanimoto simi-
larity score. Rimegepant (DB12457) showed the 2nd low-
est binding energy of -11.43 kcal/mol. This drug is used 
as an oral calcitonin gene-related peptide (CGRP) recep-
tor antagonist for the acute treatment of migraines in adults 
[79]. This compound shows a 0.90 average chemical finger-
prints Tanimoto score compared with remdesivir. Rimege-
pant (DB12457) forms a hydrogen bond with D618 (2.7 Å), 
Y619 (2.9 Å), K621 (3.0 Å) (2.9 Å), E811 (2.7 Å), and C813 
(3.5 Å) and hydrophobic interactions with D618 and D761 
(Fig. 4) (Table s1). Irinotecan (DB00762) shows a 0.93 aver-
age chemical fingerprint Tanimoto similarity score, and this 
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Table 1  Binding characteristics and 2D structures of putative RdRp- binding compounds

Compound Name Binding
Energy 
kcal/mol

Hydrophobic 
Interac�ons

Hydrogen
Bonds
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Indocyanine green -
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Pralse�nib -
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OO
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N

N
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O

O

H3C

OHH3C
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compound had − 11.40 kcal/mol binding energy by form-
ing hydrophobic interactions with K593, L758, and D761 
and hydrogen bonds with G590 (3.2 Å) and T591 (3.2 Å) 
(Fig. 4) (Table s1). This drug is used to treat rectal and colon 
metastatic carcinoma through its action as an antineoplastic 
enzyme inhibitor [80].

Indocyanine green (DB09374) is a water-soluble compound 
used as a diagnostic agent for cardiac output, hepatic function, 
liver blood flow, and ophthalmic angiography [81, 82]. This 
compound showed a binding energy of − 10.84 kcal/mol and 
a 0.82 average chemical fingerprint Tanimoto similarity score 
compared to remdesivir. The drug forms putative hydrophobic 

Table 1  (continued)

Lonafarnib -10.09

G590, T591,

Tedizolid
phosphate -

Br

BrCl

O

O

N

N

N

NH2

C
H

3

N
N

N

N

N

F

N

O P O

H
O

O
H

O

O

Pona�nib -10.11

Capma�nib -10.11

N

N
CH3

F

F F

N
H

O

H3C

N

N

N

Fig. 2  Remdesivir and GS-441524 binding to SARS-CoV-2 RdRP. 
Central image: Remdesivir (yellow) and its primary metabolite 
GS-441524 (green) bind to the mouth of the binding tunnel formed at 
the junction of the finger, palm, and thumb domains (colour scheme 

as in Fig.  1). Left and right images: Remdesivir and GS-441524 
(white) form hydrophobic interactions and hydrogen bonds with resi-
dues of RdRp (cyan)
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interactions with V493, V495, A512, Y516, V557, I562, R569, 
T687, and A688 and hydrogen bonds with S501 (3.0 Å) (3.7 Å), 
G503 (3.8 Å), A558 (3.7 Å), V560 (3.8 Å) (2.9 Å), and A685 
(2.6 Å) (Fig. 5; Table s1). Alectinib (DB11363) is a second-
generation oral kinase inhibitor used to inhibit anaplastic 
lymphoma kinase (ALK) tyrosine kinase activity specifically 
to treat metastatic non-small cell lung cancer [83]. This com-
pound is proposed to form hydrogen bonds at R624 (4.0 Å), 
D761 (2.6 Å), A762 (3.0 Å), K798 (3.9 Å), H810 (3.0 Å), and 
E811 (3.2 Å) and hydrophobic interactions at D760, D761, 
V763, and W800 (Fig. 5; Table s1) with a binding energy 
of − 10.51 kcal/mol. When compared to remdesivir, it shows 
a Tanimoto similarity score of 0.83. Pralsetinib (DB15822) 
shows a 0.89 average chemical fingerprints Tanimoto similarity 
score and − 10.34 kcal/mol binding energy, forming hydrogen 
bonds with G590 (2.8 Å), Y689 (2.9 Å), and S759 (3.7 Å) and 

hydrophobic interactions with A580, I589, and L758 (Fig. 5; 
Table s1). This drug is an inhibitor of the tyrosine kinase activ-
ity of the RET receptor, used to treat metastatic RET-driven 
non-small cell lung cancer [84]. Although a phase 1/2 trial of 
this drug is still ongoing, this drug was granted accelerated FDA 
approval on 4 September 2020, to treat metastatic RET-fusion-
positive non-small cell lung cancer under the brand name 
GAVRETO™ by Blueprint Medicines.

From the list of ten compounds, ponatinib (DB08901), 
capmatinib (DB11791), lonafarnib (DB06448), and tedizolid 
phosphate (DB09042) showed binding energies of − 10.11 kcal/
mol, − 10.11 kcal/mol, − 10.09 kcal/mol, and − 10.06 kcal/mol, 
respectively. Docking predicts that ponatinib forms A688, L758, 
and D761 hydrophobic interactions and H-bonds with G590 
(2.9 Å), W617 (4.0 Å), and D761 (2.5 Å) (Fig. 6; Table s1). This 
compound is a kinase inhibitor used to treat chronic myeloid 

Fig. 3  Binding of virtual screen 
hit compounds to SARS-CoV-2 
RdRp. Ensemble binding of the 
ten identified hit compounds 
from the virtual screen is shown 
docked to the binding tunnel as 
for the reference compounds in 
Fig. 2. RdRp colour scheme as 
in Fig. 1. There is a high degree 
of overlap in the putative bind-
ing sites for the compounds

Fig. 4  Modelled interactions between SARS-CoV-2 RdRp and risperi-
done, rimegepant, and irinotecan. Protein–ligand interactions formed 
between the screen hit compounds (grey) by hydrophobic interaction 

(grey dotted line), salt bridges (dotted yellow line), and H-bonds (solid 
yellow line) with numbered residues (cyan) in the binding tunnel of 
RdRp are shown
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leukaemia (CML) [85]. It shows a 0.82 average chemical finger-
prints Tanimoto score compared with the reference compound. 
Capmatinib (DB11791) drug is also an FDA-approved kinase 
inhibitor, targeting c-Met receptor tyrosine to treat non-small cell 
lung cancer with Exon 14 skipping mutations [86]. This com-
pound shows a 0.81 similarity score, and the docking predicts 
that it forms hydrophobic interactions with Y619, L758, and 
D761 and hydrogen bonds with D618 (3.9 Å), Y619 (2.8 Å), 
S759 (2.8 Å), D761 (4.0 Å), and C813 (4.0 Å) (Fig. 6; Table s1). 
Lonafarnib (DB06448) and tedizolid phosphate (DB09042) 
show Tanimoto scores of 0.82 and 0.84, respectively. DB06448 
is a potent farnesyl transferase inhibitor prescribed to reduce 
mortality associated with Hutchinson-Gilford progeria syn-
drome (HGPS) [87]. Tedizolid phosphate is an oxazolidinone 
class antibiotic that inhibits bacterial protein synthesis and is 

proven effective in treating certain Gram-positive bacterial infec-
tions [88]. Residues predicted to be involved in hydrophobic and 
hydrogen bond interactions are shown in Table s1, which lists 
residues present within 5 Å of the selected FDA drug.

Clustering

After docking, we performed clustering analysis for the 
selected ten hit compounds and the reference compound rem-
desivir, to re-rank them using the ChemBioServer tool. Four 
clusters were identified using this approach (Fig. 7). The top 
Cluster-1, which contains remdesivir, ponatinib (DB08901), 
tedizolid phosphate (DB09042), capmatinib (DB11791), and 
pralsetinib (DB15822) were used for MD simulation and 
binding-free energy calculation (Fig. 7).

Fig. 5  Modelled interactions between SARS-CoV-2 RdRp and indo-
cyanine green, alectinib, and pralsetinib. Protein–ligand interactions 
formed between the screen hit compounds (grey) by hydrophobic inter-

action (grey dotted line), salt bridges (dotted yellow line), and H-bonds 
(solid yellow line) with numbered residues (cyan) in the binding tunnel 
of RdRp are shown

Fig. 6  Modelled interactions between SARS-CoV-2 RdRp and ponatinib, 
capmatinib, lonafarnib, and tedizolid phosphate. Protein–ligand inter-
actions formed between the screen hit compounds (grey) by hydropho-

bic interaction (grey dotted line), salt bridges (dotted yellow line), and 
H-bonds (solid yellow line) with numbered residues (cyan) in the binding 
tunnel of RdRp are shown
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The selected ten compounds were compared with the ref-
erence remdesivir drug to check the structural difference 
(Fig. s3). The ProFit Server compares the two structures and 
gives an RMSD fit score based on fitting the two structures. 
Risperidone (DB00734) shows the highest RMSD fit score 
(6.916), and the lowest RMSD fit score is 3.783, shown 
by irinotecan (DB00762). The RMSD fit scores for all 10 
selected compounds are shown in Table 2.

Molecular dynamic analysis

The four best FDA-approved compounds after the virtual 
screening and clustering were further investigated for their 
binding characteristics and dynamic behaviour. Along with 
these compounds, we include the active metabolite GS-441524. 
In a 50-ns MD simulation of protein–ligand complexes with 
two  Zn2+ restraints, all systems achieved stability after 3 ns 
with RMSD value between 0.25 and 0.55 nm throughout the 
simulation. Capmatinib (Fig. 8: cyan) showed an increase in 

RMSD value from the start of simulation up to 17.5 ns, fol-
lowed by a steady fluctuation between 0.45 and 0.55 nm up to 
end of 50-ns simulation. Remdesivir (Fig. 8: magenta) showed 
a steady RMSD value up to 35 ns followed by a slight decrease 
in the RMSD value between 0.4 and 0.5 nm throughout the 
50-ns simulation (Fig. 8). In the case of a second reference 
compound molnupiravir (Fig. 8: purple) used for comparison 
shows a slow increase in RMSD occurs in the initial period up 
to 1 ns. It then shows a slight decrease in RMSD value before a 
slow increase in RMSD value throughout the simulation. The 
end simulation’s end shows the 0.4 nm RMSD value (Fig. 8: 
purple). Overall, remdesivir and molnupiravir show the same 
RMSD pattern, although molnupiravir shows a slightly higher 
RMSD value throughout the time course of the MD simulation.

Tedizolid phosphate (Fig. 8: maroon) shows a greater 
RMSD value after 38 ns, between 4.5 and 5.5 nm RMSD 
(Fig. 8). Pralsetinib unusually showed stable RMSD values 
throughout the simulation but with lower RMSD compared 
with remdesivir, tedizolid phosphate, and capmatinib of 

Fig. 7  Clustering of putative 
inhibitors of SARS-CoV-2 
RdRp. ChemBioServer cluster-
ing found four clusters based on 
hierarchical clustering. The first 
cluster shows five compounds, 
including the reference com-
pound remdesivir

Table 2  Predicted RMSD 
scores for fitting of putative 
RdRp inhibitors compared to 
reference compound

Compound name Fit RMSD score Compound name Fit RMSD score

Risperidone (DB00734) 6.916 Pralsetinib (DB15822) 4.983
Rimegepant (DB12457) 4.712 Ponatinib (DB08901) 4.395
Irinotecan (DB00762) 3.783 Capmatinib (DB11791) 5.120
Indocyanine green (DB09374) 5.417 Lonafarnib (DB06448) 6.205
Alectinib (DB11363) 4.794 Tedizolid phosphate (DB09042) 4.366
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between 3.0 and 4.5 nm (Fig. 8). In the case of ponatinib, 
the same pattern of fluctuation is seen up to 27-ns simula-
tion; after that, a slight increase in the RMSD is evident in 
comparison to the other hit compounds (Fig. 8: green) up to 
the end of the simulation. Compared to remdesivir, it shows 
a lower RMSD value at the start of the simulation, but after 
10 ns, its shows a higher RMSD compared to the reference 
compound. Active metabolite GS-441524 (Fig. 8: grey) 
shows an increase in RMSD value at the start of simulation 
up to 1 ns, before we observe a steady increase in the RMSD 
value up to the end of the 50-ns MD simulation. Overall, 
the RMSD calculations suggest that binding of the iden-
tified compounds significantly stabilized the RdRp-ligand 
complex structure in a way similar to that achieved with the 
reference compounds known to be effective RdRp inhibitors.

Further analysis was performed by calculating RMS fluc-
tuations to provide information about the effects of the puta-
tive inhibitors on motions in RdRp. RMSF plots were drawn 
as a function of residue position for the 50-ns simulation. 
RMSF value was calculated by plotting motion (in nm) ver-
sus residue (Fig. s4). Capmatinib and ponatinib showed higher 
RMSF values compared to remdesivir, tedizolid phosphate, 
and pralsetinib, consistent with conformational shifts associ-
ated with binding these compounds. Fluctuation was induced 
by capmatinib at RdRp residue regions 220–230, 250–260, 

375–400, 450–500, 530–650, and 760–775 amino acids when 
compared with remdesivir, tedizolid phosphate, and pralsetinib. 
In the case of ponatinib, a higher RMSF value is seen in the 
first (N-terminal region) 175 amino acids and a higher RMSF 
value between 875 and 910 amino acids (Fig. s4). GS-441524 
compound showed the same pattern of RMSF values across the 
simulation as shown by remdesivir but with overall lower RMSF 
values than for the pro-drug. In general, residues in the binding 
tunnel (residues 585–830) showed lower RMSF values when it 
is bound to remdesivir and the selected candidate compounds, 
suggesting stabilization of the structure. Gyration (Rg) analysis 
provides a measure of the protein–ligand complex compactness. 
In the initial simulation stages, Rg values for RdRp with either 
reference or hit compounds were decreased. However, after 
50-ns simulation, Rg values for reference and hit compounds 
were consistently between 3.1 and 3.3 nm (Fig. s5), consistent 
with comparable compactness in the structure of the complexes. 
Comparing compactness with the known remdesivir complex 
shows a lower Rg value at the initial simulation than the known 
remdesivir compound. Only ponatinib and the reference com-
pound molnupiravir showed some evidence of decreased com-
pactness, with Rg values between 3.2 and 3.3 nm (Fig. s5).

Hydrogen bond formation between protein and ligand and 
protein and solvent throughout the simulation was also ana-
lysed (Fig. 9). Hydrogen bond formation is of course critical 

Fig. 8  Molecular dynamic 
simulation of RdRp-ligand 
complexes. RMSD of the Cα 
backbone for selected protein–
ligand complex compounds for 
50-ns MD simulation

Fig. 9  Trajectory of hydrogen 
bond interactions between 
RdRp and selected hit com-
pounds during MD simulation. 
A Total number of hydrogen 
bonds formed between RdRp-
ligand complex. B Total number 
of hydrogen bond interactions 
between protein and solvent
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in stabilizing the protein–ligand complex and is responsible 
for drug specificity, metabolization, and adsorption in the 
body. Hydrogen bond formation between RdRp and tedizolid 
phosphate involved more hydrogen bonds than was seen with 
reference compounds, with more than ten hydrogen bonds 
forming between 3–6- and 8–9-ns simulation (Fig. 9A). In 
the case of reference compounds remdesivir and GS-441524 
compound, fewer than five hydrogen bonds are formed. Cap-
matinib showed no more than two hydrogen bonds throughout 
the simulation. Pralsetinib is predicted to make more than 
three hydrogen bonds between 5- and 22-ns simulation but 
after that makes fewer than three hydrogen bonds up to the 
end of 50-ns simulation (Fig. 9A). Hydrogen bond formation 
between protein and solvent throughout the 50-ns simula-
tion (Fig. 9B) was constant throughout the simulation for all 
RdRp-ligand complexes, with between 1600 and 2000 hydro-
gen bonds (Fig. 9B). All hit compounds and reference com-
pounds showed that hydrogen bond formation correlated posi-
tively with simulation time. Through this protein–ligand and 
protein-solvent hydrogen bond interaction, we conclude that 
reference compounds and hit compounds interact with RdRp 
effectively and tightly through this hydrogen bond interaction.

Principle component analysis (PCA)

The eigenvectors, eigenvalues, and their projection were 
calculated using the essential dynamics methods to perform 
PCA. Through this method, we analysed the motion of the 
protein–ligand complex during simulation. These eigenvec-
tors determine the overall motion of the particular protein. 
The protein–ligand complexes can be explained by 2D pro-
jection plot generation in PCA. We selected the first two 
principal components, PC1 and PC2, to predict the signifi-
cant motions. PCA for hit and reference compounds showed 
stable motion, although capmatinib did show more moments 
on PC1 and PC2. Reference compound remdesivir showed 
a more positive PC value (Fig. s6). Tedizolid phosphate and 
pralsetinib showed the same moments on the PC1 and PC2 
axis, indicating stable clusters.

Free energy calculation

We used trajectory files in MMPBSA for both the refer-
ence and screen hit compounds for free energy calculation. 
Through this, we analysed the interactions by energy point 
and identified the configuration of the compound in the 
complex. We used the 100 frames from the 50-ns trajectory 
files to calculate the free energy. After MD simulation for 
remdesivir, the free energy was − 835.634 kJ/mol and for 
GS-441524 was − 665.436 kJ/mol. The other three hit com-
pounds, tedizolid phosphate, capmatinib, and pralsetinib, 
showed − 51.972 kJ/mol, − 67.057 kJ/mol, and − 130.474 kJ/

mol, respectively (Table s2). Ponatinib shows the highest 
binding energy and molnupiravir the lowest. Van der Waal, 
electrostatic, polar solvation energy, and SASA energy val-
ues are also shown in Table s2.

Conclusion

In this study, a virtual screen has identified and character-
ized the binding of a series of FDA-approved compounds 
as potential new inhibitors of SARS-CoV-2 RdRp. RdRp 
is essential for RNA synthesis in all positive-strand RNA 
virus replication in coronavirus. From an initial 2509 FDA-
approved compounds, a cluster of four compounds were 
identified that could be modelled as stable ligands for RdRp 
that bound with similar characteristics as previously iden-
tified inhibitors remdesivir and molnupiravir and the rem-
desivir metabolite GS-441524. Based on calculated binding 
energies and measures of conformational movement in the 
protein–ligand complexes, these compounds bind strongly 
to the template binding/active site region of the polymerase 
via a range of hydrophobic, dipole, and ionic interactions to 
form stable complexes. On that basis, pralsetinib (DB15822), 
ponatinib (DB08901), capmatinib (DB11791), and tedizolid 
phosphate (DB09042) may have sufficient potential for treat-
ment of SARS-CoV-2 infection to be worth following up with 
evaluation of their effects in biological models.
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