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Abstract The vascular obstructive thrombus is composed of a mesh of fibrin fibers with blood
cells trapped in these networks. Enhanced fibrin clot formation and/or suppression of
fibrinolysis are associated with an increased risk of vascular occlusive events. Inhibitors
of coagulation factors and activators of plasminogen have been clinically used to limit
fibrin network formation and enhance lysis. While these agents are effective at
reducing vascular occlusion, they carry a significant risk of bleeding complications.
Fibrin clot lysis, essential for normal hemostasis, is controlled by several factors
including the incorporation of antifibrinolytic proteins into the clot. Plasmin inhibitor
(PI), a key antifibrinolytic protein, is cross-linked into fibrin networks with higher
concentrations of PI documented in fibrin clots and plasma from high vascular risk
individuals. This review is focused on exploring PI as a target for the prevention and
treatment of vascular occlusive disease.We first discuss the relationship between the PI
structure and antifibrinolytic activity, followed by describing the function of the protein
in normal physiology and its role in pathological vascular thrombosis. Subsequently, we
describe in detail the potential use of PI as a therapeutic target, including the array of
methods employed for the modulation of protein activity. Effective and safe inhibition
of PI may prove to be an alternative and specific way to reduce vascular thrombotic
events while keeping bleeding risk to a minimum.

Key Points
• Plasmin inhibitor (PI) is a key protein that inhibits fibrinolysis and stabilizes the fibrin network.
• This review is focused on discussing mechanistic pathways for PI action, role of the molecule in disease states, and

potential use as a therapeutic target.
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Introduction

Despite advances in therapies, vascular occlusive disease
remains a major cause of both mortality and morbidity
worldwide.1 The risk of vascular thrombosis increases in
conditions characterized by insulin resistance and deranged
glucose metabolism.2 Following external vessel injury, the
cellular and acellular components of coagulation are activat-
ed to form a thrombus and limit blood loss, a normal
physiological response. However, this becomes a pathologi-
cal process when it occurs following internal vessel injury,
such as rupture of an atheromatous plaque, leading to vessel
occlusion and consequently resulting in organ damage.3

Following vessel injury, platelets attach to the site of vascular
lesion, become activated, and aggregate to help in thrombus
formation while also contributing to the activation of coag-
ulation factors. Tissue factor released following vessel injury
starts a cascade of reactions that culminate in the formation
of thrombin that converts soluble fibrinogen into the insolu-
ble fibrin network, which forms the skeleton of the throm-
bus. When the fibrin network forms, the fibrinolytic system
is activated to limit thrombus extension, a process controlled
by a fine balance between fibrinolytic and antifibrinolytic
proteins, highlighting the intricacy of the system.4

While several studies have shown the association between
fibrin network characteristics and vascular disease,5–7 it was
not until relatively recently that a direct interaction between
fibrin clot lysis and clinical outcome(s) was shown.8,9 There-
fore, targeting fibrin clot lysis is a legitimate strategy to reduce
thrombosis risk, particularly in hypofibrinolytic states such as
diabetes. Plasmin inhibitor (PI) is a key antifibrinolytic protein
that is cross-linked into fibrin networks by activated factor (F)
XIII. Therefore, reduction in PI concentrations in blood clots
represents a credible approach to improve fibrinolysis, conse-
quently resulting in reduced thrombosis risk.

In this review, we discuss the role of PI as an antifibri-
nolytic protein, focusing on mechanistic pathways, role of

this protein in hypofibrinolytic states, and possible
approaches to modulate protein function, to reduce throm-
bosis risk. Our literature search strategy is detailed in
Supplementary Material S1 (available in the online version).
All titles and abstracts were screened, and only relevant
articles written in English with full text provided were then
selected.

Plasmin Inhibitor a Key Antifibrinolytic
Protein

Plasmin inhibitor is termed PI (or serpin F2) and was first
discovered in 1976 independently by three groups and was
referred to as antiplasmin, α2-PI, or primary PI.10–12 For the
purpose of this review, we will adhere to the term “PI”
throughout. PI is a direct inhibitor of plasmin by forming
plasmin–antiplasmin (PAP) complexes, unlike other antifi-
brinolytic proteins that exert an indirect effect.4

Biochemical Structure and Synthesis
PI is a 464-amino-acid-long glycoprotein with a molecular
weight of approximately 70 kDa and contains atypical N- and
C-terminal sequences flanking the serpin domain
(►Fig. 1).13,14 The concentration of PI in the blood is roughly
1 µM (70 µg mL-1),11,15 and it is produced mainly in the liver
and also by the kidney and brain.11,15–17 PI is the primary
inhibitor of plasmin but also has the ability to inhibit
neutrophil elastase, trypsin, and activated protein C.18–22

PI has a half-life of approximately 60hours, but plasmin–PI
complexes are cleared with a half-life of 12hours.18

Different Plasmin Inhibitor Variants and Physiological
Roles
PI undergoes multiple posttranslational modifications
(PTMs), such as a sulphation of Y45723,24 and multiple N-
linked glycosylations at residues N99, N268, N282, and
N289.23,24 PI also undergoes proteolytic processing at both

Fig. 1 Schematic representation of diversity forms of PI complexed with plasmin. PI includes a native form, which is 464 residues in length
with N-terminal methionine (Met-PB-PI) and a truncated form, following digestion of the peptide bond between P12 and N13, leading to
12-residue shorter form (Asn-PB-PI). The N-terminal Q14-residue of PI is cross-linked to K303 in the Aα-chains of fibrinogen, and this process is
performed by antiplasmin-cleaving enzyme (ACE) and catalyzed by activated coagulation factor XIII in the presence of Ca2þ ions. The
C-terminal portion of antiplasmin contains a 51-residue extension with a secondary binding site that recognizes the lysine-binding sites of
plasminogen and plasmin. PI, plasmin inhibitor.
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N- and C-termini, explaining the diversity of circulating PI
isoforms or variants (►Fig. 2).24

N-Terminal Variation
Native PI contains 464 residues with the first amino acid
being methionine.10,12,24,25 However, only approximately
30% of the circulating PI occurs in this Met–PI form24 and
nearly 70% of the circulating protein resides within an N-
terminally truncated form.26 In this truncated form, the first
12 residues of Met–PI are removed by digesting the peptide
bond between P12 and N13 (►Fig. 1), giving rise to a form of
PI with N13 at its extreme N-terminus, a variant called Asn–
PI.26–28 This N-terminal proteolytic processing is performed
by a circulating plasma protease named antiplasmin-cleav-
ing enzyme (ACE), which is soluble, C-terminally truncated
form of the fibroblast activation protein (FAP), a member of
the prolyl oligopeptidase family.26,29–32

There is a functional significance and physiological impli-
cations of such proteolytic processing: recombinant Met–PI
exhibits 66% reduced cross-linking by factor XIII (FXIII)
compared with recombinant Asn–PI, while plasma-purified
Asn–PI is 13 times faster at cross-linking than plasma-puri-
fied Met–PI.25,26 In Met–PI, the major site of fibrin cross-
linking occurs via a glutamate residue (E14) at N-terminus33

which interacts with a lysine residue (K303) on fibrin34

(►Fig. 1). However, recent evidence suggests the presence
of other cross-linking sites, and this is an area of much-
needed study.35

Plasma clot stability is reduced in PI-deficient
patients.36–38 The higher activity of Asn–PI variant of the
protein is demonstrated by compromised cross-linking into
fibrin when the N-terminus is extended by 3 amino acids
using recombinant DNA technology,39 explaining the rela-
tionship between fibrinolytic efficiency and Asn–PI plasma
levels.26,40,41 Taken together, the first 12 amino acids inter-
fere with the cross-linking and reduce the antifibrinolytic
effect of PI.24

The superior antifibrinolytic effect of Asn–PI explains the
functional heterogeneity of PI in individuals with different
genetic variants. For example, the conversion of Met–PI to
Asn–PI seems to be affected by the presence of a polymor-
phism of arginine to tryptophan (pR6W, rs2070863) in the
SERPINF2 gene, with the sFAP enzyme cleaving the Met–PI
(R6) approximately eightfold faster than Met–PI (W6).42

Human studies indicate that homozygous Met–PI (W6)
patients have the shortest clot lysis times.42 A limited
number of population-based studies have indicated a pro-
tective effect of W6 allele against ischemic stroke and a
minor protective effect against abdominal aortic aneurysm
(AAA).43 However, no such protection was observed against
coronary artery disease (CAD) and myocardial infarction
(MI). In a recent study on the potential association of the
polymorphism (pR6W, rs2070863) with CAD and MI, Bronić
and colleagues reported that patients with R6W PI CC geno-
type had 3.86 times higher odds ratio of risk factor for the
CAD than the patients with R6W PI TT genotype in a group of
Croatian patients.44

C-Terminal Variation
The C-terminal region of PI is highly conserved between
human, bovine, andmurine species and extended by approx-
imately 55 amino acid residues compared with other ser-
pins.13,45 This region, which contains six lysine residues and
mediates electrostatic interactions with the lysine-binding
sites (LBS) in plasminogen, is also proteolytically proc-
essed.24,46 Also, it contains an arginine-glycine-aspartic
acid (RGD) sequence important in cell recognition and
integrin adhesion.47 A synthetic RGD sequence coupled to
PI carboxy-terminal sequence inhibited platelet activation
and increased plasmin generation, consequently facilitating
in vitro fibrin-clot lysis48,49 (►Fig. 1).

Purification of human and rat PI from plasma has yielded
two species with only one having the ability to interact with
LBS.18,50,51 The plasminogen LBS-binding form synthesized

Fig. 2 Diversity of circulating PI terminus and their physiological effects. PI is expressed and released by the liver and the kidney as a single-chain
plasmin-binding protein with a methionine (Met) residue at the N-terminus (Met-PB-PI). Posttranslational modifications of N-terminal (blue box)
and C-terminal (yellow box) result in several circulating PI forms. About 30% of PI circulates in plasma in the native. The remaining 70% of
circulating PI is N-terminally cleaved between the proline (P) residue and the asparagine (N) residue and results in the truncated form Asn-PI,
which is more effective at cross-linking. The C-terminal is found in plasma in two forms of which 70% is the full-length active form (Met-PB-PI) and
30% inactive (Met-NPB-PI). Only the active form can bind to plasmin(ogen) via a two-step process which can either be reversible or irreversible. PI,
plasmin inhibitor.
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in the liver was termed PB–PI, and the other nonbinding
form, formed in the circulation, as NPB–PI.50,52–54 It was
found that PB–PI, which accounted for approximately 65% of
circulating PI, was the rapid-acting PI, while NPB–PI, which
accounted for the remaining 35%, reacted slowly.24,50,52–57 It
has been demonstrated in vitro that purified PB–PI can
spontaneously convert into NPB–PI.58 This in vitro conver-
sion can also be performed byproteases like trypsin, elastase,
andMMP-3, producing a 26-amino-acid C-terminal fragment
unique to PB–PI, but the protease responsible for the in vivo
conversion is not known.24,59–64 The cleavage also appears to
occur at a slightly different site in vivo because monoclonal
antibodies raised against the C-terminal region reacted
differently with the in vivo- and in vitro-generated NPB–
PI.65 Studies into the importance of the C-terminal lysine
residues in inhibiting plasmin/plasminogen have yielded
inconsistent results.24 However, the most conserved C-ter-
minal lysines, K427, K434, K441, K448, and K464, are in-
volved in plasmin binding; residue K464 is particularly
important as a K464A mutation causes the greatest reduc-
tion in plasmin inhibition.66

The C-terminus of PI largely regulates protein activity and
its proteolytic removal may be of important clinical con-
sequences.24 The diagnostic test, antiplasmin activity assay,
was found to be dependent on PB–PI.24 The fraction of
circulating PB-PI seems to vary between individuals, ranging
from 10 to 60%, but the highest PI activity was obtained from
individuals with more PB–PI.67Moreover, it appears that the
C-terminal variation may also be as important as the N-
terminal variation for cross-linking to fibrin because it is PB–
PI that is primarily involved in cross-linking.68Additionally, a
polymorphism in the C-terminus of PI (R407K, rs1057335)
which exhibited linkage disequilibrium (LD) with the R6W
polymorphism was associated with a significant 23% risk

reduction for the development of AAA.43 Whether this
finding is related to a function effect of R407K or
simply secondary to LD with R6W is unclear.

Structural Information
To date, structural information for PI has been limited to the
murine species, Mus musculus.14 Valid homology models of
the human form of PI can be produced using this structure,
given the high sequence identity (75% overall), with 366
identical positions and 83 similar positions. The PI crystal
structure consists of residues 46 to 367 and 377 to 419
(►Fig. 3A). Unfortunately, residues 368 to 376 in the reactive
center loop and residues 420 to 464 of the C-terminus could
not be fitted into the electron density map, making a
complete understanding of how PI may initially interact
with plasmin more difficult to comprehend.

Murine PI is a potent inhibitor of human plasmin (ka
4.90106 M-1/second-1 and SI 1.02) showing that it is func-
tional and correctly folded, adopting the native serpin fold.
The 20 amino acid reactive center loop (residues 363–382) is
slightly shorter than most inhibitory serpins (24 residues in
antithrombin) and is fully expelled from the A β-sheet, with
the N-terminal portion of the loop being tightly packed
against the main body of the protein (►Fig. 3B). Structural
comparisonswith the antitrypsin/trypsin complex69 suggest
that the reactive center loop may be too short to make
significant interactions with plasmin outside of its active
site.

The C-terminal domain of PI interacts with the Kringle
domain of plasmin to facilitate the formation of the
PI/plasmin complex. Tight interactions with residues 410
to 419 and the main body of the protein (►Fig. 3C) position
this sequence less than 30Å from the reactive center loop,
putting it in a suitable position to act as a hook and

Fig. 3 Crystal structure of murine PI. (A) Overall topology of murine PI with the N terminus shown in cyan, reactive center loop in magenta, and C
terminus in yellow. (B) Close up of the reactive center loop (magenta) showing the N-terminus portion (363–365) making several hydrogen
bonding interactions (black dashed lines) with residues 214–216 of the main body of PI (green, selected residues labeled). The C-terminal portion
(residues 380–382) makes a specific hydrogen bonding interaction with residue K306 on the first strand of the C-sheet. (C) Close up of the
contacts between the C-terminal region (yellow) and the main body of PI (green). Several hydrogen bonds are made between the two parts of the
protein (black dashed lines); selected residues are labeled. Source: Law et al.14
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accelerating the interaction with plasmin. Residues 420 to
464 of the C-terminus, including the known plasmin-binding
residue K464, cannot be modeled to the observed electron
density, demonstrating that this region is flexible in the
absence of plasmin.

Physiological Role(s) of Plasmin Inhibitor

Circulating free plasmin uses LBS, located in the Kringle
domain, to bind PI. However, the LBS is also used by plasmin
(and plasminogen) to bind to fibrin.70 Since LBS onplasmin is
shared by both PI and fibrin, they are mutually exclusive:
fibrin-bound plasmin cannot bind to PI anymore.70 This
makes plasmin, when bound to fibrin, resistant to inhibition
by PI.70 Conversely, when PI is cross-linked to the fibrin
network, it reduces fibrin degradation through inhibition of
both plasmin binding and protein activity. PI is cross-linked
to fibrin by activated XIII (FXIIIa) and inhibits plasminogen
binding to fibrin in direct proportion to the amount incor-
porated.36,71,72 In addition, PI was found to interact with
plasminogen binding to fibrin to form a weakly bound
complex at a specific site of the plasminogen molecule and
the sitemay be 6-aminohexanoic acid-binding site, resulting
in an efficient inhibitor of fibrinolysis.73

Binding of plasminogen tofibrin induces a conformational
change in plasminogen that is key for activation by tPA.74

Additionally, the binding of plasminogen to fibrin brings it in
close proximity to fibrin-bound tPA, which can then activate
and convert plasminogen to plasmin on the fibrin surface.70

Plasmin starts clot lysis and during this process, more lysine
residues are exposed to fibrin, resulting in additional
plasminogen/plasmin binding and leading to amplification
of the fibrinolysis.75 This coactivator-mediated sequential
activation process ensures the control of clot formation and
avoids unregulated thrombus extension.70

Plasmin Inhibitor, Diabetes, and Vascular
Disease

As alluded to earlier, hypofibrinolysis is a key abnormality in
diabetes, historically attributed to elevated levels of PAI-1.76

However, several other mechanisms were subsequently
identified, related to alterations in fibrin network structure,
the fibrinolytic system, and incorporation of antifibrinolytic
proteins into the clot.7 Evidence suggests that FXIIIa-cata-
lyzed cross-linking of PI into the fibrin network is enhanced
in those with type 1 or type 2 diabetes (►Table 1). Therefore,
this may be one diabetes-specific target for the reduction of
the hypofibrinolytic environment in this condition. An earli-
er study by Fattah and colleagues showed elevated plasma
levels of PI in individuals with diabetes.77 The increased
incorporation of PI into fibrin has also been shown in
patients with diabetes following MI or ischemic stroke.78

The exact mechanism for increased incorporation of PI
into diabetes clots is not entirely clear but may be related, at
least in part, to the known denser fibrin networks in diabe-
tes,79–82 resulting in increased incorporation of the protein.
Alternatively, PTMs of PI in diabetes, such as glycation, may

increase incorporation into fibrin networks. Bryk and col-
leagues have recently demonstrated that PI function can be
altered following protein glycation.83 However, only in vitro
work has been conducted and it is unclear at present
whether PI from diabetes patients undergoes PTMs that
affect protein function, and this remains an area for future
research.

Moreover, a higher level of PI was associated with more
advanced retinopathy and there was a positive correlation
between PI and HbA1c levels.84 Dunn et al showed a rela-
tionship between PI incorporation into clots and HbA1c
levels in 150 patients with type 2 diabetes.81 Agren et al
found increased incorporation of PI into thefibrin network in
patients with type 1 diabetes, although these patients
exhibited a contradictory reduction in clot lysis time, which
the authors attributed to reduced PAI-1 activity.85 A more
recent study on 113 T2D individuals suggests a gender
difference in PI incorporation into fibrin networks with a
significant increase in female patients comparedwithmales,
which may have clinical implications.86

While the number of studies is relatively limited, they
collectively suggest that PI plays a role in diabetes compli-
cations. However, further research in this area is required to
understand the exact subgroups of diabetes patients in
whom PI modulates clinical outcomes.

Deficiency of Plasmin Inhibitor

The deficiency of PI is suspected when common conditions
for a bleeding disorder are ruled out.87,88 Type I PI deficiency
exhibits reduced PI protein levels and activity, while type II
deficiency exhibits only reduced activity.89

The first congenital deficiency of PI was reported in 1969
in a Japanese patient who was a 16-year-old boy suffering
from repeated bleeding and hemorrhage into joints90 and
who had a total absence of the protein. Such congenital PI
defects are rare but can cause uncontrolled fibrinolysis and
clinically significant bleeding.91 Heterozygous individuals
may be asymptomatic or exhibit milder bleeding symptoms
during trauma, dental, or surgical procedures.65,87,92

In contrast, the rare genetic defects acquired deficiency of
PI is more common, such as advanced liver and kidney
disease and disseminated intravascular coagulation.93–95

These findings indicate that complete deficiency (or full
suppression) of PI increases bleeding complications, but
partial deficiency (or partial suppression) is relatively
well-tolerated, and therefore, PI can be considered as a
therapeutic target, which is further discussed below.

Targeted Plasmin Inhibitor Modification as
Thrombolytic Therapy

PI presents a potential attractive therapeutic target: inacti-
vation of PI was found to increase the rate of endogenous
fibrinolysis to the same extent as that can be attained by high
doses of recombinant tPA (r-tPA), but without complications
such as the increased risk of surgical bleeding.96 Moreover,
while the genetic deficiency of FX or prothrombin is lethal,
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the genetic deficiency of PI is well tolerated. Mice with
genetic deficiency of PI induced by gene targeting have
normal fertility, viability, and coagulation.97

Limitations of Current Thrombolytic Therapies
Current drugs administered for thrombolytic therapy,
streptokinase (which binds to the catalytic domain of
human plasmin),98r-tPA (which cleaves the zymogen plas-
minogen at its Arg561–Val562 peptide bond to form plas-
min),98,99 and urokinase plasminogen activator uPA
certainly help in clearing the thrombotic blockade in a
blood vessel but can also result in unwanted side
effects.100–103 Even therapy with r-tPA, which is fibrin
specific, showed only a marginal improvement in surviv-
al.104–106 Importantly, r-tPA caused significant intracranial
bleeding complications that further limits its use. Other
serious side-effects of r-tPA include the permeabilization of
the blood–brain barrier, cerebral edema, and neurotoxicity.
For this reason, r-tPA is only used within the first 4.5 hours
of vessel occlusion for stroke treatment, when the
benefit/risk ratio is highest,70,101,102 while it has been
largely superseded by coronary angioplasty for the man-
agement of acute myocardial infarction.107

Additionally, while r-tPA is effective in lysing fresh clots, it
is less efficient against clots aged 4hours or more, which
further limits its practical use108.Yet another problem with
tPA is that it directly generates plasmin from plasminogen,
but plasmin can also act as an anticoagulant, degrading
clotting factors V, VIII, IX, X, XIIIa, and tissue factor pathway
inhibitor.109 So, for safe thrombolytic therapy, and to prevent

a hemophilia-like state, the amount of plasmin produced
should be small, but this becomes very difficult to control
due to the high therapeutic dose requirement of r-tPA.70,102

In summary, while tPA is effective for acute thrombotic
vascular occlusion, its effects are too broad, which translates
clinically into a significant increase in bleeding risk. Also,
such therapy cannot be used long term, and therefore,
alternative fibrinolytic agents are required.

PI inhibition may be particularly valuable in conditions
associatedwith increased protein incorporation into the clot,
such as diabetes, which is characterized by a hypofibrinolytic
environment that contributes to increased thrombosis risk.

Critical Areas of Plasmin Inhibitor Targeted Drug
Development
PI modulates fibrinolysis in three different ways: directly
binding to, and rapidly forming a covalent inhibitory com-
plex with plasminogen or plasmin (PAP complex), cross-
linking into the fibrin network mediated by FXIIIa making
the clot more resistant to plasmin, and inhibition of plas-
minogen adsorption onto fibrin (►Fig. 4).11,46,110,111 There-
fore, attempts to inhibit PI function largely rely on these
mechanisms as discussed below.

Decoy Protein Incorporation
Having a decoy protein competing with PI in cross-linking to
fibrin reduces the amount of PI incorporated into the clot,
thus enhancingfibrinolysis. Kimura and colleagues produced
a N-terminal 12 residue PI-based peptide that reduced PI
cross-linking into the fibrin clot, thus facilitating lysis.112

Fig. 4 Critical areas of PI targeted and therapeutic strategies. (A-C) PI modulates fibrinolysis in different ways: directly binding to, and rapidly
forming a covalent inhibitory complex with plasminogen or plasmin (PAP complex), cross-linking into the fibrin network, mediated by
FXIIIa, and inhibiting plasminogen adsorption onto fibrin. As such, attempts to develop any drug inhibiting PI (D), tackle one of these areas (1) PI
mimicking peptides, (2) inhibitors of ACE, (3) monoclonal antibodies inhibiting PI, and (4) microplasmin. ACE, antiplasmin-cleaving enzyme.
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Two decades later, similar work on another decoy protein
showed only a partial effect113.

Sheffield and colleagues introduced a more sophisticated
decoy protein using DNA manipulation technology to pro-
duce the chimeric protein of N-terminal PI (13–42) with
human serum albumin (HSA).114 Chimeric PI–HSA competed
with PI cross-linking into clot and accelerated clot lysis.
However, the chimeric protein was a less effective substrate
for cross-linking into fibrin networks than PI, requiring an
excessive amount (14-fold molar excess).114 None of these
“decoy proteins” advanced into human studies for reasons
that are not entirely clear.

Given the established functional sites of PI, one group
mutated residue R364 to alanine in the active site of PI. This
modified version of the protein functioned as a FXIIIa
substrate with affinity and kinetic efficiency comparable to
those of native PI, despite having an additional acetylated
Met blocking group at its amino-termini. It was cross-linked
into fibrin networks but partly lost the ability to inhibit
plasmin, in turn enhancing fibrinolysis.71,115 This indicates
that some residues on PI (such as R364) are not affected by
FXIII cross-linking but partly lose PI activity, thus represent-
ing potential therapeutic targets.

Microplasmin
Microplasmin is a cleaved version of plasmin that contains
only the catalytic domain, and it is mainly inhibited by α2-
macroglobulin and by PI.116 Its enzymatic activity is similar to
that of plasmin.117Unlike tPA, microplasmin is a direct-acting
thrombolytic, as compared with most other thrombolytics
which dissolve clots indirectly by activating the plasmin
precursor, plasminogen. Being a truncated derivative of plas-
min lacking the LBS, it has no affinity for fibrin and it is
inhibitedmoreslowlybyPI than intactplasmin.116,118 Infusion
of microplasmin into mouse and hamster models depleted
circulating PI thus reducing experimental cerebral ischemic
injury and improving neurological outcome.119–121 A phase I
human study of intravenous microplasmin showed a dose-
dependentdecrease in PI activity in healthy volunteers.122 In a
phase II trial in stroke subjects, microplasmin decreased
systemic PI levels up to 80% but had no effect on hard clinical
outcomes.123Of note, microplasmin administrationwas asso-
ciated with reduced fibrinogen levels, indicating limited spec-
ificity for fibrin and questioning its use in clinical practice.

Reduction in Plasmin Inhibitor Cleavage
Researchers attempted to inhibit the conversion of Met–PI to
Asn–PI, the more powerful antifibrinolytic version of the
protein.26 A substrate analog inhibitor, Phe-Arg-(8-amino-
3,6-dioxaoctanoic acid)-Gly-[r]-fluoropyrrolidine, inhibited
APCE with a Ki of 54 μM but no dipeptidyl peptidase IV even
at 2mM. The inhibitor also blocked the cleavage of Met–PI
with an IC50 of 91 μM. High-affinity inhibitor of ACE demon-
strated a decrease in the proteolytic conversion of Met–PI to
Asn–PI in a concentration-dependent manner, with short-
ened lysis time of plasma clots.41,124However, in vivo studies
are lacking and the clinical applicability of this approach is
uncertain. Circulating ACE is structurally similar to FAP.

Molecular modeling showed that the active site of FAP has
a large central pore that can accommodate the N-terminal
region of Met–PI, explaining the specificity of ACE to this
form/structure of the protein.

Direct Modulation of Plasmin Inhibitor
Monoclonal antibodies against PI have been developed to
modulate protein function and showed promise in different
animal models of venous thrombosis, pulmonary embolism
(PE), and ischemic stroke.125–137 A monoclonal antibody
against PI that interferes with the formation of PAP com-
plexes has been shown to increase the effectiveness of tPA-
mediated clot lysis.133 Another monoclonal antibody against
PI has demonstrated synergistic interactions with plasmin-
ogen activators and enhanced fibrinolysis by increasing the
potency of streptokinase, t-PA, and urokinase (by 20, 27, and
80-fold, respectively).131

In addition, Kumada and Abiko reported a reduction in the
level of circulating PI levels in rats by repeated injection of
polyclonal anti-PI F(ab’)2 fragments and which accelerated
thrombolysis.138 A rabbit jugular vein thrombosis model
suggested that a combination of a PI inhibitor and a plasmino-
gen activator may be a more potent thrombolytic strategy.36

Similarly, in a humanizedmodel of acute PE inmice, Singh
et al125 found that thrombus that targeted PI by TS23 (a
monoclonal antibody neutralizing PI activity) enhanced the
dissolution of pulmonary emboli, without an increased
bleeding risk.125 Anti-PI TS23 also blocked thrombus forma-
tion during venous stasis in mice,132 and this agent was
tested in phase I trials in healthy volunteers (NCT03001544)
but is yet to be tested in pathological states.139

The monoclonal PI antibody DS-9231 has been tested in
clinical phase I/II study in individuals with PE, but the
compound was subsequently withdrawn for reasons that
are yet to be announced (ClinicalTrials.gov; NCT03316729).
While thesemonoclonal antibodies have shown inhibition of
PI function, themode of action is unknown given the absence
of data on interaction sites and it remains unclear whether
they result in changes to the protein structure.

Conclusions and Future Directions

Hypofibrinolysis is associated with vascular disease and is
directly linked to adverse clinical outcome following an ische-
mic event. PI is a strong inhibitor of fibrinolysis and therefore
represents a credible therapeutic target to reduce thrombosis
risk. Moreover, targeting PI may be particularly beneficial in
conditions with increased protein incorporation into the clot,
such as diabetes, thus offering a disease-specific therapy.
Various strategies have been used to inhibit PI function
including the use of decoy protein, thus reducing PI incorpo-
ration into clots, inhibition of Asn–PI production, the stronger
version of the protein, and direct modulation of protein
activity using monoclonal antibodies. In vitro and animal in
vivo studies showed promise but none of the numerous “PI-
inhibitors” have made it into routine clinical use. The exact
reasons for the failure to convert early success into clinical use
are not always clear andmay bedue to thefinancial viability of
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such an approach or safety concerns although no unexpected
adverse events have been reported to date.

Despite the failure to translate PI inhibition into clinical
use, advances in technology are likely to identify alternative
ways of modulating the PI activity or the amount of protein
incorporated into the clots. This in turn will offer a novel
therapeutic opportunity to reduce thrombosis risk while
keeping bleeding risk to a minimum. Future translational
research is required to identify effective and safe inhibitors of
PI, which will hopefully be used to reduce the risk of both
arterial and venous thrombotic events.
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