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A B S T R A C T

Intermolecular (synthonic) modelling is used for a statistical analysis of crystal lattice energies, together with their
contributing intermolecular interactions for the crystallographic structures selected from the CCDC’s Drug Subset
(https://doi.org/10.1016/j.xphs.2018.12.011). Analysis of this selected subset reveal similarities in packing com-
pared to other organic crystals in the CSD with linear relationships between molecular weight and unit cell
volume, void space, and packing coefficient. Crystal lattice energy calculations converge within a 30 A

�
intermolec-

ular radius characterised by a mean lattice energy of ca. -36 kcal mol�1 with ca. 85% and 15% due to dispersive
and electrostatic interactions, respectively. The distribution of the strongest synthons within the individual struc-
tures reveals an average strength of �5.79 kcal mol�1. The diversity of chemical space within the drug molecules
is in agreement with the analysis of atom types across the selected subset with phenyl groups being found to
contribute the highest mean energy of �11.28 kcal mol�1, highlighting the importance of aromatic interactions
within pharmaceutical compounds. Despite an initial focus on Z’ = 1 structures, this automated approach enables
rapid and consistent quantitative analysis of lattice energy, synthon strength and functional group contributions,
providing solid-form informatics for pharmaceutical R&D and a helpful basis for further investigations.

© 2022 The Authors. Published by Elsevier Inc. on behalf of American Pharmacists Association. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Introduction

The Cambridge Structural Database1 now contains over 1.2 million
entries of organic and metal-organic small molecule crystal struc-
tures, providing an invaluable resource in crystallography, structural
chemistry, and drug discovery. The use of computational and statisti-
cal approaches that use CSD entries can provide insight into pharma-
ceutical development and manufacturing issues and has led to
increasing interest in the fields of solid-form informatics2 and
particle informatics3 as in silico tools for drug development. A wide-
range of different approaches has been developed for the routine
use of data-driven modelling of molecular and crystallographic
properties including polymorph stability,4-6 solubility,7-12 and crystal
morphology.13-16

Alongside a suite of molecular scale informatics tools, the CSD can
provide a thorough understanding of solid-form properties.2 How-
ever, limited studies exist to develop a detailed understanding of the
relationship between a material’s inherent particle and surface prop-
erties at a molecular level with its processing and manufacturability.
Molecular modelling of the intermolecular interactions, or “syn-
thons”, in the bulk and at the surface of a crystalline particle
has led to the prediction of properties such as morphology,17-20 sur-
face energy,21-23 crystallisability,24-27 and particle cohesivity/
adhesivity.28,29 Much wider use of such methods30 could potentially
lead to a deeper understanding of the molecular mechanisms that
underpin a range of problematic particulate properties, such as poor
flowability, tendency for agglomeration, and “fines” production,
which can cause significant problems downstream during the various
processing steps involved in drug product formulation and subse-
quent manufacture.31 Bryant et al. 3 highlighted the importance of
particle informatics approaches when revisiting the structure of
lamotrigine through a reassessment of its solid-form within the con-
text of the crystal structures in the CSD. The work highlighted
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advances made in the analysis of particulate properties, and, through
this, stressed the utility of such approaches in pharmaceutical prod-
uct design and manufacturing work.

Such an analysis can provide an improved understanding of the
specific problems or bottlenecks in a drug’s development or
manufacturing process. However, a more general and comparative
analysis of a subset of pharmaceutical structures can provide wider
insights into overall trends in behaviours, both in terms of crystal lat-
tice energies and packing together with their constituent intermolec-
ular interactions that confer stability to the solid-state. Hence, an
analysis of the CSD Drug Subset,32 which encompasses all available
crystal structures from the CSD that contain an approved drug mole-
cule, can provide potential insights into the nature of pharmaceuti-
cals and how they differ to each other with respect to a wider range
of organic crystal structures. Such an approach can also be used to
develop more drug-oriented predictive tools notably through build-
ing statistical models based on solid-state structural descriptors. In
the paper32, various statistical analyses of the CSD Drug Subset were
performed including molecular weight, number of rotatable bonds,
number of aromatic rings, element composition, partition coefficient
(cLogP), number of hydrogen-bond acceptors, number of hydrogen-
bond donors, space group, packing coefficient, etc. with comparisons
to other organic molecules in the CSD and also to the internal crystal
structure databases from two pharmaceutical companies.

This paper is the first attempt to extend the 2019 CSD Drug Subset
paper32 to study a subset of drug crystal structures on not only the
distributions of their molecular and crystal properties but also their
energetic profile and its distribution in 3D including lattice energy,
synthonic interactions, and functional group contributions, utilising
the molecular modelling software HABIT98 and the inter-relation-
ships between these properties and descriptors. As a result, the study
intended to focus on the development of a workflow with a selected
set of drug structures under the following conditions/limitations:

1) The study was restricted to a selected set of 487 crystal structures
of small molecule pharmaceuticals after excluding the structures
with Z’ 6¼ 1 (including co-crystals, hydrates, salts and solvates),
structures containing certain higher atomic mass elements (B, Br,
I, Si, P), and structures having lattice energy > �20 kcal mol�1 (see
Fig. S1 in Supplementary Material) from a selected set of drug
crystal structures based on the best representative CSD organic
set in 2019 CSD Drug Subset paper.32

Although the crystal structures of discovered and approved drugs
over the last decade have become more complex,33-35 the selected
drug structures (487) represent small molecule pharmaceutical
crystals (93.6% have a molecular weight < 500) with the majority
of them being found to meet the “Lipinski rule of 5” criteria
(>85%) as shown in Fig. S5 as well as being solved before 2010
(Fig. S2).

2) The crystal structures in this study were taken directly from the
CSD without pre-processing (although hydrogen atom positions
were automatically assigned if missing within the structures):

Not optimising hydrogen positions in molecules

As shown in Fig. S3, a small set of 14 structures was tested with
and without the optimisation of hydrogen atom positions in
the crystal structures. It was found that based on the small set
of structures, the lattice energy differences between the calcu-
lations with and without hydrogen optimisation are less than
16.6% with an average of 5%. This indicated that the
application of the developed workflow for the energetic
analysis with the crystal structures directly from the
deposited ones in the CSD would not generate big differences
from the same structures after hydrogen atom optimisation.
Despite this, one needs to be mindful that for more complex
structures, the whole structure would need to be minimised.
Not including conformation in molecules
The effects of conformational flexibility and torsion angles
would make this study much more complicated, hence further
deviating the workflow development and this proof-of-con-
cept study. We fully understand the importance of conforma-
tional flexibility and torsion angles as shown in e.g.,35 hence
these factors will be addressed in further work and be reported
in due course.
3) The use of Dreiding 2 forcefield:
This study is the first attempt to analyse both geometrical and
energetic properties/descriptors of the selected drug structures
deposited in the CSD using the widely used molecular modelling
software HABIT98. The Dreiding 2 forcefield has been widely used
for HABIT98 calculations with reasonable results. This study seeks
to explore a rapid computational workflow, and as such higher
level calculations, which are not implemented in HABIT98, were
not investigated.

In this study, and subject to the above-mentioned conditions/limi-
tations, the selected drug subset has been used to investigate the
diversity of lattice energies within the crystal structures of pharma-
ceuticals, and to understand diversity in terms of the strength and
chemical nature of the constituent intermolecular synthons associ-
ated with their crystal chemistry. In this, molecular and crystallo-
graphic descriptors within the selected drug subset have been re-
examined based on interatomic energy calculations using empirical
forcefield inter-molecular modelling revealing trends in lattice ener-
gies, energy convergence, synthon strength distribution, as well as
characterising the contributions that different functional groups
make within the lattice energy balance.

Methodology

Dataset Preparation

The CSD Drug Subset32 contains a total of 8632 crystal structures of
785 unique drug compounds in a variety of solid forms. Based on one
of the refined subsets32, the best representative CSD organic set, a total
number of 628 structures was used as a starting point for preparing
the dataset examined in this study. Duplicate structures, structures
where Z’ is not equal to 1 (including co-crystals, hydrates, salts and sol-
vates), and structures containing certain higher atomic mass elements
(B, Br, I, Si, P), were all removed, which led to a reduced drug subset of
577 structures. Intermolecular packing energies were directly calcu-
lated with the molecules in the crystal unit cell being based upon their
published molecular coordinates and crystal structures. In this, the
energetic contributions were based upon the synthons within the
structures as calculated through the summation of intermolecular
interactions between the molecules within the 3D crystallographic
structure. Intramolecular interaction were not analysed in this
study.23,36-38 A further 90 structures where the lattice energy was cal-
culated to be greater than -20 kcal mol�1 were not considered so as
not to bias subsequent analysis. All the structures, including those not
considered, did not undergo any optimization of their structures. The
final dataset for which the analysis was presented therefore contained
a selected drug subset of 487 crystal structures (see Fig. S1 for the dis-
tribution of the 628 structures from the best representative CSD
organic set in the 2019 Drug Subset paper).32

Molecular and Crystallographic Descriptors and Functional Groups

The CSD Python API1 was used to calculate a range of molecular
and crystallographic descriptors for each unique drug structure in
our dataset. If some structures did not have coordinates for hydrogen



Figure 1. Distributions of molecular and crystallographic descriptors within the selected drug subset. From top-left: molecular weight; calculated density; packing coefficient; unit
cell volume; space group; Z value; number of hydrogen bonds; number of short contacts and number of rotatable bonds.
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atoms, the python API automatically added them to the structures.
The properties selected were: molecular weight; density; space
group; unit cell volume; packing coefficient; void volume (calculated
with a probe radius of 0.2 A

�
and a grid spacing of 0.2 A

�
);39 number of

hydrogen bonds; number of short contacts (defined where the inter-
atomic distance is less than the sum of the atomic van der Waals
radii + 0.5 A

�
, which is long for regular analysis, but was used here to

approximate the “coordination shell”, hence effectively identifying
packing in the crystal structures); number of molecules in the unit
cell (Z-value); number of molecules in the asymmetric unit (Z’); num-
ber of rotatable bonds. Additionally, the functional groups in each
molecule were automatically identified based on contact atom or
central atom groups40,41 in the library of information about non-
bonded interactions implemented in the CSD.
Figure 2. Number density distributions of (a) lattice (b) dispersive, and (c) electrostatic ener
the counts of crystal structures.
Intermolecular Interactions and Lattice Energies

All intermolecular interactions were calculated using the Dreiding 2
force field parameters.42 Atomic charges were calculated using
the semi-empirical quantum mechanics program MOPAC43 with the
Austin Model 1 (AM1) approach, which has been widely used for simu-
lations of molecular crystals.44 Polarization energies were not calculated
separately in this study. Lattice energies and intermolecular interaction
energies were calculated using HABIT98, an enhanced version of
HABIT9545 developed from HABIT.14 Completion of each calculation was
confirmed by increasing the limiting radius in 5 A

�
steps to 35 A

�
until a

difference of less than 0.1% of total energy between the final two steps
was achieved. Individual intermolecular interactions, or “synthons”,
were classified based on the major contributing term to the total energy
gies at a 30 A
�
limiting radius in the selected drug subset. Note that the y-axis represents



Figure 3. Distributions of lattice energies across increasing limiting radii (5 − 35 A
�
, a − g).
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(electrostatic, van der Waals, or hydrogen bonding) and ranked based
on the magnitude of the total interaction energy.21,46,47

Note that in this paper, the energetic values of crystal lattice
energy together with their dispersive/electrostatic contributions,
synthon strength and functional group contributions are by conven-
tion negative. A compound with higher lattice energy, a synthon
with higher strength and a functional group making larger contribu-
tion were identified by their higher absolute energy values. In this
work, intra-molecular energy contributions to the crystal lattice
energies were not considered.

Data Processing

Following on from generation of molecular and crystallographic
descriptors, and the calculation of lattice and intermolecular
interaction energies, all subsequent data analysis and presentation
was performed in Python using the Pandas,48 Matplotlib,49 and Sea-
born50 libraries.

Discussion and Analysis

Distributions of Molecular and Crystallographic Descriptors

Fig. 1 shows the distributions of a variety of molecular and crystal-
lographic descriptors across the selected drug subset. “Non-drug”
molecules are here defined32 as all molecules of organic structures in
the CSD that are not included in the CSD Drug Subset. The distribu-
tions are not dissimilar from those generated in the 2019 study32

and, perhaps unsurprisingly, indicate that drug molecules pack in
similar ways to small non-drug molecules in the solid-state. A



Figure 4. Distribution of different atom types across the selected drug subset (a) and distribution of number of different atom types across the structures in this dataset studied (b).
Note that the y-axis represents the counts of crystal structures.

C.Y. Ma et al. / Journal of Pharmaceutical Sciences 112 (2023) 435−445 439
relatively higher incidence of Sohncke space groups32,51 in the
selected drug subset reflects the often-chiral nature of drug mole-
cules, and it was noteworthy that a larger proportion of drug crystal
structures had a Z-value of 1 compared to non-drug molecules.32 The
latter, when combined with the larger percentage of structures in the
space group P1, perhaps indicates lower symmetry in the crystal
structures of drugs. The relative differences are modest, however,
and do not detract from the overall similarities observed between
the two subsets.

The relationships between these descriptors have been plotted
in the Supplementary Material (Figs. S6 and S7). Some clear, espe-
cially linear, correlations were identified and further analysed
including the linear relationships between molecular weight and
crystal cell volume (Fig. S8), cell volume normalized by Z and
molecular weight (Fig. S9a), crystal void volume and packing coef-
ficient (Fig. S9b). Of the above structures, Probucol (HAXHET) has
the highest void volume (45.92%), lowest packing coefficient (0.52)
with the lowest density (1.05 g cm�3) characterized by a structure
without any hydrogen bonds and with only a small electrostatic
contribution (0.04 kcal mol�1) to the lattice energy (-40.67 kcal
mol�1) with a crystal chemistry associated with only pure vdW
interactions. Note that these trends are only for the particular
entries within the selected subset of drug structures. It was found
that within these structures, about 82% had fewer than 10 rotat-
able bonds (Fig. 1). Generally, the higher the molecular weight, the
higher number of rotatable bonds exist in a drug molecule of the
selected drug subset with no clear trend with the other descriptors
(Fig. S6).

Distributions of Lattice Energies and Their Components

Fig. 2 shows the distributions of lattice energies with the compo-
nent electrostatic and dispersive energies, across the crystal struc-
tures in the selected drug subset. Subsequent analysis of these
distributions reveals a mean lattice energy of -36.15 kcal mol�1 with
a standard deviation of 10.08 kcal mol�1, a mean dispersive energy of
-30.78 kcal mol�1 with a standard deviation of 9.92 kcal mol�1, and a
mean electrostatic energy of -5.36 kcal mol�1 with a standard devia-
tion of 3.02 kcal mol�1. The magnitudes of the standard deviations
are unsurprisingly large reflecting the diversity of molecular and
crystal properties within the subset. However, the distributions
themselves give an indication of the average “stability” of a drug-like
molecular solid.

The distributions in Fig. 2 also show that the dispersive compo-
nent makes up most of the lattice energy. However, there does not
exist any clear trend between dispersive energy (lattice energy) and
the crystal descriptors. A linear fit across all structures in the dataset
gives a straight line with the equation Elatt = 0.96 x Edisp − 0.652, with
an R2 value of 0.91, indicating the importance of weaker intermolecu-
lar interactions between neutral drug molecules in the solid-state.
Further distributions of crystal descriptors and number of poly-
morphs against lattice energy were plotted in Figs. S11 and S12 in
the Supplementary Material.

Lattice Energy Convergence

Fig. 3 shows the distribution of lattice energies across a range of
limiting radii from 5 A

�
up to 35 A

�
across the selected drug subset.

Mean values for each limiting radius, along with standard deviations
on these mean values and the increment at each limiting radius
(expressed as a percentage of the total energy) are given in Table 1.
The distributions of the dispersive and electrostatic components at
increasing limiting radii can be found in Fig. S15 in the Supplemen-
tary Material.

The highest increase in lattice energy occurs when the limiting
radius is increased from 5 A

�
to 10 A

�
. For most systems, this range is

likely to correlate with filling the first inter-molecular co-ordination
shell, those neighbouring molecules with the shortest and most ener-
getically favourable intermolecular contacts to the central molecule. At
a limiting radius of 25 A

�
the increase in lattice energy drops to around

1% of the total energy, as the strength of the interactions drops away
due to increasing distance. The negligible difference upon increasing
the limiting radius from 30 A

�
to 35 A

�
justifies the selection of the for-

mer value as the default for the selected drug structures studied in
this paper.

Atom Type Contributions to Lattice Energies

Fig. 4a shows the distribution of different atom types across the
selected drug subset. All 487 structures in our dataset contain carbon
and “non-hydrogen bonded” hydrogen atoms. Around 83% of struc-
tures contain “hydrogen bonded” hydrogen atoms. The distribution
of different heteroatoms across the dataset agrees with previous
observations of the CSD Drug Subset.32 Fig. 4b shows the diversity of
atom types across individual structures in the dataset. 22 structures
contain only three different atom types; oxygen is the most common
heteroatom in these structures, the others being nitrogen and
fluorine.

Fig. 5 shows the energetic contributions of the eight individual
atom types considered in this study. Unsurprisingly, given its ubiqui-
tous nature across the selected drug subset, carbon atoms provide
the largest mean contributions to lattice energy. Some heteroatoms,
particularly those involved in hydrogen bonding interactions, are
observed to provide positive contributions to the otherwise negative



Figure 5. Distributions of the energetic contribution of eight individual atom types.
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total energies. This indicates the repulsive nature of some short con-
tacts that can exist between more electronegative atoms in crystal
structures, but which are balanced by the overall stabilisation of close
packing. Organic fluorine (Fig. 5g) shows a modest contribution
towards the total energy, and is sometimes repulsive, in agreement
with previous studies.52

Synthon Strength Distributions

Fig. 6a shows that, while the strongest intermolecular synthon
in each structure in the selected drug subset can vary, the average
energy is -5.79 kcal mol�1 with a standard deviation of 2.09 kcal
mol�1. Significant deviations away from these values may be indi-
cators of the high or low stability of a given structure in the solid-
state. Form II of Ritonavir (YIGPIO03) has the strongest individual
synthon (i.e., the largest interaction energy of -17.31 kcal mol�1)
across the selected drug subset, an indication of its large molecular
weight and stable hydrogen bonding network.53 Initial studies on
the full dataset highlighted the structure of pyruvic acid (PRU-
VAC01) which has the lowest-ranked synthon with an interaction
energy of only -0.77 kcal mol�1, consistent with its low melting
point of 13.8 °C.54



Figure 6. (a) Top-ranked synthon energy distribution and (b) number density distribution of unique synthons in the selected drug subset.

Table 1
Mean and standard deviations of energy distributions and increment (as a percentage of the final energy) at increasing limiting radii.

Radius (A
�
) Lattice energy (kcal mol�1) Dispersive energy (kcal mol�1) Electrostatic energy (kcal mol�1)

Mean value Increment (%) Mean value Increment (%) Mean value Increment (%)

5 -7.07 (4.80) 6.75 (14.41) -6.27 (4.45) 7.37 (13.56) -0.17 (1.00) 3.17 (53.88)
10 -25.35 (6.31) 63.37 (19.88) -21.58 (5.81) 62.74 (17.09) -3.77 (3.15) 67.16 (91.54)
15 -34.08 (8.19) 24.15 (14.29) -28.95 (8.26) 23.94 (12.77) -5.13 (3.06) 25.37 (49.79)
20 -35.68 (9.46) 4.43 (4.69) -30.32 (9.36) 4.45 (3.80) -5.36 (3.02) 4.29 (76.72)
25 -36.05 (9.98) 1.02 (1.46) -30.68 (9.84) 1.17 (1.36) -5.36 (3.02) 0.1 (7.62)
30 -36.15 (10.08) 0.28 (0.52) -30.78 (9.92) 0.33 (0.23) -5.36 (3.02) 0.1 (4.33)
35 -36.15 (10.10) 0.1 (0.22) -30.78 (9.93) 0.1 (0.03) -5.36 (3.01) 0.1 (3.05)

Figure 7. Decay in synthon energies across the selected drug subset, categorised as “fast” (27 structures) (a), “medium” (73 structures) (b), and “slow” (8 structures) (c).
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Figure 8. (a) Numbers of unique functional groups in structures from the selected drug subset. (b) Number of observations of the top twenty most common functional groups across
the selected drug subset. Note that the y-axis represents the counts of crystal structures.

Table 2
Descriptor ranges for structures with different synthon “decay rates”.

Descriptor “Fast” “Medium” “Slow”

Molecular weight (g mol�1) 120 − 530 210 − 720 150 − 380
Density (g cm�3) 1.02 − 1.88 1.28 − 1.65 1.28 − 1.65
Packing coefficient 0.59 − 0.76 0.65 − 0.77 0.67 − 0.75
Cell volume (A

� 3) 460 − 3400 700 − 5100 600 − 2100
Number of hydrogen bonds 0 − 8 0 − 8 0 − 5
Number of vdW contacts 2 − 73 12 − 73 2 − 48
Z 1, 2, 4, 8 1, 2, 4, 8 2, 4, 8
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Most structures (Fig. 6b) have several unique synthons (interac-
tions not related by symmetry) commensurate with observed Z val-
ues and typical molecular close packing. The unique synthons were
identified by their different individual energies; only interactions
with energies below 0 kcal/mol were considered. Extremes in
this distribution can be indications of molecular size and packing
symmetry. For instance, Gefitinib (FARRUM02), a large molecule,
whose form I polymorph packs in space group P-1, has 14 unique
synthons.

The decay in synthon strength from the top-ranked interaction to
the weakest unique synthon varies across the selected drug subset
(Fig. 7), and this behaviour can be broadly categorised into those
which decay “fast” (where the synthon strength has dropped by
around 75% by synthon 6), “medium” (where the synthon strength
has dropped by around 50% by synthon 6) and “slow” (where the
drop is much more gradual). Analysis of the descriptors of these dif-
ferent categories (Table 2) do not showmuch variance. Smaller mole-
cules with fewer interactions (either hydrogen bonding or van der
Waals contacts) might be said to decay more slowly, although the
strongest synthons in this category (which contains only 8 structures)
are generally lower than those of the other categories.

Functional Group Analysis

To understand the variation in the calculated synthon energies,
further analysis of the diversity of functional groups across the
selected drug subset was performed. Fig. 8a shows the distribution of
the number of different functional groups that are contained within
each molecule in the structures of our dataset. The automatic assign-
ment of functional groups based upon existing “central groups”
means that some more complex functionality, such as the carbamoyl
central group, appear as the only functional group in several struc-
tures such as oxcarbazepine (CANDUR01) and carbamazepine
(CBMZPN12, CBMZPN16, CBMZPN18). Larger, more complex drug
molecules, such as Lapatinib (OVAYOB) and Ritonavir (YIGPIO03),
contain up to 17 unique functionalities. Fig. 8b shows the occurrence
of the twenty most common functional groups across the selected
drug subset. Terminal methyl groups and aliphatic methylene groups
are unsurprisingly common, forming the backbone of numerous mol-
ecules, but we note the presence of various functionalities containing
heteroatoms, such as aromatic nitrogen, hydroxy, and sulfone groups,
that provide further insight into the distribution of atom types
observed over the selected drug subset.

The energy distributions of the 15 most common functional
groups (as defined in the CSD functional group library32) are shown
in Fig. 9, and the mean energies and their standard deviations are
listed in Table S3 (Supplementary Material). In Fig. 8, one crystal
structure, Lapatinib (OVAYOB), has 17 functional groups, the highest
number of the structures studied. Sixteen structures have only one
functional group (based on the current CSD library32): aliphatic
chloro (3); aromatic N, all (1); aromatic N-H, uncharged, in 5-rings
(1); carbamoyl (3); coumarin (1); methyl (1); nitro (2) and phenyl (4
structures). As shown in Table S3, Phenyl groups, with a mean energy
of -11.28 kcal mol�1, provide the most contribution to the total lattice
energy of the functional groups studied, highlighting the potential
importance of aromatic interactions in the crystal structures of drug
molecules. Aliphatic hydroxy groups, with a mean value of -3.06 kcal
mol�1, make the lowest contribution of these 15 functionalities
(Fig. 9 and Table S3). This may result from the weakness of hydroxyl
oxygen-based hydrogen bonds, although Fig. 9d suggests that inter-
actions involving this functional group may be slightly destabilising
in some instances.



Figure 9. Energy (kcal mol-1) distributions across 15 of the most common functional groups. Each functional group definition is given on each distribution (a) through (o). Note that
the y-axis represents the counts of crystal structures.
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Of the 15 common functional groups defined by the CSD func-
tional group library,32 6 functional groups (Fig. 9e, f, i, j, m & n) make
negative energy contributions to their lattice energies, hence stabilis-
ing the crystal structures. The other 9 functional groups (Fig. 9a-d, g,
h, k, l & o) occasionally provide positive energy contributions to a few
crystal structures: methyl (Lapatinib, Sumatriptan, Teniposide, Etori-
coxib), aliphatic-aliphatic methylene (Lapatinib, Vemurafenib), aro-
matic N, all (Sulfasalazine, Almitrine, Adenosine), uncharged
aliphatic hydroxyl (Chloramphenicol palmitate, Rapamycin, a-Flu-
penthixol, Cephalotaxine, Difluprednate, Teniposide, Quinidine,
Levonorgestrel), hydroxy (aliphatic) (S,T) (a-Flupenthixol, Chloram-
phenicol palmitate, Rapamycin), sulfone (Famotidine), aromatic N, in
6-rings (Sulfasalazine), trans (or cis) uncharged carboxylic acid (Stea-
ric acid (E), Deferasirox, Stearic acid, Vitamin A acid, Flufenamic acid
(II), Sulfasalazine), aromatic N, in 5-rings (Nilotinib).

The functional group, trans (or cis) uncharged carboxylic acid, in
the structure of Stearic acid (form E) has a positive energy of
15.79 kcal mol�1 (Fig. 9l) with an 18-carbon long chain molecular
structure, which is the most destabilising case. These observations
are dependent on the quality of the molecular coordinates and unit
cell geometries encompassed within the published crystal structures
as well as the forcefield used for the calculations. Nevertheless, they
do provide considerable insight into the nature of the chemistry and
energies associated with the intermolecular interactions that drive
the crystallisation and structural stability of organic solids.

Conclusions

An automated informatics and computational analysis to under-
stand the molecular, crystallographic, and energetic properties of a
selection of 487 structures taken from the CSD Drug Subset has been
performed. While the crystal structures of drug molecules pack in
similar ways to other organic molecules in the CSD, analysis of their
lattice energies and synthons may provide additional insight into the
solid-state structures of pharmaceuticals.

Mindful of the stated conditions and restrictions highlighted in
the Introduction, the mean lattice energy across the selected drug
subset structures of small molecule pharmaceuticals approximately
-36 kcal mol�1, with a standard deviation of 10.08 kcal mol�1. Around
85% of the lattice energy comes from dispersive interactions, and the
remaining 15% is attributable to electrostatics. Analysis of the conver-
gence of the lattice energy calculation indicates that at a limiting
radius of 30 A

�
, the calculated energy has reached 99.9% of its final

value for the molecular systems investigated in this study. The aver-
age energy of the strongest synthon in each structure across the
selected drug subset is -5.79 kcal mol�1 with a standard deviation of
2.09 kcal mol�1, and molecules tend to display a varying number of
unique synthons in accordance with conventional packing arrange-
ments and symmetries.

Functional group analysis across the selected drug dataset demon-
strates the diversity of chemical space in drug molecules, in agree-
ment with analysis of atom types across the wider CSD Drug Subset.
The highest mean energy of -11.28 kcal mol�1 for phenyl groups
shows the importance of aromatic interactions in pharmaceuticals,
while this approach highlights the sometimes-destabilising nature of
close contacts in molecular crystals.

An extension of the approach used in this study to enable calcula-
tions on charged molecular species, multicomponent systems, and
crystals with more than one molecule in the asymmetric unit is ongo-
ing, and this will enable further analysis of the diverse solid form
landscape of the whole CSD Drug Subset. Mindful that hydrogen
atoms have lower electron densities compared to higher molecular
weight atoms, their atomic positions within published crystal struc-
tures are not always optimum. Another extension of the approach
could include the optimisation of hydrogen positions of the drug
molecules and also conformational optimisation of the crystal struc-
tures within the selected drug subset. The latter could also take into
account the deformation energies i.e., comparing conformation
energy differences (deformation strain) between molecular equilib-
rium with that in the solid-state (e.g.20,23,36). Further studies are also
planned to analyse the energy differences between polymorphs, par-
ticularly non-conformational polymorphs that display differences in
the number of molecules in the asymmetric unit. Additionally, syn-
thonic analysis of multicomponent systems might shed further light
on the principles that govern their formation.
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