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The architecture of clonal expansions 
in morphologically normal tissue 
from cancerous and non-cancerous prostates
Claudia Buhigas1, Anne Y. Warren2, Wing-Kit Leung3, Hayley C. Whitaker3,4, Hayley J. Luxton3,4, 

Steve Hawkins3, Jonathan Kay3,4, Adam Butler5, Yaobo Xu5, Dan J. Woodcock6, Sue Merson7, Fiona M. Frame8, 

Atef Sahli6, Federico Abascal5, CRUK-ICGC Prostate Cancer Group, Iñigo Martincorena5, G. Steven Bova9, 

Christopher S. Foster10, Peter Campbell5, Norman J. Maitland8, David E. Neal3, Charlie E. Massie3,11†, 

Andy G. Lynch3,12†, Rosalind A. Eeles7,13†, Colin S. Cooper1,7†, David C. Wedge6,14† and Daniel S. Brewer1,15*† 

Abstract 

Background: Up to 80% of cases of prostate cancer present with multifocal independent tumour lesions leading to 

the concept of a field effect present in the normal prostate predisposing to cancer development. In the present study 

we applied Whole Genome DNA Sequencing (WGS) to a group of morphologically normal tissue (n = 51), including 

benign prostatic hyperplasia (BPH) and non-BPH samples, from men with and men without prostate cancer. We assess 

whether the observed genetic changes in morphologically normal tissue are linked to the development of cancer in 

the prostate.

Results: Single nucleotide variants (P = 7.0 ×  10–03, Wilcoxon rank sum test) and small insertions and deletions 

(indels, P = 8.7 ×  10–06) were significantly higher in morphologically normal samples, including BPH, from men with 

prostate cancer compared to those without. The presence of subclonal expansions under selective pressure, sup-

ported by a high level of mutations, were significantly associated with samples from men with prostate cancer 

(P = 0.035, Fisher exact test). The clonal cell fraction of normal clones was always higher than the proportion of the 

prostate estimated as epithelial (P = 5.94 ×  10–05, paired Wilcoxon signed rank test) which, along with analysis of pri-

mary fibroblasts prepared from BPH specimens, suggests a stromal origin. Constructed phylogenies revealed lineages 

associated with benign tissue that were completely distinct from adjacent tumour clones, but a common lineage 

between BPH and non-BPH morphologically normal tissues was often observed. Compared to tumours, normal 

samples have significantly less single nucleotide variants (P = 3.72 ×  10–09, paired Wilcoxon signed rank test), have very 

few rearrangements and a complete lack of copy number alterations.

Conclusions: Cells within regions of morphologically normal tissue (both BPH and non-BPH) can expand under 

selective pressure by mechanisms that are distinct from those occurring in adjacent cancer, but that are allied to 

the presence of cancer. Expansions, which are probably stromal in origin, are characterised by lack of recurrent 
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Background
Prostate cancer is a multifocal, highly heterogeneous dis-

ease [1, 2] that is the most common cancer diagnosed in 

men in the world, with an estimated 50% of men over 60 

having cancer present in the prostate [3]. The phenome-

non of field cancerization was first described by Slaughter 

et  al. [4] after observing the presence of multiple inde-

pendent tumours in 11% of patients with oral squamous 

cell carcinomas. It was proposed that the areas surround-

ing these lesions were acting as a “field”, a preconditioned 

epithelium that could lead to cancer development. This 

theory suggests that tissue with a histomorphologically 

normal appearance can harbour a significant burden 

of mutations, early clonal expansions, distinct expres-

sion profiles and methylation changes that could poten-

tially lead to tumour development. Numerous reports of 

somatic mutations and clonal expansions in aging indi-

viduals are in agreement with this theory [5–8]: there 

is clear evidence that somatic mutations are present 

in morphologically normal skin [5, 9], brain [10], liver 

[11], oesophagus [6, 12], and colorectum [13] – in some 

cases affecting cancer-associated driver genes. Compa-

rable findings have been reported in blood, where the 

detection of clonal expansions in healthy patients over 

65 has been associated with a significant increase in the 

risk of leukemia [14–17]. Somatic mutations and clonal 

expansions were found to be frequently present in RNA 

sequencing data collected from morphologically normal 

tissue from patients with a wide range of cancers [18]. It 

was found that tissues, such as skin, lung and oesopha-

gus, that had a direct exposure to environmental carci-

nogenic factors (UV radiation, smoking and nutritional 

habits), or had a very high proliferation rate exhibited 

the highest mutation burden [18]. There is also some evi-

dence that in certain situations mutant clones in normal 

epithelium can play an anti-tumorigenic role [19].

In prostate cancer around 70–80% of men are found to 

have multifocal lesions at the time of diagnosis [20], with 

the separate cancers having distinct genetic trajectories 

[21]. Many studies support the presence of field canceri-

zation in the prostate. We previously reported [22] that 

clonal expansions were present in the morphologically 

normal tissues of three prostates from men with prostate 

cancer even in tissues distant from the tumour. Similarly, 

a higher mutation rate was observed in mitochondrial 

DNA from morphologically normal adjacent tissue in 

men with cancer in comparison to healthy controls [23]. 

In an in-depth examination of one prostate, somatic 

mutations were estimated to accumulate steadily at 16 

mutations/year [24]. Different patterns in gene expres-

sion were observed in morphologically normal tissue 

adjacent to cancer compared to normal tissues from men 

without cancer [25, 26]. A similar scenario is observed 

when analysing methylation profiles from tumour adja-

cent normal tissue and normal tissue from non-cancer 

patients, highlighting the potential importance of meth-

ylation in prostate cancer development [27, 28].

In this study, whole genome sequencing was performed 

on multiple samples from morphologically normal tis-

sues from 37 men with and without multifocal prostate 

cancer, to gain insights into the nature of the field effect 

in the prostate.

Methods
Sample selection and ethics

Samples were collected at prostatectomy (from men with 

prostate cancer) and at cystoprostatectomy (from men 

without prostate cancer) from the Addenbrooke’s Hos-

pital, Cambridge, UK. Samples from men without pros-

tate cancer were collected at autopsy at the Tissue and 

Research Pathology/Pitt Biospecimen Core at the Uni-

versity of Pittsburgh. Samples of cell cultured fibroblasts 

derived from stroma were collected from York Teaching 

Hospital NHS Foundation Trust and Castle Hill Hospi-

tal in Hull. Clinical details for the patients are presented 

in Additional file 1. Ethical approval was obtained from 

the NHS East of England-Cambridge REC [03/018] and 

from the NHS Hull and East Yorkshire (REC ref/07/

H1304/121) for the morphologically normal samples 

(including BPH) and cultures, respectively. Samples were 

collected subject to ICGC standards of ethical consent 

(https:// icgc. org/). Blood samples were used as normal 

controls apart from the fibroblast samples where cell cul-

tured lymphocytes were used.

The prostates were processed as previously described 

[29]. In brief, 5  mm slices were selected for each pros-

tate and 4–6  mm cores were taken from them and fro-

zen. Transverse 5  μm sections were taken from the 

frozen cores and H&E stained and immediately adjacent 

6 × 50  μm sections were used for DNA preparation. At 

driver mutations, by almost complete absence of structural variants/copy number alterations, and mutational pro-

cesses similar to malignant tissue. Our findings have implications for treatment (focal therapy) and early detection 

approaches.

Keywords: Prostate cancer, Clonal expansions, Genomics, Normal tissue, Benign prostatic hyperplasia, Field effect, 

Mutational signatures

https://icgc.org/
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least two histopathologists confirmed the presence or 

absence of cancer and percentage estimates in central 

pathology review of the 5 μm H&E stained tissue slices. 

Prostates were deemed multifocal if, in an estimated 3D 

reconstruction from prostatectomy slices, two nodules 

are clearly separated in all planes (> 2 mm apart). The dis-

tance (in mm) between all the morphologically normal 

samples and their respective tumours, where present, 

was measured.

DNA sequencing

DNA was extracted from 121 samples from 37 partici-

pants: 37 matched blood controls, 39 morphologically 

normal samples from men with prostate cancer (BPH and 

non-BPH), 38 samples from tumour and 7 samples from 

men without prostate cancer (5 from autopsy and 2 from 

cystoprostatectomy; Table 1; Additional file 1). Addition-

ally, DNA was extracted from an extra five samples from 

the passage 1 stroma cultured from morphologically nor-

mal regions with BPH, along with matched cell cultured 

lymphocyte controls. The cells used were true primary 

cultures, where the expression phenotype matched that 

of tissue stroma and preserved the complexity of tissue 

stromal phenotypes [30, 31].

DNA from whole blood samples and frozen tissue was 

extracted and quantified using a ds-DNA assay (UK-

Quant-iT PicoGreen® dsDNA Assay Kit for DNA) fol-

lowing manufacturer’s instructions with a Fluorescence 

Microplate Reader (Biotek SynergyHT, Biotek). Accept-

able DNA had a concentration of at least 50 ng/μl in TE 

(10 mM Tris/1 mM EDTA), with an OD 260/280 between 

1.8–2.0.

Paired-end whole genome sequencing of the samples 

was performed at Illumina, Inc. (Illumina Sequenc-

ing Facility, San Diego, CA USA) as described previ-

ously [22]. Sequencing data from each lane was aligned 

to the GRCh37 reference human genome [32] using the 

Burrows-Wheeler Aligner’s Smith-Waterman Alignment 

(BWA-SW) [33] v0.5.9-r16 + rugo using parameters 

-1 32 -t 6. Lanes that pass quality control are merged 

into a single well-annotated sample BAM file with PCR 

duplicate reads removed. These data have been sub-

mitted to the European Genome-Phenome Archive 

(EGAD00001000689 and EGAD00001004125).

Variant calling

Single nucleotide variants (SNVs), insertions and deletions 

were detected using the Cancer Genome Project Well-

come Trust Sanger Institute pipeline. An updated version 

of this pipeline is available as a Docker image (Alignment: 

https:// docks tore. org/ conta iners/ quay. io/ wtsic gp/ docks 

tore- cgpmap; Variant-calling: https:// docks tore. org/ conta 

iners/ quay. io/ wtsic gp/ docks tore- cgpwgs).

SNVs: somatic single nucleotide variants (SNVs) were 

called using CaVEMan, https:// github. com/ cance rit/ 

CaVEM an). CaVEMan (Cancer Variants through expec-

tation Maximization) is an algorithm developed at the 

Wellcome Trust Sanger institute to find somatic substitu-

tions in NGS sequencing data [34]. It is a Bayesian proba-

bilistic classifier that uses an expectation maximization 

(EM) algorithm. This algorithm calculates a probability 

score for likely phenotypes at each genomic position, 

given prior information regarding reference alleles, CNAs 

or ploidy, the fraction of aberrant tumour cells present 

in each cancer sample and sequencing quality scores. 

A high level of specificity and sensitivity was achieved 

by applying project specific post-processing filters [35]. 

These filters were designed according to previous results 

from visual inspection of hundreds of variants. In com-

parisons with other mutation callers it has been found to 

be amongst the top performers in terms of sensitivity and 

specificity [36]. Visual inspection was performed for all 

variants in five patients and in all SNVs affecting recur-

rently mutated genes, as previously described [22].

Indels: Insertions and deletions were called using a 

lightly modified version of pindel [37]

Table 1 Summary of samples collected from morphologically normal, BPH and tumour tissues from patients with and without 

prostate cancer. Patients 0006, 0007 and 0008 have multiple samples from non-BPH normal and tumour tissue and patients 0065, 0073 

and 0077 have a sample from non-BPH and BPH normal tissue (Supplementary Table 1). Five samples were sequenced from stroma 

cultured from morphologically normal regions with BPH from five cancerous prostates in a separate cohort of men

SAMPLES

PATIENTS Morphologically Normal tissue Tumour tissue

Cancer (30) Non-BPH 30 (Prostatectomy) 38 (Prostatectomy)

BPH 9 (Prostatectomy)

Cancer (5) Fibroblasts 5 (Cell culture)

Non-cancer (7) Non-BPH 6 (1 Cystoprostatectomy and 5 Autopsy)

BPH 1 (1 Cystoprostatectomy)

https://dockstore.org/containers/quay.io/wtsicgp/dockstore-cgpmap
https://dockstore.org/containers/quay.io/wtsicgp/dockstore-cgpmap
https://dockstore.org/containers/quay.io/wtsicgp/dockstore-cgpwgs
https://dockstore.org/containers/quay.io/wtsicgp/dockstore-cgpwgs
https://github.com/cancerit/CaVEMan
https://github.com/cancerit/CaVEMan
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(http:// cance rit. github. io/ cgpPi ndel/).

Structural rearrangements were called using Brass 

(Breakpoints via assembly, https:// github. com/ cance 

rit/ BRASS), an in-house bespoke algorithm  developed 

at the Wellcome Trust Sanger institute to find genomic 

rearrangements in paired-end NGS sequencing data. In 

brief, the first step is to combine discordant read pairs 

into potential regions where a breakpoint might occur. 

Next, reads around each potential region, including half-

unmapped reads, are gathered and a local de novo assem-

bly using Velvet is performed [38]. By analysing the De 

Bruijn graph pattern, the breakpoint can be identified 

down to base pair resolution.

Copy number: clonal and sub-clonal somatic CNAs 

was detected with the Battenberg algorithm (https:// 

github. com/ Wedge- Oxford/ batte nberg) [39]. An estima-

tion of ploidy and tumour content is estimated as previ-

ously described [39].

Statistical analyses

All statistical analyses were implemented in R, version 

3.6.1. In comparisons where multiple samples from a 

patient were present in a group the median value was 

taken.

Mutational signatures detection

The recently published new mutational catalog [40] was 

used for the decomposition of mutational processes 

in each sample using SigProfiler (https:// github. com/ 

Alexa ndrov Lab/ SigPr ofile rSing leSam ple) as previously 

described [41]. Alexandrov et  al. [40] confirmed all the 

previously reported COSMIC signatures (except for Sig-

nature 25) and added 20 more signatures. All mutational 

signatures from the catalogue were included in the analy-

sis, except signature 25.

Only signatures with exposures higher than the recom-

mended 0.06 cutoff are reported [42]. Samples with less 

than 100 SNVs were excluded from this analysis (0001_N, 

0008_N3 and 0007_T4).

Analysis of subclonal architecture

The subclonal architecture of normal and tumour sam-

ples from individual prostates was reconstructed using 

a Bayesian Dirichlet process adapted to cluster SNVs 

in n dimensions [43] as previously described [22, 43, 

44] (DPClust). In those cases where there was only one 

sample (normal samples without a matched tumour i.e. 

non-cancer patients and BPH-fibroblasts) the subclonal 

architecture was reconstructed using a standard Dirichlet 

model. The fraction of cells carrying a particular muta-

tion (clonal cell fraction) was estimated from the mutant 

allele fraction, copy number alterations (CNAs) and 

purity. In normal and BPH samples the purity is assumed 

to be 100%. Only those clones supported by at least 1% 

of total SNVs for each patient were retained. For cases 

6–8, mutations that were previously validated by deep 

sequencing [22] were kept for the phylogeny reconstruc-

tion. In all cases the allele frequencies of the subclone 

were significantly different to the estimated background 

rate (P < 0.05).

Neutral evolution tests

Neutrality analyses were performed using the R package 

Neutralitytestr [45]. This package uses SNV allele fre-

quencies and fits a neutral model of evolution. In brief, 

the model predicts that subclonal mutations (with allele 

frequency < 0.25) follow a 1/f power law distribution. For 

these analyses, only those mutations with VAF > 0.1 were 

considered, the package default. Subclonal clusters were 

removed from further analysis when a threshold for neu-

trality was met (P > 0.05; area under the curve, Kolmogo-

rov distance, Euclidean distance).

Functional impact

The tool  wANNOVAR199 was applied to assess the func-

tional impact of our set of nucleotide variants. It analyses 

the position (chromosome, location, reference and alter-

nate nucleotides) of each mutation. The COSMIC and 

The Human Protein Atlas database (https:// www. prote 

inatl as. org/) were used to report cancer associated genes.

Results
Mutation profiles of normal tissue

We performed Whole Genome DNA Sequencing (WGS) 

on 39 samples of morphologically normal tissue (median 

depth 53.4X) and 38 samples of cancer (median depth 

58.4X) taken from the prostates of 30 cancer patients 

(Table  1; Additional file  1). 24/30 (80%) of the patients 

had multifocal tumours, suggesting presence of a field 

effect, and nine of the morphologically normal samples 

were classified as coming from a region of benign pros-

tatic hyperplasia (BPH). Multiple morphologically nor-

mal samples from the same patient were taken in six 

cases (Patients 0065, 0073, 0077, 0006, 0007 and 0008) 

(Supplementary Table  1 in Additional file  2; Additional 

file  1). Matched tumours were included for all patients 

except patient 0240. In addition, normal prostate tissue 

samples were sequenced from seven non-cancer patients: 

two collected after a cystoprostatectomy and five from 

samples collected at autopsy (median depth 54.6X). 

Matched blood controls were included for all patients. 

An extra five samples were sequenced from stroma cul-

tured from morphologically normal regions with BPH 

from five cancerous prostates in a separate cohort of men 

(median depth 55.4X; matched cell cultured lymphocytes 

http://cancerit.github.io/cgpPindel/
https://github.com/cancerit/BRASS
https://github.com/cancerit/BRASS
https://github.com/Wedge-Oxford/battenberg
https://github.com/Wedge-Oxford/battenberg
https://github.com/AlexandrovLab/SigProfilerSingleSample
https://github.com/AlexandrovLab/SigProfilerSingleSample
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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were used as controls). A total of 131 samples were ana-

lysed by WGS, of which 43 are blood controls.

In morphologically normal samples, no copy number 

alterations and a low number of structural rearrange-

ments (n = 7) were detected. In total, 26,135 Single 

Nucleotide Variants (SNVs) (median of 421 per sam-

ple), and 17,370 indels (median of 445) were identified 

in morphologically normal samples (Fig. 1). The num-

ber of mutations shared between samples from the 

same donor ranged from 0 to 622 SNVs (Supplemen-

tary Table  2). Cultured prostate fibroblasts also har-

boured a high number of SNVs (6,597 total: median of 

1116), suggesting the possibility of a stromal origin for 

the mutations observed in normal tissue. The number 

of SNVs and indels were significantly higher in mor-

phologically normal samples from men with prostate 

cancer compared to those without (SNVs, median 

436 for cancer vs 141 non-cancer, P = 7.0 ×  10–03, 

Wilcoxon rank sum test; and Indels, median for cancer 

455 vs 62 non-cancer, P = 8.7 ×  10–06, Wilcoxon rank 

sum test). Cystoprostatectomy sample 0239, which 

is classed as BPH, had an exceptionally high number 

of mutations (1202) in comparison to the other non-

cancer patients. There is some evidence that a higher 

number of SNVs is present in BPH samples compared 

to non-BPH morphologically normal tissue (median 

952 for BPH compared to 424, P = 0.018, Wilcoxon 

rank sum test).

There was no evidence of an association between the 

number of SNVs and the distance between morpho-

logically normal and tumour samples (ρ = -0.00015, 

P > 0.99, Spearman’s correlation) or between the num-

ber of SNVs/indels  and multifocality (P = 0.38, and 

P = 0.73, Wilcoxon rank sum test, respectively). Simi-

larly, although age is a known contributor to prostate 

cancer development, no association was found between 

Fig. 1 Mutations in morphologically normal tissue: A From top to bottom: whether clonal expansions under positive selection were detected; 

sample type (morphologically normal tissue in prostate cancer patients, BPH tissue in prostate cancer patients, tissue from non-prostate cancer 

patients, BPH fibroblast cell culture); number of single nucleotide variants (SNVs) detected per sample; number of indels (insertions, deletions 

and complex insertions/deletions) per sample. Each column represents a sample and they are ordered according to sample type and decreasing 

number of SNVs. Eight rearrangements (not represented in figure) were detected across all patients (sample 0063_N (n = 1), 0127 (n = 3), 0073_N 

(n = 1), 0074_N (n = 1), 0006_N1 (n = 1) and sample 0006_N3 (n = 1)). A BRCA2 SNP (chr13:32,945,095) was detected in the blood of donor 0063. No 

copy number alterations were detected. B Plot showing the distribution of the number of SNVs found in BPH samples and non-BPH normal samples 

in prostate cancer patients; C the number of SNVs between normal samples from people with or without prostate cancer; D the number of indels 

between normal samples from people with or without prostate cancer
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age and the number of mutations in morphologically 

normal samples (ρ = 0.26, P = 0.082 Spearman’s cor-

relation; Supplementary Fig.  1 in Additional file  2). 

However, the age distribution is not representative of 

the general population. The number of SNVs were still 

significantly associated with prostate cancer status 

when age was included as a covariate (P = 0.018; coef-

ficient = 362; linear model).

Subclonal architecture

The subclonal architecture of normal and tumour sam-

ples from each individual prostate was reconstructed 

using the DPclust method [43] (Additional file  3; Addi-

tional file  4, Supplementary Fig.  2). Clones where there 

was a suggestion of neutral evolution were removed 

(see Methods). Subclonal architecture was supported by 

shared alterations including SNVs, indels and structural 

rearrangements.

The number of samples with subclonal expansions 

under selective pressure were significantly higher in mor-

phologically normal tissue taken from cancer patients 

(23/37) compared to that taken from non-cancer patients 

(1/7 samples; P = 0.035, Fisher exact test; Fig.  1, Addi-

tional files  3 & 4). Clonal expansions under selective 

pressure were also detected in four of five fibroblasts 

samples (cases 0247, 0250, 0251 and 0252), where single 

nucleotide variants were present at clonal cell fractions 

(CCF) of 24%, 40%, 100% and 77% of cells, respectively 

(Supplementary Fig. 2, Additional file 4).

No significant differences were found between the 

CCFs of non-BPH morphologically normal (median 

of 37) vs BPH tissue  (median of 49) samples, BPH cul-

tured fibroblasts (median of 56.5) vs BPH tissue samples, 

and BPH cultured  fibroblasts vs non-BPH morphologi-

cally normal samples (P > 0.36, Wilcoxon rank sum test, 

Supplementary Fig. 4). The CCF of clonal expansions of 

both BPH and non-BPH morphologically normal tissue 

was weakly associated with the stromal content (%) of 

each sample (r = 0.30, P = 0.16, Spearman’s correlation, 

Fig.  2A). More importantly, the CCF is always higher 

than the proportion of the prostate estimated as epithe-

lial (Fig.  2B; median CCF = 39, median epithelial = 20; 

P = 5.94 ×  10–05, paired Wilcoxon signed rank test, Addi-

tional file 5), which suggests that the cells containing the 

clonal expansions are likely to be of stromal origin.

To illustrate the relationship among different clones, 

phylogenetic trees were constructed using the sum and 

crossing rule [46] for 17 patients where at least one 

clonal expansion was detected in normal tissue (Fig.  3, 

Supplementary Fig.  3). In the three patients that we 

have examined in previous work [22], data from mul-

tiple additional morphologically normal samples was 

available enabling more detailed mapping (Fig. 3A). We 

observe that mutation clusters in normal tissue are all 

subclonal (Additional file 3), with a shared N1/N2 sub-

clone in case 0007, two subclones (N1 and N3) in case 

0006, and one clone in N2 in case 0008. These results 

show that multiple clonal expansions of morphologically 

normal cells are present in the prostate of some men 

with prostate cancer. There is no shared trunk between 

tumour clones and normal clones, indicating that they 

arise independently.

Fig. 2 Relationship between clonal cell fraction (CCF) of clones in morphologically normal sample and estimated cellular composition. A Scatter 

plot of average stromal content estimated by histopathological review and the CCF for each morphologically normal sample from men with 

prostate cancer. Line is the best fit linear line. Colour is whether the sample is BPH or not. B Comparison between the CCF and the percentage 

epithelial content for each morphologically normal sample from men with prostate cancer
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BPH and non-BPH morphologically normal tissue 

taken from the same prostate shared a subclone in all 

three cases examined (0065, 0073 and 0077, Fig.  3B). 

Generally, mutations present in morphologically normal 

tissue (BPH or non-BPH) and cancer were distinct but in 

case 0077 a subclone was observed with 2% contribution 

in the tumour sample, 8% in the morphologically normal 

sample and 33% in the BPH sample, consistent with a 

model in which the tumour sample contains a small pro-

portion of the non-BPH/BPH subclone.

In the remaining 11 patients, where morphologically 

normal (either BPH or non-BPH) and tumour samples 

were taken, two patterns were present. The first pattern 

(Cases 0066, 0074, 0115, 0149 Supplementary Fig. 3) was 

characterised by separate cancer and non-BPH morpho-

logically normal lineage. In the second pattern (Cases 

0072, 0076, 0120, 0146, 0156, 0159, 0162) there was evi-

dence of a subclone found in the normal cells also being 

present in the cancer sample at a low CCF (< 13%, median 

of 3, IQR of 2; Additional file 3). The minimum distance 

between cancer and normal samples for the prostates 

with independent lineages (median of 19  mm; IQR = 9) 

was on average larger than prostates where the cancer 

samples had a normal clone present (median 7.1  mm; 

IQR = 5) (Additional file 1), but this was not statistically 

significant (P = 0.18, Wilcoxon rank sum test).

In patients with at least one clonal expansion under 

selective pressure the association between the number of 

Fig. 3 Phylogenies of patients with multiple samples. Phylogenies revealing the relationships between clones for each case. A patients where we 

have collected multiple tumours and normal. B patients where there was data from a tumour, non-BPH normal tissue, and BPH normal tissue. Each 

coloured line represents a clone/subclone detected in a particular sample. When two or more coloured lines are together, they represent a clone 

that is found in all the samples represented. The length of the line is proportional to the weighted number of single nucleotide variants present 

in each clone; the thickness represents the clonal cell fraction associated with that clone (more detail in Additional file 3). For example, case 0077 

contains a shared subclone with 8% N, 33% BPH and 2% T (Tb) supported by 113 SNVs and 4 indels. Dotted lines are associated with samples that 

have no evidence of a unique sample specific clone. The very low fraction tumour subclone (< 4%) shared with normal and BPH tissue in case 0077 

and between normal and tumour in case 0072 suggests cancer targeted tissue contained some of the N/BPH cells. Additional phylogenies can be 

found in Supplementary Fig. 3
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clones and the minimum proximity of the normal sam-

ples to the matched tumour was not statistically signifi-

cant (P = 0.307, Wilcoxon rank sum test). Similarly, there 

was no evidence of an association between the matched 

tumour being multifocal and the presence of at least one 

clonal expansion (P = 0.79, Wilcoxon rank sum test).

Mutational signatures

Mutational signatures were inferred for each sample 

using SigProfiler [41] using the set of signatures defined 

by Alexandrov et  al. [47] (Additional file  6). The cosine 

similarity between the reference signatures and the 

reconstructed profiles was high for all samples but higher 

in tumour compared to normal samples (median of 0.97 

for tumour vs 0.88 normal), likely the result of a lower 

number of SNVs in normal tissues. Mutational signatures 

1, 5, 8, 18 and 40 were detected both in tumour and in 

morphologically normal tissue/BPH samples (Fig. 4). All 

of these signatures have been previously been identified 

in prostate cancer samples [47]. Signature 1 was over-

represented in tumour samples (P = 4.89 ×  10–03, Fisher’s 

exact test). This signature is thought to result from an 

endogenous mutational process started by the deamina-

tion of 5-methylcytosine and has been associated with 

ageing. Because of this we would expect a similar rep-

resentation of this signature in both normal and tumour 

samples. The aetiologies of signatures 5, 8 and signature 

40 are unknown [47]. Three signatures (3, 4, and 28) were 

unique to morphologically normal tissue. Signatures 

4 and 28 were present in only one sample, whereas sig-

nature 3 is present in 10 samples. Signature 3 has been 

linked with defective homologous recombination-based 

repair, Signature 4 has been associated with tobacco 

smoking and the aetiology of signature 28 is unknown. 

There were no differences between non-BPH morpho-

logically normal tissue and BPH.

Fig. 4 Mutational spectra. Mutational signatures detected in tumour and matched morphologically normal tissue from prostate cancer patients 

and normal tissue from men without prostate cancer. The mutational spectra of each sample, as defined by the triplets of nucleotides around each 

SNV, were deconvoluted into mutational signatures (SigProfiler [41]) using the set of signatures defined by Alexandrov et al. [47]. The colour of the 

first row indicates patient when there is more than a normal-tumour (N-T) pair analysed. Six patients had more than two samples analysed and one 

patient had only a morphologically normal sample without a matched tumour
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Gene mutations with functional impact

In morphologically normal, fibroblasts and BPH samples 

a total of 281 SNVs and indel mutations were observed 

in coding regions of 165 genes. 110 of the 281 muta-

tions show a potential functional impact according to 

wANNOVAR [48] and eight of these occurred in known 

cancer-related genes (PPARG, BRCA1, GATA1, ACR, 

WHSC1, FAT1, POLE and HOXD11) as reported in the 

cancer gene census [49] (Additional file  7). Of these, 

mutations in GATA1, WHSC1, ACR, and POLE were 

observed in at least one sample from a primary pros-

tate fibroblast culture (WHSC1 and ACR  occurring in 

the same sample). Mutations with predicted functional 

impact were observed in 11 genes that are designated 

prognostic markers of poor outcome in The Cancer 

Genome Atlas Research Network (TCGA) RNAseq data-

set [50, 51]: FAT1, SOBP, CTHRC1, IQGAP1, FOXJ3, 

ATP1A3, PHF12, BCAT1, GMPR2, ADAM28, DHX32, 

DSG3, DDX19A, KIAA1217, PPARG, PTK2B, RPL18, 

DONSON, CHPF2 and XKRX. All apart from 4 of the 

110 mutations were detected in a single sample: muta-

tions affecting genes GYPA and NACAD were present in 

multiple samples from different patients, and mutations 

in genes BCAT1 and FAT2 were present in two samples 

from the same patient (Additional file 7). Of all the genes 

identified, only BRCA2 and ADAM28 have been previ-

ously classified as recurrently mutated drivers in pros-

tate cancer [52, 53]. A previously described dN/dS driver 

detection method [5] was performed but no significant 

hits were found, possible due to the limited number of 

mutations and samples. From the 110 genes with a pre-

dicted functional impact, 13 were also observed to be 

mutated in at least one tumour sample (Additional file 7). 

However, there was only one instance where a poten-

tially functionally important mutation occurred in both 

a normal sample and the matched tumour from the same 

patient (gene ACOT1 in patient 0122).

We conclude that some of the observed mutations had 

the potential to generate driver genes but there was an 

absence of evidence for recurrent mutations in cancer 

driver genes.

Comparison with tumours

When comparing the morphologically normal samples 

to their respective tumours, both the number of SNVs 

(median 421 vs 2560.5) and structural rearrangements 

(median 0 vs 40) was significantly higher in tumours 

(P = 3.73 ×  10–09, P = 2.70 ×  10–06, respectively, paired 

Wilcoxon signed rank test; Fig.  5A; Additional file  1). 

In total 17,370 indels (median of 445) were identified 

in morphologically normal samples whereas tumour 

samples harboured 11,087 indels (median of 265). 

The absence of copy number alterations is a notable 

characteristic of the normal samples, and the number is 

significantly less than in cancer tissue (median of 42 for 

cancer vs 0 for morphologically normal, P = 2.68 ×  10–06, 

paired Wilcoxon signed rank test).

We analysed a total of 91 of the 112 tumours exam-

ined by Wedge et al. [52] (removing the metastatic sam-

ples; Additional file 8). A group of 23 samples with less 

than 6% of the genome affected by copy number altera-

tions were identified as “quiet tumours” (Supplemen-

tary Table  3). The numbers of SNVs (median = 2250 vs 

2796) and structural rearrangements (median = 32 vs 

56) were significantly lower in the quiet tumours than 

their high CNAs counterparts (P = 7.59 ×  10–04 and 

P = 5.27 ×  10–03, respectively, Wilcoxon rank sum test). 

The number of SNVs was significantly higher in “quiet 

tumours” when compared to samples from morphologi-

cally normal tissue (P = 1.88 ×  10–10, Wilcoxon rank sum 

test, median = 421 vs 2250; Fig. 5B).

Discussion
Our study demonstrates several critical and recurrent 

features of the mutations present in non-neoplastic (BPH 

and non-BPH) tissue taken from cancerous prostates. 

Primarily, morphologically normal tissue from patients 

with prostate cancer had a high number of single nucleo-

tide variants (SNVs) and indels and generally a clonal 

expansion under selective pressure was present. This 

contrasted with samples from prostates lacking cancer 

which had a significantly lower number of mutations and 

a lack of clonal expansions under selective pressure. Our 

results indicate that the presence of the clonal expan-

sions in non-neoplastic tissue is a feature associated with 

development of cancer, a finding previously reported in 

leukemia [14–17].

We also show that there is evidence that clonal expan-

sions from non-neoplastic tissue originates from stromal 

cells. This is highlighted by the finding that the clonal cell 

fraction of clonal expansions of morphologically normal 

tissue was always higher than the proportion of the pros-

tate estimated as epithelial. This is supported by the rela-

tionship we observe between non-BPH and BPH normal 

tissue, with BPH in some cases thought to be associated 

with hyper-proliferation of stromal tissue [54] (although 

we found no evidence of an association between stromal 

content and mutation burden). Firstly, our constructed 

phylogenies reveal non-BPH morphologically normal and 

BPH samples within the same prostate can have a shared 

lineage. Secondly, high mutation rates were observed in 

five primary cell cultures of stromal cells prepared from 

BPH specimens; four of the cultures exhibiting evidence 

of selective clonal expansion; and three samples contain-

ing potential driver genes. Thirdly, higher mutation rates 

were observed in stroma-dominated BPH compared to 
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non-BPH morphologically normal tissue. Finally, the cys-

toprostatectomy sample 0239 – which exhibited BPH – 

had the highest number of SNVs observed in non-cancer 

patients and had evidence of a  clonal expansion under 

selection. The importance of stroma in prostate differen-

tiation was established in mouse studies by Cunha et al. 

[55]. These studies have been extended into human cells 

[56–58] and Maitland et  al. have studied prostate stro-

mal influences for more than 20 years, exploiting primary 

clinical material and cultured cells [59, 60]. Foster et  al. 

have reported clonal expansions in cancer-associated 

fibroblasts (CAFs) [61] and shown that stromal cells from 

BPH, unlike stromal cells from normal prostatic tissue, 

have capability of inducing growth of prostatic epithelia 

in  vivo. Taken together, these findings indicate a model 

for cancer development wherein the presence of clonal 

expansions of stromal cells supports cancer develop-

ment and contributes to the field effect. This theory is 

Fig. 5 Tumours show a distinct mutation profile to normal tissue. A The difference between the number of single nucleotide variants (SNVs) 

detected in normal tissue compared to tumour tissue. Where multiple samples of either type were present the median number was used. B 

The distribution of the number of SNVs detected in morphologically normal tissue, tumour tissue with low CNAs (percentage genome altered 

(PGA) < 6%) and tumour tissue with high CNAs (PGA > 6%). Data from these last two categories came from Wedge et al. [52]
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in agreement with previous reports of an association 

between BPH and prostate cancer [62–64], although a 

causal link has not previously been established. If this 

model is correct, it cannot exclude a role for stroma in 

non-BPH normal tissue since prostates without BPH also 

exhibit multifocal disease. Examining the estimated cel-

lular composition of the stroma, derived from single cell 

sequencing data, in both PC and non-PC donors would 

further elucidate the differences we observe.

We found only very limited evidence that in normal 

tissue known genetic drivers were affected by mutations 

with potential functional impact – only PPARG, BRCA1, 

GATA1, HOXD11, WHSC1, FAT1 and POLE were identi-

fied. These genes have been associated with tumour sup-

pression (BRCA1 and FAT1) [65, 66], DNA repair (POLE) 

[67], morphogenesis (HOXD11), epigenetic regulation 

(WHSC1) [68], lipid metabolism (PPARG) [69] and red 

blood cell development (GATA1) [70]. They have been 

previously linked with leukemia [71, 72], breast [73–76], 

bladder [73, 77] colon [78, 79], kidney [80], endometrial 

[81], head and neck carcinoma [82–84], pancreatic [73] 

and prostate [85–87] cancers. The low detection of muta-

tions in potential driver genes agrees with a cross tissue 

study performed by Moore et al. in participants without 

detected cancer [7] and raises the possible importance of 

epigenetic alterations in driving clonal expansion. This 

involvement of epigenetic changes is supported by the 

reported high hypermethylation levels in genes such as 

APC, GTSP1 and RASSF1 in morphologically normal tis-

sue in the prostate [88–91], that have also been shown to 

be good predictors of cancer development [88–90]. For 

example, hypermethylation in genes APC and GTSP1 was 

reported in 95% and 43% respectively in patients with an 

initial negative biopsy that later developed prostate can-

cer [88].

Clonal expansions identified in non-neoplastic tis-

sue have a distinct unrelated pattern to those in malig-

nant tissue but are driven by the same processes. Known 

prostate cancer associated mutational signatures [47, 

92] were present in both morphologically normal and 

tumour tissue, suggesting that the same mutational pro-

cesses are driving the clonal expansions in both cases. 

This is consistent with our own study in a smaller data-

set [22] and studies at other cancer sites [93, 94]. Despite 

this, our constructed phylogenies reveal that clones in 

morphologically normal samples are of a distinct lineage 

from those in the tumour and their mutational charac-

teristics are different: normal samples have significantly 

fewer SNVs, have very few rearrangements and a com-

plete lack of copy number alterations. We observed this 

difference both with samples from the same prostate in 

this study and in comparison with “quiet” tumours stud-

ied by Wedge et al. [52]. Copy number alterations are an 

important driving feature of prostate cancer and copy 

number burden has been associated with a poor prog-

nosis [95–97]. Homologous recombination, non-allelic 

homologous recombination, non-homologous end join-

ing and microhomology-mediated break-induced replica-

tion are double stranded break (DSB) repair mechanisms 

that could result in CNAs, rearrangements and hypermu-

tation [98]. The absence of these three types of genetic 

alterations in normal samples suggest that this type of 

DNA damage by DSB and errors in the repairing mecha-

nisms (or both) occur at a lower rate in normal samples 

and supports the potential increase of replication errors 

and non-DSB DNA damage produced by endogenous or 

exogenous environmental factors.

In summary, these results provide further evidence that 

the whole prostate environment, in particular stromal 

cells, are involved in the development of prostate cancer 

and insights into potential genomic evolution mecha-

nisms at very early stages of development. Our findings 

have implications for treatment (focal therapy) and early 

detection approaches.
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Additional file 1. Sample summary.

Additional file 2: Supplementary Figure 1. Age vs number of SNVs 

detected for normal tissue from Prostate cancer patients and non-prostate 

cancer donors. For the non-cancer donors, the number of SNVs detected 

is remarkably consistent (range: 104 to 159), apart from one outlier from 

a cystoprostatectomy with an exceptionally high number of mutations 

(1202) that is uniquely classified as BPH. There is no significant correlation 

in the non-cancer donors between age and SNVs (ρ = -0.015, P = 0.98, 

Spearman’s correlation; this is retained even when the outlier is included: 

ρ = 0.49, P = 0.27). The number of SNVs detected for non-cancer patients 

is over 100 SNVs lower than all prostate cancer patients except for one 

prostate cancer outlier, even in the three samples which are of similar 

age to the prostate cancer cohort. Looking at only samples in the range 

50-73 there is a statistically significant difference in the number of SNVs in 

prostate cancer vs non-prostate cancer donors (P = 0.0093; Wilcoxon rank 

sum test; excluding the normal outlier). Supplementary Figure 2. Exam-

ple density plots of cell cultured fibroblasts and morphologically normal 

samples from patients where phylogenies could not be reconstructed due 

to only having one sample per patient or no detected clonal expansions 

under positive selection. They show the posterior distribution of the frac-

tion of cells bearing a mutation, modelled by a one-dimensional Bayesian 

Dirichlet process [43]. The median density is indicated by the purple line 

and 95% confidence intervals by the blue region. The grey histogram 

shows the observed frequency density of mutations as a function of the 

fraction of cells bearing the mutation. Supplementary Figure 3. Sub-

clonal architecture of patients with morphologically normal and matched 

tumour (N-T). Phylogenies revealing the relationships between clones 
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https://doi.org/10.1186/s12943-022-01644-3
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for each case. Each coloured line represents a clone/subclone detected 

in a particular sample. When two or more coloured lines are together, 

they represent a clone that is found in all the samples represented. The 

length of the line is proportional to the weighted number of single 

nucleotide variants present in each clone; the thickness represents the 

clonal cell fraction associated with that clone (more detail in Additional 

file 3). Dotted lines are associated with samples that have no evidence 

of a unique sample specific clone. Supplementary Figure 4. The rela-

tionship between the clonal cell fraction (CCF) and the type of normal 

samples. Boxplots showing the distribution of estimated CCF for each 

clone detected and the type of normal sample (non-BPH normal tissue, 

normal tissue with BPH and BPH fibroblasts). Supplementary Table 1. 

Summary of patients with multiple normal samples. Patients 0006, 0007 

and 0008 have multiple samples from non-BPH normal and tumour tissue 

and patients 0065, 0073 and 0077 have a sample from non-BPH and BPH 

normal tissue. Supplementary Table 2. The number of mutations in com-

mon between normal samples from the same donor. Supplementary 

Table 3. The mutation characteristics of three groups of samples defined 

by the proportion of genome affected by copy number alterations. Group 

1: Tumour samples examined by Wedge et al. [30] with less than 6% of the 

genome affected by CNAs; Group 2: Tumour samples examined by Wedge 

et al. [30] with more than 6% of the genome affected by CNAs; and Group 

3: normal samples examined in our study where no CNAs were detected. 

The median number of SNVs and indels are shown for each group.

Additional file 3. Subclonal analysis summary in multiple samples: 

Worksheet 1 summarises the number of clusters and clonal cell fraction 

for each patient after applying a multidimensional Bayesian Dirichlet 

process. Worksheet 2 reports the total number of patients included in the 

subclonal analysis and the location of normal samples in relation to the 

tumour sample.

Additional file 4. Sample summary of samples with clonal expansions 

under selection pressure.

Additional file 5. Proportion of epithelial and stromal contents for each 

morphologically normal sample.

Additional file 6. Mutational signatures in each patient: Results of muta-

tional signature analyses before and after bootstrap.

Additional file 7. Mutations in coding regions with functional signifi-

cance: Functional impact was assessed using wANNOWAR [48].

Additional file 8. Sample summary for the comparison of the distribution 

of the number of SNVs detected in morphologically normal tissue, tumour 

tissue with low CNAs (percentage genome altered (PGA) <6 %) and 

tumour tissue with high CNAs (PGA >6 %).
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