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A B S T R A C T   

Digitally extracted biometrics from visible videos of farm animals could be used to automatically assess animal 
welfare, contributing to the future of automated veterinary support systems. This study proposed using non- 
invasive video acquisition and biometric analysis of dairy cows in a robotic dairy farm (RDF) located at the 
Dookie campus, The University of Melbourne, Australia. Data extracted from dairy cows were used to develop 
two machine learning models: a biometrics regression model (Model 1) targeting (i) somatic cell count, (ii) 
weight, (iii) rumination, and (iv) feed intake and a classification model (Model 2) mapping features from dairy 
cow’s face to predict animal age. Results showed that Model 1 achieved a high correlation coefficient (R = 0.96), 
slope (b = 0.96), and performance, and Model 2 had high accuracy (98%), low error (2%), and high performance 
without signs of under or overfitting. Models developed in this study can be used in parallel with other models to 
assess milk productivity, quality traits, and welfare for RDF and conventional dairy farms.   

1. Introduction 

Efficient animal welfare assessment is critical for the agricultural 
industries and the continuous food production, maintenance of food 
quality traits, and ultimate food security [1]. Significant advances have 
been made in the automation of animal-based food production, such as 
robotic dairy farms (RDF) [2–4]. However, many RDFs still rely on 
veterinarians for welfare assessment and treatment of illness or com-
plications related to production, such as mastitis [5–7], and other dis-
eases detected using proxy measures, such as animal feed intake, weight, 
body temperature, and rumination activity [8–10]. 

Recent advancements in digital tools to assess biometrics and phys-
iological parameters from farm animals have allowed monitoring the 
animals using short range remote sensing and non-invasive technolo-
gies, such as visible video (VisV) and infrared thermal imagery (IRTI) 
[11]. Our research group has recently published a complete review of 
these technologies for farm animals such as cattle, dairy cows, pigs, and 
sheep. Specifically, successful applications of digital tools to assess 

animal biometrics have been made to assess the early detection of res-
piratory diseases in pigs and biometrics for sheep, dairy cows, and cattle 
[11]. These advances can automatically generate monitoring parame-
ters such as heart rate (HR), respiration rate (RR), and skin/eye tem-
perature readings more efficiently and without imposing additional 
stress on animals from direct contact sensors [12]. However, they still 
rely on the interpretation of professional veterinarian personnel for 
welfare assessment or detection of illnesses based on more invasive 
tools, such as handling animals and blood work, among others. 

Some important wellbeing parameters to monitor in dairy cows 
assessed in this paper are somatic cell count (SCC), animal weight, 
rumination, and feed intake. The SCC is an indicator of milk quality as 
well as a sign of udder infection known as mastitis [13]. Animal weight 
is important as an indicator of health, welfare, and milk production [14]. 
On the other hand, rumination is the process of regurgitating the feed, 
followed by remastication to break down the particles to swallow and 
pass through the reticulo-omasal orifice; this allows the enhancement of 
fiber digestion [15,16]. In the present study, feed intake refers to the 
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amount of feed the cow consumed from the total provided by the robotic 
milker. This may be affected by several factors, such as stress; therefore, 
it is variable and quantified by the robot. 

Previously, artificial intelligence (AI) methods based on automated 
computer vision algorithms for animal recognition and automated 
extraction of features have been used to develop machine learning (ML) 
models targeting indirect milk production and quality traits [12]. 
Furthermore, this is the first research to derive skin/eye temperature of 
farm animals using VisV only without requiring IRTI, which still can be 
cost-prohibitive compared to normal RGB cameras and cumbersome for 
data extraction, processing, and automated interpretation. 

Following the latest advances in AI using VisV to assess fam animal 
biometrics, this paper proposed advanced modeling techniques based on 
ML using biometrics as inputs to target complex data such as SCC, ani-
mal weight, rumination, and feed intake (Model 1) and using feature 
extraction (using deep learning) from animal faces as inputs to target 
cow age as a target using classification ML modeling strategies (Model 
2). Advances shown in this paper may improve the automation of RDF to 
assess not only milk productivity and quality traits [12] but also animal 
welfare and early detection of illnesses, such as mastitis. 

2. Materials and methods 

2.1. Animals, site, and ethics details 

The study was conducted at the robotic dairy facilities located at the 
Dookie College, The University of Melbourne (UoM), Victoria, Australia 
(36◦38′ S, 145◦71’ E). A total of 102 Holstein-Friesian cows were 
analyzed with one to five replicates per cow, with 282 observations. The 
Animal Ethics Committee of The University of Melbourne approved all 
protocols (Ethics ID: 2021-21466-18833-5). The robotic facilities consist 
of three Lely Astronaut milking units (Lely Holding S.à.r.l., Maassluis, 
The Netherlands) with a capacity for up to 180 cows per day. Cows wear 
a transponder neck collar (Lely Holding S.à.r.l., Maassluis, The 
Netherlands) for identification, registering their information, activity, 
and production data [12]. 

2.2. Video recording and analysis 

Data were collected on 14–15th July and 4–5th August 2021 from 9 
a.m. to 4 p.m. Cows that voluntarily approached the facilities for milking 
were directed to the crush for video recording either before or after 

milking to avoid bias and stress due to the milking effect. A 1 min VisV 
was recorded per cow each day using a FLIR DUO PRO (Teledyne FLIR 
LLC, Wilsonville, OR., USA), which can capture visible red, green, and 
blue (RGB) and infrared thermal videos (IRTV) simultaneously. How-
ever, for this study, only the VisV was used. 

All VisV were analyzed using computer vision algorithms developed 
in Matlab® R2021a (Mathworks, Inc., Natick, MA, USA) by the Digital, 
Agriculture, Food and Wine group (DAFW) from UoM to assess HR and 
RR [12,17–19]. The region of interest (ROI) used for HR analysis was the 
eye section, while the nose was used for RR; these were labeled, auto-
matically tracked, and cropped to further analyze these biometrics 
(Fig. 1). As detailed by Fuentes et al. [12], these algorithms work by 
analyzing the luminosity (L* value) changes on the green channel from 
the RGB color scale for HR and green to red (a*) color channel from 
CIELab scale for RR, using the photoplethysmography (PPG) principle. 
The HR outputs are obtained in beats per minute (BPM), while RR is in 
breaths per minute (BrPM). The video processing performance is 
dependent on the computer and processor used for the analysis. Using a 
gaming computer Alienware® (DELL, Round Rock, TX, USA) with 32 GB 
and 10 cores with parallel pool, the analysis per video takes 40 s with 7% 
central processing unit (CPU) usage and computer temperature range 
(27–33 ◦C) in individual cores. 

The VisV were also labeled to detect and track the face of the cows 
using the Video Labeler application based on the point tracker Kanade- 
Lucas-Tomasi (KLT) algorithm in Matlab® Computer Vision Toolbox 
10.0 (Mathworks Inc., Natick, MA, USA). These labels were analyzed for 
abrupt movements using a computer vision algorithm developed by the 
DAFW-UoM. This algorithm automatically finds the centroid and tracks 
the head movements in both axes (x and y), and four quartiles are 
considered. Furthermore, this algorithm can automatically extract all 
metrics and statistical data (means and standard deviation) of the abrupt 
head movements. 

2.3. Face recognition and feature extraction using deep learning 

The VisV was also used to recognize the face of the cows and extract 
the features, which were further used as inputs to predict the age of each 
cow. A total of 25 different video frames (one per second) from 89 cows 
were used for this model, these cows are a subset of the 102 cows used 
for biometrics analysis. The raw images were first used to detect the face 
location using YOLOv5 [20], followed by the landmark detection to 
align the face by rotating it to align the eyes and nose to a neutral 

Fig. 1. Example of a video frame from one cow showing the eyes and nose areas identified and cropped to assess heart rate in beats per minute (BPM) and respiration 
rate in breaths per minute (BrPM), respectively. 
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position using anchorage points based on the eyes position and nose 
using Resnet18 [21]. Once the images were detected and aligned, the 
MobilenetV2 [22] face encoder was used to obtain the embedding fea-
tures, consisting of a 1D array with 128 features. This process was 
developed in Jupyter Notebook (Project Jupyter, USA). 

2.4. Information obtained from robotic milking unit 

Data from each cow, which are stored in the collar, were obtained 
from the robotic milking system. These data consisted of (i) SCC 
(x1000), (ii) weight (kg), (iii) rumination (min), and (iv) feed intake 
(kg). 

2.5. Statistical analysis and machine learning modelling 

Data were grouped by age of cows for statistical analysis, in general 
terms, the numbers of cows used for the different ages are between three 
and 63 with a mean of 28 cows per age group. Analysis of variance 
(ANOVA) was conducted using XLSTAT 2020.3.1 (Addinsoft, New York, 
NY, USA) for feed intake, SCC, weight, and rumination along with Tukey 
Honest Significant Difference (HSD) post hoc test to assess significant 
differences between the age groups (p < 0.05; α = 0.05). Multivariate 
data analysis was conducted based on principal components analysis 
(PCA) using the feed intake, somatic cell count, weight, rumination, HR, 
RR and abrupt movement data. A code written in Matlab® R2021a, 
which standardizes the data to develop the PCA, was used to assess re-
lationships within variables and their association with cows of different 
ages. 

Two ML models were developed using artificial neural networks 
(ANN). The ANN models refer to a non-linear method [23] which works 

by simulating the human brain’s neural signaling and is able to identify 
and learn patterns among inputs and targets assigning weights and 
biases, making it capable of solving multi-target non-linear problems 
[24,25]. Most algorithms using ANN work with three stages, (i) training 
stage is used for fitting the model and train the weights of the ANN, (ii) 
validation stage uses a different set of samples to find the best network 
configuration and optimization of the model and, (iii) testing stage uses 
another set of samples, and its purpose is to evaluate the neural network 
obtained from the training and validation stages [26]. Sample sets used 
for each stage are independent of each other, this means that samples 
used in one stage are not used in the others. Finally, the overall accuracy 
considers the data (correct and miss classifications) obtained from the 
three stages and calculates a new accuracy, which considers the entire 
data set. 

Model 1 was constructed using regression ANN with the biometric 
responses as inputs to predict (i) SCC, (ii) weight, (iii) rumination, and 
(iv) feed intake (Fig. 2). Levenberg Marquardt was selected as the best 
training algorithm after testing 17 different algorithms [27] using a code 
developed in Matlab® R2021a, which can test them in a loop. This se-
lection was based on the highest accuracy for all stages (training, vali-
dation, testing, and overall), slope (b) of the model, and performance 
values, and no signs of under- or overfitting found. The total number of 
samples (N = 282) was randomly divided into N = 150 for model 
development and N = 132 for deployment. Data division was set to 
random, and the first set of samples (N = 150) were divided into 70% (N 
= 104) for training and 15% (N = 23) for each validation and testing 
stage. Given that four targets were used, the number of observations 
(data points) for training was 416, and 92 for each validation and testing 
stage. Performance was calculated based on the means squared error 
(MSE) algorithm. To overcome any under- or overfitting, different 

Fig. 2. Diagrams of the two-layer feedforward models with a tan-sigmoid function in the hidden layer and (a) a linear transfer function in the output layer for Model 
1, and (b) a Softmax transfer function for Model 2. Abbreviations: W: weights; b: bias; SD: standard deviation. 
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numbers of neurons, which simulate the human brain function, were 
tested (3, 5, 7, and 10), obtaining the best model with 10 neurons. 

Model 2 (Fig. 2b) was developed based on pattern recognition for 
classification using the 128 features extracted from the face of the cows 
as inputs to predict the cows’ ages in a range from 2 to 11 years old. This 
model was constructed using the scaled conjugate gradient training al-
gorithm, which resulted in the best of the 17 different algorithms tested 
based on performance and accuracy, as explained in Model 1. A total of 
13 random frames from each video of 89 cows (N = 1157) were 
considered samples to develop the model. Samples were divided 
randomly as 70% (N = 809) for training, and 15% (N = 174) for each of 
validation and testing stages. Performance was calculated based on a 
cross-entropy. The use of different frames for this model was required 
because the cow moves, and this allows having the facial features from 
different angles, which allows accurate deployment results without the 
need for recording images in a specific position. 

For Model 1, the second set of samples (N = 132) was used to eval-
uate the model and confirm its accuracy. Outputs were analyzed using 
ANN regression to test the correlation coefficient (R), and a scatter plot 
was developed, including the 95% confidence bounds to assess outliers. 

Similarly, for Model 2, the second set of samples (N = 1068) using 12 
different frames of each video from the 89 cows was used to evaluate the 
model and confirm its accuracy. Outputs were analyzed based on the 
correct classification of samples into the different age categories. A 
receiver operating characteristics (ROC) curve was developed to visu-
alize the accuracy of the deployment. 

Deployment for both models was developed using videos recorded on 
different days and conditions (weather and luminosity), and they were 
consistently accurate. 

3. Results and discussion 

Fig. 3 shows examples of output from videos of two different cows. It 
can be observed that cow one presented HR between 60 and 108 BPM 

and RR within 18 and 50 BrPM (Fig. 3a), while cow two had HR within 
70 and 130 BPM and RR 20–51 BrPM (Fig. 3b). However, only the mean 
values were used for the models presented in this study, which are 
within 73–85 BPM for HR and 27–43 BrPM for RR. According to the 
literature, these HR and RR values are within the ranges expected for 
dairy cows (HR: 70–90 BPM; RR: 20–50 BrPM) [28–32]. Furthermore, 
the biometrics used to assess these parameters have previously been 
validated using contact sensors for cows [12,18], sheep [17], and 
humans [19]. From abrupt movements, Fig. 3c and d shows the 
normalized pixel variation from the centroid of cow head frames 
considering the initial head position as baseline, where values close to 
− 1 mean minimum variation in x and y axes (minimum head move-
ments) and 1 maximum variation in x and y axes (maximum head 
movements). It can be observed that cow one remained almost steady as 
there was a slight variation in movements within the x- and y-axis 
(Fig. 3c), while cow two moved more along both axes, but especially on 
the x-axis (lateral movements; Fig. 3d). Results from this study are in 
accordance with cow’s abrupt movements that have been analyzed 
using similar digital tools in previously published research [12]. 

Fig. 4a shows that the feed intake for cows of different ages did not 
present significant differences (p > 0.05). Likewise, SCC did not present 
significant differences (p > 0.05) between cows of different ages. It is 
worth noting that no mastitis has been detected due to the levels of 
somatic cells detected by the RDF as, according to the literature, milk 
with <200,000 somatic cells is indicative of non-infected cows [33]. 
Fig. 4b shows significant differences (p < 0.05) between different ages 
for weight and rumination. It can be observed that cows 8 and 10 years 
old were the heaviest (653 and 654 kg, respectively), while the youngest 
cows (2 years old) had the lowest weight (508 kg). On the other hand, 
5-year-old cows had the highest rumination time (428 min), while the 
oldest cows (11 years old) presented the lowest (302 min). 

Fig. 5 shows that the PCA accounted for 62.06% of total data vari-
ability using principal components one and two (PC1 = 33.33%; PC2 =
28.73%). The total data variability is above the cut-off (>60%) required 

Fig. 3. Example and comparison of biometric outputs of two different dairy cows. (a) and (b) show the heart rate and respiration rate responses over time for cows 
one and two, respectively, while (c) and (d) show the abrupt movements in x- and y-axis for cows one and two, respectively, based on normalized pixel variation from 
centroid of cow head frames considering initial head position in x and y axes as baseline. 
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for the PCA to be significant [34]. According to the factor loadings (FL), 
PC1 was mainly represented by abrupt movements in the y-axis (FL =
0.51) and RR (FL = 0.43) on the positive side of the axis, and SCC (FL =
− 0.44) and weight (FL = − 0.43) on the negative side. On the other 
hand, PC2 was mainly characterized by HR (FL = 0.58) and SCC (FL =
0.44) on the positive side and feed intake (FL = − 0.09) on the negative 
side of the axis. This would be expected as elevated SCC or mastitis is 
likely to increase HR [35] and decrease feed intake [36,37]. It can be 
observed that there was a positive relationship between rumination and 
RR with cows 7, 3, and 9 years old associated with these parameters. It is 
unclear why HR and RR are related to rumination as the latter generally 
decreases during HS when HR and RR increase [38]. On the other hand, 
SCC and weight have a positive relationship, with cows 8, 5, and 6 years 
old associated with them. These variables also had a negative associa-
tion with feed intake. Abrupt movements in x had a negative relation-
ship with HR. 

Table 1 shows that ML Model 1 presented very high accuracy (R =
0.96) in predicting SCC, weight, rumination, and feed intake using 
contactless biometrics. The model also had a high slope (b = 0.96) and 
no signs of under- or overfitting, given that the performance of the 
training stage had a lower MSE value (2251) than validation (MSE =
8166) and testing (MSE = 6167). Furthermore, the low number of 
neurons (10) and input parameters (24), which is lower than 70% of 
observations, contribute to having no overfitting of the model. 

Fig. 6a shows the model with 95% prediction bounds, which 

presented 5.67% of outliers (34 out of 600 observations), with the ma-
jority being for rumination (green squares). On the other hand, Fig. 6b 
shows the deployment of the model with data from 132 cows; in this 
figure, it can be observed that it had high accuracy (R = 0.93) and 5.49% 
outliers (29 out of 528 observations) also with the majority being for 
rumination. 

Table 2 shows that Model 2 had a very high overall accuracy (98%) 
in predicting the age of the cows using the face features as inputs. The 
similar accuracies among all stages of the model, in addition to the close 
performance values from validation and testing and lower value for 
training, are indicators of no under- or over-fitting of the model. 

Fig. 7 shows the results from the ROC curve of Model 2 (Fig. 7a) and 
its deployment using a different set of data (Fig. 7b). It can be observed 
that in the model, all categories are close to the highest true-positive 
rate, being 11 years old, the age category with the highest mis-
classifications or lowest true-positive rate (0.85). The deployment had 
an overall accuracy of 82%, with 11 years old as the lowest accuracy 
(0.67); this is due to the low number of samples used to develop and 
deploy the model for this category (one cow; 13 samples for the model; 
12 samples for deployment) compared to the number of samples from 
other ages. However, the model may be retrained and improved in 
further studies to increase the sample for this age and include cows of 
different ages. 

Model 2 for age prediction is important for traceability purposes. If 
any farmer buys a new cow, they can ensure they receive the animal 

Fig. 4. Results from the cows information obtained from daily activity grouped 
by age, where (a) shows the feed intake and somatic cell count, and (b) shows 
the weight and rumination. Letters (a–c) within bars depict significant differ-
ences (p < 0.05) between age groups of cows based on ANOVA and Tukey 
Honest Significant Difference (HSD) post hoc test. Bars with no letters did not 
present significant differences (p > 0.05). Error bars were calculated based on 
standard error. Abbreviations: y/o: years old. 

Fig. 5. Principal components analysis showing different variables for cows 
grouped by age. Abbreviations: PC1 and PC2: principal component one and 
two; y/o: years old; AbruptMov-x and AbruptMov-y: abrupt movements in x- 
and y-axis. 

Table 1 
Results from the machine learning Model 1 showing the correlation coefficient 
(R), slope (b), and performance based on means squared error (MSE) for each 
stage.  

Stage Samples Observations 
(samples × targets) 

R b Performance 
(MSE) 

Training 104 416 0.98 0.98 2251 
Validation 23 92 0.92 0.93 8166 
Testing 23 92 0.94 0.93 6167 
Overall 150 600 0.96 0.96 –  
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with the characteristics that the seller promises in terms of age to avoid 
fraudulent transactions, which are quite common everywhere. 

This model was developed from videos in the crush to have better 
control for model training; however, the use of different frames and 
angles of the face allows to deploy it in any setting, not only a crush. 
Furthermore, the model may be automated so that when a new animal 
enters the herd, it is recognized as a new animal and adds the cow to the 

inputs; the farmer would need to incorporate the targets for the model to 
learn and include it within the database. 

For this study, temperature from IRTI analysis was not included since 
it has been shown in previous studies that skin/eye temperature can be 
calculated as a proxy of HR and RR since the latter physiological pa-
rameters regulate body temperature in dairy cows [12,39]. Amongst the 
benefits of the proposed system (biometrics plus machine learning) 
consist of the fact that it only requires a conventional RGB video camera 
[12,17], the detection of animals and acquisition of results takes less 
than 1 s for animal recognition, and age and less than 8 s for welfare 
assessment (e.g., SCC, HR, weight, rumination, among others) [12,17], 
which is a great advantage for farmers to obtain several parameters in a 
short time, therefore, saving costs and labor. 

Fig. 6. (a) Regression model (Model 1) developed using data from 150 samples of dairy cows, and (b) deployment of the model using 132 different samples. Ab-
breviations: R: correlation coefficient; T: targets; cows information refers to the targets/outputs mentioned in the Figure legend. 

Table 2 
Results from the machine learning Model 2 to predict the age of the cows, 
showing the accuracy and performance based on cross-entropy.  

Stage Samples Accuracy Error Performance (Cross-entropy) 

Training 809 99.6% 0.4% <0.01 
Validation 174 93.7% 6.3% 0.02 
Testing 174 92.5% 7.5% 0.03 
Overall 1157 97.7% 2.3% –  

Fig. 7. Receiver operating characteristics (ROC) curves of (a) Model 2 develop with the first data set (N = 1157) and (b) the deployment of Model 2 using the second 
data set (N = 1068). 
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4. Conclusions 

The ML models developed in this study can be used with a ubiquitous 
VisV camera, which could help to reduce the costs of assessing animal 
age and welfare parameters. These models can be deployed in parallel 
with other ML models previously developed can be added to the 
deployment system to have a complete animal identification, produce 
productivity, milk quality trait assessment, and welfare. The imple-
mentation of these models could also be used in conventional dairy 
farms by using a normal RGB camera, increasing the applicability of AI 
for livestock assessment and productivity. Further research is required to 
include other parameters that can be readily obtained to acquire the 
level of data and accuracy to develop accurate machine learning models. 
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