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ARTICLE OPEN

Evaluation of in vivo staging of amyloid deposition in

cognitively unimpaired elderly aged 78–94
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Jose M. Anton-Rodriguez1,7, Thomas K. Karikari 8,9, Kaj Blennow8,10, Henrik Zetterberg 8,10,11,12,13, Nicholas J. Ashton8,14,15,16,

Neil Pendleton4 and Stephen F. Carter 1,17✉
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Amyloid-beta (Aβ) deposition is common in cognitively unimpaired (CU) elderly >85 years. This study investigated amyloid

distribution and evaluated three published in vivo amyloid-PET staging schemes from a cognitively unimpaired (CU) cohort aged

84.9 ± 4.3 years (n= 75). SUV-based principal component analysis (PCA) was applied to 18F-flutemetamol PET data to determine an

unbiased regional covariance pattern of tracer uptake across grey matter regions. PET staging schemes were applied to the data

and compared to the PCA output. Concentration of p-tau181 was measured in blood plasma. The PCA revealed three distinct

components accounting for 91.2% of total SUV variance. PC1 driven by the large common variance of uptake in neocortical and

striatal regions was significantly positively correlated with global SUVRs, APOE4 status and p-tau181 concentration. PC2 represented

mainly non-specific uptake in typical amyloid-PET reference regions, and PC3 the occipital lobe. Application of the staging schemes

demonstrated that the majority of the CU cohort (up to 93%) were classified as having pathological amount and distribution of Aβ.

Good correspondence existed between binary (+/−) classification and later amyloid stages, however, substantial differences

existed between schemes for low stages with 8–17% of individuals being unstageable, i.e., not following the sequential progression

of Aβ deposition. In spite of the difference in staging outcomes there was broad spatial overlap between earlier stages and PC1,

most prominently in default mode network regions. This study critically evaluated the utility of in vivo amyloid staging from a single

PET scan in CU elderly and found that early amyloid stages could not be consistently classified. The majority of the cohort had

pathological Aβ, thus, it remains an open topic what constitutes abnormal brain Aβ in the oldest-old and what is the best method

to determine that.

Molecular Psychiatry (2022) 27:4335–4342; https://doi.org/10.1038/s41380-022-01685-6

INTRODUCTION
Deposition of amyloid plaques is an early event in Alzheimer’s
disease (AD) pathogenesis [1]. Deposition of amyloid-beta (Aβ) is
also observed in up to 38% of cognitively unimpaired (CU) older
individuals at age 85 [2] and up to 76% in those carrying at least
one copy of the ε4 allele of the apolipoprotein E gene (APOE4).
However, it is unclear whether this represents an early stage of AD
ultimately leading to dementia, or whether it represents a benign
age-associated condition.
Positron emission tomography (PET) imaging allows in vivo

visualisation and quantification of brain Aβ [3, 4]. Staging schemes
based on post mortem histology and amyloid imaging research
across the AD spectrum, including individuals with preclinical AD,

suggest a downward spreading pattern starting in the neocortex
and progressing toward the striatum [5, 6]. Thal et al. estimated
neuropathological Aβ-phases [5] by using thresholds based on
standardised uptake value ratios (SUVRs) for neocortex and
caudate nucleus [7]. Grothe et al. described [8] and longitudinally
validated [9] four stages of regional amyloid deposition on
18F-florbetapir PET scans in CU individuals, with partial replication
in patients with subjective memory impairment [10]. Mattsson
et al. defined three stages based on regional longitudinal cortical
amyloid progression rates informed by CSF biomarkers [11] (an
extended discussion of Thal’s, Grothe’s and Mattsson’s staging
schemes can be found in the Supplementary Information). While
there is evidence of good correspondence between PET-based
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and neuropathological staging in patients with MCI or dementia,
discrepant findings were observed in CU controls for low and
moderate severity amyloid pathology [12].
Neuropathological studies in CU aged above 80 years [13] or

centenarians [14] found little if any relation of cross-sectional
cognitive function or previous decline with Aβ staging. Thus, the
concept of describing the progression of AD by amyloid staging does
not seem applicable in these individuals, who may exhibit resilience
against any detrimental effects of amyloid. The regional distribution
of amyloid deposits in these people may not be aligned with the
regional progression pattern rendering them unstageable. As
amyloid-PET is providing quantitative values of amyloid tracer
uptake, multivariate techniques such as principal component analysis
(PCA) can be used to describe distribution patterns [15]. This has
previously been used to study the effects of ageing on cerebral
glucose metabolism [16], to distinguish between dementia types
[17], with amyloid-PET for discrimination between AD patients and
controls [18] or for generating templates for spatial processing [19].
Surviving participants from the Newcastle and Manchester

Ageing Cohort [20] have now reached 80 years of age and above.
This unique, well-characterised elderly population is, on average, at
least 10 years older than many previously published studies.
Cognitively unimpaired volunteers from this cohort were included
to investigate regional amyloid distribution and to determine
associations with cognitive function and established confounding
risk factors for amyloid deposition, including age and APOE4
presence. PCAwas used to describe the regional amyloid deposition
pattern without a priori hypotheses. Published in vivo amyloid-PET
staging schemes [8, 9, 11] were also tested to determine if they
translate to this CU age group.

METHODS
Participants
Data were acquired from 75 CU elderly, who were part of the PreclinAD
study from the European Medical Information Framework for AD [21].
Detailed inclusion and exclusion criteria are outlined in the Supplementary
Information. This study was approved by the Greater Manchester South
Research Ethics Committee (ref: 14/NW/011) and participants provided
written informed consent.

Collected demographic and clinical data
Data on age, years of education, and APOE genotypes were collected [21].
Scores from the Mini-Mental State Examination, Addenbrooke’s Cognitive
Examination-Revised (ACE-R), CERAD, Rey Auditory Learning Test (RAVLT),
and Rey Complex Figure Delayed Test (RCFT Delayed) were collected for an
overview of cognitive performance. Based on the APOE genotypes,
participants were dichotomised into individuals carrying at least one copy
of the ε4 allele (APOE4+) and APOE4 non-carriers (APOE4−).

MRI and PET data acquisition
MRI was performed on a 3T Philips Achieva scanner with a 32-channel head
coil including a 3D-T1 with sagittal turbo field echo sequence (1.0mm
isotropic voxels, repetition time= 7.9ms, echo time= 4.5ms, flip angle= 8
degrees) for image processing. Radiosynthesis of 18F-flutemetamol was
performed at the Wolfson Molecular Imaging Centre, University of
Manchester. All PET data were acquired on a high-resolution research
tomograph (Siemens/CTI, Knoxville, Tennessee, USA). Following an intrave-
nous injection of 185.07 ± 10.5 MBq 18F-flutemetamol, PET data were
acquired from 90–110min. A 7min transmission scan using a 137Cs point
source was acquired for attenuation and scatter correction [22, 23]. PET
images were realigned to correct for inter-frame motion and reconstructed
with an implementation of 3D iterative ordinary Poisson ordered subset
expectation maximisation with 12 iterations, 16 subsets and resolution
modelling [24–27] using 1.22mm isotropic voxels. A post-reconstruction
Gaussian filter of 4mm FWHM was used to reduce noise [21].

Blood plasma p-tau181
Blood samples were collected and frozen on the same day as the PET scan.
Plasma p-tau181 concentration was measured using in-house Single

molecule array (Simoa) methods on Simoa HD-X instruments (Quanterix,
Billerica, MA, USA) at the University of Gothenburg. Methods are described
in the Supplementary Information and detailed elsewhere [28, 29]. No
blood samples were acquired for 1 participant and 1 sample was excluded
due to being >3 SD outside the cohort mean, leaving 73 p-tau181 samples
for analysis. To dichotomise the blood plasma p-tau into T−/T+ groups, a
cut-off of 17.7 pg/ml was used [30].

Data processing
Using SPM12 (Statistical Parametric Mapping, Wellcome Trust Centre for
Neuroimaging, UCL, UK) with MATLAB R2019b (The MathWorks, Inc.,
Natick, MA, USA) PET images were coregistered and resliced to the T1-
weighted image by rigid body transformation. The T1 images were then
segmented into grey matter (GM), white matter (WM), and cerebrospinal
fluid (CSF). The Hammers n30r85 probabilistic atlas [31] was inversely
warped into native T1 space. GM binary images were created by
thresholding the segmented GM images at 0.5. A GM atlas was created
by multiplying the GM binary image with the inversely warped Hammers
atlas and then used to sample the coregistered PET images, generating
mean kBq/ml for 85 brain regions. Harvard-Oxford and Desikan-Killiany
(freesurfer) [32] atlases were inverse warped into native T1 space and
restricted to GM voxels for each participant so that the percentage of
suprathreshold amyloid within the stages established by Grothe [8] and
Mattsson [11] could be determined.
For improved spatial accuracy of basal ganglia region definition,

Diffeomorphic Anatomical Registration Through Exponentiated Algebra
(DARTEL) was added [33]. The standard DARTEL pipeline from SPM was
used with segmented GM, WM, and CSF images to transform PET images
and the Hammers atlas into the study-specific DARTEL template space,
where putamen and caudate nucleus were manually delineated in the
axial plane.
To avoid overrepresentation of smaller regions, the orbitofrontal cortex

regions (straight gyrus, anterior orbital gyrus, medial orbital gyrus, lateral
orbital gyrus, posterior orbital gyrus) were merged, as well as small basal
ganglia regions (nucleus accumbens, substantia nigra, pallidum). Thus,
standardised uptake values (SUVs) of 67 GM regions entered into the PCA.
A non-standard centiloid (CL) pipeline was adopted following the

directions specified in Klunk et al. [34] with Hammers’ atlas cerebellar GM
as reference region as outlined in the Supplementary Information
(Supplementary Figs. 1–3). Amyloid positivity (Aβ+) was determined
globally and regionally with published cut-offs established with in vivo [35]
and post mortem data [36]. Global positivity was defined as >29 CL (>1.48
SUVR) and within stage regions [8, 11] >12 CL (>1.31 SUVR) was considered
positive. Between 12–29 CL is classed as the “grey zone”. For Aβ phase
estimates from Thal [7], the specific, published cut-offs, with pons as
reference region, were used.

Statistical analyses
Statistical analyses were performed with SPSS 25 (SPSS Chicago, IL, USA)
using a p < 0.05 threshold of statistical significance. Independent t-tests
compared demographic and clinical data between groups (with adjust-
ment for unequal group size where appropriate). Multiple regression
assessed whether cognitive scores are predicted by age, APOE4, or
education years. Amyloid distribution across 67 GM regions was examined
by entering SUVs into a PCA, to uncover possible interrelations between
brain regions [37]. Regions loading highly on the same principle
component (PC) would indicate comparable 18F-flutemetamol retention,
thus allowing for a regional depiction of amyloid deposition. SUVs instead
of SUVRs permitted a reference region-independent representation of
covariation of amyloid accumulation. The suitability of the data for PCA
was tested with the Kaiser-Meyer-Olkin (KMO) test. The correlation matrix
was assessed to ensure that the correlations between the regional SUVs
are significant and exceed r= 0.30. Components were extracted with a
criterion of an eigenvalue above 1. An orthogonal varimax rotation
ensured that PCs were uncorrelated with each other, thus improving their
interpretability. Finally, each individual’s regression-based component
loading was saved for extracted PCs.
The effects of APOE4, age, and years of education on regional amyloid

deposition (expressed by individual PC loadings) were examined with
Pearson partial correlations. For exploratory purposes, cognitive measures
were correlated with the PC loadings, adjusting for APOE4, age, and years
of education years. The individual loadings were also correlated with
CL/SUVRs. The percentage of suprathreshold amyloid deposition was
reported according to the staging schemes discussed above [7, 8, 11].
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RESULTS
Demographic characteristics and cognition
Table 1 summarises the cohort. Significant differences were found
between APOE4− and APOE4+ in terms age and RCFT delayed.
Delayed RCFT was significantly different between middle-old and
oldest-old individuals (see Supplementary Table 1). Multiple
regression predicting RCFT-delayed from APOE4 status and age
was significant (F(2, 72)= 8.42, p= 0.001, R2= 0.17) but only age
contributed to the model significantly (B=−0.53, p= 0.001).
Total ACE-R scores were significantly correlated with years of
education, accounting for age and APOE4 (r (70)= 0.30, p < 0.05),
as well as with CERAD Delayed (r (68)= 0.50, p < 0.001), RAVLT
delayed (r (68)= 0.55, p < 0.001), and RCFT delayed (r (68)= 0.25,
p < 0.05).

Pattern of amyloid deposition based on principal components
analysis
The KMO test of sampling adequacy yielded a value of 0.83
indicating the data was suitable for PCA. Three PCs were extracted
accounting for 91.2% of the total variance. Initial eigenvalues
indicated the first two extracted PCs accounted for 88.9% of the
total variance. After the varimax rotation, the first two compo-
nents explained 52.8% and 21.3% of the variance respectively,
while PC3 accounted for 17%. PC1 was driven by mean SUVs of
neocortical and striatal regions (Fig. 1). The highest loadings >0.85
came from the anterior cingulate, caudate nucleus, orbital frontal
cortex, and middle frontal gyrus (Supplementary Table 2).
Subcortical regions, including midbrain, medulla, cerebellum,
pons, and thalamus, contributed mostly to PC2 (Supplementary
Fig. 4). PC3 reflected SUVs of occipital lobe areas. Hippocampus,
parahippocampus, and amygdala loaded on all PCs, with highest
loadings of 0.7 on PC2.

Correlation between PCs and global CL\SUVR
A highly significant positive Pearson’s correlation was found
between with PC1 and global CLs (r= 0.90, p= <0.0001), Fig. 2A; a
significant negative correlation with PC2 (r=−0.27, p < 0.05); and
a significant positive correlation with PC3 (r= 0.23, p < 0.05;
Supplementary Fig. 5).

Effects of APOE4, age, and education on principal components
A significant positive partial correlation was revealed between
the presence of APOE4 and PC1 loadings (r= 0.29, p < 0.05).
Years of education were significantly negatively correlated with
PC1 after adjusting for age and APOE4 (r=−0.26, p < 0.05). Age
did not significantly correlate with any of the extracted
component loadings after controlling for APOE4 and years of
education.

Blood plasma p-tau181
The p-tau181 concentration was significantly higher in the Aβ+
group (Table 1). A significant positive Pearson’s correlation was
found between PC1 and p-tau181 (r= 0.46, p < 0.0001; Fig. 2B).
Using Aβ statuses with p-tau181 concentrations 27 individuals
(36.9%) were classified as A−T− and 15 (20.5%) were A+T+.
There were no differences in age, education or cognition for the
AT groups (see Supplementary Table 1 for breakdown).

Correlation between cognitive measures and principal
components
All cognitive tests indicated negative associations with PC1, but
only the RCFT delayed score was significantly negatively
correlated (r=−0.27, p < 0.05; Fig. 2C). Delayed CERAD was
significantly negatively correlated with PC2 component loadings
(r=−0.25, p < 0.05; Supplementary Fig. 6).

Table 1. Characteristics of the cohort.

Measure Overall Aβ− Aβ+ APOE4− APOE4+

Age (years) 84.9 ± 4.27 85.4 ± 4.08 84.4 ± 4.44 85.5 ± 4.26 82.7 ± 3.67a

Sex (F/M) 58/17 25/10 33/7 43/14 15/3

Education (years) 14.2 ± 2.98 15.1 ± 3.17 13.3 ± 2.55 14.3 ± 3.18 13.9 ± 2.26

MMSE (/30) 28.8 ± 1.24 29 ± .93 28.6 ± 1.41 28.8 ± 1.13 28.7 ± 1.53

ACE-R total (/100) 92.68 ± 4.91 93.11 ± 4.35 92.3 ± 5.39 92.6 ± 4.86 92.9 ± 5.21

ACE-R Memory (/26) 23.2 ± 2.83 23.1 ± 2.71 23.3 ± 2.95 23.2 ± 2.97 23.2 ± 2.39

CERAD Delayed (/10) 8.15 ± 1.54 7.83 ± 1.63 8.43 ± 1.41 8.18 ± 1.53 8.06 ± 1.58

RAVLT Delayed (/15) 10.6 ± 3.32 10.2 ± 3.39 11.0 ± 3.25 10.7 ± 3.21 10.4 ± 3.72

RCFT Delayed (/36) 14.9 ± 6.17b 15.0 ± 5.24 14.8 ± 6.95 14.0 ± 5.78 17.6 ± 6.7a

p-tau181 (pg/ml; n= 73) 16.3 ± 5.64 14.7 ± 5.14 17.7 ± 5.72c 15.8 ± 5.82 17.9 ± 4.79

n (%) n (%) n (%) n (%) n (%)

Aβ+ (>29 CL\1.48 SUVR) 40 (53.3) 35 (46.7) 40 (53.3) 26 (45.6) 14 (77.8)

APOE4− 57 (76) 31 (88.6) 26 (65) 57 (100) –

APOE4+ 18 (24.3) 4 (11.4) 14 (35) – 18 (100)

APOE E2/E4 3 (4.1) 1 (2.9) 2 (5) – 3 (16.7)

APOE E3/E4 14 (19.2) 3 (8.6) 11 (27.5) – 14 (77.8)

APOE E4/E4 1 (1.4) – 1 (2.5) – 1 (5.6)

Middle-old (78–84 years) 38 (50.7) 15 (42.9) 23 (57.5) 25 (43.9) 13 (72.2)

Oldest-old (≥85 years) 37 (49.3) 20 (57.1) 17 (42.5) 32 (56.1) 5 (27.8)

Values are mean ± standard deviation, or number of participants in a subset of the sample (n).

MMSE Mini-Mental State Examination, ACE-R Addenbrooke’s Cognitive Examination-Revised, CERAD Consortium to Establish a Registry for Alzheimer’s Disease,

RAVLT Rey Auditory Learning Test, RCFT Rey Complex Figure Test, CL centiloid, APOE apolipoprotein E.
aSignificant difference (p < 0.05) between APOE4− and APOE4+ according to the independent samples t-test.
bSignificant difference (p < 0.05) between middle- and oldest-old individuals according to the independent samples t-test.
cSignificant difference (p < 0.02) between Aβ− and Aβ+ individuals according to the independent samples t-test.
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In vivo staging schemes
Figure 3 depicts good correspondence between Aβ positivity (>29 CL,
53.3% of cohort) and combined high stages of staging schemes (Thal
Phase 2 and 3, Grothe Stage III and IV, Mattsson stage 2 and 3). Binary
classification into combined high or low stages showed 74 to 91%
correspondence between schemes. Both CL and PC1 values provided
good discrimination between high and low stages with areas under
the receiver operating curves of 0.86 to 0.96. Substantial differences
were noted for low stages between staging schemes. Thal’s scheme
classified 93.3% of the cohort as PET Aβ Phase estimate ≥1. Only 6.7%
were Aβ- by Thal, 17.3% by Grothe and 28% by Mattsson. Grothe’s
scheme deemed 17.3% and Mattsson’s 8.0% as unstageable, mostly
in the low range of CL values (12–29 CL), which is considered the
“grey zone” [35]. There was also little correspondence between CL
and PC1 values at these low values (Fig. 2A).
Figure 4 depicts the spatial overlap between PC1, centiloid

cortex, and the early/intermediate stages from in vivo schemes
developed by Grothe [8] and Mattsson [11]. There is a clear
regional overlap between all methods, largely within default mode
network regions including anterior cingulate, orbital-, middle-,
superior-frontal gyrus, posterior cingulate, and insula. Mattsson

also classified the putamen as an intermediate amyloid accumula-
tion region, which is relatable to the PCA showing comparable
loadings of both neocortex and striatum on PC1. Regions of the
centiloid cortical mask [34] also overlapped with PC1, particularly
frontal, temporal, posterior cingulate and parietal cortices, but also
the anterior striatum and insula. All the extracted PCs were
significantly correlated with CLs derived from the centiloid cortex
(Fig. 2B and Supplementary Fig. 5A, B).

DISCUSSION
This study used SUV-based PCA to investigate the regional pattern
of amyloid deposition in a unique cohort of CU adults with a mean
age of 85 years. It also applied three recently published in vivo Aβ
staging schemes to the PET images. The PCA revealed three PCs
based on mean 18F-flutemetamol SUVs, indicative of differential
amyloid burden in these areas. PC1 was driven by the large
common variance of uptake in neocortical and striatal regions,
PC2 represented non-specific uptake in typical reference regions
for SUVR-based analyses, and PC3 represented the occipital lobe.
The application of the Aβ staging schemes demonstrated that the
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majority of the cohort were classified as having pathological
amount and distribution of Aβ.
The striatum (caudate/anterior putamen) was included in PC1,

Mattsson [11], Klunk [34] and was also a key region in Thal’s
staging [7]. While the striatum is not regarded as an early amyloid
accumulation region [8, 38], there was a tight covariation between
neocortical and striatal regions in the current study, which might
be related to the high age of the participants. It has been
previously reported that older CU show advanced amyloid
pathology including deposition in the striatum [14].
The current analysis did not use a reference region and was

based on SUVs. Reference regions, such as pons and cerebellum,
often used as a denominator in SUVRs, appeared within PC2. PC2
had a negative correlation with CL\SUVRs. Observing low variation
and independence of PC2 from cortical regions, further supports
using them as reference regions. Neocortical regions also had low
loadings on PC2.
Occipital cortex showed highest PC3 loadings, indicating

independent variation compared to neocortical and striatal areas.
This could be explained by low occipital amyloid burden and
conformational differences of amyloid deposits in the occipital
lobe [39], especially since the occipital areas, including cuneus and
lingual gyrus, are classified as late amyloid accumulation areas by
Grothe’s cross-sectional [8] and as intermediate by Mattsson’s
longitudinal staging schemes [11]. Participants with generally high

amyloid load, either had high or low occipital load, which did not
correlate with APOE4 status (Supplementary Fig. 7). Thus, a factor
other than APOE4 may be governing amyloid accumulation in this
region.
The APOE4 effect on increased 18F-flutemetamol uptake in PC1

is consistent with previous research. APOE4 has been shown to
increase amyloid burden in anterior cingulate, posterior cingulate,
prefrontal, parietal and lateral temporal areas [40, 41]. These
regions belong to well-established brain networks, including the
default mode network, showing connectivity alterations and
preferential amyloid accumulation in preclinical AD stages in
asymptomatic APOE4+ individuals [42–45].
Although amyloid-cognition correlations are debated, some

studies reveal a declining cognitive functioning linked to amyloid
deposition, even in CU individuals [40, 46]. A weak, significant,
negative partial correlation was found between the delayed RCFT
and PC1 loadings (Fig. 2B). Worse RCFT performance, a
visuospatial episodic memory test, has been linked to hypome-
tabolism and cortical thinning of parietal, temporal, and frontal
cortices [47, 48]. A FDG-PET-based PCA also demonstrated
correlations between RCFT and metabolism in posterior cingulate,
precuneus, parietal, lateral temporal, superior-frontal and medial
prefrontal cortices [49]; all these regions loaded highly on PC1.
Another weak but significant partial correlation was observed
between CERAD delayed and PC2 loadings. Decreased GM density
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in regions with moderate loadings on PC2, such as the
hippocampus, parahippocampal gyrus and thalamus, has been
previously associated with worse CERAD immediate and delayed
recall [50]. However, we did not find significant correlations
between SUVRs of those regions and CERAD delayed.
Participants of this study were also categorised according to their

Aβ deposition stage based on three schemes [7, 8, 11]. On a global
level, 53.3% of the cohort were Aβ+ (CL >29) and 21.3% were in the
“grey zone”. Age-related factors need to be considered when
assessing pathological deposits [51] because in non-demented
elderly, older age can shift the amyloid distribution to higher values
[52]. When applying Thal’s methodology, which uses cortical and
caudate SUVRs to stage individuals, 97.3% were at Aβ phase
estimate 1 or above, with 44% in phase 2 or above. These phases
would correspond to pathological quantities of Aβ post mortem.
Although derived differently (frequency of Aβ positivity vs.
longitudinal increases of Aβ), both Grothe and Mattsson’s schemes
had similar patterns with most individuals categorised in the latest
stages (Stage IV and Stage 3; 53.3% and 49.3% respectively), with
few individuals in the intermediate stages. Importantly, if the cut-
offs used by Grothe (18F-florbetapir SUVR of 0.92 converted to −21
CL using the published conversion [53]) and Mattsson
(18F-flutemetamol SUVRs of 0.738, 0.76 and 0.751 for Stages 1–3
respectively) were used on the current cohort, 100% would have
been categorised in the highest stages (Stage IV and Stage 3).
This CU cohort is unique due to its high mean age of 85 years.

The above-discussed staging schemes were created based on
individuals who were on average at least 10 years younger. Risk
factors for dementia differ in this age group when compared to
younger elderly. Imaging biomarkers may also have limited
applicability due to lower life expectancy and potential resilience
to amyloid deposition [54]. Non-demented individuals at age of 85
years might show highly prevalent WM lesions, as well as global
and hippocampal atrophy [55, 56]. Tau pathology also increases
with age [57, 58] and although tau-PET was not available for the
current cohort, plasma p-tau181 revealed a significant positive
correlation between PC1 and p-tau181. Dichotomising amyloid-
PET and plasma p-tau181 revealed 20.5% were classified as A+T+,
thus having evidence of AD pathology without cognitive
impairment. Previous multivariate analyses, including PCA, have
been used to investigate the effects of age and amyloid on

cognition in CU elderly [59]. Although dichotomous amyloid
burden has been studied in the oldest-old, aged 85 years and
more [2], there is limited neuroimaging research depicting
detailed regional amyloid distribution in this old population. This
study is novel because it not only assessed regional amyloid
deposition, it also applied published in vivo amyloid staging
schemes.
When aducanumab was initially approved for clinical use in the

USA [60] the presence and removal of brain Aβ became a pressing
and highly topical issue [61–63]. It is still unclear whether pathological
brain Aβ is as relevant at advanced ages because many Aβ+ oldest-
old will never develop cognitive impairment or dementia in their
lifetime. This is important because administering a monoclonal
antibody to a person who does not need it, is not only expensive but
can actually cause harm (e.g., ARIA-E). The present data indicates the
uncertainty whether the hierarchal, regional progression patterns
based on the in vivo PET staging can be applied cross-sectionally to
oldest-old cohorts, and whether positivity cut-offs established on
younger populations apply in the ninth and tenth decades of life.
Therefore, an open question remains about what constitutes
abnormal Aβ in the oldest-old and whether Aβ should be removed
from such people’s brains.
This study has limitations. The cross-sectional nature of the data

does not allow for conclusions on causal relationships between
the variables. Longitudinal research would be essential for
assessing the relationship between increasing age, cognitive
decline, and progressive changes in Aβ deposition. Due to the
data-driven nature of PCA, the modest sample size, as well as the
old age of the participants, it’s unclear whether the extracted PCs
would generalise to independent younger or diseased cohorts.
Moreover, findings based on 18F-flutemetamol PET data are only a
proxy for actual Aβ neuropathology. Finally, the PCA was
conducted on mean regional SUVs, which are dependent on the
accurate placement of the regions of interest but are less
confounded by noise than voxel-wise PCA [64].
In conclusion, although PC1 and staging schemes broadly

overlapped, there was poor correspondence between schemes with
respect to early Aβ stages based on regional thresholds. The PCA
demonstrated concurrent accumulation across striatum and most
cortical regions (apart from hippocampus and occipital cortex), which
contrasts with sequential regional accumulation proposed by staging

Fig. 4 Representation of early and moderate regional amyloid deposition by four different PET-based amyloid deposition schemes. The
upper left figure depicts regions showing highest loadings for PC1 (≥0.75), including the frontal, parietal and temporal neocortex, caudate,
and putamen. The bottom left figure illustrates stages I and II of the four-stage model of regional amyloid progression proposed by Grothe [8].
The upper middle figure shows cortical volume of interest from the centiloid method established by Klunk [34]. The bottom middle figure
depicts the early and intermediate Aβ stages from the longitudinal CSF/PET staging proposed by Mattsson [11]. The brain rendering on
the right illustrates the degree of regional overlap between these four methods, which the colour bar depicts; all four methods= red; single
method= blue.
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schemes. The data also indicate that a large proportion (up to 93%) of
CU elderly have brain Aβ deposits classified as pathological by in vivo
PET staging schemes. The study therefore raises important questions
about the utility of staging, as opposed to binarising, amyloid-PET
from a single scan in the oldest-old, what constitutes abnormal brain
Aβ in this age group, and what, if anything, should be done
therapeutically for PET Aβ+ CU individuals 85 years of age and above?
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