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Abstract 

 

The Theory of Critical Distances (TCD) has undoubtedly represented a breakthrough in the 

brittle failure assessment of engineering materials containing defects, crack or notches. The 

basic idea on which the simplest formulation of the TCD is based is to evaluate an effective 

stress at a characteristic distance from the tip of the defect/crack/notch and compare it with an 

inherent fracture strength. Is the critical distance related to the material (micro) structure? 

Whereas a correlation was already proved for homogeneous materials, the current attention to 

non-homogeneous ones has brought the question back to the fore. The goal of the present work 

is therefore twofold: (i) to extend the use of the TCD, through the simple yet effective Point 

Method (PM), for the static failure assessment of inhomogeneous materials, such as cellular, 

biological and additively manufactured (AM) materials; (ii) to look for a correlation between 

critical distance and internal (micro) structure. 
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1. Introduction 

 

Solid materials are very strong. Strong atomic bonds (ionic, covalent, metallic) found in metals 

and ceramics have failure strengths of the order of 10-100GPa, whilst weaker types of bonds 

(Van der Waals and hydrogen bonds) found in polymers have strengths of the order of 1GPa 1. 

In use these materials are rarely if ever exposed to such high stresses, so one would never 

expect an engineering structure to fail. And yet they do. The explanation lies in the 

phenomenon of stress concentration. Materials contain defects, from atomic vacancies and 



dislocations through inhomogeneous structure up to manufacturing flaws and fatigue cracks. 

The result is stress inhomogeneity, leading to those phenomena that we call fracture and 

fatigue. To make things worse, engineering structures are designed with inbuilt stress 

concentrations: few components can avoid such features as holes, notches, corners, etc. 

Thus the work associated with predicting the strength of a structure and anticipating its 

durability implies, in almost all cases, of assessing the effect of stress concentrations. In modern 

times, thanks to advanced computational methods such as finite element analysis, we can create 

accurate descriptions of the stress fields around these geometrical features, but the 

interpretation of this information has proven to be difficult. Many of the most successful 

approaches make use of the concept of a material-dependant length scale, i.e. a constant which 

has the units of length. Together with mechanical parameters such as stress, strain and energy, 

this length scale allows us to predict the conditions under which cracks will form and grow. 

The Theory of Critical Distances (TCD)2 is an approach falling in this category. It uses a 

constant known as the critical distance, L. Normally, the value of L is determined by conducting 

experiments on specimens containing different types of stress concentrators – for example 

notches having different sharpness – and fitting predictions to the data. This work is conducted 

within the realm of continuum mechanics, making no reference to the microstructure of the 

material. The resulting values of L vary from micrometres to millimetres and even larger in 

rare cases. The value of L for a given material will also be different depending on the failure 

mode, whether it is, for instance, brittle fracture or high-cycle fatigue. 

This paper brings together different experiences gained by using the TCD to model and asses 

a wide variety of materials and failure modes. The aim is to discuss the relationship between 

the value of L and the scale and morphology of structural features in the material. All materials 

have structure at some level, but many materials have large-scale structure which has been 

purposely introduced, creating a material which can be described as “inhomogenous”. These 

include engineering materials such as concrete, foam and polymer composites, as well as 

natural materials such as bone. There is much interest in understanding how these engineering 

materials achieve their strength and toughness, because we have the capacity to alter their 

structure and thus potentially to optimise their properties. Natural materials have evolved over 

millions of years and thus have already developed their structure to the best advantage of the 

organism concerned, so we may be able to learn from them in creating biomimetic materials. 

In this paper, after a brief introduction to the TCD and its mode of use, we present a series of 

sections, each devoted to a different class of materials. Previous work is reviewed, focussing 



on the relationship between the continuum-determined L value and the material’s structure. 

The link between the two is the fracture mechanism at the relevant scale. 

 

2. TCD overview 

 

The Theory of Critical Distances (TCD) performs the static assessment by making use of the 

linear-elastic stress fields damaging the material in the vicinity of the crack initiation 

locations2,3,4. From a practical point of view, the in-field usage of the TCD is based on an 

effective stress, eff, whose calculation involve a material-dependent length scale parameter. 

According to the way it is defined, eff quantifies the extent of damage associated with the 

entire linear-elastic stress field acting on the material within a finite size domain. In this setting, 

this process zone is the local portion of material that controls the global strength of the 

component being designed. The linear-elastic TCD critical distance (which is treated as a 

material property) is calculated according to the following well-known definition2: 
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where KIc is the plane strain fracture toughness, whereas UTS is the ultimate tensile strength. 

 

Figure 1: Notch/crack loaded in tension (a) and the TCD used in the form of the PM (b). 



While the effective stress can be determined according to different strategies5, certainly the 

Point Method (PM) represents the simplest way to use the TCD2. The PM is expressed 

mathematically as follows (Fig. 1): 

 

eff y UTS( 0, r L / 2)                 (2) 

 

In particular, according to Fig. 1b, the PM effective stress coincides with the linear-elastic 

stress determined at a distance equal to L/2 from the tip of the stress raiser being assessed. 

 

Using the stress field in the vicinity of the notch, other methods can be defined. Considering 

the average stress instead of the stress function (2), for instance,  leads to the well-known  Line 

Method2: 
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Similar formulation could be drawn by using the TCD in the form of either the Area or the 

Volume Method2.  

Furthermore, also energy-based criteria, linking the average release rate of the energy G and 

comparing it with the fracture energy Gc, were put forward6,7. These too are based on a 

characteristic length depending on L: 
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where the factor 1.6 must be replaced by 2 in case of a centre crack. 

It is worthwhile also to mention the SED approach8, which assumes as a critical parameter the 

strain energy in a small region around the notch tip, whose radius is proportional to L. 

The above criteria are generally in good agreement with the PM in terms of failure predictions, 

and the best accuracy of one method over another varies from case to case.  

A somewhat different approach is linked to the coupled Finite Fracture Mechanics (FFM) 

criterion9,10, where the stress condition (2) (or (3)) is coupled with the energy balance (4):  
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In this case, the distance LFFM becomes a structural parameter, depending both on L and on the 

reference geometry. The advantage of all this is that FFM is able to catch the failure behaviour 

at small scales11,12, where, if it were considered a constant length, the method would fail. 

In the field of non-homogeneous materials, FFM is here applied to study the scale effect on un-

notched concrete13 and Ultralight-Performance-Fiber-Rinforced-Concrete (UHPFRC)14 un-

notched specimens of width W and subjected to four point bending (FPB). The estimated 

critical distance L is equal to 8mm for concrete, reflecting microstructural features such as 

aggregates particles2,  and 47mm for UHPFRC, respectively15. In this latter case, the relatively 

high value of L describes a not very brittle behaviour, and L can be linked to the process zone, 

as will be clear shortly. 

Given the stress field according to classical linear elasticity, and evaluating the energy release 

rate trough a finite element analysis by ANSYScode, we were able to solve system (5) and 

to get the two unknowns: the failure stress f and the critical distance LFFM. Results are plotted 

in Fig. 2, together with PM predictions. 

 

 

 

Figure 2: a) FFM and PM failure predictions on experimental data referring to FPB plain samples of 

width W13,14; b) FFM critical distance (in this case, the dashed line refers to PM length L/2).  

 

It can be seen how, as W/L decreases and tends to the unitary value (dashed line, Fig. 2a), the 

failure load according to the PM diverges, W/2 representing the value according to which the 



stress vanishes for a geometry under pure bending. On the other hand, FFM allows a correct 

description of f even at small scales, with a critical distance LFFM that decreases (with unitary 

slope) as the scale W decreases (Fig. 2b). 

The FFM approach (5) was recently corroborated by showing that failure load estimates are 

very close to those provided by the well-established Cohesive Crack Model16,17,18 , once a 

rectangular cohesive law (i.e. of Dugdale-type19) is implemented. The process zone length has 

a qualitative behaviour similar to LFFM, the two quantities thus being correlated with each other.   

 

Given the above, since the PM is not only very simple to use, but also very accurate, the 

reliability of the TCD in assessing static strength of inhomogeneous materials will be 

investigated by considering solely this formalisation of the theory. 

Finally, let us underline that an important feature of the TCD is that the same theoretical 

framework can be used to assess the detrimental effect not only of notches (i.e., finite radius 

stress raisers), but also of cracks. If attention is focused then on a cracked infinite plate loaded 

in tension, static strength can directly be estimated by using the PM rewritten as2: 
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where a is the semi-crack length. Eq. (6) is derived by using the analytical solution formulated 

by Westergaard20 to model the stress distribution in the crack tip region of a cracked plate 

loaded in tension. One of the most relevant peculiarities of Eq. (6) is that, in a very simple and 

direct way, it is capable of accurately assessing static strength not only in the long-, but also in 

the short-crack regime, with its usage resulting in a gradual transition from a regime to the 

other one2. 

 

3. Cellular materials 

 

Cellular materials (also called foams) are made of interconnected networks of solid struts and 

cell walls incorporating voids with entrapped gas, resulting in a cellular structure with open 

(the solid material is found in the edges of the cells), closed (the solid material is found in both 

the edges and faces of the cells) or mixed (partially open, partially closed) cells. Different 



classes of solid materials are used to produce cellular materials like polymers, metals and 

ceramics. 

Their main characteristics are lightweight, high porosity, good energy absorption capacity and 

floatability. Most cellular materials crush progressively in compression until they reach full 

densification. In contrast, a brittle fracture behaviour is observed in tension and in presence of 

cracks and notches21,22. 

The properties of cellular materials depend on those of the solid material from which they are 

produced, on the relative density (density of the foam divided to density of solid material) and 

on cell topology (shapes, dimensions) - see Fig. 3 after Ashby (2006)23. For sake of clarity, all 

properties referring to foams will be herein denoted by the superscript *. 

Micromechanical models allow the prediction of the mechanical properties of cellular materials 

based on the properties of solid material from the cell edges (density of solid material ρs, 

Young's modulus Es, yield stress ys), density of cellular material ρ* and some cellular topology 

characteristics: length or diameter of cells l and cell wall thickness t 24,25.  

 

 
 

Figure 3: Main parameters influencing the properties of cellular materials. 
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3.1 Brittle metallic foam 

 

Marsavina et al. (2016)26 investigated the fracture of brittle aluminium alloy foams 

AlSi12Mg0.6, produced using powder metallurgical route, where 0.4 wt.% of titanium hydride 

was employed as foaming agent (Alulight). The chemical composition was Al with 12 wt. % 

Si and 0.6 wt. % Mg having variable porosity and pore size, and a density between 340 and 

1100 kg/m3 (Fig. 4a). In order to investigate the notch influence under tensile loading (Fig. 4b), 

specimens having width W = 20±0.6 mm and thickness B = 5±1 mm were machined with 

circular holes (diameters D = 2.5, 5, 7.5 and 10 mm) and a round U-notch (radius R = 2 mm). 

For each type of notch, four tests were carried on at room temperature, in displacement control 

with a loading rate of 2 mm/min on a Zwick/Roell Z005 testing machine. 

 

 
 

Figure 4: a) Typical microstructure of AlSi12Mg0.6 foam; b) investigated notched geometries. 

 

The critical length for brittle metallic foams, according to Eq. (1), is expressed based on 

micromechanical models in the form: 
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b) a) 



where the fracture toughness of the foam is related to the yield stress of the solid material ys, 

cell size l and relative density ρ*/ρs  
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and the tensile strength of the foam can be expressed as: 
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       (9) 

 

The critical distance for metallic foams L, Eq. (7), could be thus interpreted as a combination 

of two factors: the relative density ρ*/ρs and the cell dimension l. Coefficients ci in Eqs. (7-9) 

represent some fitting parameters, whose values are provided in Table 124. 

 

Table 1. Fitting parameters for brittle metallic foam AlSi12Mg0.6. 

 

Parameter 
0c  

1c  
1c  2c  c3 

Value 0.1 - 1.0 0.5 0.3 1.1 - 1.4 0.65 

 

A comparison between the load predicted through the PM (Eq. (2)) and the mean value of the 

experimental maximum loads is presented in Table 2, together with the structural parameters 

of the metallic foam and TCD parameters determined with Eqs. (8) and (9). The relative error 

between the predicted and experimental load is generally below 3% except for the smallest 

hole, where is around 16%. A very good prediction based on PM could be then evicted. 

 

Table 2. Comparison between predicted loads using PM and experimental maximum loads for 

aluminium foam specimens. 
  

Notch 

type 

Foam 

density 

Cell 

size 

Critical 

length 

Tensile 

strength 

Predicted 

load 

Experimental 

load 

 

Relative 

error 

ρ* l L UTS
* Fpred Fexp  

[kg/m3] [mm] [mm] [MPa] [N] [N] [%] 

Hole 

2.5 
585.9 0.683 1.514 8.32 566.16 487.16 16.2 

Hole 

5.0 
938.5 0.426 0.599 14.88 458.79 452.28 1.44 



Hole 

7.5 
580.5 0.689 1.541 8.23 444.37 437.91 1.47 

Hole 

 
642.9 0.622 1.264 9.32 365.76 354.69 3.12 

U-

notch 

Radius 

2 

990.9 0.404 0.538 15.93 560.71 550.77 1.80 

 

3.2 Polyurethane foam 

 

Negru et al. (2015)27 applied the TCD to predict fracture of polyurethane cracked and notched 

foam components of different densities (100, 145, 300 and 708 Kg/m3), Fig. 5.  

 

 

a) 100 kg/m3     b) 145 kg/m3 

 

c) 300 kg/m3     d) 708 kg/m3 

 



Figure 5: Microstructure of the investigated foams with different densities. 

 

The considered densities span from foam (with very small cell wall thickness) at low densities 

to a porous solid at high densities. Applying the PM procedure (Eq. (2)), a linear relation 

between the critical length L to the cell diameter l was proposed (in mm): 

L a b l                       (10) 

with a = 5.1 and b = 0.263. Accordingly, L falls in region 0.5-0.8mm, from the highest to the 

lowest density. In the same study, the inherent stress was linked to the ultimate tensile strength 

of the polyurethane foam in the form: 

*

0 UTS1.715                        (11) 

The TCD parameters were determined from geometries with circular holes and V-notches 

(similar to those depicted in Fig. 4b), and then applied to U-notched geometries. The use of 

PM results in very accurate predictions. Indeed, the maximum relative error is found to fall in 

the range of  16%27,28, Table 3. 

Table 3. Comparison between predicted loads using PM and experimental maximum loads for 

U-notched PUR foam specimens. 

 

Notch 

type 

Foam 

density 

Cell 

size 

Critical 

length 

Inherent 

stress 

Predicted 

load 

Experimental 

load 

 

Relative 

error 

* l L 0 Fpred Fexp 

[kg/m3] [mm] [mm] [MPa] [N] [N] [%] 

U-notch 

100 0.1045 0.79 2.32 224.8 196.0 14.7 

145 0.0838 0.71 3.08 288.38 262.63 9.80 

300 0.0685 0.594 6.02 535.58 462.52 15.8 

708 0.0491 0.518 24.05 2066.15 2139.86 3.40 

 

4  Biological materials 

 



Biological materials which have a structural, load-bearing role are many and varied, including 

materials in the bodies of humans and other vertebrates (e.g. bone, cartilage), exoskeletons in 

arthropods (e.g. insect wings, crab limbs) and the varied support structures of plants, from tree 

trunks to blades of grass. As a general rule they are fibrous, and therefore usually anisotropic, 

and are characterised by low fracture toughness in comparison to their strength. Failure almost 

always occurs by cracking, as evidenced by the brittle fracture of bones, splitting of wood and 

the microscopic cracks in cartilage which give rise to the painful condition known as arthritis. 

Given that biological materials fail by cracking, they should be ideal candidates for study using 

the TCD. Here we present two examples of such work, applying the TCD to bone and to the 

material in the wings of insects. 

 

4.1 Bone 

 

An initial TCD investigation of bone was carried out29 using data from the published literature, 

in which several researchers had measured the effect of holes and cracks of different sizes on 

the strength of whole bones and of testpieces made from cortical bone. Reasonably accurate 

predictions (given the scatter in the original data) were achieved with a critical distance value 

of L = 0.38mm. 

How does this distance relate to the structure of bone and the mechanisms of crack growth in 

it? Toughening mechanisms in bone have been investigated in some detail by Ritchie and 

others30,31. Figure 6 shows a summary of possible toughening mechanisms, which emphasises 

the fact that bone, as a material, has structure on many different scales, from the macro to nano 

levels. The value of L which we obtained suggests a mechanism at the larger end of the scale. 

Bone contains cylindrical structures known as osteons, typically 0.2mm in diameter with a 

spacing between them of about 0.1mm. There is evidence that these act as barriers to crack 

propagation: cracks tend to arrest and deflect around the osteon rather than passing through it, 

as shown in Fig. 7. Unbroken osteons can act as ligaments, spanning between crack faces. So, 

thanks to the osteons, two toughening mechanisms may arise, referred to as “crack deflection 

and twist” and “unbroken ligament bridging”. Our L value of 0.38mm is rather larger than the 

osteon spacing and smaller than the size of a process zone made up of many unbroken osteons. 

This prompted further analysis, based around the hypothesis that both of these toughening 

mechanisms could be operating, manifesting themselves at different scales. Experimental 

evidence for this was found in results on the effect of crack length on measured toughness30,32. 

These two works between them spanned a very wide range of crack lengths, from a few 



micrometres to several millimetres. A detailed analysis of these results was carried out, 

supported by theoretical predictions from model materials having the same toughening 

mechanisms33. It was found that the data could best be explained using two values of L, a 

smaller value of 0.065mm (which predicted the data from very short cracks) and a larger value 

of 7.15mm, which predicted the data from longer cracks. 

 

 

 

Figure 6: Proposed mechanisms of toughening in bone, from macro to nano scales, from Zimmerman 

and Ritchie (2015)34. 

 

The explanation becomes clear: a very short crack, as it grows, will encounter its first osteon 

when its half-length is of the order of 0.05mm (based on the typical spacing of osteons being 

0.1mm). The osteon will be an effective barrier to the crack, giving rise to an L value of similar 

magnitude. As the crack grows longer these barriers will no longer be significant, instead the 

major resistance will come from the ligament bridging effect, which involves many individual 

osteons and thus creates a fracture process zone behind the crack tip of the order of millimetres 

in length, as observed by previous researchers30. 



 

 

Figure 7: A small crack C (about 0.1mm long) deflected by an osteon O. The outline of the osteon is 

indicated with a dashed line. Reproduced from O'Brien et al. (2003)35.  

 

 

 

 

 

(a)       (b) 

 

Figure 8: The insect wing: (a) locust wing with image analysis showing vein separations, from Dirks 

and Taylor (2012)36; (b) finite element model showing crack, membrane and veins, from Schmidt et al. 

(2020)37. 

 

 

 



4.2 Insect Wing 

 

The wings of insects consist of a thin membrane and a pattern of veins (see Fig. 8a) – thicker, 

tubular structures which carry the insect’s equivalent of blood but also have a structural role. 

By studying the growth of cracks through the wings of locusts we found that the veins have a 

toughening effect. Cracks propagating in the membrane arrest at the veins, eventually breaking 

through if the applied force is increased. This barrier-type toughening mechanism served to 

increase the toughness of the material by 50%36. 

The spacing of these veins is approximately 1mm, which suggests a critical distance of this 

order of magnitude. However the membrane material between the veins can be expected to 

have its own mechanical properties, including L, controlling crack propagation between veins. 

By conducting tests on microscopic specimens of membrane we established that this material 

has a tensile strength of 52MPa and a fracture toughness KIc of 1.19MPa√m. Combining these 

two values (assuming that the tensile strength is equal to the critical stress so) gives an L value 

of 0.167mm, Eq. (1). By creating finite element models of the exact geometry of the wing, with 

an introduced crack (see Fig. 8b) we were able to predict the effect of veins with good accuracy 

using the TCD37. The main assumption was that the material in the vein is the same as that in 

the membrane, so that the only effect of the vein is geometric, a reduction in local stress due to 

the vein’s increased thickness. Thus it emerges that this material also has toughening 

mechanisms on two different scales, the hundred-micron scale (presumably due to its fibrous 

structure) and the millimetre scale, determined by the spacing of the veins. 

 

5. Additively manufactured polymers and concrete 

 

The technologies that are most commonly used to additively-manufacture (AM) polymers and 

concrete make use of an extrusion process where the objects are built layer-by-layer by 

depositing filaments of the parent material. One of the key features of 3D-printing is that this 

technology allows objects with intricate designs to be manufactured at a relatively low cost, 

with this being done by reaching a remarkable level of accuracy in terms of both shape and 

dimensions. However, the specific features and the intrinsic technological limitations of 

additive manufacturing result not only in particular material mico-/meso-structural features, 

but also in defects that are introduced during fabrication. Both material morphology and 



manufacturing flaws do affect the overall mechanical behaviour and strength of additively 

manufactured objects. 

In light of the unique features of 3D-printed materials, over the last decade the Sheffield 

Structural Integrity Research Group has run a number of experimental/theoretical projects to 

assess whether the TCD is successful in assessing the static38–43 and fatigue44–46 strength of 

notched/flawed 3D-printed materials. In what follows some specific outcomes from this body 

of systematic research work will be reviewed and revisited by focusing attention specifically 

on polymers and concrete. 

 

5.1 Notched 3D-printed polymers: in-fill density equal to 100% 

 

Polymers are usually additively manufactured by employing the so-called Fused Deposition 

Modelling (FDM) technology. This manufacturing process makes use of a heated nozzle that 

melts filaments of the parent polymer, with these filaments being unwound from a coil. The 

material that is extruded through the nozzle is deposited directly onto the build plate. By so 

doing, an initial layer of material is manufactured. When this initial layer is completed, the 

build plate lowers (or the nozzle moves upward) so that the deposition of the subsequent layer 

can start. The specific shape of the various layers is obtained by moving the nozzle horizontally. 

When the filaments forming a layer are deposited, they cool down and harden, with this process 

allowing the filaments themselves to bind to each other as well to the previous layer of material. 

Via this technology, an object is built up gradually via a layer-by-layer process. The filaments 

used to build a layer can be deposited at different angles with respect to the principal axes of 

the build plate: this angle associated with the printing direction is usually referred to as the 

raster angle. 

As far as both polylactide (PLA) and acrylonitrile butadiene styrene (ABS) are concerned, the 

mechanical behaviour under static loading of these 3D-printed polymers can be simplified and 

modelled as follows38–40: 

 from an engineering point of view, the effect of the manufacturing direction can be 

neglected, with this resulting just in a little loss of accuracy; 

 the mechanical behaviour of additively manufactured PLA and ABS can be modelled 

via a simple linear-elastic constitutive law. 



While the above simplifying assumptions are valid solely for those objects that are 3D-printed 

flat on the build plate, they apply to materials manufactured with in-fill density set not only 

equal to 100% 38,40, but also lower than 100% 39. 

 

In order to check the accuracy of the TCD in estimating the static strength of notched PLA as 

well as of notched ABS, a large number of flat specimens containing different geometrical 

features were tested under quasi-static tensile loading as well as under quasi-static three-point 

bending (TPB) 38,40. The tested samples had all gross width equal to 25 mm, net width to 15 

mm and thickness to 4 mm. In order to investigate the effect of the notch sharpness, the 

specimens were manufactured by making the notch root radius, R, vary in the range 0.05 - 3 

mm. Further, both U-notches with opening angle equal to 0° and V-notches with opening angle 

equal to 135° were considered. All the specimens had thickness of the shell equal to 0.4 mm 

and were manufactured with an in-fill level equal to 100%. Further, they were fabricated flat 

on the build-plate by setting the raster angle, r, equal to 0°, 30°, and 45°.  

In order to apply the TCD, the critical distance value, Eq. (1), was estimated to be equal to 4.6 

mm for PLA38 and to 4.1 mm for ABS40. Despite the simplifying hypotheses being formed to 

allow the standard TCD to be used, the PM is capable of estimates mainly falling within an 

error interval of ±20%38,40. This is the usual level of accuracy being displayed by the TCD 

when this approach is used to estimate the static strength of notched/cracked conventionally 

manufactured engineering materials. 

This level of accuracy is certainly satisfactory also in light of the fact that the two 3D-printed 

polymers being tested were characterised by a very peculiar cracking behaviour (Fig. 9). In 

particular, the cracks were seen to initiate from the notch tip region, with the initial propagation 

through the superficial shell occurring on planes experiencing the maximum opening stress - 

i.e., a Mode I-governed initial growth. After breaking through the shell, the cracks kept 

propagating along zig-zag paths that followed the directions of the extruded filling filaments 

(Fig. 9). This complex cracking behaviour was hypothesised to be the result of the combination 

of three different mechanisms, i.e. (i) de-bonding between adjacent filaments, (ii) de-bonding 

between adjacent layers and (iii) rectilinear cracking of the extruded filaments 38,40. 

 



 

Figure 9: Examples of crack paths observed in notched (R=3 mm) specimens of PLA38 and of ABS 40 

subjected to tensile loading (in the pictures the specimen’s longitudinal axis is vertical and the notch tip 

on the left-hand side). 

 

 

Figure 10: 3D printed PLA structure 100% infill. 

 

As evident from Fig. 10, the components obtained through AM, particularly using the FDM, 

show an inhomogeneous structure even for the 100% infill. 

The critical distance L=4.6 mm estimated by Ahmed and Susmel38 was also used to predict the 

fracture load of additive manufactured PLA single edge notch bend (SENB) specimens 



obtained via FDM47,48. A Prusa MK3 printer was used with the following printing parameters:  

nozzle diameter 0.4 mm, infill density 100%, nozzle temperature 220° C, bed temperature 60° 

C, raster angle +45°/45°, build direction flat through the thickness, and layer thickness 0.15 

mm. Three orientations were considered 0°, 45° and 90°. Two type of tests were considered: 

TPB with span S=4W, and symmetric FPB with span S=4W and distance 2W between the 

applied loads. For each test and printing orientation, five specimens were tested. A linear elastic 

finite element analysis was carried on in order to obtain the stress distribution in front of the 

notch. A polynomial interpolation was performed in order to determine the maximum principal 

stress at L/2. Considering the inherent stress σ0 equal to the ultimate tensile strength σUTS for 

each printing orientation, the predicted load was determined according to PM. The relative 

error between predicted loads and the experimental values keeps always within 11%, Table 4.  

Table 4. Comparison between predicted loads using PM and experimental maximum loads for SENB 

specimens made of PLA using FDM technology. 

 

Material 
Load 

Type 

Raster 

angle 

Critical 

length 

Tensile 

strength 

Predicted 

load 

Experimental 

load 

 

Relative 

error 

r L UTS Fpred Fexp 
[deg.] [mm] [MPa] [N] [N] [%] 

PLA 

TPB 

0 

4.6 

50.88 249.50 244.00 2.25 

45 46.77 229.34 220.26 4.12 

90 49.53 242.88 235.17 3.28 

FPB 

0 

4.6 

50.88 499.00 529.77 5.81 

45 46.77 458.69 515.61 11.0 

90 49.53 485.76 495.09 1.88 

 

Summarizing, we can conclude that the critical distance in inhomogeneous/3D printed 

materials is directly related to the fracture process zone and depends on the microstructural 

heterogeneity and on the micromechanical material properties. 

 

 

5.2  3D-printed PLA: different in-fill levels 



 

As far as 3D-printed polymers are concerned, one of the key features of additive manufacturing 

is that objects can be fabricated by reducing the in-fill level. Setting the in-fill level lower than 

100% results in 3D-printed materials having a honeycomb-like internal structure, where the 

geometrical profile of the structural voids can be changed not only in terms of shape, but also 

in terms of dimensions. As to the latter aspect, obviously, given the absolute dimensions of the 

object being manufactured, the size of the manufacturing voids increases as the fill density 

decreases. 

In a similar way, in additively manufactured concrete a combination of both material- and 

process-related factors can result in manufacturing voids that are introduced during fabrication 

between adjacent filaments/layers. 

The structural voids in 3D-printed polymers are created intentionally to reduce the weight of 

the objects being manufactured, with this allowing the usage of material to be optimised. In 

contrast, the fabrication flaws that are seen in 3D-printed concrete are unwanted and their 

presence is the consequence, on one hand, of the characteristics of the used concrete mix and, 

on the other hand, of the way the key technological parameters are set. 

Independently of their nature (i.e., wanted/unwanted), the voids introduced during 

manufacturing do affect the overall mechanical properties of 3D-printed polymers and 

concrete. In this setting, the TCD can be used to model and quantify the effect of internal 

voids/flaws on the mechanical behaviour and strength of these 3D-printed materials. 

To understand the way the TCD can be used to address this problem, initially attention can be 

focused on the regular internal voids that are intentionally created by setting the in-fill level 

lower than 100%. Consider then the uniaxially loaded strip of additively manufactured polymer 

seen in Fig. 11a. The fact that the strip is manufactured by setting the fill density lower than 

100% results in regular internal voids having equivalent size equal to dV. According to Fig. 

11a, dv is taken equal to the diameter of the smallest circle that encloses the void itself 39. 

Consider now the infinite plate containing a central through-thickness crack sketched in Fig. 

11b and assume that this plate is made of a continuum, homogeneous, isotropic, linear-elastic 

idealised material. This idealised material is hypothesised to have the same ultimate tensile 

strength, UTS, and the same plane strain fracture toughness, KIc, as the polymer under 

consideration when this polymer is 3D-printed with an in-fill level equal to 100%. The semi-

length of the central crack, aeq, in the equivalent cracked material is set so that this plate is 



assumed to fail under a magnitude of the remote stress equal to the magnitude of the nominal 

gross stress resulting in the breakage of the additively manufactured strip of Fig. 11a. 

 

Figure 11: Homogenisation process to turn a plain strip 3D-printed with an in-fill level lower than 

100% (a) into an equivalent continuum, homogeneous, isotropic, linear-elastic cracked material (b); 

accuracy of the PM in estimating the static strength of plain PLA 3D-printed with an in-fill level lower 

than 100% (c). 

 

As to the homogenised model of Fig. 11b, it is important to point out that the associated LEFM 

shape factor is invariably equal to unity, with this being an obvious consequence of the fact 

that the cracked idealised material is modelled as an infinite plate containing a through-

thickness central crack. 



Having defined the problem according to Fig. 11, the assumption is made that the equivalent 

semi-crack length, aeq, can be expressed by using a simple linear function 39: 

 

 eq v t va f d k d                        (12) 

 

where dv is the equivalent size of the manufacturing voids as defined in Fig. 11a. In contrast, 

kt is a dimensionless transformation constant that is used to turn the 3D-printed plain strip of 

Fig. 11a into the equivalent continuum, homogeneous, isotropic, linear-elastic cracked material 

of Fig. 11b. 

Having transformed the problem of assessing the strength of a 3D-printed material containing 

voids into a standard LEFM problem involving a crack in an infinite plate, the strength of 

polymers additively manufactured by setting the in-fill level lower than 100% can be estimated 

by rewriting Eq. (7) as follows39: 

 

2 2

eq t v
f UTS UTS

eq t v

a k d
1 1

a L / 2 k d L / 2

   
             

               (13) 

 

In Eq. (13), critical distance L is the material length determined for the polymer under 

consideration when it is manufactured by setting the in-fill level equal 100%. Transformation 

constant kt instead can directly be determined from the static strength experimentally 

determined by testing specimens of the polymer of interest additively manufactured by setting 

the fill density lower than 100%. 

In order to show the accuracy of Eq. (13) in assessing the strength of 3D-printed polymers 

containing internal manufacturing voids, the Kitagawa–Takahashi diagram of Fig. 11c 

summarises the results we generated by testing plain specimens of PLA manufactured by 

making the in-fill level vary in the range 10%-90%39. These un-notched specimens were 

fabricated flat on the build-plate by setting the value of the raster angle, r, equal to 0°, 30°, 

and 45°. The critical distance value, L, for the investigated PLA 3D-printed with a fill density 

of 100% was determined to be equal to 2.4 mm (with UTS=42.9 MPa and KIc=3.7 MPa·m1/2). 

From the experimental results generated by testing specimens manufactured with an in-fill 

level of 80%, the dimensionless transformation constant, kt, necessary to apply Eq. (13) was 

estimated to be equal to 35.539. The Kitagawa–Takahashi diagram of Fig. 11c suggests that this 

simple LEFM/TCD-based idea is successful in modelling the static strength of polymers 



additively manufacture by setting the in-fill level lower than 100%. In particular, for the 

specific material/manufacturing technology used to build the chart of Fig. 11c, it is evident that 

the use of Eq. (10) returns accurate results down to an in-fill level equal to 30%. In contrast, 

the behaviour of the specimens manufactured by setting the in-fill level equal to 20% and 10% 

clearly deviates from the predicted trend. This discrepancy can be ascribed to the well-known 

fact that a 3D-printed object behaves like a lattice structure when the size of the internal voids 

is large compared to the absolute dimensions of the object itself. This change in the mechanical 

response defines the lower limit of the range of validity of Eq. (13). Since the value of this 

lower limit depends not only on the ratio between object’s absolute dimensions and size of 

voids, but also on a number of different material- and technology-related factors, it should 

always be determined by running appropriate experiments and/or appropriate numerical 

simulations. 

 



Figure 12: 3D-printed concrete beams loaded in TPB: plain specimen (a); specimen containing a saw-

cut crack-like sharp notch (b); specimen weakened by surface roughness (c); specimen weakened by 

manufacturing defects (d); accuracy of the PM in estimating the static strength of 3D-printed concrete 

weakened by cracks and defects (e). 

 

Clearly, with regard to AM materials, several papers have been published in the literature based 

on a critical distance and applied to experimental data49,50,51, but the conclusions support the 

results we have shown above. 

 

5.3  3D-printed concrete  

 

Turning to the defects/cracks that can be found in 3D-printed concrete, Figs. 12b to 12d show 

the possible scenarios that were considered42 to assess the accuracy of the TCD in addressing 

this problem. The specimens of 3D-printed concrete being used in this investigation had width, 

W, in the range 44-53 mm and thickness, B, in the range 34-56 mm (Fig. 12). They were 

manufactured by setting the raster angle, r, equal to 0° and 90° and tested under quasi-static 

TPB. 

According to Fig. 12, apart from the un-notched specimens (Fig. 11a), samples containing 

crack-like sharp notches were fabricated by using a circular tip blade with thickness equal to 

2.6 mm (Fig. 12b). The depth of these crack-like notches was in the range 2-27 mm. The 3D-

printing process was used also to fabricate a number of samples characterised by a very rough 

surface where this roughness was due to the deposition filaments (Fig. 12c). To assess the 

strength of these specimens, the valleys characterising the surface were modelled as cracks 

having depth equal to a (see Fig. 12c). The use of this simple definition for the depth of the 

superficial roughness-related equivalent cracks returned values of a varying from 1.2 mm up 

to 3.5 mm. Finally, a number of specimens were additively manufactured by setting the 

technological parameters so that voids were created intentionally in between adjacent 

filaments/layers (Fig. 12c). In terms of structural strength modelling, the defects at the fracture 

section were assumed to be interlinked, resulting in an equivalent crack having length, a, 

defined as shown in Fig. 1242. 

Taking as a starting point the definitions for the crack depth, a, shown in Figs. 12b to 12d, the 

Finite Element method was employed to determine the corresponding shape factors, , where 

samples were schematised as SENB beams with notch tip radius equal to zero. 



Definition (1) was used to determine the critical distance for the 3D-printed concrete under 

investigation, returning a L value of 2.4 mm. This L value was estimated by taking KIc equal 

to 1.2 MPa·m1/2 and UTS to 13.7 MPa. In particular, the ultimate tensile strength in Eq. (1) was 

set equal to the static flexural strength of the additively manufacture concrete being tested 42. 

The overall accuracy of the PM, Eq. (2), in estimating the static strength of 3D-printed concrete 

containing the typologies of defects described in Figs. 12b to 12d is summarised in Fig. 12e. 

In this chart symbol  is used to denote the LEFM shape factor. The Kitagawa–Takahashi 

diagram of Fig. 12e makes it clear that the use of the TCD can safely be extended also to the 

static assessment of 3D-printed concrete containing defects and manufacturing flaws. 

 

6. Conclusions 

 

It was shown that, in the framework of TCD, the PM is able to obtain accurate predictions on 

the failure stress for non-homogeneous materials, both in the presence and in the absence of 

notches. Three different classes of material were considered: i) foams, both metallic and 

polyurethane (Section 3); ii) biological materials, with particular reference to the bone and the 

wing of insects (Section 4); iii) AM polymers and concrete, with different infill levels (Section 

5). For all of them, the PM predictions are generally included in an error interval of 10% with 

respect to experimental results, and in any case never higher than 20%. 

Finally, it was underlined how, depending on the material, the critical distance L is linked to 

the material micro-structure. As a matter of fact, in case of foams, L reveals proportional to the 

size of the cells l; for biological materials, L is related to the osteon spacing (bone) or to the 

vein spacing (insect wing); finally, in AM materials, L depends on the fracture process zone 

and it is linked somehow to the size of the manufacturing void dv. 

In conclusion, the above examples show that it is possible to use the TCD to predict brittle 

fracture in inhomogeneous materials. A complicating factor which must be acknowledged is 

the existence of structure, and important toughening mechanisms, on different scales. However, 

we can appreciate here a useful role for the TCD in identifying the length scales on which these 

different mechanisms operate. This can be used in an investigative way when trying to elucidate 

the operative toughening mechanisms in new materials. 
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