
This is a repository copy of A Survey of Practical Formal Methods for Security.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/194011/

Version: Published Version

Article:

Kulik, Tomas, Dongol, Brijesh, Larsen, Peter Gorm et al. (4 more authors) (2022) A Survey
of Practical Formal Methods for Security. Formal Aspects of Computing. 3522582. ISSN
1433-299X

https://doi.org/10.1145/3522582

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

5

A Survey of Practical Formal Methods for Security

TOMAS KULIK, Aarhus University, Denmark

BRIJESH DONGOL, University of Surrey, United Kingdom

PETER GORM LARSEN and HUGO DANIEL MACEDO, Aarhus University, Denmark

STEVE SCHNEIDER, University of Surrey, Denmark

PETER W. V. TRAN-JØRGENSEN, Bank Data, Denmark

JAMES WOODCOCK, University of York, Aarhus University, United Kingdom, Denmark

In today’s world, critical infrastructure is often controlled by computing systems. This introduces new risks
for cyber attacks, which can compromise the security and disrupt the functionality of these systems. It is
therefore necessary to build such systems with strong guarantees of resiliency against cyber attacks. One
way to achieve this level of assurance is using formal verification, which provides proofs of system compli-
ance with desired cyber security properties. The use of Formal Methods (FM) in aspects of cyber security and
safety-critical systems are reviewed in this article. We split FM into the three main classes: theorem proving,
model checking, and lightweight FM. To allow the different uses of FM to be compared, we define a common
set of terms. We further develop categories based on the type of computing system FM are applied in. Solu-
tions in each class and category are presented, discussed, compared, and summarised. We describe historical
highlights and developments and present a state-of-the-art review in the area of FM in cyber security. This
review is presented from the point of view of FM practitioners and researchers, commenting on the trends
in each of the classes and categories. This is achieved by considering all types of FM, several types of se-
curity and safety-critical systems, and by structuring the taxonomy accordingly. The article hence provides
a comprehensive overview of FM and techniques available to system designers of security-critical systems,
simplifying the process of choosing the right tool for the task. The article concludes by summarising the dis-
cussion of the review, focusing on best practices, challenges, general future trends, and directions of research
within this field.

CCS Concepts: • Security and privacy→ Logic and verification; Trust frameworks; • General and refer-

ence→ Surveys and overviews;

Additional Key Words and Phrases: Formal Methods, model checking, theorem proving, cyber security

This work is supported by the Manufacturing Academy of Denmark; for more information, see www.made.dk. Brijesh

Dongol is supported by grants “FaCT: Faithful Composition of Trust,” EPSRC grants EP/R032556/1 and EP/V038915/1, and

ARC Discovery Grant DP190102142. Steve Schneider is supported by EPSRC grants EP/P031811/1 and EP/R006938/1. Jim

Woodcock is supported by the Poul Due Jensen Foundation and grants EP/M025756/1, EP/R025479/1, and IEC/NSFC/170319.

Authors’ addresses: T. Kulik, P. G. Larsen, and H. D. Macedo, Aarhus University, Finlandsgade 22, Aarhus, Den-

mark, 8200; emails: {tomaskulik, pgl, hdm}@ece.au.dk; B. Dongol, University of Surrey, Surrey, United Kingdom; email:

b.dongol@surrey.ac.uk; S. Schneider, University of Surrey, Surrey, United Kingdom; email: s.schneider@surrey.ac.uk; P. W.

V. Tran-Jørgensen, Bank Data, Aarhus, Denmark; email: peter.w.v.jorgensen@gmail.com; J. Woodcock, University of York,

Aarhus University, York, Aarhus, United Kingdom, Denmark; email: jim.woodcock@york.ac.uk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0934-5043/2022/07-ART5 $15.00

https://doi.org/10.1145/3522582

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:2 T. Kulik et al.

ACM Reference format:

Tomas Kulik, Brijesh Dongol, Peter Gorm Larsen, Hugo Daniel Macedo, Steve Schneider, Peter W. V. Tran-
Jørgensen, and JamesWoodcock. 2022. A Survey of Practical Formal Methods for Security. Form. Asp. Comput.

34, 1, Article 5 (July 2022), 39 pages.
https://doi.org/10.1145/3522582

1 INTRODUCTION

Digital services are currently spreading to all aspects of society [207]. This in turn causes depen-
dence of society on the cyber infrastructure needed to support these services. The heavy reliance
on cyber infrastructure poses new challenges in the form of cyber attacks and potentially cyber ter-
rorism [142], with threat actors encompassing the full range from interpersonal offenders, cyber
criminals, and “hacktivists” through to well-resourced state actors [208]. Disturbances in finan-
cial, industrial, or day-to-day consumer services could lead to significant financial and societal
costs. As digitisation spreads further, the potential attack surfaces only grow larger, increasing
the challenge of protecting digital services [250, 260]. As systems grow larger and more complex,
significant resources have to be spent to secure these system against known cyber attacks. Often
the protection mechanisms are incorporated to close vulnerabilities uncovered after a successful
cyber attack, and hence are of a reactive nature. This approach relegates cyber security from a
primary challenge to be solved within the system to an afterthought [236].
Due to the wide spectrum of cyber attacks, it is difficult to directly quantify their impact on

society [101], however, very often they involve significant financial costs as well as potential dis-
ruptions in quality of life. One example is a potential cyber attack against electricity infrastructure,
including electricity marketplace, which could lead to destruction of generators and disclosure of
confidential data [191]. Another example is attacks against manufacturing facilities causing de-
lays or decrease in quality of production [47, 204]. These examples demonstrate that cyber threats
should be considered as significant as physical threats against societal infrastructure.
The earlier the potential cyber security threats are discovered within new systems, the cheaper

the mitigation for these threats will be [257]. Formal Methods (FM) provide an opportunity
for discovery and mitigation of cyber threats at all stages of the lifecycle of a system. Using FM
brings mathematical rigour to the field of cyber security assurance. This is possible, since FM are
techniques that use model-based approaches, where the models are rigorously specified [261] that
allow for development of precise statements about what systems under investigation should do
without putting constraints on how to do it [264]. These models represent the software, hardware,
or a combination of the two for the system in question. The primary benefit of using FM stems
from the mathematical proof of the internal consistency of the system design [115]. This proof
provides strong assurances, since it considers the entire system behaviour, and once proven true it
remains true, whereas in traditional testing it is only possible to cover specific scenarios. FM can
be seen as a tool well suited for providing assurances of cyber security for digital society [262].
Beyond the assurance of behavioural correctness of a system, the adoption of a fully fledged formal
approach is known to reduce the number of implementation errors, which are the building blocks
of exploits.
It is important to note that there exists a variety of FM. The main categories we consider are:

• Theorem Proving, analysing a formal description for important properties based on computer-
based proofs.
• Model Checking, checking whether a finite-state model of a system meets a given specifica-
tion in an exhaustive manner.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:3

• Lightweight FM, using formal techniques to analyse a system either statically or dynamically
(this concept was coined in Reference [132], but we have extracted the model checking from
their characterisation into a category of its own).

For a detailed coverage of the technical foundations of formal approaches to security, we refer the
reader to Reference [32]. That chapter focuses on the technical foundations of the area, whereas
our survey concentrates on specific application areas.
In all cases, the methods are applied to determine if a system behaves in a correct way, and many

approaches have received significant tool support for automation of the verification and validation
process [10]. In this survey, we consider all of the approaches and their application to specific areas
of digital society. We further consider FM as applied to the specific level of abstraction of system
behaviour ranging from the application level to the hardware level. By considering the state-of-the-
art research in formal verification across these dimensions, we provide a non-exhaustive overview
of application of FM in specific disciplines. The aim of this survey is to allow practitioners to
identify a proven method applicable to a system in their domain, hence hopefully increasing the
adoption of FM in the field of cyber security. We believe that similar surveys in different areas of
use of FM could be a catalyst to increased adoption, as it has been determined that education and
experience as well as finding positive examples of use of FM could lead to professionals adopting
FM towards their area of expertise [104].

1.1 Methodology

The amount of research publications within the area of applying FM towards cyber security chal-
lenges is significant. Therefore, several constraints have been placed on the choice of research pub-
lications to be considered within this survey. The first important constraint is the recency of the
research reported, considering the landscape of the past decade, limiting the publication date to be
no earlier than 2012. Furthermore, all of the research work needs to be published in scientific venues
such as journals, conferences, or workshops. The next constraint is focus on computer-based tool
supported FM, i.e., only FM with tools that can provide computer-based analysis and often guide
users on performing this analysis are considered. This consideration is to focus more on the FM
that could be potentially applied outside of academia, bringing the benefits of the formal security

analysis to industry. This goes hand-in-hand with our focus on the applied FM, searching for re-
search publications, where a tool-supported FM is utilised to deal with a concrete cyber security

problem. Hence, this survey does not focus on theoretical advances of FM in security or proposed
processes that briefly mention use of FM, such as theoretical approaches to model checking al-
gorithms, specification of hyperproperties, and similar. Furthermore, our survey does not cover
the approach to security commonly referred to as provable security. This refers to a mathemati-
cal approach to analysing the security of cryptographic mechanisms or systems. The approach
considers the system in the context of an attacker model and expresses the security requirements
within that model as a limitation on what the attacker should be able to achieve. A proof consists
of establishing that the attacker would need to break a known hard problem (such as the Quadratic
Residuosity Problem [105]) to break the security of the system. Thus, the security of the system is
reduced to the difficulty of the underpinning hard problem. This approach is typically used within
the field of cryptography rather than secure systems, and so falls outside the scope of our survey.
We point the reader to Reference [28] providing the report within the area of FM in cryptography.
Finally, we constrain our search to research that considers aspects of security explicitly, and not as
a by-product of safety or correctness. The search for the research publications was carried out as a
cross database search using Google Scholar, while focusing on research papers, excluding research
abstracts or extended abstracts.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:4 T. Kulik et al.

Fig. 1. (a) Needham-Schroeder authentication protocol and (b) attack.

As this survey provides readers with a quick overview of the research conducted, we have fur-
ther decided to categorise different research publications by the industry (domain) on which they
focus as well as the level of abstraction on which FM is utilised. In this way, researchers and also
potentially industrial users can quickly find the area of their interest within this survey. Further-
more, we classify the research based on the cyber security problem classification as elicited from
the discovered research papers and inspired by existing literature [208].

1.2 History

This section presents a history of impactful research works within FM in security over the past
40 years. We choose four case studies where formal methods have been applied to secure systems:

(1) The Needham-Schroeder Public-Key Protocol. Lowe used a refinementmodel checker to find
a triangular attack on the protocol. This was a new attack on a protocol that had previously
been proven correct by Burrows et al. [52].

(2) The Mondex smartcard. This was the first commercial product to be certified to ITSEC Level
E6. There was considerable discussion at the time as to whether this was even possible.

(3) The Tokeneer ID Station. There were similar questions about the feasibility of using FM to
achieve the level of rigour required by the higher assurance levels of the Common Criteria.
Tokeneer settled this matter.

(4) The seL4 Microkernel. This system has the reputation of being the world’s most assured
microkernel. Significantly, it demonstrates that security and the use of formal methods do
not lead to poor performance.

The Needham-Schroeder Public-key Protocol. The Needham-Schroeder Public-Key Protocol is a
transport-level protocol for communication between network devices [190], providing mutual au-
thentication between two parties in a network. The protocol is visualised in Figure 1(a). Simple
and well known, it has become a popular benchmark for testing security protocol verification tech-
nology. We discuss it here because it is an important security protocol that nevertheless contained
a significant error. This error was found through formal modelling and analysis.
Lowe [165] showed that, contrary to its intention, the protocol fails to ensure authentication.

In particular, he demonstrated that an intruder can impersonate an agent A during a run of the
protocol. The impersonator tricks another agent B into thinking that they are talking to A.

The protocol uses public key cryptography. Each agent A possesses a public key, which any
other agent can get from a server.A also possesses a secret key that is the inverse of its public key.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:5

Any agent can encrypt a message usingA’s public key, but onlyA can decrypt it, ensuring secrecy.
The protocol also uses nonces: random numbers coined for single runs of the protocol.

Lowe encoded the protocol in CSP [123] and analysed it by use of CSP’s model checker,
FDR [103]. Lowe did not direct FDR where to look in the protocol for a vulnerability—he sim-
ply modelled the intruder capabilities, but the exhaustive search carried out by the model checker
found an attack in spite of this.
Suppose that I (an intruder) is a network user who can take part in network sessions. I can also

intercept messages and inject new ones, but is not able to decrypt messages without the key. I can
produce a new message in two circumstances: if I invents the nonce or if I already understands
the message’s contents. This intruder can also replay complete encrypted messages, even without
understanding the contents [213]. This approach is commonly known as the Dolev-Yao model [85].

The attack involves two simultaneous runs of the protocol, as shown in Figure 1(b).A establishes
a valid session with I . At the same time, I impersonates A to establish a fake session with B. The
flawed run of the protocol could be explained as follows: A sends a message with nonce NA to I ,
who decrypts the message with I ’s secret key. I relays the message to B, pretending to B that A is
communicating. B sends NB in response, encrypted for A, and so I relays this encrypted nonce to
A. A decrypts NB and confirms it to I , who learns it. I re-encrypts NB and returns it to B, which
convinces B that A is the other party. At the end of the attack, B falsely believes that A is the
communication partner and that only A and B know NA and NB . This shows that the protocol
is insecure. Protocol analysts call this a man-in-the-middle attack. Here, it has been discovered
automatically.

Mondex. The Mondex application consists of smart cards with electronic purses (wallets) for
use in the electronic commerce [235]. Customers use Mondex smart cards for low-value, cash-like
transactions that need no third-party involvement. The Bank of England (the financial regulator in
this instance) considered the requirements for Mondex to be security-critical: Mondex must have
no implementation or design bugs that could allow electronic counterfeiting. So the developers
certified Mondex to the highest standard available at the time. This was ITSEC Level E6 [129],
equal to Common Criteria Evaluation Assurance Level 7 [57].1 Mondex was the first commercial
product to achieve ITSEC Level E6 (EAL7).
Reference [235] further describes the development of the Mondex application, with its abstract

and concrete models. The abstract model describes the world of electronic purses: Atomic trans-
actions exchange value and the abstract model expresses their required security properties. The
concrete model is the purse design and the message protocol for value exchange.
The design team used the Z notation [233, 263] to specify both models. They proved that the

concrete model is formally a refinement of the abstract one. This means that the concrete model
respects all the abstract security requirements. The abstract model and its security properties is of-
ten easier to understand than the concrete model. Developers wrote manual proofs, believing that
no efficient automated tools existed for such a large task. Instead, proof steps were type-checked
using the fuzz2 and Formaliser tools [97]. Proofs were also checked by independent external
evaluators.

1The levels of the Common Criteria are:

EAL1: Functional testing. EAL5: Semi-formal design and testing.

EAL2: Structural testing. EAL6: Semi-formally verified design and testing.

EAL3: Methodical testing and checking. EAL7: Formally verified design and testing.

EAL4: Methodical design, testing, and reviewing.
2See spivey.oriel.ox.ac.uk/corner/Fuzz_typechecker_for_Z.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:6 T. Kulik et al.

There were four principal security properties:

• The system and its users may not create value.
• The system must account for all value.
• Purses must have enough value for their intended transaction.
• All transfers must be between authentic purses.

The design team changed a secondary protocol after the proof revealed a bug. A detailed account
of the project is given in Reference [265]. Mondex has proved to be a dependably secure system,
guaranteed by its formal development.

Tokeneer. The Tokeneer system was designed and developed by the US National Security

Agency (NSA) [30].3 It provides secure access to an enclave of workstations with controlled phys-
ical entry. Access control requires biometric checks and security tokens. These tokens describe a
user’s permitted actions within a particular visit to the enclave.
Developers needed to assure the security properties. They did this by conformance with the

Common Criteria Evaluation Assurance Level 5 [57]. They also needed to show they could do
this in a cost-effective way. NSA invited bids to use FM to develop a component of the Tokeneer
system and then monitored this experiment to measure the effort and skills needed to perform the
development.
Praxis (a UK company) won the contract and wrote a formal specification in Z [233, 263], for-

mally refining the specification to a SPARK program. SPARK is a subset of Ada with an accompa-
nying tool-set [29]. They proved key system properties and the absence of runtime errors, using
traditional methods to develop extra software. These extra Ada programs provided interfaces with
peripherals.
The project required 260 person-days, three people part-time, and nine months’ elapsed time. It

produced about 10K lines of SPARK code with about 16.5K contracts. About 200 loc were written
on average per day during the implementation phase, with about 40 loc through the entire project.
A further 3.5K lines of standard Ada code were produced, with about 200 loc per day in the im-
plementation phase or 90 loc throughout the project. System testing took about 4% of the project
effort, much smaller than usual.
Two defects were found in Tokeneer. One was found using formal analysis, another was found

by code inspection.4 The testing team discovered two in-scope failures: missing items in the user
manual.
The task set by NSA was to conform to Common Criteria EAL5. The Tokeneer development ac-

tually exceeded EAL5 requirements in several areas: configuration control, fault management, and
testing. Although the main body of the core development work was carried out to EAL5, the devel-
opment areas covering specification, design, implementation, correspondence were accomplished
to EAL6 and EAL7. Why? Because it was cheaper!

The seL4 Microkernel. The third-generation microkernel seL4 provides abstractions for virtual
address spaces, threads, and inter-process communication. It provides an explicit memory man-
agement model and capabilities for authorisation. There is a guarantee that the binary code of

3For comprehensive information on Tokeneer, see the AdaCore webpages www.adacore.com/tokeneer, where the entire

project archive can be downloaded. AdaCore distributes the material generated by Altran under contract to the NSA under

the terms of the Technology Transfer Agreement agreed between Praxis and the NSA. This material consists of all the core

and support software for the Tokeneer ID Station, project documents, test cases derived from the system test specification,

test tokens, and biometric data.
4Diomidis Spinelli: www.spinellis.gr/blog/20081018/.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:7

the ARM version of the seL4 microkernel is a correct implementation.5 seL4 meets its abstract
specification and does nothing else. In particular, the seL4 ARM binary meets the classic security
properties of integrity and confidentiality.
The seL4 micro-kernel has a formal proof of its C code against its abstract specification [144].

This proof is machine-checked in Isabelle/HOL [194]. This assumes correctness of boot code, cache
management, hardware, and hand-written assembly code.
The developers claim seL4 to be the only verified general-purpose operating system (OS) ker-

nel. An operational model of the system forms as an abstract specification. A Haskell program
prototypes the kernel. This prototype provides an automatic translation into Isabelle/HOL. The
Isabelle code is then an executable, design-level specification of the kernel. This is hand-coded in
C to form a high-performance C implementation of seL4. Refinement proofs link the specifications
and the C code. Developers proved that attackers cannot subvert the kernel, not even if they use
buggy encodings, spurious calls, or buffer overflow attacks.

1.3 Definitions/background

Here, we provide a set of common terms and definitions used throughout this article. This is partic-
ularly important, since the fields of formal verification and security developed independently for
many years, and hence, some terms are overloaded and have slightly different meanings, depend-
ing on the context in which they are used. For example, in security (particularly cryptography), a
certificate refers to a document that is used to bind an entity to a cryptographic key. However,
within FM, certificate is used as a proof of correctness of a system or protocol.

Throughout this survey, on the security side, we use terms such as authentication to refer
to the process of identifying and validating whether a user (an entity or individual) accessing a
system is who the user claims to be. This is in contrast with authorisation, which is the process
of allowing a user access to a system based on their identity. We furthermore often find security
protocols designed to provide specific properties such as isolation, which is a design principle in
which processes are separated and given privileged access to shared resources, e.g., sharedmemory
(typically using techniques such as containerisation or virtualisation) or non-repudiation, ensur-
ing that it is not possible to deny a validity of a statement or a message, especially in terms of its
authorship. We would also like to point out the difference between anonymity where an identity
of a user or a process shall not be disclosed and confidentiality where the content encoded as a
block of data shall not be disclosed.
On the formal methods side it could be said that systems under consideration typically com-

prise a set of coordinated processes, which are program instances defining a set of instructions that
are executed by one or more threads. We think of processes as being active entities in a system, as
opposed to programs that are passive entities. Formal frameworks to describe the behaviour of pro-
cesses include CSP, CCS, ACP, π -calculus, and so on. Processes typically implement protocols, i.e.,
a set of rules for transmission of data, and may synchronise over sharedmemory or communicate
over a channel, which is an abstraction of a physical communication network. Shared memory
implementations are increasingly complex due to the use of intermediate processor caches and
may implement many different consistency models [6]. Similarly, one may place many different
assumptions on a channel, e.g., FIFO ordering of messages; whether the channel guarantees in-
tegrity, availability, and confidentiality; whether the channel is error-free; whether message types
can be distinguished, and so on.

5On the ARM platform, there is a further proof that the binary code that executes on the hardware is a correct translation

of the C code for sel4. This means that the compiler does not have to be trusted, and extends the functional correctness

property to the binary. See docs.sel4.systems/FrequentlyAskedQuestions.html.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:8 T. Kulik et al.

In general, verification is with respect to a specification, which is an abstract (formal or in-
formal) description of the allowable behaviours of an entity, e.g., hardware, a system, computer
program, data structure, and so on. Formal verification often proceeds with respect to amodel of
a system, which provides a precise formal description of an entity, capturing the key characteris-
tics of the entity being modelled. One must ensure that every feature described by a model is an
actual feature of the entity. Different models of the same entity may be developed, depending on
the properties that are of interest; a computer program for example may be modelled by relations
between pre/post state; traces of states; functions between inputs and outputs, and so on. A model
may describe behavioural functionality, protocols, and so on. In FM, one typically develops models
at several levels of abstraction, with precise descriptions of the relationship between these levels.
FM for security also requires a model of an attacker, e.g., the Dolev-Yao model, which is used in
the context of communicating systems.
Within hardware verification, the term co-verification is used to prove that system software

executes correctly on a representation of the underlying hardware design. It enables integration of
software with hardware, before any physical devices (e.g., chips or boards) are available. The aim
of verification is to ensure that it meets its implementation (of a specification), i.e., the physical
manifestation of an entity. In some instances, one may refer to an implementation as a model that
provides enough detail about an entity for the corresponding physical entity to be readily obtained.
To finalise the definitions it is important to revisit our classifications of FM. The first category

we classify is theorem proving, where a proof of correctness of a system is provided in symbolic
logic. This survey focuses on automated theorem proving, where proof assistants are utilised to
generate the proofs. This method utilises a system of logic trying to determine if a statement ϕ
follows from a set of statements Γ = {ψ1, . . . ,ψn }. The second class we consider ismodel checking

where a finite state model of a system is utilised to systematically search the entire state space
of this model (i.e., all possible system states contained in the model) for detection of counter-
examples to statements about the system expressed as properties, for example in linear temporal
logic as �⋄p stating that a property p holds in infinitely many states. As with theorem proving, we
focus on automated model checking. Finally, we define a class of lightweight formal methods

where we place methods that do not provide exhaustive analysis. A simple example could be static
code analysis, where the code is analysed while not running to determine if it breaks predefined
rules. Another example could be VDM [38], where the system is modelled in a formal modelling
language and properties are expressed as contracts, i.e., pre, post conditions and system invariants,
for example inv t == t.issueTime < t.expirationTime stating that universally t must be issued before
it can expire. To perform the check, the model is animated and only specific scenarios are set (often
those considered critical), however, VDM can also utilise combinatorial testing combining input
paths to generate large amount of tests, hence significantly increasing the test coverage.

2 SURVEY

2.1 Categorisation and Overview

Since FM in security are applied across many domains, we structure the scope of the survey by
presenting a categorisation based on a domain and a level of abstraction. This is done to provide a
systematic overview of the wide field of FM in security. The labels for the four domains we have
selected are:

Financial (Section 2.2): Aggregates the works applying FM in the area of finance/money as
payment systems, home banking, financial markets, crypto-currencies. Examples are mobile
banking apps, ATM infrastructures, the FIX stock exchange protocol, smart-cards/hardware
wallets.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:9

Industrial (Section 2.3): This label agglomerates works dealing with computing systems ap-
plied in the production of goods or services, manufacturing, and industrial control. Exam-
ples are aWater Treatment Management Panels, PLC control networks, Modbus/TCP, motor
controllers.

Consumer (Section 2.4): It categorises works focusing on the security of end-users’/
individuals’ personal computation devices and applications such as a command-line shell,
a home operating system, a Voice over IP protocol, and an exercise smart appliance.

Enterprise (Section 2.5): This is the dual of the Consumer category, as it is used to group the
works focusing on the security of corporate systems providing computing services satisfying
the needs of organisations instead of individuals. Examples are email services, e-government
systems, the sn2 protocol, data server warehouses.

As presenting the four domains would only separate the FM in security research by the field of
application, we further present five levels of abstraction at which the formal verification is carried
out. These levels of abstraction are:

Application: Used for works that apply FM for security at the application or purpose of com-
putation level.

System: Used for works that apply FM for security within the architectural level, often encom-
passing multiple subsystems.

Protocols: It is used to apply FM to assert properties or analyse communication protocols
between system components level.

Implementation: This is a cross-cutting category encompassing all the works that focus on
application/usage of FM directly on the resulting system (e.g., runtime monitoring) instead
of emphasis on designs and specifications.

Hardware: Used to classify works applying FM in the process of hardware development.

This categorisation allows us to systematically review the state-of-the-art-research and provide
an overview based on this. To provide a clear overview of FM in security, we further apply
a third dimension, defining the type of the FM used, i.e., model checking, theorem proving,
and lightweight FM. This provides a quantitative overview of different research works within
Figure 2.

The sections within this survey follow a logical organisation, where the research works are
grouped together by the type of the application, system, protocol, implementation, or hardware
that they are applied to. Within this grouping, the research works are further organised into para-
graphs following logical categorisation. As an example, the first paragraph could consider works
related tomanufacturing, while the next paragraph considers works related to industrial control. In
both cases the research is aimed at industrial domain butwith a different scope. Each sectionwithin
the survey represents a single domain, where we present a systematic summary of research works
belonging to different levels of abstraction. As this survey attempts to categorise large amount
of research works, each of them is only presented briefly focusing on the analysed problem and
utilised FM technology. For more details on individual research works, we point the reader to a
technical report that this survey is based on [149].

2.2 Financial

Financial computing, including banking systems, independent budgeting applications, and mobile
payment applications, is a rapidly developing field. This section provides an overview of how
FM have been used to analyse the security of banking mobile applications, alternative currencies,
such as cryptocurrencies, smart contracts, banking backend systems, electronic trading systems,

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:10 T. Kulik et al.

Fig. 2. Classification of formal methods in security.

payment protocols, cryptocurrency hardware, and wallets. On a different level of abstraction, it
could be seen within this section that the system level consists of most research works. This section
also mentions the legal challenges when applying FM to financial systems. These legal challenges
arise from limited access to these systems and a certain level of avoidance of publication of poten-
tial vulnerabilities by vendors of these systems, i.e., often making it difficult for researchers to get
deep insight into these systems.
The method most used to analyse security within the financial domain is model checking, and

authors apply different model checkers to specific problems. This could be attributed to the fact
that the different entities whose security is being analysed lend themselves well to be modelled in a
state transition representation and also that their state space is sufficiently limited to be analysed
without issues such as the state space explosion. The cyber security topics present within the
financial section are shown in Figure 3.

Application. Nowadays, banks not only provide mobile applications, but whole alternative cur-
rencies are being developed. This rapid growth provides many opportunities for use of FM on an
application level.
An application of FM to banking apps could be found in Reference [63], where the authors

analyze security of apps from 15 leading UK banks discovering several vulnerabilities. The authors
proposed a correction to one of the flaws, which was formally verified using ProVerif.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:11

Fig. 3. Cyber security topics in the financial section.

Another widespread security threat in banking is malware. In this area, the authors of Refer-
ence [152] analysed Android banking applications using Krakatau byte-code tool6 to generate the
Java byte-code of the application, further translating it toCalculus of Communicating Systems

(CCS) [181]. The authors then dispatched the CCS model to the Concurrency Workbench of

NewCentury (CWB-NC)model checker [69] searching formalware properties. The authors have
accomplished 98% malware detection rate. Similar approach was utilised by the authors of Refer-
ence [126] focusing on the banking SMS messages.
In the alternative currency area, the authors of Reference [249] analyse the Electrum Bitcoin

wallet by creating a model in ASLan++ [253] of the two-factor authentication utilised by the wallet.
The authors have uncovered potential vulnerabilities using the Cl-Atse protocol analyser [248].

Smart or programmatic contracts are also an important aspect of modern financial landscape.
The automated contract enforcement requires an implementation that shall be free of vulnerabil-
ities. This led to use of FM for creation of certified contract languages [17] and certified virtual
machine byte-code [199].

A specific survey has been carried out in this area, providing more detail on utilisation of
FM [180].

System. The financial systems of today could be categorised as classic systems such as SWIFT
inter-bank network system and new systems often introduced by smaller players or by regulatory
pressures [259] that tend to push the sector to move faster.
Most of the FM works related to classic systems are decades old with few works such as use of

BAN logic for analysis of mobile payment system [7] or use of SPIN tool for analysis of ATM sys-
tems [197] or internet payment systems [272]. In Reference [216] the authors show legal barriers
faced by proponents of FM in the domain.
Within the area of Electronic Trading Systems (ETSs) there is a trend of application of FM

to decentralised systems such as blockchain-based cryptocurrencies. These works range from ver-
ifying algorithms in a cryptocurrency platform [268], analysis of Ethereum smart contracts [121],
to verification of the blockchain system as a whole [87]. Other works have considered building

6github.com/Storyyeller/Krakatau.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:12 T. Kulik et al.

models of Europay Master Visa standard by use of automata learning techniques [2] or use of
lightweight formal specification in fraud detection [209].

Protocols. Protecting financial transactions is a work well suited for FM. Specifically in the case
of Near Field Communication (NFC), a short-range radio communication technology, utilised
in contactless payments. This method has several vulnerabilities [175], where the authors of Ref-
erence [168] propose and verify an NFC protocol suing the Scyther tool [73] addressing several
vulnerabilities. In similar fashion, in Reference [5] the authors propose a protocol for securing
of NFC payments and analyse it using the FDR model checker. Authors of Reference [11] have
focused on analysis of security of NFC enabled forgery protection also utilising the FDR model
checker, discovering several potential attacks and providing mitigating measures. In the field of
authentication protocols the authors of Reference [266] verified the mutual authentication prop-
erties of a secure electronic protocol using SPIN tool, discovering several vulnerabilities. Similarly
in Reference [118] the authors have analysed a biometric transaction authentication protocol using
ProVerif [41] and proposed fixes to discovered vulnerabilities.

Finally, the authors of Reference [44] have proposed a secure SMS based protocol for mobile
payments and analysed it against several security properties using AVISPA [21].

Implementation. Since vulnerabilities in financial software could lead to financial losses, use of
FM can provide a substantial benefit in this area. Smartphone applications are often used as a gate-
way to financial services. The authors of Reference [127] utilised static analysis tools, discovering
that financial applications from developed countries contain less vulnerabilities than those from
developing countries. Similarly, the authors of Reference [241] have statically analysed over 10,000
Android applications to compare the security of financial applications with the rest, which led to a
discovery of a worrisome trend where the analysed applications have gained more vulnerabilities
within a span of two years.

The authors of Reference [98] have modelled 80% of EMV2, a successor to EMV, in VDM to pro-
vide a formal model for the implementation and analyse security attributes of EMV2. The authors
have further attempted to code generate parts of EMV2 to Java directly from the VDM model.
Another aspect of financial software is use of open APIs. The authors of Reference [94] have

modelled a financial grade OpenID API as a set of theorems, discovering several vulnerabilities
and proposing fixes to these. Finally, the authors of Reference [16] have analysed bitcoin con-
tracts using UPPAAL, determining the secure time to live within the contract protocol. Similarly,
other types of smart contracts are being utilised [35]. The authors of Reference [199] have verified
Ethereum smart contracts such as the ERC20 token contract [90] using K-framework’s reachabil-
ity logic theorem prover [234], discovering that the token implementation that diverges form the
ERC20 specification contains vulnerabilities.

Hardware. In the area of contactless payments, the NFC hardware can pose security challenges.
To address one of these challenges, the authors of Reference [62] have introduced a scheme to
prevent relay attacks based on a distance bounding protocol [46] and verify this scheme using
ProVerif.
Cryptocurrency is often associated with a specific hardware, where in several cases FM were

used for security improvement. To this end, the authors of Reference [22] have proposed a device
for approval of security critical operations. The authors have verified a property of deterministic
start of the device using an SMT solver. Similarly, the authors of Reference [171] have utilised
theorem proving to check an unforgeability property of a hardware wallet to answer a question:
what if the manufacturer of the wallet cannot be trusted? Finally, the authors of Reference [19] have

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:13

Fig. 4. Cyber security topics in the industrial section.

also attempted to prove security properties of several hardware wallets using theorem proving,
showing that the wallets were secure only under specific assumptions.

2.3 Industrial

Industrial processes are a backbone of a modern society, as they provide control not only for pro-
duction of necessary goods, but also utilities such as electricity and water treatment. This section
provides an overview of how FM have been utilised in security analysis of automotive control ap-
plications, robotic applications, PLC software, industrial communication protocols such as Mod-
bus and OPC UA, SCADA systems, and hardware devices underpinning industrial computing. An
interesting note is that the research works are distributed uniformly across the different levels of
abstraction, demonstrating that all aspects of industrial computing have been scrutinised using FM
to provide either security analysis or security assurances. In the industrial application of FM the
problem is often considered domain-specific, i.e., cyber security properties are based on whether
the considered industrial system is, for example, an automotive controller or a water treatment
plant.
As within the financial section, the most-used FM to analyse the security properties is model

checking. This could once again be attributed to the nature of the problem where, for example,
PLC programs and industrial processes lend themselves to be easily modelled using state transi-
tion systems. As some of the industrial computing is complex, the problems are often modelled
more abstractly to avoid the state space explosion problem. Within the hardware level of abstrac-
tion, however, in industrial computing, theorem proving is often the FM of choice, as it allows
description of the hardware in more detail. The cyber security topics within the industrial section
are shown in Figure 4.

Application. Industrial applications are often used to control critical processes, hence FM could
provide strong assurance of security. The authors of Reference [120] utilised model checking based
on automated translation of automotive ECU applications to CSP [122] and subsequently dispatch-
ing the model to the FDR model checker. Discovered counter examples were then provided to the
implementation team.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:14 T. Kulik et al.

Industry of the future utilises interconnectivity and robotics. In Reference [193] the authors have
analysed a security of an application controlling a cap attaching robot by creation of a model using
Maude [179] and two attacker models, discovering possible attack vectors. Similarly, the authors
of Reference [254] analysed security of applications based on the Robotic Operating System [205],
expressing the security properties in CTL and utilising the UPPAAL model checker [159]. The
authors then automatically generate the implementation C++ code.
The authors of Reference [177] have focused on security analysis of a water treatment SCADA

system by use of the system logs. The application behaviour was modelled as timed automata,
while the security properties have been expressed in timed temporal logic [12], providing 100%
attack detection rate based on log data. The authors of Reference [273] have successfully utilised
the Z3SMT solver [80] for PLC malware detection, while the authors of Reference [146] used the
NuSMV model checker [65] for automated detection of intrusion code, demonstrating the useful-
ness of FM in this area.

System. Cyber attacks against industrial systems could have severe consequences [258]. To miti-
gate this, the authors of Reference [211] have created a formal model in ASLan++ of a real-world in-
dustrial control system and carried out attacks utilising a Cyber Physical Dolev-Yao attacker [210].
The analysis with help of CL-Atse analyser has discovered seven out of eight possible attacks. Sim-
ilarly, the authors of Reference [82] mitigate the cyber attacks by proposing a formally verified
security framework for industrial control systems. The verification was carried out using ProVerif
and proved the security aspects of the system utilising the framework. Furthermore, the authors
of Reference [114] verified a PLC program using timed automata and UPPAAL ensuring that the
programwas not compromised. In a similar fashion the authors of Reference [255] havemodelled a
water-level control system in timed automata utilising the PATmodel checker [237] to successfully
verify security recovery mechanisms of the system.

Within the area of connectivity the authors of Reference [214] have demonstrated formalisation
and analysis of firewall rules using the Z3 SMT solver, lowering the errors in firewall configura-
tions. In Reference [150] the authors have utilised TLA+ [158] to ensure effectiveness ofmitigations
strategies against several cyber attacks, while the authors of Reference [246] have used combina-
torial testing within VDMJ [161] to generate 145 million tests for a formal model expressed in
VDM-SL [160] of an industrial control system, providing assurance for several security properties.

Protocols. Industrial communication protocols carry critical data, requiring a high level of se-
curity. The authors of Reference [224] have formally analysed security of the Modbus/TCP using
Coloured Petri Nets [138] combined with Formal Component Analysis [201] discovering a possi-
ble attack. Similarly, the authors of Reference [187] modelled the Modbus protocol as a Dynamic
State Machine [186], automatically translating it to Promela for verification using the SPIN model
checker. The authors have uncovered a possible man-in-the-middle attack. Another protocol, OPC
UA, has been analysed by the authors of Reference [203] using ProVerif finding vulnerabilities in
the authentication sub-protocol. In similar fashion, the authors of Reference [86] analysed several
Modbus and OPC UA authenticity and integrity properties using TAMARIN theorem prover [176],
discovering the necessity for secure channels. In Reference [15] the authors have formally analysed
the authentication properties of DNP3 protocol utilising the CPN state space analysis tool [137],
discovering a potential for replay attack. Finally, the authors of Reference [49] have analysed an
authenticated CAN protocol using ProVerif, discovering that limited use of cryptography allows
for a replay attack with partially modified data.

Implementation. Since industrial software often consists of a large codebase it could be difficult
to be formally analysed in its entirety. Over the years, several approaches to code analysis have

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:15

been presented; for example, the authors of Reference [18] use a dialect of UML, SysML-Sec to
model of a large industrial codebase, iteratively refining the model and automatically translating
it to π -calculus using the TTool [88] and analysing it using ProVerif. The authors propose for this
approach to be integrated to the software development process.
In the aeronautics industry the authors of Reference [70] have created a formally verified

implementation of unmanned aerial vehicle using several tools; for example, the jKind model
checker [99], satisfying correctness of components and Isabelle/HOL theorem prover [194] to as-
sure that system execution semanticsmatches themodel. This approach has successfully prevented
cyber attacks against the vehicle.
As PLCs are the backbone of industrial automation, a lot of focus have been put into ensuring

that the PLC programs satisfy security properties. For example, in Reference [223] the authors use
state transition diagrams of PLC programs as a basis for formal model dispatched to NuSMVmodel
checker, while expressing the security properties in LTL. Similarly, the authors of Reference [247]
utilised Petri Nets to develop software falsification detection by translating Petri Nets to Promela
and dispatching it to the SPIN model checker, while modelling the falsification properties in LTL.

Hardware. FM for hardware verification is a well established field with specification languages
such as Verilog [243] and VHDL [188]. The authors of Reference [124] focus on co-verification of
Intellectual PropertyBlocks (IPs) for usewithin Systemon aChip (SoC) architectures, consid-
ering technologies such as secure boot and concurrency in a time-of-check-to-time-of-use consid-
erations [48]. The authors utilised semi-automatic co-verification methodology using a toolchain
comprised of Boogie [31] as intermediate verification language, through Corral software veri-
fier [157] and SMACK [206] for bit-precise checking with an ultimate goal of producing secure
SoCs. The authors of Reference [162] consider that all software layers could be compromised and
have developed an application-specific hardware monitor based on a formally analysed C code and
a junction box validated in a hardware description language with a goal to monitor the hardware
controller for malicious activity. The authors model their hardware monitor in Frama-C [74] with
Jessie plugin, allowing for automatic deductive verification using Why [95].

Within the area of integrated circuits, the authors of Reference [164] consider the trustworthi-
ness of hardware using Proof Carrying Code (PCC) [189], utilising Coq to derive theorems for
the hardware descriptions annotated with PCC. This has been later extended in Reference [110]
to a notion of a Proof Carrying Hardware (PCH), utilised to verify security of IPs supplied by
untrusted vendors by extending the VHDL and utilising Coq to carry out the verification of se-
curity theorems. Finally, the authors of Reference [3] consider the possibility of hardware trojans
being injected during manufacturing and utilise the nuXmv model checker [56], while specifying
the hardware properties in LTL to detect these trojans.

2.4 Consumer

Consumer computing such as use of personal computer, smartphones, and underlying connected
services is an integral part of modern life. Consumer computing has often been characterised as of
less critical nature than for example industrial systems, however, this view is changing as society
introduces more digital technologies to everyday life. This section provides an overview of use of
FM in analysis of cyber security of consumer computing, ranging from consumer electronics for
fitness equipment, mobile operating systems, web browsers, consumer Internet of Things (IoT)
devices to commodity hardware for devices such as personal electricity meters. An interesting fact
within the consumer domain is significant use of so called lightweight FM, utilised often not only
on the application level of abstraction, but also considering implementation and hardware. One
challenge in formal analysis of consumer systems is a rapid nature of evolution of these systems,
where the competition in consumer markets often forces fast adoption of new technologies.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:16 T. Kulik et al.

Fig. 5. Cyber security topics in the consumer section.

Once again the most utilised FM is model checking. It could be argued that this is due to the sig-
nificant model checking experience gained in other domains. Many consumer computing entities
are, however, complex, interconnected chains of services, which could explain wider utilisation
of lightweight FM, especially as some of these are used directly to build chains used to construct
the consumer computing entities. It should also, however, be stated that theorem proving has also
been utilised on all the different levels of abstraction within the consumer computing domain. The
cyber security topics present within the consumer section are shown in Figure 5.

Application. FM thrive in checking consumer applications for malware. A practical definition
of malware (one that can be used to classify executable files) intersects the perspective shift FM
advocate: focus on “what” is computed instead of the “how.” Quoting Reference [147]: “any (formal)
definition of the concept of malware depends on the definition of the concept of software system
correctness.” Also, a majority of malware is the product of tools generating variants of known
vulnerabilities/attacks or known malware. The authors of Reference [66] show variants are easy
to hide syntactically, but not semantically.
Model checking-based approaches provide malicious behaviour semantic signatures by provid-

ing counterexamples. Recent approaches as in References [229, 231] extract push-down automata
as models. A promising area is the application of the techniques to the realm of the Android op-
erating system [230]. Although successful, the FM techniques provide no panacea to consumer
malware protection. The malware game advances with discovery of zero-day (latent) vulnerabil-
ities. FM have been argued to avoid these vulnerabilities in the first place [174], but practically,
new malicious behaviours are expected to appear, thus the problem becomes to learn malicious
behaviours. There are several proofs of concept where FM leverage the signature learning either
in terms of or using push-down automata reachability in the process [75, 76, 167]. There are a few
works where theorem proving is applied in malware [227], but the number of publications is small,
and it is difficult to ascertain if there is an effective gain from it. Perhaps model checking is more
appropriate to the domain due to its non-interactive nature, since malware is inherently a game
between attackers and an algorithm.

System. Recently, we have seen the adoption of the software marketplace paradigm to prevent
attacks andmalware to reach consumer systems. For instance, Android enforces permissions at the

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:17

application level, which could, however, lead to privilege escalation [78]. The authors of Reference
[26] propose a tool-based approach, called COVERT, for compositional analysis of Android inter-
app permission leakage. COVERT assesses the security of a system as a whole by generating Alloy
specifications [131] and analysed more than 500 real-world applications, confirming the findings
previously found within References [23, 91], showing that many Android applications are over-
privileged. The authors of Reference [25] have moved towards analysing the permission protocol
itself, identifying design flaws where two applications can apply the same custom permission,
resulting in first installed application being able to access the resources of the second.
Operating systems usually contain an underlying security model amenable to FM checking.

In Reference [83] the authors have verified a proposed access and integrity control for a Linux-
like OS, using Alloy and Event-B [4]. While the authors have experienced scalability issues with
Alloy, the analysis has uncovered bugs that could become more serious if discovered in the imple-
mentation phase. Another example is Reference [170], where the authors verify security policies
in the form of invariants annotating the code of ExpressOS, a secure OS alternative to Android.
The authors utilise automated theorem provers and report the verification overhead (added anno-
tations) was roughly 2.8% source code.
Consumer IoT systems such as smart home devices pose security vulnerabilities and have been

widely verified using FM. The authors of Reference [153] use model checking tools within AVISPA
and by BAN logic to verify a framework ensuring anonymity, authentication, and integrity in
smart home environments. In Reference [182] the authors have developed the IoTRiskAnalyzer

tool used to help engineers apply the most fitting security policies. This has been achieved using a
Markov Decision Process [202], formalisation of risk properties as probabilistic CTL formulas, and
verification using the PRISM model checker [156]. Car manufacturers are also taking advantage
of connected devices, especially smartphones. For instance, the authors of Reference [53] have
developed a smartphone-based immobiliser with formally verified protocol using ProVerif against
a Dolev-Yao attacker model to ensure strong guarantees of security requirements.

Protocols. The area of consumer communication protocols covers text and multimedia commu-
nication lending itself to formal verification of security.
In Reference [71] the authors have created a formal model of the Signal protocol in terms of

predicates and theorems and have applied theorem proving, resulting in improvements in the use
of the protocol’s random generator.
Security of the consumer communication systems often depends on the mechanisms introduced

in the Needham-Schroeder [190] authentication protocol and the Denning Sacco protocol [81]
for secret key distribution. The authors of Reference [60] have created a simplified model of the
Needham-Schroeder NPSK protocol and the Denning Sacco protocol and expressed security prop-
erties using LTL. The authors have provided an efficient model for model checking of the security
properties using the Spin model checker.

Implementation. The recent adoption of FM tools by large technology companies has shaken
up the field. If in the past FM were tied to niche safety critical domains (e.g., aerospace, railway,
medical) and fields with significant governmental regulation, the current panorama shows that
the future brings the usage of FM tools in the daily practice of software engineering. No matter
the intention behind the usage of FM tools, the outcome has demonstrated a contribution to in-
creasingly secure implementations. According to recent reports, when a developer commits a code
modification to one of the large technology companies’ codebases, a static analysis tool is invoked
and a code review is provided. The author of Reference [196] describes the process as continu-
ous reasoning, and any change to a Facebook product is analysed by the Infer static analysis tool,
which checks “small theorems” on large codebases. This approach has been shown to improve the

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:18 T. Kulik et al.

security of the company’s own codebase and library implementations (e.g., OpenSSL). The same
is reported about the software engineering practice inside Google [215], although it is not clear
whether FM is used by Project Zero, its elite security team. However, the authors of Reference [24]
report on how numerous security vulnerabilities were fixed by applying FUDGE, a static analysis
tool based on fuzzing developed in house.
Particularly targeted to the security domain, the authors of Reference [84] report a static analysis

tool, Zoncolan, in collaboration with the Facebook App Security team. Zoncolan uses abstract
interpretation to analyse and issue security alerts for the implementations of the applications in
the company’s codebase: Messenger, WhatsApp, Instagram, or Facebook. This level of application
of FM shows the implementations of software used by millions of consumers has been swept by a
FM tool.
FM is also being applied to secure implementations of web browsers, which are designed with

security in mind because they mediate a vast amount of personal information (e.g., credentials,
banking details). Nevertheless, due to a large attack surface of a web browser, attacks are possible,
and implementation flaws are not uncommon. In a bolder move, the authors of Reference [133]
propose a new browser, QUARK, that follows the “kernel architecture”7 of modern browsers, but
QUARK’s kernel is formally verified. The formal verification yields to the Coq theorems to as-
sert properties as tab non-interference, or cookie confidentiality and integrity. According to work
in Reference [96], the price to pay for such a prime example of functional correctness verifica-
tion (above airline runtime error-free level) is 25% increase in overhead, affecting performance.
Increasing browsers’ security risks, browser extensions can spy and exploit users as demonstrated
in Reference [109]. In Reference [218] the authors report on a verified design of an experimental
browser using the Maude tool and rewriting logic, and the authors of Reference [184] show that
x86 native code executed by arbitrary clients conforms with a predefined sandbox policy when
using Google Chrome’s Native Client service.

Hardware. In contrast to critical-system hardware (e.g., fly-by-wire hardware) attackers cannot
be prevented from physical access to the consumer hardware, which provides a large attack surface.
Modern consumer hardware provides hardware-level protections for critical software components.
An example of this is ARM TrustZone [192], providing separation between trusted and rich soft-
ware providing potentially untrusted interfaces. The authors of Reference [93] propose verification
of hardware security properties by use of information flow control at the level of the Hardware

Description Language (HDL) such as SecVeriLog [271]. The authors create SecVeriLogBL, an ex-
tension to SecVeriLog, by adding new types for security labels defined in SecVeriLog. This allows
for static analysis at the design time, providing a lightweight verification with small effects on the
hardware performance. To demonstrate this approach, the authors have designed an implementa-
tion of TrustZone, including 10+ security bugs. Similarly the authors of Reference [163] present a
formally defined hardware security enforcement for x86 architecture. In this setting, the software
relies on underlying hardware for security enforcement; for example, memory paging features of
an x86 CPU. The authors note that incorrect implementations of hardware enforcement policies
often lead to vulnerabilities [140]. The authors use Coq to model the architecture and the Coq
theorem prover to prove the soundness of the security policy.
In the area of commodity hardware, the authors of Reference [239] have used model checking

to determine possible attacks on smart meters, which are considered critical devices [143]. The
authors have created a model of the smart meter using rewriting logic, formal definition of the

7Termed multi-process architecture in Google Chrome with sandboxing of untrusted code, which accesses resources

through a trusted broker.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:19

attacker’s actions, and used the Maude tool to check that the attacker’s actions are not able to
break the security invariants. The discovered attacks were then mapped to an implementation of a
smart meter, the SEGMeter, to investigate the practicality of these attacks. The authors determined
that many attacks discovered by the model checker are indeed practical, despite the model being
abstract and not specifically refined towards the SEGMeter implementation.
Today, hardware is often packaged as an SoC, which security may be verified using the com-

bination of integrated theorem proving and model checking proposed in Reference [111]. Due to
the hierarchical nature of SoCs, the authors propose that the design expressed in HDL is decom-
posed into sub-modules and security specifications into sub-specifications. The sub-specifications
are then verified using the Cadence IFV model checker [1]. These verified sub-specifications are
then used as proven lemmas in the Coq theorem prover [242], removing the need to prove these
lemmas by hand. This simplifies the model checking as well by providing only a small specifica-
tion to the model checker, avoiding the state space explosion. The authors extend their method by
automated code conversion from HDL to verifiable specification [112]. SoC complexity increases
in Multi Processor SoCs (MPSoC), where multiple processors exchange data via Network on

a Chip (NoC) routers. The authors of Reference [220] have used unbounded model checking to
verify security properties of an NoC, which was practical due to the highly sequential behaviour
of NoCs. The authors formalise the security and functionality correctness properties using LTL
and use the CIP unbounded model checker [155] to verify them. As a proof of concept, the authors
have analysed six different router implementations, determining the feasibility of their approach
for NoC security analysis in early design stages.

2.5 Enterprise

Enterprise and large corporate computing is the backbone of large international business. In recent
years, there is a trend in enterprise computing to utilise cloud solutions, while still often operating
on-premises (local) data centers. These data centers and cloud clusters are utilised for a plethora
of enterprise tasks such as virtualisation of collaboration platforms, company management, and
hosting of corporate web portals. This section provides an overview of utilisation of FM to address
security challenges of enterprise computing, ranging from secure data storage through virtualisa-
tion and software-defined networking security to strong authentication using hardware tokens. As
enterprises are larger entities, changes are often slower and need to be well managed. To this end,
the FM have been utilised as a booster in cloud adoption by enterprises, as several FM-based solu-
tions have been proposed to enable enterprises’ secure switch from local data centers to federated
cloud solutions.
Similarly to previous sections, model checking is themost used tool in formal analysis of security

in enterprise computing. Theorem proving is, however, not far behind, especially within analysis
of hardware such as Trusted Platform Module chips within enterprise servers. Lightweight FM
have also been significantly utilised at the implementation level of abstraction, since they are
often provided as plugins to software development environments, making them easily accessible.
The cyber security topics present within the enterprise section are shown in Figure 6.

Application. Enterprise applications often process and store data critical for an organisation.
Nowadays, such data is carried by Software-Defined Networking (SDN). The authors of Refer-
ence [226] have created a verification platform for applications utilising SDN, consisting of a mod-
elling language that could be automatically translated and dispatched to PRISM, SPIN, and Alloy
model checkers. Any counterexamples are then displayed in the tool. Similarly to SDN, Service-
Oriented Architectures (SOAs) are often used within enterprise applications, increasing the in-
terconnectivity of these applications. In Reference [20] the authors present a platform for security

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:20 T. Kulik et al.

Fig. 6. Cyber security topics in the enterprise section.

assessment of SOAs utilising a formal specification language and several model checkers, namely,
CL-Atse and OFMC. The authors uncovered an issue with SAML-SSO integration in Google Apps.
Enterprise data are often stored within large relational databases. In this context, the authors

of Reference [61] have proposed a method for secure outsourcing of databases to untrusted servers,
building upon the notion of Verifiable Databases [36], and utilised theorem proving to demonstrate
their method as secure. Another often used technology in the cloud is virtualisation. The authors
of Reference [222] introduce a formal analysis scheme for security of Xen hypervisor, consisting
of model checking and static analysis, successfully rediscovering a known vulnerability. Finally,
we would like to point to the work within Reference [72] describing how a leading cloud provider
utilises FM for security of their services, noting that the benefits of FM are important to their
customers.

System. Nowadays, large enterprises can either host their own infrastructure, fully utilise the
cloud, or partially combine their infrastructure with the cloud, leading to federated cloud sys-
tems [183]. The authors of Reference [270] have proposed a method for analysis of federated
cloud behaviour utilising CPN and CPN tools [137], creating several models for security analy-
sis. Similarly, the authors of Reference [256] have used Z with Z/EVES theorem prover to formally
analyse a data exchange system against confidentiality and integrity properties, while also gen-
erating tests utilising the domain theory [39]. In Reference [135], the authors present a formal
approach to analysis of firewall rules and cloud topology based on Mobile Ambients [55] and the
non-interfering Boxed Ambients calculus [51]. As cloud computing is often built utilising shared
resources, the authors of Reference [169] have built an offline framework for formal analysis of
network isolation properties, ensuring isolation among shared resources. This has been carried
out by use of first order logic and the constraint satisfaction solver Sugar [240]. Similarly, the au-
thors of Reference [173] have proposed a security framework for cloud complexity management
(agent) system [113], utilising the Z/EVES theorem prover to analyse several cloud security prop-
erties within a NIST [43] cloud reference architecture. Also, in Reference [232], the authors have
proposed a broker solution for automatically pairing cloud services with customers while manag-
ing the cloud complexity. An important part of the broker is finding a service satisfying customers

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:21

security requirements, defined in first-order relational logic [130] using KODKOD finite model
finder [244].

Several works also consider virtualisation within the cloud system. For example, the authors
of Reference [117] have proposed a formal framework for analysis of security and trust in virtu-
alised system, combining hardware and software models expressed in CSP# [238] dispatched to
the PAT model checker discovering a subtle bug in a real-world cloud system. Similarly, the au-
thors of Reference [42] have proposed a security subsystem for change analysis within virtualised
infrastructures in relation to security policies by utilisation of graphs and graph transformations
dispatched to GROOVE model checker [102].

Protocols. Enterprise computing is moving towards the cloud, creating need for secure commu-
nication protocols, benefiting from FM analysis.
Amazon cloud services [13] use the s2n [14], the open source implementation of the TLS proto-

col, utilising FM to prove its correctness. For example, in Reference [64] the authors demonstrate
that the Hashed based Message Authentication Code (HMAC) utilised by the protocol is in-
distinguishable from a random generator using Cryptol specification language [89] describing the
HMAC, which was then dispatched to Coq theorem prover and the results are connected with the
implementation by use of Software Analysis Workbench [100]. In the Microsoft cloud, the authors
of Reference [136] have developed a tool for analysis of network protocols to assist with the task
of network policy maintenance within data centers by use of the Z3 SMT solver, providing an
important security tooling for Azure cloud services. Since the cloud services are often accessed
remotely, the authors of Reference [151] have utilised Alloy analyser to find vulnerabilities in the
SAML protocol [125].

Nowadays, clouds collect data from small-footprint IoT devices [185], which prompted the au-
thors of Reference [141] to propose a lightweight mutual authentication protocol and verify it
against several attacks using OFMC and CL-AtSe. Similarly, the authors of Reference [212] have
proposed a mobile authentication scheme verified using ProVerif. The IoT devices could take ad-
vantage of the 5G networks, where in Reference [33] the authors use Tamarin, finding an issue
with the authentication sub-protocol, while the authors of Reference [8] have analysed the au-
thentication framework protocol [269] and the mobile ethernet protocol [128] by expressing them
in the CSP, which was subsequently dispatched to the FDR model checker for analysis against
mutual authentication properties.

Implementation. Enterprise computing is often composed of many applications implemented
using different technologies. For example, the authors of Reference [195] have created a static code
analysis tool for PHP plugins, phpSafe, that was then utilised to discover over 580 vulnerabilities in
several PHP plugins. In similar fashion, the authors of Reference [267] have created a tool utilising
invariant analysis [116] for malicious behaviour detection, noting the high effectiveness of logic
flaws in several web applications.
Hypervisors are an important part of enterprise computing. To the end of security implementa-

tion of hypervisors, the authors of Reference [252] have created a framework for implementation
of security verified hypervisors based on behavioural contracts and verified using FRAMA-C [225]
for static analysis of the behavioural contracts. Similarly, the authors of Reference [251] have cre-
ated a hypervisor framework for verification of memory integrity within single guest hypervisors
utilising the CBMC model checker [67] for automated analysis of most of the codebase.

Hardware. Enterprise computing requires significant cloud hardware infrastructure and as-
surances such as data confidentiality and computational security. Customers often consider
a cloud provider as an untrusted entity, where the administrators themselves could pose a

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:22 T. Kulik et al.

security threat [217]. In this regard, the authors of Reference [219] created a cloud isolation system,
separating the user data from administrators and limiting the operations that the administrators
could take against a user’s virtual machine, utilising a hardware module, that the authors named
Trusted Cloud Module (TCM), which provides a limited set of interfaces to the cloud admin-
istrator, manages encryption keys, and provides secure storage for the user. The module is built
from off-the-shelf hardware components using the Scyther verification tool. Similarly, the basis of
any trusted computing is the Trusted Platform Module (TPM) co-processor providing secure
storage and computing environment. Unfortunately, the security of platforms using TPM is of-
ten not formally verified leading to vulnerabilities [50]. To mitigate this, the authors of Reference
[27] have proposed TRUSTFOUND, a formal modelling framework for model checking utilising
a Trusted CSP#, an extension of CSP#, and LS2 [77], where the PAT model checker is used for
verification and detecting six implied assumptions and two severe logic flaws.

Sometimes, to provide strong authentication, small One Time Password (OTP) generation
hardware is used by enterprises to authenticate users towards cloud services [45]. One such de-
vice is Yubikey, a USB OTP generator. In Reference [154], the authors have formally analysed the
security of the Yubikey OTP and also a security of the Hardware Security Module (HSM). An-
other challenge in this area is addressing CPU side-channel attacks. One of these attacks is a timing
channel attack, where an attacker, possibly a virtual machine, could determine the algorithm exe-
cuted by another virtual machine in a shared environment. To solve this, the authors of Reference
[92] have proposed Timing Compartments, an isolation scheme implemented in hardware isolating
timing information between parties sharing the resources. The scheme was checked by informa-
tion flow analysis using SecVerilog.

3 FUTURE OUTLOOK

This survey has provided an overview of use of FM within security in several domains. Based
on the research conducted within these domains, it is expected that in some cases the use of FM
will accelerate while, in other cases, the use will increase with a slower pace. There is, however,
a general trend of increase of adoption. In cases within the financial domain, it is clear that the
use of FM comes with new financial technologies such as cryptocurrencies and smart contracts.
This adoption could be seen in a survey aimed specifically at the smart contracts domain [119].
The use of mobile applications in the financial domain is also spurring a demand for high security
assurance that could be delivered by use of FM. Finally, with the rise of cryptocurrencies, the
hardware within the financial domain is being specialised to facilitate transactions. It is expected
that the security of this hardware will continue to be scrutinised formally with increasing coverage
and complexity.
The industrial domain faces its own set of unique challenges in the area of cyber security. It

is expected that with increase in automation complexity and use of digital technologies in criti-
cal industrial installations, FM will play a crucial role. The trend was already presented in 2015
by Reference [148], who have surveyed approaches for security and safety of industrial control
systems, including informal approaches. As of now, most works within this domain are of reactive
nature, i.e., analysis of existing systems and protocols. However, several works within the survey
show a trend towards utilisation of FM early in the design process of new industrial installations
and protocols. Another emerging trend within the industrial domain is integration of formal veri-
fication tools with the software development processes, this is clear primarily in terms of robotic
applications and PLC code. It is expected that with increasing complexity of robotic applications
and underlying hardware, FM will play a significant role in the future.
The domain of consumer computation is a rapidly evolving one. The consumer trends move

fast; however, a somewhat surprising amount of work is already put forward to use of FM in

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:23

malware protection [37], going as far as creation of formally verified Internet browsers. Also, the
shift of computation from computers to smartphones has brought new security challenges. In this
area, a lot of focus has already been put on analysis of the Android OS permission system. This
area shows an increase in the amount of research and as long as the mobile OSs are in use by
millions of users, the formal verification will accelerate, possibly leading to full formal security
verification of a popular mobile OS. Consumer hardware such as smartphones is putting into use
TPMs, securing mobile computation. Also in this area, the use of FM is increasing, specifically to
ensure the properties of the secure TPM enclave.
Finally, the domain of enterprise computation has uncovered several interesting trends. The

first of these is a trend to use FM against virtualisation hypervisors to analyse security proper-
ties of existing virtual environments as well as use the knowledge to build fully formally verified
hypervisors. Another important trend is the significant investment that major cloud computation
providers are putting into formal verification of security of their products. To this end, not only
have existing tools been applied, but the cloud providers have turned towards development of their
own FM tools. Both of these trends are expected not only to continue but also to accelerate due to
the ever-increasing popularity of cloud computing and virtualisation. Several of these trends were
already mentioned in 2002 by Reference [139].

It is important to note that several authors have expressed a wish for improvement of automated
formal verification tools. This is to allow for simplified entry of non-practitioners to the world of
FM. Both academia and industry are moving towards addressing this wish, with tools becoming
similar to software development IDEs and in some cases integration of FM toolkit directly to an
existing IDE. It is expected that knowledge of FM will become important for system and software
engineering disciplines in the future, and therefore collaborative projects between industry and
academia shall provide experts in this domain. These issues have been discussed for several years
now [79].
When it comes to FM techniques, static analysis tools are becoming popular in software develop-

ment, while model checking is moving strongly towards system design and protocol verification,
with model checking being designed for specific problems. Theorem proving is also showing a
promise of playing a crucial role in the future, given that the perceived large learning curve could
be minimised.
As the use of FM is accelerating within all of the different domains considered in this survey, it

is imperative that a new updated survey is carried out in 5 to 10 years. By then it is expected that
the tools will reach the quality of commercial-grade IDEs and integration with a wide variety of
text editors [245], and the techniques will become a known factor when developing and designing
a new system, application, or a hardware component.

4 CONCLUSIONS

More than 30 years ago, Burrows et al. published their pioneering work on the BAN logic for secu-
rity protocol analysis [52]. Their work was not fully formal and was shown to permit approval of
dangerous protocols. Nevertheless, they showed that their logic was good at revealing various sub-
tle security flaws and drawbacks, specifically in authentication protocols. They set out to answer
five questions:

(1) Does this protocol work?
(2) Can it be made to work?
(3) Exactly what does this protocol achieve?
(4) Does this protocol need more assumptions than another protocol?
(5) Does this protocol do anything unnecessary?

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:24 T. Kulik et al.

Their important paper inspired a generation of security researchers to use FM to devise and anal-
yse security protocols and to answer similar questions. Furthermore, in describing the benefits of
formal verification for software engineering, Dijkstra famously quoted, “Testing shows the pres-
ence, not the absence of bugs.” More than 50 years later, in the setting of computer security, we
might now have sufficient evidence to claim “Formal methods show the presence, not the absence
of security flaws” [54]. That is, although FM provides rigorous tools and techniques for proving the
absence of security flaws, this rigour comes with a proviso: Proofs are only possible if the security
flaw is documented and specified within a formal framework. Current limitations mean that FM
cannot uncover any new flaws, since we may not actually be looking for them.
Take for instance the recent Spectre and Meltdown attacks [145]. Like many vulnerabilities,

both attacks have been shown to exist for a range of processors that make use of speculative ex-
ecution, and mitigation against these requires software-side interventions. However, despite the
widespread nature of these vulnerabilities, the attacks themselves were not discovered through
formal verification, but rather through a series of experiments over the training and timing of
micro-architectural components. Fortunately, once a security flaw has been uncovered, even com-
plex attacks such as Spectre and Meltdown can be formally characterised and isolated [59]. Once
this has been done, the next phase is a formal framework for reasoning about such issues, fol-
lowed by more streamlined tools to scale verification to larger-scale systems. Thus, as important
as it is to continue research into the practical use of FM in security, it is equally important to ex-
pand our reasoning capabilities for FM in security through the study of theoretical aspects of the
discipline. Without this, there is a possibility of a new type of security flaw that falls outside the
realms of current-day logics. Variants of Spectre and Meltdown, for instance, can be captured by
subset-closed hyper-properties [59]. Hence, without existing works on hyper-properties [68] and
subsequent works on their verification [59, 106, 107], the specification and therefore use of FM to
protect against Spectre and Meltdown would have been much more difficult.
As for the utilisation of different FM techniques, we have uncovered that model checking is

often a choice of practitioners when analysing wider systems. From the surveyed works, a trend
could be seen where the model checking is often considered a good approach due to significant
amount of tool support, plethora of modelling languages to choose from, the ability to carry out
an exhaustive analysis, and even existence of model checkers specifically aimed at security anal-
ysis [200]. We could determine that even against problems where model checking would suffer
from the size of the problem, the authors scope the problem such that it becomes analysed par-
tially, specifically aiming at a critical parts of the system or an application. In some cases, either due
to the large size of the problem or the problem’s suitability, the FM practitioners choose to utilise
theorem proving. While the tool support is not on par with model checking and the learning curve
is steeper, theorem proving provides exhaustive analysis of systems that would overwhelm model
checkers. We are, however, observing that theorem proving needs to become more accessible to
system and software engineers to increase its utilisation. Finally, a special category of lightweight
FM provides an interesting entry point to the world of FM. On one hand, the inability to carry out
exhaustive analysis could be seen as a downside, but on the other hand, it could be argued that
lightweight FM are reaching ubiquity within the engineering world. For example, static code anal-
ysers are not only becoming used within software-build toolchains but often integrated directly to
software-integrated development environments [221], being at the fingertips of significant portion
of software developers around the world. As pondered in the Section 3, this could be one of the
catalysts bringing the FM to the foreground in system design and development.
In this article, we have shown how FM have had an impact on society so far and how this impact

will increase in the future. In the past, security has been an optional extra that industry does not
want to invest in during development. But times are changing. For example, security has become

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:25

a core selling point for AmazonWeb Services (see Section 2.4). FM have been used successfully for
security analysis in the financial, industrial, consumer, and enterprise sectors (see Section 2).

Specification Languages and Associated Tools

Our survey covers more than a decade of the use of FM in security. It reveals the rich variety of
formal specification languages and their tools, theorem provers, model checkers, and verification
frameworks. We have recorded more than 40 different specification languages and more than 40
different verification tools. These include the following:

Specification languages. AADL (Architecture Analysis & Design Language) [18, 70], ASF
(Anonymous Secure Framework) [153], ASLan++ (AVANTSSAR Specification Language)

[20], BAN logic [52, 228], Boogie [31], Boxed Ambients [135],CASM (ASM-based SL for compil-

ers) [252],CCS (Calculus of Communicating Systems) [152],COVERT (compositional anal-

ysis of Android apps) [26], CSP (Communicating Sequential Systems) [120], CSP# (shared
variables CSP) [237], CTL (Computation tree temporal logic) [229], Cloud Calculus [135],
Cryptol [89], Dynamic State Machine [187], ERC20 token contracts [199], Event-B [83], HLPSL

(High Level Protocol Specification Language) [44], Hoare logic [108], LS2 (Logic of Secure

Systems) [27], LTL (linear-time temporal logic) [266], Markov Decision Process [182], Petri
nets [15], π -calculus [40], PlusCal [9], Promela [172], RTL (real-time logic) [110], SPDL (Secu-

rity Protocol Description Language) [168], SysML-Sec [18], TLA+ (Temporal Logic of Ac-

tions) [72], Trusted CSP# [27], überSpark [252], VDM [98], Verilog [164], VHDL [111], VML [226],
vTRUST [117], XMHF (eXtensible and Modular Hypervisor Framework) [251], Z [265].

Model checkers. AVISPA (Automated Validation of Internet Security Protocols and Ap-

plications) [21], Alloy [83], CBMC (Bounded Model Checker for C and C++) [58], CWB-NC

(Concurrency Workbench of New Century) [152], Cadence IFV (RTL block-level verifier)

[111], FDR [103], GROOVE [102], jKind [99], NuSMV [65], OFMC (on-the-fly model checker)

[34], PAT (Process Analysis Toolkit for CSP#) [237], PRISM (probabilistic model checker)

[182], SATMC (SAT-based model checker for security protocols) [44], SPIN [247], TRUST-
FOUND [27], UPPAAL [177], UVHM (formal analysis scheme for hypervisors) [251].

Theorem provers. Coq [72], Isabelle/HOL [144], K-framework [199], TAMARIN [154], Why [95].

Verification tools and frameworks. AndroBugs (Framework For Android Vulnerability

Scanning) [241], Cl-Atse (protocol analyser) [141], FUDGE (Fuzz driver generator) [24],
Frama-C [252], Krakatau [152],Maude (rewrite engine) [193],MobSF (mobile security frame-

work) [127], phpSAFE [195], ProVerif [40], Quark [134], SAW (Software Analysis Workbench)

[72], SMACK [72], SecGuru [136], SecVeriLog [92], Sugar (SAT-based) [169], TTool (translator
from SysML-Sec to π -calculus) [18], Z3 [22].

This shows how research and application in FM for security has developed since Burrows
et al.’s seminal paper [52]. Our survey concentrated in particular on the practical application of
these techniques, especially on an industrial scale. Today, it seems inconceivable that a company
would produce a commercial secure system without subjecting it to formal analysis. We also sus-
pect that hackers use formal techniques to crack supposedly secure systems.
As a final statement, we need to acknowledge that a survey provides a snapshot in time within

a developing field. It is therefore necessary to return to a survey work every decade, something
we are planning on doing. Despite this shortcoming, it is the opinion of the authors that a survey
work is an important part of the research, as it provides a starting point and a direction indicator
for new and experienced practitioners looking for works under the large field of formal methods
in security.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:26 T. Kulik et al.

APPENDIX

This appendix provides an overview of the several surveyed research works in the form of a cross-
tabulation according to Reference [166]. We group the 115 covered references by Domain, Level
Of Abstraction (LOA) and Approach (App.).

Table 1. The Sorting of the 120 Works Leading to the Taxonomy

Displayed in Figure 2

Domain LOA App. Works

Financial

Application
MC [63, 126, 152, 249]
TP [17, 198]

System
LW [2]
MC [7, 87, 197, 216, 268, 272]

Protocol
MC [5, 11, 44, 118, 266]
TP [168]

Implementation
LW [98, 127, 241]
MC [16]
TP [94]

Hardware
MC [22, 62]
TP [19, 171]

Industrial

Application MC [120, 146, 177, 193, 254, 273]

System
LW [246]
MC [82, 114, 150, 211, 214, 255]

Protocol
LW [15, 224]
MC [49, 187, 203]
TP [86]

Implementation
LW [196]
MC [18, 70, 223, 247]
TP [70]

Hardware
MC [3]
TP [110, 124, 162, 164]

Consumer

Application
LW [75, 76, 167, 174]
MC [178, 229–231]
TP [227]

System
MC [25, 26, 53, 83, 153, 182]
TP [170]

Protocol
MC [60]
TP [71]

Implementation
LW [24, 84]
MC [218]
TP [109, 133, 184]

Hardware
LW [93]
MC [111, 220, 239]
TP [111, 163]

Enterprise

Application
MC [20, 72, 222, 226]
TP [61, 72]

System
LW [270]
MC [42, 117, 169, 232]
TP [135, 173, 256]

Protocol
MC [8, 141, 151, 212]
TP [33, 64, 136]

Implementation
LW [195, 252, 267]
MC [251]
TP [199]

Hardware
LW [92]
MC [27]
TP [154, 219]

ACKNOWLEDGMENTS

Wewould like to thank Nick Battle, Jaco van de Pol, and Bas Spitters for reviews of earlier versions
of this article. We would also very much like to thank the anonymous reviewers of an earlier
version of this article for their valuable input, which definitely improved it.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:27

REFERENCES

[1] Jasper RTL Apps. 2020. Cadence IFV Model Checker. Retrieved from www.cadence.com/en_US/home/tools/system-

design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html.

[2] Fides Aarts, Joeri De Ruiter, and Erik Poll. 2013. Formal models of bank cards for free. In IEEE 6th International

Conference on Software Testing, Verification and Validation Workshops. IEEE, 461–468.

[3] Imran Hafeez Abbasi, Faiq Khalid Lodhi, Awais Mehmood Kamboh, and Osman Hasan. 2017. Formal verification

of gate-level multiple side channel parameters to detect hardware trojans. In Formal Techniques for Safety-critical

Systems, Cyrille Artho and Peter Csaba Ölveczky (Eds.). Springer International Publishing, Cham, 75–92.

[4] Jean-RaymondAbrial. 2010.Modeling in Event-B: System and Software Engineering. Cambridge University Press, Cam-

bridge, UK. DOI:https://doi/10.1017/CBO9781139195881

[5] S. Abughazalah, K. Markantonakis, and K. Mayes. 2014. Secure mobile payment on NFC-enabled mobile phones

formally analysed using CasperFDR. In IEEE 13th International Conference on Trust, Security and Privacy in Computing

and Communications. IEEE, 422–431.

[6] Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared memory consistency models: A tutorial. IEEE Comput. 29,

12 (1996), 66–76.

[7] Shakeel Ahamad, Siba Udgata, and V. Sastry. 2012. A new mobile payment system with formal verification. Int. J.

Internet Technol. Secur. Trans. 4 (01 2012), 71–103. DOI:https://doi/10.1504/IJITST.2012.045153

[8] Mahdi Aiash. 2015. A formal analysis of authentication protocols for mobile devices in next generation

networks. Concurr. Computat.: Pract. Exper. 27, 12 (2015), 2938–2953. DOI:https://doi/doi.org/10.1002/cpe.3260

arXiv:onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3260.

[9] Sabina Akhtar, Ehtesham Zahoor, and Olivier Perrin. 2017. Formal verification of authorization policies for enter-

prise social networks using PlusCal-2. In Collaborative Computing: Networking, Applications and Worksharing - 13th

International Conference, CollaborateCom 2017, Edinburgh, UK, December 11–13, 2017, Proceedings (Lecture Notes of

the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Vol. 252), Imed Romdhani,

Lei Shu, Takahiro Hara, Zhangbing Zhou, Timothy J. Gordon, and Deze Zeng (Eds.). Springer, 530–540.

[10] Jade Alglave, Alastair F. Donaldson, Daniel Kroening, and Michael Tautschnig. 2011. Making software verification

tools really work. In Automated Technology for Verification and Analysis, Tevfik Bultan and Pao-Ann Hsiung (Eds.).

Springer Berlin, 28–42.

[11] A. Alshehri, J. A. Briffa, S. Schneider, and S. Wesemeyer. 2013. Formal security analysis of NFC M-coupon protocols

using Casper/FDR. In 5th International Workshop on Near Field Communication (NFC). 1–6. DOI:https://doi/10.1109/

NFC.2013.6482439

[12] R. Alur, C. Courcoubetis, and D. Dill. 1990. Model-checking for real-time systems. In 5th Annual IEEE Symposium on

Logic in Computer Science. IEEE, 414–425. DOI:https://doi/10.1109/LICS.1990.113766

[13] Amazon.com Inc. 2019. Amazon Simple Storage Service (S3). Retrieved from http://www.aws.amazon.com/s3/.

[14] Amazon.com Inc. 2019. s2n. Retrieved from http://www.github.com/awslabs/s2n.

[15] Raphael Amoah, Seyit Camtepe, and Ernest Foo. 2016. Formal modelling and analysis of DNP3 secure authentica-

tion. J. Netw. Comput. Applic. 59 (2016), 345–360. Retrieved from http://www.sciencedirect.com/science/article/pii/

S1084804515001228.

[16] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Łukasz Mazurek. 2014. Modeling Bitcoin con-

tracts by timed automata. In Formal Modeling and Analysis of Timed Systems, Axel Legay and Marius Bozga (Eds.).

Springer International Publishing, Cham, 7–22.

[17] Danil Annenkov and Martin Elsman. 2018. Certified compilation of financial contracts. In 20th International Sympo-

sium on Principles and Practice of Declarative Programming (PPDP’18). Association for Computing Machinery, New

York, NY. DOI:https://doi/10.1145/3236950.3236955

[18] L. Apvrille, L. Li, and Y. Roudier. 2016. Model-driven engineering for designing safe and secure embedded systems.

In Architecture-Centric Virtual Integration (ACVI). IEEE, 4–7. DOI:https://doi/10.1109/ACVI.2016.6

[19] Myrto Arapinis, Andriana Gkaniatsou, Dimitris Karakostas, and Aggelos Kiayias. 2019. A formal treatment of hard-

ware wallets. In Financial Cryptography and Data Security, Ian Goldberg and Tyler Moore (Eds.). Springer Interna-

tional Publishing, Cham, 426–445.

[20] Alessandro Armando, Wihem Arsac, Tigran Avanesov, Michele Barletta, Alberto Calvi, Alessandro Cappai, Roberto

Carbone, Yannick Chevalier, Luca Compagna, Jorge Cuéllar, Gabriel Erzse, Simone Frau, Marius Minea, Sebastian

Mödersheim, David von Oheimb, Giancarlo Pellegrino, Serena Elisa Ponta, Marco Rocchetto, Michael Rusinowitch,

Mohammad Torabi Dashti, Mathieu Turuani, and Luca Viganò. 2012. The AVANTSSAR platform for the automated

validation of trust and security of service-oriented architectures. In Tools and Algorithms for the Construction and

Analysis of Systems, Cormac Flanagan and Barbara König (Eds.). Springer Berlin, 267–282.

[21] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, P. C. Heám, O.

Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò,

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:28 T. Kulik et al.

and L. Vigneron. 2005. The AVISPA tool for the automated validation of internet security protocols and applications.

In Computer Aided Verification, Kousha Etessami and Sriram K. Rajamani (Eds.). Springer Berlin, 281–285.

[22] Anish Athalye, Adam Belay, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. 2019. Notary: A device

for secure transaction approval. In 27th ACM Symposium on Operating Systems Principles (SOSP’19). Association for

Computing Machinery, New York, NY, 97–113. DOI:https://doi/10.1145/3341301.3359661

[23] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout: Analyzing the Android permission

specification. In ACM Conference on Computer and Communications Security (CCS’12). ACM, New York, NY, 217–228.

DOI:https://doi/10.1145/2382196.2382222

[24] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo Ivančić, TimKing,Markus Kusano, Caroline Lemieux, László Szek-

eres, and Wei Wang. 2019. FUDGE: Fuzz driver generation at scale. In 2019 27th ACM Joint Meeting on European Soft-

ware Engineering Conference and Symposium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE

2019). Association for Computing Machinery, New York, NY, 975–985. DOI:https://doi/10.1145/3338906.3340456

[25] Hamid Bagheri, EunsukKang, SamMalek, andDaniel Jackson. 2018. A formal approach for detection of security flaws

in the Android permission system. Form. Asp. Comput. 30, 5 (01 Sep. 2018), 525–544. DOI:https://doi/10.1007/s00165-

017-0445-z

[26] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek. 2015. COVERT: Compositional analysis of Android inter-app permis-

sion leakage. IEEE Trans. Softw. Eng. 41, 9 (Sep. 2015), 866–886. DOI:https://doi/10.1109/TSE.2015.2419611

[27] Guangdong Bai, Jianan Hao, JianliangWu, Yang Liu, Zhenkai Liang, and AndrewMartin. 2014. TrustFound: Towards

a formal foundation for model checking trusted computing platforms. In FM 2014: Formal Methods, Cliff Jones, Pekka

Pihlajasaari, and Jun Sun (Eds.). Springer International Publishing, Cham, 110–126.

[28] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno.

2019. SoK: Computer-Aided Cryptography. Cryptology ePrint Archive. Retrieved from http://www.eprint.iacr.org/

2019/1393.

[29] John Barnes. 2012. Spark: The Proven Approach to High Integrity Software. Altran Praxis, UK.

[30] Janet Barnes, Rod Chapman, Randy Johnson, James Widmaier, David Cooper, and Bill Everett. 2006. Engineering

the Tokeneer enclave protection system. In 1st IEEE International Symposium on Secure Software Engineering. IEEE

Computer Society Press.

[31] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2005. Boogie: A modular

reusable verifier for object-oriented programs. In Formal Methods for Components and Objects, 4th International Sym-

posium, FMCO 2005, Amsterdam, The Netherlands, November 1–4, 2005, Revised Lectures (Lecture Notes in Computer

Science, Vol. 4111), Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever (Eds.). Springer,

Berlin, 364–387.

[32] David Basin. 2021. Formal methods for security. In The Cyber Security Body of Knowledge v1.1, Awais Rashid, Howard

Chivers, Emil Lupu, Andrew Martin, and Steve Schneider (Eds.). University of Bristol. Retrieved from http://www.

www.cybok.org.

[33] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse, and Vincent Stettler. 2018. A formal analysis

of 5G authentication. In ACM SIGSAC Conference on Computer and Communications Security. 1383–1396.

[34] David A. Basin, Sebastian Mödersheim, and Luca Viganò. 2005. OFMC: A symbolic model checker for security pro-

tocols. Int. J. Inf. Sec. 4, 3 (2005), 181–208.

[35] Elyes Ben Hamida, Kei Leo Brousmiche, Hugo Levard, and Eric Thea. 2017. Blockchain for enterprise: Overview,

opportunities and challenges. In 13th International Conference on Wireless and Mobile Communications (ICWMC’17).

IARIA XPS Press. Retrieved from http://www.hal.archives-ouvertes.fr/hal-01591859.

[36] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. 2011. Verifiable delegation of computation over large

datasets. In Advances in Cryptology – CRYPTO 2011, Phillip Rogaway (Ed.). Springer Berlin, 111–131.

[37] Fabrizio Biondi, Thomas Given-Wilson, Axel Legay, Cassius Puodzius, and JeanQuilbeuf. 2018. Tutorial: An overview

of malware detection and evasion techniques. In Leveraging Applications of Formal Methods, Verification and Valida-

tion. Modeling, Tiziana Margaria and Bernhard Steffen (Eds.). Springer International Publishing, Cham, 565–586.

[38] Dines Bjørner. 1979. The Vienna development method (VDM). InMathematical Studies of Information Processing, E. K.

Blum, M. Paul, and S. Takasu (Eds.). Springer Berlin, 326–359.

[39] M. R. Blackburn, Ramaswamy Chandramouli, and Robert Busser. 2001. Model-based approach to security test au-

tomation. Qual. Week (01 2001).

[40] Bruno Blanchet. 2016. Modeling and verifying security protocols with the applied pi calculus and ProVerif. Found.

Trends Priv. Secur. 1, 1–2 (2016), 1–135.

[41] Bruno Blanchet, Ben Smyth, Vincent Cheval, andMarc Sylvestre. 2018. ProVerif 2.00: Automatic Cryptographic Protocol

Verifier, User Manual and Tutorial. INRIA.

[42] Sören Bleikertz, Carsten Vogel, Thomas Groß, and Sebastian Mödersheim. 2015. Proactive security analysis of

changes in virtualized infrastructures. In 31st Annual Computer Security Applications Conference (ACSAC’15). As-

sociation for Computing Machinery, New York, NY, 51–60. DOI:https://doi/10.1145/2818000.2818034

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:29

[43] R. Bohn, JohnMessina, Fang Liu, Jin Tong, and JianMao. 2011. NIST cloud computing reference architecture. 594–596.

DOI:https://doi/10.1109/SERVICES.2011.105

[44] Sriramulu Bojjagani and V. N. Sastry. 2015. SSMBP: A secure SMS-based mobile banking protocol with formal veri-

fication. InWiMob Conference. IEEE Computer Society, 252–259.

[45] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano. 2012. The quest to replace passwords: A framework for

comparative evaluation of web authentication schemes. In IEEE Symposium on Security and Privacy. IEEE, 553–567.

[46] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. 2014. Towards secure distance bounding. In Fast Soft-

ware Encryption, Shiho Moriai (Ed.). Springer Berlin, 55–67.

[47] Alejandro Bracho, Can Saygin, HungDa Wan, Yooneun Lee, and Alireza Zarreh. 2018. A simulation-based platform

for assessing the impact of cyber-threats on smart manufacturing systems. Procedia Manuf. 26 (2018), 1116–1127.

Retrieved from http://www.sciencedirect.com/science/article/pii/S2351978918308242.

[48] Sergey Bratus, Nihal D’Cunha, Evan R. Sparks, and Sean W. Smith. 2008. TOCTOU, traps, and trusted computing.

In Trusted Computing - Challenges and Applications, First International Conference on Trusted Computing and Trust

in Information Technologies, Trust 2008, Villach, Austria, March 11–12, 2008, Proceedings (Lecture Notes in Computer

Science, Vol. 4968), Peter Lipp, Ahmad-Reza Sadeghi, and Klaus-Michael Koch (Eds.). Springer, Berlin, 14–32.

[49] Alessandro Bruni, Michal Sojka, Flemming Nielson, and Hanne Riis Nielson. 2014. Formal security analysis of the

MaCAN protocol. In Integrated Formal Methods, Elvira Albert and Emil Sekerinski (Eds.). Springer International

Publishing, Cham, 241–255.

[50] D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga. 2005. Replay attack in TCG specification and solution. In 21st

Annual Computer Security Applications Conference (ACSAC’05). IEEE. https://doi/10.1109/CSAC.2005.47

[51] Michele Bugliesi, Silvia Crafa, Massimo Merro, and V. Sassone. 2005. Communication and mobility control in boxed

ambients. Inf. Computat. 202 (10 2005), 39–86. DOI:https://doi/10.1016/j.ic.2005.06.002

[52] Michael Burrows, Martín Abadi, and Roger M. Needham. 1990. A logic of authentication. ACM Trans. Comput. Syst.

8, 1 (1990), 18–36.

[53] Christoph Busold, Ahmed Taha, Christian Wachsmann, Alexandra Dmitrienko, Hervé Seudié, Majid Sobhani, and

Ahmad-Reza Sadeghi. 2013. Smart keys for cyber-cars: Secure smartphone-basedNFC-enabled car immobilizer. In 3rd

ACM Conference on Data and Application Security and Privacy (CODASPY’13). Association for Computing Machinery,

New York, NY, 233–242. DOI:https://doi/10.1145/2435349.2435382

[54] J. N. Buxton and B. Randell. 1970. Software Engineering Techniques: Report of a Conference Sponsored by the NATO

Science Committee, Rome, Italy, 27-31 Oct. 1969, Brussels, Scientific Affairs Division, NATO. https://dl.acm.org/doi/10.

5555/1102021

[55] Luca Cardelli and Andrew D. Gordon. 2000. Mobile ambients. Theoret. Comput. Sci. 240, 1 (2000), 177–213. Retrieved

from http://www.sciencedirect.com/science/article/pii/S0304397599002315.

[56] Roberto Cavada, Alessandro Cimatti,Michele Dorigatti, AlbertoGriggio, AlessandroMariotti, AndreaMicheli, Sergio

Mover, Marco Roveri, and Stefano Tonetta. 2014. The nuXmv symbolic model checker. In International Conference

on Computer -aided Verification. Springer, 334–342.

[57] Common Criteria Recognition Agreement CCRA. 2006. Common Criteria for Information Technology Security Eval-

uation. Part 1: Introduction and General Model. Technical Report. Tech. Rep. CCMB-2006-09-001, Version 3.1,

Revision 1. Common Criteria Management Board.

[58] Sudipta Chattopadhyay and Abhik Roychoudhury. 2018. Symbolic verification of cache side-channel freedom. IEEE

Trans. Comput.-aided Des. Integr. Circ. Syst. 37, 11 (2018), 2812–2823.

[59] K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan. 2019. A formal approach to secure speculation. In IEEE

32nd Computer Security Foundations Symposium (CSF). 288–28815. DOI:https://doi/10.1109/CSF.2019.00027

[60] S. Chen, H. Fu, andH.Miao. 2016. Formal verification of security protocols using Spin. In IEEE/ACIS 15th International

Conference on Computer and Information Science (ICIS). IEEE, 1–6. DOI:https://doi/10.1109/ICIS.2016.7550830

[61] Xiaofeng Chen, Jin Li, Jian Weng, Jianfeng Ma, and Wenjing Lou. 2014. Verifiable computation over large database

with incremental updates. In Computer Security - ESORICS 2014, Mirosław Kutyłowski and Jaideep Vaidya (Eds.).

Springer International Publishing, Cham, 148–162.

[62] Tom Chothia, Flavio D. Garcia, Joeri De Ruiter, Jordi Van Den Breekel, and Matthew Thompson. 2015. Relay cost

bounding for contactless EMV payments. In International Conference on Financial Cryptography and Data Security.

Springer, Berlin, 189–206.

[63] Tom Chothia, Flavio D. Garcia, Chris Heppel, and Chris McMahon Stone. 2017. Why Banker Bob (still) can’t get TLS

right: A security analysis of TLS in leading UK banking apps. In International Conference on Financial Cryptography

and Data Security. Springer, Berlin, 579–597.

[64] Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huffman, Colm MacCárthaigh, Stephen Magill,

Eric Mertens, Eric Mullen, Serdar Tasiran, Aaron Tomb, and EddyWestbrook. 2018. Continuous formal verification of

Amazon s2n. In Computer Aided Verification, Hana Chockler and GeorgWeissenbacher (Eds.). Springer International

Publishing, Cham, 430–446.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:30 T. Kulik et al.

[65] Alessandro Cimatti, EdmundM. Clarke, Fausto Giunchiglia, andMarco Roveri. 1999. NUSMV: A new symbolic model

verifier. In 11th International Conference on Computer Aided Verification (CAV’99). Springer-Verlag, Berlin, 495–499.

[66] Aniello Cimitile, FrancescoMercaldo, Vittoria Nardone, Antonella Santone, and Corrado Aaron Visaggio. 2018. Talos:

No more ransomware victims with formal methods. Int. J. Inf. Secur. 17, 6 (01 Nov. 2018), 719–738. DOI:https://doi/

10.1007/s10207-017-0398-5

[67] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool for checking ANSI-C programs. In Tools and Al-

gorithms for the Construction and Analysis of Systems, Kurt Jensen and Andreas Podelski (Eds.). Springer Berlin,

168–176.

[68] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (Sep. 2010), 1157–1210.

[69] Rance Cleaveland and Steve Sims. 1996. The NCSU concurrency workbench. In Computer Aided Verification, Rajeev

Alur and Thomas A. Henzinger (Eds.). Springer Berlin, 394–397.

[70] D. Cofer, A. Gacek, J. Backes, M. W. Whalen, L. Pike, A. Foltzer, M. Podhradsky, G. Klein, I. Kuz, J. Andronick, G.

Heiser, and D. Stuart. 2018. A formal approach to constructing secure air vehicle software. Computer 51, 11 (Nov.

2018), 14–23. DOI:https://doi/10.1109/MC.2018.2876051

[71] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. 2017. A formal security analysis of the signal

messaging protocol. In IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 451–466. DOI:https://doi/

10.1109/EuroSP.2017.27

[72] Byron Cook. 2018. Formal reasoning about the security of Amazon Web Services. In Computer Aided Verification,

Hana Chockler and Georg Weissenbacher (Eds.). Springer International Publishing, Cham, 38–47.

[73] Cas J. F. Cremers. 2008. The scyther tool: Verification, falsification, and analysis of security protocols. In Computer

Aided Verification, Aarti Gupta and Sharad Malik (Eds.). Springer Berlin, 414–418.

[74] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2012.

Frama-C — A software analysis perspective. In Software Engineering and Formal Methods - 10th International Con-

ference, SEFM 2012, Thessaloniki, Greece, October 1–5, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7504),

George Eleftherakis, Mike Hinchey, and Mike Holcombe (Eds.). Springer, Berlin, 233–247.

[75] Khanh-Huu-The Dam and Tayssir Touili. 2017. Learning Android malware. In 12th International Conference on Avail-

ability, Reliability and Security (ARES’17). ACM, New York, NY. DOI:https://doi/10.1145/3098954.3105826

[76] Khanh Huu The Dam and Tayssir Touili. 2018. Learning malware using generalized graph kernels. In 13th Interna-

tional Conference on Availability, Reliability and Security (ARES’18). ACM, New York, NY. DOI:https://doi/10.1145/

3230833.3230840

[77] Anupam Datta, Jason Franklin, Deepak Garg, and Dilsun Kaynar. 2009. A logic of secure systems and its application

to trusted computing. In IEEE Symposium on Security and Privacy. IEEE, 221–236. DOI:https://doi/10.1109/SP.2009.16

[78] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. Privilege escalation attacks

on Android. In Information Security, Mike Burmester, Gene Tsudik, Spyros Magliveras, and Ivana Ilić (Eds.). Springer

Berlin, 346–360.

[79] Jennifer A. Davis, Matthew Clark, Darren Cofer, Aaron Fifarek, Jacob Hinchman, Jonathan Hoffman, Brian Hulbert,

Steven P. Miller, and Lucas Wagner. 2013. Study on the barriers to the industrial adoption of formal methods. In

Formal Methods for Industrial Critical Systems, Charles Pecheur and Michael Dierkes (Eds.). Springer Berlin, 63–77.

[80] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for the Construc-

tion and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin, 337–340.

[81] Dorothy E. Denning and Giovanni Maria Sacco. 1981. Timestamps in key distribution protocols. Commun. ACM 24,

8 (Aug. 1981), 533–536. DOI:https://doi/10.1145/358722.358740

[82] Michael Denzel, Mark Ryan, and Eike Ritter. 2017. A malware-tolerant, self-healing industrial control system frame-

work. In ICT Systems Security and Privacy Protection, Sabrina De Capitani di Vimercati and Fabio Martinelli (Eds.).

Springer International Publishing, Cham, 46–60.

[83] Petr N. Devyanin, Alexey V. Khoroshilov, Victor V. Kuliamin, Alexander K. Petrenko, and Ilya V. Shchepetkov. 2014.

Formal verification of OS security model with alloy and event-B. In Abstract State Machines, Alloy, B, TLA, VDM, and

Z, Yamine Ait Ameur and Klaus-Dieter Schewe (Eds.). Springer Berlin, 309–313.

[84] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling static analyses at Face-

book. Commun. ACM 62, 8 (2019), 62–70.

[85] Danny Dolev and Andrew Chi-Chih Yao. 1981. On the security of public key protocols (extended abstract). In 22nd

Annual Symposium on Foundations of Computer Science. IEEE Computer Society, 350–357.

[86] Jannik Dreier, Maxime Puys, Marie-Laure Potet, Pascal Lafourcade, and Jean-Louis Roch. 2017. Formally verifying

flow properties in industrial systems. In SECRYPT 2017 - 14th International Conference on Security and Cryptography

(Madrid, Spain) (Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE

2017) - Volume 4: SECRYPT, Madrid, Spain, July 24–26, 2017.). SCITEPRESS Science And Technology Publications,

Portugal, 55–66. DOI:https://doi/10.5220/0006396500550066

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:31

[87] Zhangbo Duan, Hongliang Mao, Zhidong Chen, Xiaomin Bai, Kai Hu, and Jean-Pierre Talpin. 2018. Formal mod-

eling and verification of blockchain system. In 10th International Conference on Computer Modeling and Simulation

(ICCMS’18). Association for ComputingMachinery, New York, NY, 231–235. DOI:https://doi/10.1145/3177457.3177485

[88] Andrea Enrici, Ludovic Apvrille, and Renaud Pacalet. 2014. TTool/DiplodocusDF: A UML Environment for Hard-

ware/Software Co-Design of Data-Dominated Systems-on-Chip. DOI:10.1007/978-3-319-11653-2_23

[89] Levent Erkök and John Matthews. 2009. Pragmatic equivalence and safety checking in Cryptol. In 3rd Workshop on

Programming Languages Meets Program Verification. ACM, New York, NY, 73–82.

[90] Fabian Vogelsteller and Vitalik Buterin. 2020. ERC20 Token Standard. Retrieved from http://www.github.com/

ethereum/EIPs/blob/master/EIPS/eip-20.md.

[91] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. 2011. Android permissions demys-

tified. In 18th ACM Conference on Computer and Communications Security (CCS’11). ACM, New York, NY, 627–638.

DOI:https://doi/10.1145/2046707.2046779

[92] Andrew Ferraiuolo, Yao Wang, Rui Xu, Danfeng Zhang, Andrew C. Myers, and G. Edward Suh. 2017. Full-processor

Timing Channel Protection with Applications to Secure Hardware Compartments. Technical Report. Cornell University

Library.

[93] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C. Myers, and G. Edward Suh. 2017. Verification of a practical

hardware security architecture through static information flow analysis. SIGARCH Comput. Archit. News 45, 1 (Apr.

2017), 555–568. DOI:https://doi/10.1145/3093337.3037739

[94] D. Fett, P. Hosseyni, and R. Küsters. 2019. An extensive formal security analysis of the OpenID financial-grade API.

In IEEE Symposium on Security and Privacy (SP). IEEE, 453–471. DOI:https://doi/10.1109/SP.2019.00067

[95] Jean-Christophe Filliâtre and Claude Marché. 2007. The Why/Krakatoa/Caduceus platform for deductive program

verification. In Computer Aided Verification, 19th International Conference, CAV 2007, Berlin, Germany, July 3–7, 2007,

Proceedings (Lecture Notes in Computer Science, Vol. 4590), Werner Damm and Holger Hermanns (Eds.). Springer,

Berlin, 173–177.

[96] Kathleen Fisher, John Launchbury, and Raymond Richards. 2017. The HACMS program: Using formal methods to

eliminate exploitable bugs. Philos. Trans. Roy. Societ. A: Math., Phys. Eng. Sci. 375, 2104 (2017), 20150401.

[97] Mike Flynn, Tim Hoverd, and David Brazier. 1989. Formaliser — An interactive support tool for Z. In Proceedings of

the Fourth Annual Z User Meeting, Oxford, UK, December 15, 1989 (Workshops in Computing), John E. Nicholls (Ed.).

Springer, Berlin, 128–141. DOI:https://doi/10.1007/978-1-4471-3877-8_8

[98] Leo Freitas. 2018. VDM at large: Modelling the EMV® 2nd generation kernel. In Brazilian Symposium on Formal

Methods. Springer, Berlin, 109–125.

[99] AndrewGacek, John Backes,MikeWhalen, Lucas G.Wagner, and ElahehGhassabani. 2017. The JKindModel Checker.

Retrieved from http://arxiv.org/abs/1712.01222.

[100] Galois Inc. 2019. The Software Analysis Workbench. Retrieved from http://www.saw.galois.com/index.html.

[101] R. Gandhi, A. Sharma, W. Mahoney, W. Sousan, Q. Zhu, and P. Laplante. 2011. Dimensions of cyber-attacks: Cultural,

social, economic, and political. IEEE Technol. Societ. Mag. 30, 1 (Spring 2011), 28–38. DOI:https://doi/10.1109/MTS.

2011.940293

[102] A. H. Ghamarian, M. J. de Mol, Arend Rensink, Eduardo Zambon, and M. V. Zimakova. 2010.Modelling and Analysis

Using GROOVE. Number TR-CTIT-10-18 in CTIT Technical Report Series. Centre for Telematics and Information

Technology (CTIT), Netherlands.

[103] Thomas Gibson-Robinson. 2019. FDR4: The CSP Refinement Checker. Oxford University Department of Computer

Science. Retrieved from www.cs.ox.ac.uk/projects/fdr/.

[104] Mario Gleirscher and Diego Marmsoler. 2020. Formal methods in dependable systems engineering: A survey of

professionals from Europe and North America. Empir. Softw. Eng. 25, 6 (2020), 4473–4546.

[105] Shafi Goldwasser and Silvio Micali. 1984. Probabilistic encryption. J. Comput. Syst. Sci. 28, 2 (1984), 270–299.

[106] Matt Griffin and Brijesh Dongol. 2021. Verifying secure speculation in Isabelle/HOL. In Formal Methods - 24th

International Symposium, FM 2021, Virtual Event, November 20–26, 2021, Proceedings (Lecture Notes in Computer

Science, Vol. 13047), Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan (Eds.). Springer, 43–60. DOI:https:

//doi/10.1007/978-3-030-90870-6_3

[107] Roberto Guanciale,Musard Balliu, andMadsDam. 2020. InSpectre: Breaking and fixingmicroarchitectural vulnerabil-

ities by formal analysis. In CCS’20: 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual

Event, November 9–13, 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 1853–1869.

DOI:https://doi/10.1145/3372297.3417246

[108] Roberto Guanciale, Hamed Nemati, Mads Dam, and Christoph Baumann. 2016. Provably secure memory isolation

for Linux on ARM: Submission to special issue on verified information flow security. J. Comput. Secur. 24 (12 2016),

793–837. DOI:https://doi/10.3233/JCS-160558

[109] Arjun Guha, Matthew Fredrikson, Benjamin Livshits, and Nikhil Swamy. 2011. Verified security for browser exten-

sions. In IEEE Symposium on Security and Privacy. IEEE, 115–130.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:32 T. Kulik et al.

[110] X. Guo, R. G. Dutta, P. Mishra, and Y. Jin. 2016. Automatic RTL-to-formal code converter for IP security formal

verification. In 17th International Workshop on Microprocessor and SOC Test and Verification (MTV). IEEE, 35–38.

DOI:https://doi/10.1109/MTV.2016.23

[111] X. Guo, R. G. Dutta, P. Mishra, and Y. Jin. 2016. Scalable SoC trust verification using integrated theorem proving and

model checking. In IEEE International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 124–129.

DOI:https://doi/10.1109/HST.2016.7495569

[112] X. Guo, R. G. Dutta, P. Mishra, and Y. Jin. 2017. Automatic code converter enhanced PCH framework for SoC trust

verification. IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 25, 12 (Dec. 2017), 3390–3400. DOI:https://doi/10.1109/

TVLSI.2017.2751615

[113] J. Octavio Gutierrez-Garcia and Kwang Sim. 2010. Agent-based service composition in cloud computing. Commun.

Comput. Inf. Sci. 121, 1–10. DOI:https://doi/10.1007/978-3-642-17625-8_1

[114] MulukenHailesellasie and Syed RafayHasan. 2018. Intrusion detection in PLC-based industrial control systems using

formal verification approach in conjunction with graphs. J. Hardw. Syst. Secur. 2, 1 (01 Mar. 2018), 1–14. DOI:https:

//doi/10.1007/s41635-017-0017-y

[115] Anthony Hall. 2005. Realising the benefits of formal methods. In Formal Methods and Software Engineering, Kung-Kiu

Lau and Richard Banach (Eds.). Springer, Berlin, 1–4.

[116] Dick Hamlet. 2005. Invariants and state in testing and formal methods. SIGSOFT Softw. Eng. Notes 31, 1 (Sep. 2005),

48–51. DOI:https://doi/10.1145/1108768.1108806

[117] Jianan Hao, Yang Liu, Wentong Cai, Guangdong Bai, and Jun Sun. 2013. vTRUST: A formal modeling and verification

framework for virtualization systems. In Formal Methods and Software Engineering, Lindsay Groves and Jing Sun

(Eds.). Springer, Berlin, 329–346.

[118] Daniel Hartung and Christoph Busch. 2012. Biometric transaction authentication protocol: Formal model verification

and “four-eyes” principle extension. In Financial Cryptography and Data Security, George Danezis, Sven Dietrich, and

Kazue Sako (Eds.). Springer, Berlin, 88–103.

[119] Dominik Harz and William Knottenbelt. 2018. Towards Safer Smart Contracts: A Survey of Languages and Verifica-

tion Methods. arXiv:1809.09805v4. https://arxiv.org/abs/1809.09805.

[120] J. Heneghan, S. A. Shaikh, J. Bryans, M. Cheah, and P. Wooderson. 2019. Enabling security checking of automotive

ECUswith formal CSPmodels. In 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

Workshops (DSN-W). IEEE, 90–97. DOI:https://doi/10.1109/DSN-W.2019.00025

[121] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore, D. Park, Y. Zhang, A. Stefanescu, and

G. Rosu. 2018. KEVM: A complete formal semantics of the Ethereum virtual machine. In IEEE 31st Computer Security

Foundations Symposium (CSF). IEEE, 204–217.

[122] C. A. R. Hoare. 1978. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978), 666–677. DOI:https:

//doi/10.1145/359576.359585

[123] C. A. R. Hoare. 1985. Communicating Sequential Processes. Prentice-Hall, USA.

[124] Bo-Yuan Huang, Sayak Ray, Aarti Gupta, Jason M. Fung, and Sharad Malik. 2018. Formal security verification of

concurrent firmware in SoCs using instruction-level abstraction for hardware. In 55th Annual Design Automation

Conference (DAC’18). ACM, New York, NY, 91:1–91:6. DOI:https://doi/10.1145/3195970.3196055

[125] John Hughes and Eve Maler. 2005. Security assertion markup language (SAML) v2. 0 technical overview. OASIS SSTC

Working Draft sstc-saml-tech-overview-2.0-draft-08 13 (2005).

[126] G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone. 2019. Formal methods for Android banking malware analysis

and detection. In 6th International Conference on Internet of Things: Systems, Management and Security (IOTSMS).

IEEE, 331–336.

[127] Fahad Ibrar, Hamza Saleem, Sam Castle, and Muhammad Zubair Malik. 2017. A study of static analysis tools to

detect vulnerabilities of branchless banking applications in developing countries. In 9th International Conference on

Information and Communication Technologies and Development (ICTD’17). Association for Computing Machinery,

New York, NY. DOI:https://doi/10.1145/3136560.3136595

[128] Daisuke Inoue and Masahiro Kuroda. 2006. Secure service framework on mobile ethernet. J. Nat. Inst. Inf. Commun.

Technol. 53 (12 2006), 61–71.

[129] ITSEC. 1991. Information Technology Security Evaluation Criteria (ITSEC): Preliminary Harmonised Criteria. Docu-

ment COM(90) 314, Version 1.2. Commission of the European Communities.

[130] Daniel Jackson. 2000. Automating first-order relational logic. ACM SIGSOFT Symp. Found. Softw. Eng. 25 (09 2000).

DOI:https://doi/10.1145/357474.355063

[131] Daniel Jackson. 2012. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge, MA.

[132] Daniel Jackson and Jeanette Wing. 1996. Lightweight formal methods. IEEE Comput. 29, 4 (Apr. 1996), 22–23.

[133] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2012. Establishing browser security guarantees through formal

shim verification. In 21st USENIX Conference on Security Symposium (Security’12). USENIX Association, USA.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:33

[134] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2012. Establishing browser security guarantees through formal

shim verification. In 21st USENIX Security Symposium (USENIX Security’12). USENIX, 113–128. Retrieved from www.

usenix.org/conference/usenixsecurity12/technical-sessions/presentation/jang.

[135] Y. Jarraya, A. Eghtesadi, M. Debbabi, Y. Zhang, and M. Pourzandi. 2012. Cloud calculus: Security verification in

elastic cloud computing platform. In International Conference on Collaboration Technologies and Systems (CTS). IEEE,

447–454. DOI:https://doi/10.1109/CTS.2012.6261089

[136] Karthick Jayaraman, Nikolaj Bjørner, Geoff Outhred, and Charlie Kaufman. 2014. Automated Analysis and Debugging

of Network Connectivity Policies. Technical Report. Tech. Rep. MSR-TR-2014-102. MSR, Seattle, WA.

[137] Kurt Jensen, Lars Michael Kristensen, and Lisa Marie Wells. 2007. Coloured Petri nets and CPN tools for modelling

and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf. 9, 3/4 (2007), 213–254. DOI:https://doi/10.

1007/s10009-007-0038-x

[138] Kurt Jensen and Lars M. Kristensen. 2009. Coloured Petri Nets: Modelling and Validation of Concurrent Systems (1st

ed.). Springer Publishing Company, Incorporated, Berlin.

[139] Richard Jüllig. 2002. Formal methods in enterprise computing. In Formal Methods and Software Engineering, Chris

George and Huaikou Miao (Eds.). Springer, Berlin, 22–23.

[140] Corey Kallenberg, Sam Cornwell, Xeno Kovah, and John Butterworth. 2014. Setup for failure: Defeating secure

boot. The MITRE Corporation. Retrieved https://infocon.org/cons/SyScan/SyScan%202014%20Singapore/SyScan%

202014%20presentations/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot_WP.pdf.

[141] Sheetal Kalra and Sandeep K. Sood. 2015. Secure authentication scheme for IoT and cloud servers. Pervas. Mob.

Comput. 24 (2015), 210–223. Retrieved from http://www.sciencedirect.com/science/article/pii/S1574119215001510.

[142] Michael Kenney. 2015. Cyber-terrorism in a post-Stuxnet world. Orbis 59 (12 2015). DOI:https://doi/10.1016/j.orbis.

2014.11.009

[143] H. Khurana, M. Hadley, N. Lu, and D. A. Frincke. 2010. Smart-grid security issues. IEEE Secur. Priv. 8, 1 (Jan. 2010),

81–85. DOI:https://doi/10.1109/MSP.2010.49

[144] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe,

Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2010. seL4:

Formal verification of an operating-system kernel. Commun. ACM 53, 6 (2010), 107–115.

[145] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,

and Y. Yarom. 2019. Spectre attacks: Exploiting speculative execution. In IEEE Symposium on Security and Privacy

(SP). IEEE, 1–19.

[146] S. Kottler, M. Khayamy, S. R. Hasan, and O. Elkeelany. 2017. Formal verification of ladder logic programs using

NuSMV. In SoutheastCon. IEEE, 1–5. DOI:https://doi/10.1109/SECON.2017.7925390

[147] Simon Kramer and Julian C. Bradfield. 2010. A general definition of malware. J. Comput. Virol. 6, 2 (2010), 105–114.

[148] Siwar Kriaa, Ludovic Pietre-Cambacedes, Marc Bouissou, and Yoran Halgand. 2015. A survey of approaches combin-

ing safety and security for industrial control systems. Reliab. Eng. Syst. Safety 139 (2015), 156–178. Retrieved from

http://www.sciencedirect.com/science/article/pii/S0951832015000538.

[149] Tomas Kulik, Brijesh Dongol, Peter Gorm Larsen, Hugo Daniel Macedo, Steve Schneider, Peter Würtz Vinther Tran-

Jørgensen, and Jim Woodcock. 2021. A Survey of Practical Formal Methods for Security. arXiv:2109.01362 [cs.FL].

[150] Tomas Kulik, Peter W. V. Tran-Jørgensen, and Jalil Boudjadar. 2019. Formal security analysis of cloud-connected

industrial control systems. In Innovative Security Solutions for Information Technology and Communications, Jean-

Louis Lanet and Cristian Toma (Eds.). Springer International Publishing, Cham, 71–84.

[151] Apurva Kumar. 2014. A lightweight formal approach for analyzing security of web protocols. In International Work-

shop on Recent Advances in Intrusion Detection. Springer, 192–211.

[152] N. Kumar, V. Kumar, and M. Gaur. 2019. Banking trojans APK detection using formal methods. In 4th International

Conference on Information Systems and Computer Networks (ISCON). IEEE, 606–609.

[153] P. Kumar, A. Braeken, A. Gurtov, J. Iinatti, and P. H. Ha. 2017. Anonymous secure framework in connected smart

home environments. IEEE Trans. Inf. Forens. Secur. 12, 4 (Apr. 2017), 968–979. DOI:https://doi/10.1109/TIFS.2016.

2647225

[154] Robert Künnemann and Graham Steel. 2013. YubiSecure? Formal security analysis results for the Yubikey and

YubiHSM. In Security and Trust Management, Audun Jøsang, Pierangela Samarati, and Marinella Petrocchi (Eds.).

Springer Berlin, 257–272.

[155] Stefan Kupferschmid, Matthew Lewis, Tobias Schubert, and Bernd Becker. 2011. Incremental preprocessing methods

for use in BMC. Form. Meth. Syst. Des. 39, 2 (2011), 185–204.

[156] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of probabilistic real-time systems. In

Proc. 23rd International Conference on Computer Aided Verification (CAV’11) (LNCS, Vol. 6806), G. Gopalakrishnan and

S. Qadeer (Eds.). Springer, 585–591.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:34 T. Kulik et al.

[157] Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. 2012. A solver for reachability modulo theories. In Computer Aided

Verification - 24th International Conference, CAV 2012, Berkeley, CA, July 7–13, 2012 Proceedings (Lecture Notes in

Computer Science, Vol. 7358), P. Madhusudan and Sanjit A. Seshia (Eds.). Springer, Berlin, 427–443.

[158] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA.

[159] Kim G. Larsen, Paul Pettersson, and Wang Yi. 1997. Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transfer 1, 1 (01

Dec. 1997), 134–152. DOI:https://doi/10.1007/s100090050010

[160] P. G. Larsen, B. S. Hansen, H. Brunn, N. Plat, H. Toetenel, D. J. Andrews, J. Dawes, G. Parkin, et al. 1996. Information

Technology – Programming Languages, Their Environments and System Software Interfaces – Vienna Development

Method – Specification Language – Part 1: Base language. ISO/IEC 13817-1:1996.

[161] Peter Gorm Larsen, Kenneth Lausdahl, and Nick Battle. 2010. Combinatorial testing for VDM. In 8th IEEE Interna-

tional Conference on Software Engineering and Formal Methods (SEFM’10). IEEE Computer Society, Washington, DC,

278–285. DOI:https://doi/10.1109/SEFM.2010.32. ISBN 978-0-7695-4153-2.

[162] Lee W. Lerner, Zane R. Franklin, William T. Baumann, and Cameron D. Patterson. 2014. Using high-level synthe-

sis and formal analysis to predict and preempt attacks on industrial control systems. In ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays (FPGA’14). Association for Computing Machinery, New York, NY,

209–212. DOI:https://doi/10.1145/2554688.2554759

[163] Thomas Letan, Pierre Chifflier, Guillaume Hiet, Pierre Neron, and Benjamin Morin. 2016. SpecCert: Specifying and

verifying hardware-based security enforcement. In Proceedings of the FM 2016: Formal Methods, John Fitzgerald, Con-

stance Heitmeyer, Stefania Gnesi, and Anna Philippou (Eds.). 496–512.

[164] E. Love, Y. Jin, and Y. Makris. 2011. Enhancing security via provably trustworthy hardware intellectual property.

In IEEE International Symposium on Hardware-oriented Security and Trust. IEEE, 12–17. DOI:https://doi/10.1109/HST.

2011.5954988

[165] Gavin Lowe. 1995. An attack on the Needham-Schroeder public-key authentication protocol. Inf. Process. Lett. 56, 3

(1995), 131–133.

[166] Hugo Daniel Macedo and José Nuno Oliveira. 2015. A linear algebra approach to OLAP. Form. Asp. Comput. 27, 2

(2015), 283–307.

[167] Hugo Daniel Macedo and Tayssir Touili. 2013. Mining malware specifications through static reachability analysis.

In European Symposium on Research in Computer Security. Springer Berlin, 517–535.

[168] N. E. Madhoun, F. Guenane, and G. Pujolle. 2016. An online security protocol for NFC payment: Formally analyzed

by the Scyther tool. In 2nd International Conference on Mobile and Secure Services (MobiSecServ). IEEE, 1–7.

[169] Taous Madi, Yosr Jarraya, Amir Alimohammadifar, Suryadipta Majumdar, Yushun Wang, Makan Pourzandi, Lingyu

Wang, and Mourad Debbabi. 2018. ISOTOP: Auditing virtual networks isolation across cloud layers in OpenStack.

ACM Trans. Priv. Secur. 22, 1 (Oct. 2018). DOI:https://doi/10.1145/3267339

[170] Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge King, and Parthasarathy Madhusudan. 2013. Verifying security

invariants in ExpressOS. In 18th International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS’13). Association for Computing Machinery, New York, NY, 293–304. DOI:https://doi/10.

1145/2451116.2451148

[171] Antonio Marcedone, Rafael Pass, and Abhi Shelat. 2019. Minimizing trust in hardware wallets with two factor sig-

natures. In Financial Cryptography and Data Security, Ian Goldberg and Tyler Moore (Eds.). Springer International

Publishing, Cham, 407–425.

[172] Fabio Martinelli, Francesco Mercaldo, and Vittoria Nardone. 2018. Identifying insecure features in android applica-

tions using model checking. In Proceedings of the 4th International Conference on Information Systems Security and

Privacy, ICISSP 2018, Funchal, Madeira - Portugal, January 22–24, 2018, Paolo Mori, Steven Furnell, and Olivier Camp

(Eds.). SciTePress, 589–596.

[173] Fatma Masmoudi, Monia Loulou, and Ahmed Hadj Kacem. 2014. Formal security framework for agent based cloud

systems. In International Workshop on Advanced Information Systems for Enterprises. DOI:https://doi/10.1109/IWAISE.

2014.15

[174] Jackson R. Mayo, Robert C. Armstrong, and Geoffrey C. Hulette. 2015. Digital system robustness via design con-

straints: The lesson of formal methods. In Annual IEEE Systems Conference (SysCon). IEEE, 109–114.

[175] MaryamMehrnezhad, Mohammed Aamir Ali, Feng Hao, and Aad vanMoorsel. 2016. NFC payment spy: A privacy at-

tack on contactless payments. In Security Standardisation Research, Lidong Chen, David McGrew, and Chris Mitchell

(Eds.). Springer International Publishing, Cham, 92–111.

[176] SimonMeier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The TAMARIN prover for the symbolic analysis

of security protocols. In Computer Aided Verification: 25th International Conference, CAV 2013, Saint Petersburg, Russia,

July 13–19, 2013, Proceedings (Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith

(Eds.). Springer, Berlin, 696–701. DOI:https://doi/10.1007/978-3-642-39799-8_48

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:35

[177] F. Mercaldo, F. Martinelli, and A. Santone. 2019. Real-time SCADA attack detection by means of formal methods.

In IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE).

IEEE, 231–236. DOI:https://doi/10.1109/WETICE.2019.00057

[178] Francesco Mercaldo, Vittoria Nardone, Antonella Santone, and Corrado Aaron Visaggio. 2016. Download malware?

No, thanks: How formal methods can block update attacks. In 4th FME Workshop on Formal Methods in Software

Engineering (FormaliSE’16). ACM, New York, NY. DOI:https://doi/10.1145/2897667.2897673

[179] José Meseguer. 2000. Rewriting logic and Maude: A wide-spectrum semantic framework for object-based distributed

systems. In Formal Methods for Open Object-based Distributed Systems IV, Scott F. Smith and Carolyn L. Talcott (Eds.).

Springer US, Boston, MA, 89–117.

[180] AndrewMiller, Zhicheng Cai, and Somesh Jha. 2018. Smart contracts and opportunities for formal methods. In Lever-

aging Applications of Formal Methods, Verification and Validation. Industrial Practice, Tiziana Margaria and Bernhard

Steffen (Eds.). Springer International Publishing, Cham, 280–299.

[181] R. Milner. 1989. Communication and Concurrency. Prentice-Hall, Inc., USA.

[182] M. Mohsin, M. U. Sardar, O. Hasan, and Z. Anwar. 2017. IoTRiskAnalyzer: A probabilistic model checking based

framework for formal risk analytics of the Internet of Things. IEEE Access 5 (2017), 5494–5505. DOI:https://doi/10.

1109/ACCESS.2017.2696031

[183] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente. 2012. IaaS cloud architecture: From virtualized datacenters

to federated cloud infrastructures. Computer 45, 12 (2012), 65–72.

[184] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward Gan. 2012. RockSalt: Better, faster,

stronger SFI for the X86. In 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’12). Association for Computing Machinery, New York, NY, 395–404. DOI:https://doi/10.1145/2254064.2254111

[185] Sascha Mühlbach and Sebastian Wallner. 2008. Secure communication in microcomputer bus systems for embedded

devices. J. Syst. Archit. 54, 11 (2008), 1065–1076. Retrieved from http://www.sciencedirect.com/science/article/pii/

S1383762108000611.

[186] Roberto Nardone, Ugo Gentile, Adriano Peron, Massimo Benerecetti, Valeria Vittorini, Stefano Marrone, Renato

De Guglielmo, Nicola Mazzocca, and Luigi Velardi. 2015. Dynamic state machines for formalizing railway control

system specifications. In Formal Techniques for Safety-critical Systems, Cyrille Artho and Peter Csaba Ölveczky (Eds.).

Springer International Publishing, Cham, 93–109.

[187] R. Nardone, R. J. Rodríguez, and S. Marrone. 2016. Formal security assessment of Modbus protocol. In 11th Interna-

tional Conference for Internet Technology and Secured Transactions (ICITST). IEEE, 142–147. DOI:https://doi/10.1109/

ICITST.2016.7856685

[188] Zainalabedin Navabi. 1993. VHDL: Analysis and Modeling of Digital Systems, Vol. 2. McGraw-Hill New York.

[189] George C. Necula. 2011. Proof-carrying code. In Encyclopedia of Cryptography and Security, 2nd ed., Henk C. A. van

Tilborg and Sushil Jajodia (Eds.). Springer, Berlin, 984–986.

[190] Roger M. Needham and Michael D. Schroeder. 1978. Using encryption for authentication in large networks of com-

puters. Commun. ACM 21, 12 (1978), 993–999.

[191] Matias Negrete-Pincetic, Felipe Yoshida, and George Gross. 2009. Towards quantifying the impacts of cyber attacks

in the competitive electricity market environment. In IEEE Bucharest PowerTech Conference. IEEE, 1–8. DOI:https:

//doi/10.1109/PTC.2009.5282237

[192] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin. 2016. TrustZone explained: Architectural features and use

cases. In IEEE 2nd International Conference on Collaboration and Internet Computing (CIC). IEEE, 445–451. DOI:https:

//doi/10.1109/CIC.2016.065

[193] V. Nigam and C. Talcott. 2019. Formal security verification of industry 4.0 applications. In 24th IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 1043–1050. DOI:https://doi/10.1109/ETFA.

2019.8869428

[194] Tobias Nipkow and Gerwin Klein. 2014. Concrete Semantics — with Isabelle/HOL. Springer, Berlin.

[195] P. J. C. Nunes, J. Fonseca, and M. Vieira. 2015. phpSAFE: A security analysis tool for OOP web application plugins.

In 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE, 299–306. DOI:https:

//doi/10.1109/DSN.2015.16

[196] Peter W. O’Hearn. 2018. Continuous reasoning: Scaling the impact of formal methods. In 33rd Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS’18). Association for Computing Machinery, New York, NY, 13–25.

DOI:https://doi/10.1145/3209108.3209109

[197] Iqra Obaid, Syed Kazmi, and Awais Qasim. 2017. Modeling and verification of payment system in E-banking. Int. J.

Adv. Comput. Sci. Applic. 8 (01 2017). DOI:https://doi/10.14569/IJACSA.2017.080825

[198] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Roşu. 2018. A formal verification tool for

Ethereum VM bytecode. In 26th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE’18). Association for Computing Machinery, New York, NY,

912–915. DOI:https://doi/10.1145/3236024.3264591.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:36 T. Kulik et al.

[199] Daejun Park, Yi Zhang,Manasvi Saxena, Philip Daian, andGrigore Roşu. 2018. A formal verification tool for ethereum

VM bytecode. In 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE 2018). Association for Computing Machinery, New York, NY, 912–915.

DOI:https://doi/10.1145/3236024.3264591

[200] Jianhua Peng, Feng Liu, Zhenju Zhao, Danqing Huang, and Rui Xue. 2010. ASM-SPV: A model checker for security

protocols. In 6th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. 458–461.

DOI:https://doi/10.1109/IIHMSP.2010.117

[201] Uta Priss. 2006. Formal concept analysis in information science. Ann. Rev. Inf. Sci. Technol. 40 (01 2006). DOI:https:

//doi/10.1002/aris.1440400120

[202] Martin L. Puterman. 1994.Markov Decision Processes: Discrete Stochastic Dynamic Programming (1st ed.). John Wiley

& Sons, Inc., USA.

[203] Maxime Puys, Marie-Laure Potet, and Pascal Lafourcade. 2016. Formal analysis of security properties on the OPC-UA

SCADA protocol. In Computer Safety, Reliability, and Security, Amund Skavhaug, Jérémie Guiochet, and Friedemann

Bitsch (Eds.). Springer International Publishing, Cham, 67–75.

[204] Davide Quarta, Marcello Pogliani, Mario Polino, FedericoMaggi, AndreaMaria Zanchettin, and Stefano Zanero. 2017.

An experimental security analysis of an industrial robot controller. In IEEE Symposium on Security and Privacy (SP).

IEEE, 268–286. DOI:https://doi/10.1109/SP.2017.20

[205] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, RobWheeler, and Andrew Y. Ng.

2009. ROS: An Open-source Robot Operating System. Retrieved http://robotics.stanford.edu/~ang/papers/icraoss09-

ROS.pdf.

[206] Zvonimir Rakamaric and Michael Emmi. 2014. SMACK: Decoupling source language details from verifier implemen-

tations. In Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer

of Logic, VSL 2014, Vienna, Austria, July 18–22, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8559), Armin

Biere and Roderick Bloem (Eds.). Springer, Berlin, 106–113.

[207] R. Rana, M. Staron, C. Berger, A. Nilsson, R. Scandariato, A. Weilenmann, andM. Rydmark. 2015. On the role of cross-

disciplinary research and SSE in addressing the challenges of the digitalization of society. In 6th IEEE International

Conference on Software Engineering and Service Science (ICSESS). IEEE, 1106–1109. DOI:https://doi/10.1109/ICSESS.

2015.7339245

[208] Awais Rashid, Howard Chivers, Emil Lupu, Andrew Martin, and Steve Schneider (Eds.). 2021. The Cyber Security

Body of Knowledge v1.1. University of Bristol. Retrieved from www.cybok.org.

[209] R. Rieke, M. Zhdanova, J. Repp, R. Giot, and C. Gaber. 2013. Fraud detection in Mobile payments utilizing process

behavior analysis. In International Conference on Availability, Reliability and Security. IEEE, 662–669.

[210] Marco Rocchetto and Nils Ole Tippenhauer. 2016. CPDY: Extending the Dolev-Yao Attacker with Physical-Layer

Interactions. Retrieved from http://arxiv.org/abs/1607.02562.

[211] Marco Rocchetto and Nils Ole Tippenhauer. 2017. Towards formal security analysis of industrial control systems. In

ACM on Asia Conference on Computer and Communications Security (ASIA CCS’17). ACM, New York, NY, 114–126.

DOI:https://doi/10.1145/3052973.3053024

[212] S. Roy, S. Chatterjee, A. K. Das, S. Chattopadhyay, N. Kumar, and A. V. Vasilakos. 2017. On the design of provably

secure lightweight remote user authentication scheme for mobile cloud computing services. IEEE Access 5 (2017),

25808–25825. DOI:https://doi/10.1109/ACCESS.2017.2764913

[213] Peter Y. A. Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe. 2001. Modelling and Analysis of

Security Protocols. Addison-Wesley-Longman, USA.

[214] O. Rysavy, J. Rab, and M. Sveda. 2013. Improving security in SCADA systems through firewall policy analysis. In

Federated Conference on Computer Science and Information Systems. IEEE, 1435–1440.

[215] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from build-

ing static analysis tools at Google. Commun. ACM 61, 4 (Mar. 2018), 58–66. DOI:https://doi/10.1145/3188720

[216] Antonella Santone, Valentina Intilangelo, and Domenico Raucci. 2013. Efficient formal verification in banking pro-

cesses. In IEEE 9th World Congress on Services. IEEE, 325–332.

[217] N. Santos, Krishna P. Gummadi, and Rodrigo Rodrigues. 2009. Towards trusted cloud computing. In Conference on

Hot Topics in Cloud Computing. USENIX Association.

[218] Ralf Sasse, Samuel T. King, José Meseguer, and Shuo Tang. 2012. IBOS: A correct-by-construction modular browser.

In International Workshop on Formal Aspects of Component Software. Springer, Berlin, 224–241.

[219] Jinho Seol, Seongwook Jin, Daewoo Lee, Jaehyuk Huh, and Seungryoul Maeng. 2015. A trusted IaaS environment

with hardware security module. IEEE Trans. Serv. Comput. 9 (01 2015), 1–1. DOI:https://doi/10.1109/TSC.2015.2392099

[220] J. Sepulveda, D. Aboul-Hassan, G. Sigl, B. Becker, and M. Sauer. 2018. Towards the formal verification of security

properties of a Network-on-Chip router. In IEEE 23rd European Test Symposium (ETS). IEEE, 1–6. DOI:https://doi/10.

1109/ETS.2018.8400692

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:37

[221] Rida Shaukat, Arooba Shahoor, and Aniqa Urooj. 2018. Probing into code analysis tools: A comparison of C# sup-

porting static code analyzers. In 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST).

455–464. DOI:https://doi/10.1109/IBCAST.2018.8312264

[222] Yuchao She, Hui Li, and Hui Zhu. 2013. UVHM: Model checking based formal analysis scheme for hypervisors. In

Information and Communication Technology, Khabib Mustofa, Erich J. Neuhold, A. Min Tjoa, Edgar Weippl, and Ilsun

You (Eds.). Springer, Berlin, 300–305.

[223] Roshan Shrestha, Hoda Mehrpouyan, and Dianxiang Xu. 2018. Model checking of security properties in industrial

control systems (ICS). In 8th ACM Conference on Data and Application Security and Privacy (CODASPY’18). Associa-

tion for Computing Machinery, New York, NY, 164–166. DOI:https://doi/10.1145/3176258.3176949

[224] Irfan Siddavatam, Sachin Parekh, Tanay Shah, and Faruk Kazi. 2017. Testing and validation of Modbus/TCP proto-

col for secure SCADA communication in CPS using formal methods. Scalable Comput.: Pract. Exper. 18 (11 2017).

DOI:https://doi/10.12694/scpe.v18i4.1331

[225] Julien Signoles, Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, and Boris Yakobowski. 2012.

Frama-C: A software analysis perspective. Form. Asp. Comput. 27 (10 2012). DOI:https://doi/10.1007/s00165-014-0326-

7

[226] R. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury. 2014. A verification platform for SDN-enabled applications. In

IEEE International Conference on Cloud Engineering. IEEE, 337–342. DOI:https://doi/10.1109/IC2E.2014.72

[227] Eric Smith and Alessandro Coglio. 2016. Android platform modeling and Android app verification in the ACL2

theorem prover. In Verified Software: Theories, Tools, and Experiments, Arie Gurfinkel and Sanjit A. Seshia (Eds.).

Springer International Publishing, Cham, 183–201.

[228] E. Snekkenes. 1991. Exploring the BAN approach to protocol analysis. In IEEE Computer Society Symposium on Re-

search in Security and Privacy. IEEE, 171–181. DOI:https://doi/10.1109/RISP.1991.130785

[229] Fu Song and Tayssir Touili. 2012. Efficient malware detection using model-checking. In International Symposium on

Formal Methods. Springer, Berlin, 418–433.

[230] Fu Song and Tayssir Touili. 2014. Model-checking for Android malware detection. In Programming Languages and

Systems, Jacques Garrigue (Ed.). Springer International Publishing, Cham, 216–235.

[231] Fu Song and Tayssir Touili. 2014. Pushdownmodel checking for malware detection. Int. J. Softw. Tools Technol. Trans-

fer 16, 2 (2014), 147–173.

[232] S. Souaf, P. Berthome, and F. Loulergue. 2018. A cloud brokerage solution: Formal methods meet security in cloud

federations. In International Conference on High Performance Computing Simulation (HPCS). 691–699. DOI:https://doi/

10.1109/HPCS.2018.00113

[233] J. M. Spivey. 1989. The Z Notation: A Reference Manual. Prentice-Hall, USA.

[234] Andrei Stefanescu, Daejun Park, Shijiao Yuwen, Yilong Li, andGrigore Roşu. 2016. Semantics-based program verifiers

for all languages. In ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA’16). Association for Computing Machinery, New York, NY, 74–91. DOI:https://doi/10.1145/

2983990.2984027

[235] Susan Stepney, David Cooper, and Jim Woodcock. 2000. An Electronic Purse: Specification, Refinement, and Proof.

Technical Monograph PRG-126. Oxford University Computing Laboratory.

[236] C. Steward Jr., L. A.Wahsheh, A. Ahmad, J. M. Graham, C. V. Hinds, A. T.Williams, and S. J. DeLoatch. 2012. Software

security: The dangerous afterthought. In 9th International Conference on Information Technology - New Generations.

IEEE, 815–818. DOI:https://doi/10.1109/ITNG.2012.60

[237] Jun Sun, Yang Liu, and Jin Song Dong. 2008. Model checking CSP revisited: Introducing a process analysis toolkit. In

Leveraging Applications of Formal Methods, Verification and Validation, Tiziana Margaria and Bernhard Steffen (Eds.).

Springer Berlin, 307–322.

[238] J. Sun, Y. Liu, J. S. Dong, and C. Chen. 2009. Integrating specification and programs for system modeling and verifi-

cation. In 3rd IEEE International Symposium on Theoretical Aspects of Software Engineering. IEEE, 127–135.

[239] Farid Molazem Tabrizi and Karthik Pattabiraman. 2016. Formal security analysis of smart embedded systems. In 32nd

Annual Conference on Computer Security Applications (ACSAC’16). Association for Computing Machinery, New York,

NY, 1–15. DOI:https://doi/10.1145/2991079.2991085

[240] Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara. 2008. System Description of a SAT-based CSP Solver

Sugar., 71–75 pages. Retrieved https://tamura70.gitlab.io/papers/pdf/cpai08t.pdf.

[241] Vincent F. Taylor and Ivan Martinovic. 2017. Short paper: A longitudinal study of financial apps in the Google Play

store. In Financial Cryptography and Data Security, Aggelos Kiayias (Ed.). Springer International Publishing, Cham,

302–309.

[242] The Coq Development Team. 2019. The Coq Reference Manual. LogiCal Project. Retrieved from http://coq.inria.fr.

Version 8.9.1.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

5:38 T. Kulik et al.

[243] Donald Thomas and Philip Moorby. 2008. The Verilog® Hardware Description Language. Springer Science & Business

Media.

[244] Emina Torlak and Daniel Jackson. 2007. Kodkod: A relational model finder. In Tools and Algorithms for the Construc-

tion and Analysis of Systems, Orna Grumberg and Michael Huth (Eds.). Springer Berlin, 632–647.

[245] Peter Würtz Vinther Tran-Jørgensen and Tomas Kulik. 2019. Migrating overture to a different IDE. In 17th Over-

ture Workshop (Technical Report Series, CS-TR- 1530 - 2019), Carl Gamble and Luis Diogo Couto (Eds.). Newcastle

University, UK, 32–47.

[246] Peter W. V. Tran-Jørgensen, Tomas Kulik, Jalil Boudjadar, and Peter Gorm Larsen. 2019. Security analysis of cloud-

connected industrial control systems using combinatorial testing. In 17th ACM-IEEE International Conference on

Formal Methods and Models for System Design (MEMOCODE’19). Association for Computing Machinery, New York,

NY. DOI:https://doi/10.1145/3359986.3361211

[247] K. Tsukada, K. Sawada, and S. Shin. 2016. A toolchain onmodel checking SPIN via Kalman Decomposition for control

system software. In IEEE International Conference on Automation Science and Engineering (CASE). IEEE, 300–305.

DOI:https://doi/10.1109/COASE.2016.7743421

[248] Mathieu Turuani. 2006. The CL-Atse protocol analyser. In Term Rewriting and Applications, Frank Pfenning (Ed.).

Springer, Berlin, 277–286.

[249] Mathieu Turuani, Thomas Voegtlin, and Michael Rusinowitch. 2016. Automated verification of Electrum wallet. In

International Conference on Financial Cryptography and Data Security. Springer, Berlin, 27–42.

[250] Nils Urbach and Frederik Ahlemann. 2019. Digitalization as a Risk: Security and Business Continuity Management

Are Central Cross-Divisional Functions of the Company. Springer International Publishing, Cham, 85–92. DOI:https:

//doi/10.1007/978-3-319-96187-3_9

[251] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta. 2013. Design, implementation and verification

of an eXtensible and modular hypervisor framework. In IEEE Symposium on Security and Privacy. IEEE, 430–444.

DOI:https://doi/10.1109/SP.2013.36

[252] Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia, and Anupam Datta. 2016. überSpark: Enforcing ver-

ifiable object abstractions for automated compositional security analysis of a hypervisor. In 25th USENIX Secu-

rity Symposium (USENIX Security’16). USENIX Association, 87–104. Retrieved from www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/vasudevan.

[253] David von Oheimb and Sebastian Mödersheim. 2012. ASLan++ — A formal security specification language for dis-

tributed systems. In Formal Methods for Components and Objects, Bernhard K. Aichernig, Frank S. de Boer, and Mar-

cello M. Bonsangue (Eds.). Springer, Berlin, 1–22.

[254] R. Wang, Y. Guan, H. Song, X. Li, X. Li, Z. Shi, and X. Song. 2019. A formal model-based design method for robotic

systems. IEEE Syst. J. 13, 1 (Mar. 2019), 1096–1107. DOI:https://doi/10.1109/JSYST.2018.2867285

[255] T. Wang, Q. Su, and T. Chen. 2017. Formal analysis of security properties of cyber-physical system based on timed

automata. In IEEE 2nd International Conference on Data Science in Cyberspace (DSC). 534–540. DOI:https://doi/10.1109/

DSC.2017.44

[256] W. Wang, Q. Zeng, and A. P. Mathur. 2012. A security assurance framework combining formal verification and

security functional testing. In 12th International Conference on Quality Software. 136–139. DOI:https://doi/10.1109/

QSIC.2012.34

[257] Dean C. Wardell, Robert F. Mills, Gilbert L. Peterson, and Mark E. Oxley. 2016. A method for revealing and ad-

dressing security vulnerabilities in cyber-physical systems by modeling malicious agent interactions with formal

verification. Procedia Comput. Sci. 95 (2016), 24–31. Retrieved from http://www.sciencedirect.com/science/article/

pii/S1877050916324619.

[258] SharonWeinberger. 2011. Computer security: Is this the start of cyberwarfare?Nature 474 (06 2011), 142–5. DOI:https:

//doi/10.1038/474142a

[259] Tobias Wich, Daniel Nemmert, and Detlef Hühnlein. 2017. Towards secure and standard-compliant implementations

of the PSD2 directive. In Open Identity Summit 2017, October 5–6, 2017, Karlstad University, Sweden (LNI, Vol. P-277),

Lothar Fritsch, Heiko Roßnagel, and Detlef Hühnlein (Eds.). Gesellschaft für Informatik, Bonn, DE, 63–80. Retrieved

from http://www.dl.gi.de/20.500.12116/3581.

[260] M. Williams, L. Axon, J. R. C. Nurse, and S. Creese. 2016. Future scenarios and challenges for security and privacy.

In IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow

(RTSI). IEEE, 1–6. DOI:https://doi/10.1109/RTSI.2016.7740625

[261] J. M. Wing. 1990. A specifier’s introduction to formal methods. Computer 23, 9 (Sep. 1990), 8–22. DOI:https://doi/10.

1109/2.58215

[262] Jeannette M. Wing. 1998. A symbiotic relationship between formal methods and security. In Proceedings Computer

Security, Dependability, and Assurance: From Needs to Solutions (Cat. No. 98EX358). IEEE, 26–38.

[263] Jim Woodcock and Jim Davies. 1996. Using Z: Specification, Refinement, and Proof. Prentice-Hall, USA.

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

A Survey of Practical Formal Methods for Security 5:39

[264] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. 2009. Formal methods: Practice and experi-

ence. ACM Comput. Surv. 41, 4 (Oct. 2009). DOI:https://doi/10.1145/1592434.1592436

[265] Jim Woodcock, Susan Stepney, David Cooper, John Clark, and Jeremy Jacob. 2008. The certification of the Mondex

electronic purse to ITSEC Level E6. Formal Asp. Comput. 20, 1 (2008), 5–19.

[266] Meihua Xiao, Zilong Wan, and Hongling Liu. 2014. The formal verification and improvement of simplified SET

protocol. J. Softw. 9 (09 2014). DOI:https://doi/10.4304/jsw.9.9.2302-2308

[267] Luyi Xing, Yangyi Chen, XiaoFeng Wang, and Shuo Chen. 2013. InteGuard: Toward automatic protection of third-

party web service integrations. In 20th Annual Network and Distributed System Security Symposium. The Internet

Society. Retrieved from www.ndss-symposium.org/ndss2013/integuard-toward-automatic-protection-third-party-

web-service-integrations.

[268] J. Yoo, Y. Jung, D. Shin, M. Bae, and E. Jee. 2019. Formal modeling and verification of a federated byzantine agreement

algorithm for blockchain platforms. In IEEE International Workshop on Blockchain Oriented Software Engineering

(IWBOSE). IEEE, 11–21.

[269] Yu Zheng, D. He, Xiaohu Tang, and Hongxia Wang. 2005. AKA and authorization scheme for 4G Mobile networks

based on trusted mobile platform. In 5th International Conference on Information Communications Signal Processing.

976–980. DOI:https://doi/10.1109/ICICS.2005.1689196

[270] Wen Zeng, Maciej Koutny, Paul Watson, and Vasileios Germanos. 2016. Formal verification of secure information

flow in cloud computing. J. Inf. Secur. Applic. 27 (2016), 103–116.

[271] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A hardware design language for timing-

sensitive information-flow security. In 20th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’15). Association for Computing Machinery, New York, NY, 503–516.

DOI:https://doi/10.1145/2694344.2694372

[272] Wei Zhang,WenkeMa, Huiling Shi, and Fu-qiang Zhu. 2012.Model checking and verification of the internet payment

system with SPIN. JSW 7, 9 (2012), 1941–1949.

[273] S. Zonouz, J. Rrushi, and S. McLaughlin. 2014. Detecting industrial control malware using automated PLC code

analytics. IEEE Secur. Priv. 12, 6 (Nov. 2014), 40–47. DOI:https://doi/10.1109/MSP.2014.113

Received April 2021; accepted January 2022

Formal Aspects of Computing, Vol. 34, No. 1, Article 5. Publication date: July 2022.

