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A B S T R A C T   

Directed energy deposition (DED) is an emerging technology with significant industrial potential in the repair of 
critical aerospace components, however its adoption has been limited by concerns about geometry-driven 
microstructural and mechanical property variation. These could be resolved by controlling the local tempera-
ture field, which would result in a consistent and predictable cooling profile. Closed-loop control approaches 
have been investigated previously, but with limited assessment of mechanical properties and only on small 
builds. In this work, we confirm that using fixed build parameters results in a statistically significant, geometry- 
driven variation in the bulk mechanical properties of DED-built 316 L steel. To address this issue, we have 
developed an industrially-suitable control algorithm using a low-cost coaxial camera, applying statistical process 
control techniques to identify representative melt pool images from the livestream. This has been tested on long 
builds, maintaining a control adjustment frequency of 1 Hz on build durations of > 1 h. Performance has been 
quantified through bulk mechanical testing, which confirmed that the control algorithm successfully eliminated 
the component-scale trends in melt pool size, and achieved a geometry-agnostic process with improved me-
chanical homogeneity.   

1. Introduction 

Metal additive manufacturing (AM) technologies have been rapidly 
moving into the mainstream (Shrinivas Mahale et al., 2022), adopted by 
industries from healthcare to aerospace (DebRoy et al., 2018), and with 
particular importance for high-value, low-volume manufacturing. One 
of the key metal AM processes, directed energy deposition (DED) uses a 
powder stream, fed into the focal point of a laser beam, to deposit a 
molten track and build up a 3D component (Thompson et al., 2015). 
DED has a high degree of geometric flexibility, suitable both for 
manufacture and repair, but the adoption of DED for safety-critical 
components has been limited by challenges related to homogeneity, 
structural integrity, and variability of mechanical performance (Bla-
key-Milner et al., 2021). 

These issues could be mitigated by reducing variation in the local 
temperature field, which in turn would yield a more controllable so-
lidification rate, cooling profile and in-situ reheating (Yadollahi et al., 
2015), enabling predictable microstructures and mechanical properties. 
Mirazimzadeh et al. (2022) modelled a range of DED scan strategies for 
different component geometries and reported that scan strategy and 

component geometry both influence the stress field in the built 
component, due to differences in the temperature field during solidifi-
cation and cooling. While Hofman et al. (2012) showed that component 
geometry affected bead width, substrate dilution and hardness in laser 
cladding, a very similar technology to DED. 

Akbari and Kovacevic (2019) monitored the deposition of a 
single-walled 316 L steel sample with coaxial imaging, and observed 
that the baseplate acted as a heat sink, pulling heat out of the melt pool 
and causing it to shrink, resulting in the base of the sample being thinner 
than the top. Earlier work by Bi (2006a), had reported a similar effect on 
single-walled 316 L steel samples, and also showed corresponding trends 
in microstructure and hardness. A further development by Chechik et al. 
(2020) used side-view imaging to monitor DED of thin walled samples (6 
hatches, 2.7 mm thickness), and found cooling rate to be higher close to 
the baseplate, as expected from a smaller melt pool. This raises the 
possibility that different machine set-ups and clamping strategies could 
change the strength of this heat sink and cause differences in the man-
ufactured product. 

At the component scale, Gibson et al. (2020), investigated a range of 
control algorithms on wire-feed DED of Ti-6Al-4V, and reported that 

* Corresponding author. 
E-mail address: f.freeman@sheffield.ac.uk (F. Freeman).  

Contents lists available at ScienceDirect 

Journal of Materials Processing Tech. 
journal homepage: www.elsevier.com/locate/jmatprotec 

https://doi.org/10.1016/j.jmatprotec.2022.117823 
Received 1 August 2022; Received in revised form 10 November 2022; Accepted 13 November 2022   

mailto:f.freeman@sheffield.ac.uk
www.sciencedirect.com/science/journal/09240136
https://www.elsevier.com/locate/jmatprotec
https://doi.org/10.1016/j.jmatprotec.2022.117823
https://doi.org/10.1016/j.jmatprotec.2022.117823


Journal of Materials Processing Tech. 311 (2023) 117823

2

fixed build parameters resulted in poor dimensional control at the 
trailing edge of aerofoil-style geometries. This was due to oversize melt 
tracks caused by depositing directly adjacent to the previous hatch 
before the heat from that hatch had dissipated. This local geometry ef-
fect is a common issue across additive manufacturing platforms, with 
Craeghs et al. (2011) publishing findings from laser powder-bed fusion 
(LPBF) showing the local temperature field to be affected by overhangs 
and exposed corners, and Catchpole-Smith et al. (2017) using fractal 
area-filling scan strategies to achieve a more uniform temperature pro-
file and reduce cracking in LPBF-built nickel superalloys. 

Closed-loop control approaches show good potential as a route to 
achieving a predictable and controllable DED product. These take a 
signal from a live process monitoring sensor, extract characteristics that 
describe the current build behaviour, and adjust the build parameters to 
achieve and maintain a target characteristic. A number of studies exist in 
the literature, but no strong consensus has yet been reached on one 
particular approach (Tapia and Elwany, 2014). 

A photodiode monitoring approach, such as that used for control in 
DED (Bi et al., 2006a) and in laser cladding (Bi et al., 2006b), provides 
the simplest signal by generating a single value based on the overall 
intensity of the field of view. This is often referred to as the temperature, 
although calibration to a physical temperature requires an understand-
ing of the effect of emissivity, which itself is a function of temperature, 
surface oxidation, material and wavelength (Zhang et al., 2015). 

Camera-based monitoring provides much more information about 
the melt pool than photodiodes, including the shape and distribution of 
intensity across the image. Hofman et al. (2012) used an optical camera 
(400–1000 nm wavelength, 200 Hz) to monitor a laser cladding process, 
while for monitoring DED, Akbari and Kovacevic (2019) used a 
near-infrared camera (700+ nm wavelength, 200 Hz) and Farshidianfar 
et al. (2021) used a thermal infrared camera (7.5–14 µm wavelength, 30 
Hz). 

One potential drawback to camera-based approaches is that they 
generate large volumes of data very quickly. When considering a DED 
process with travel speeds in excess of 1000 mm/min, it is necessary to 
balance the required frequency of control adjustments with the ability to 
collect, transfer, process and store data. Additionally, the high frame- 
rate cameras used in the literature can be prohibitively expensive 
outside a research environment. 

A number of studies using camera-based control have also found it 
necessary to incorporate image processing techniques (filtering, 
smoothing, fitting) prior to extracting the required measurement from 
the image. Akbari and Kovacevic (2019) binarised the image using a 
fixed threshold and applied a fast Fourier transform. They attributed 
abrupt, high frequency variations in the transformed data to spatter, and 
excluded this with a low-pass filter before applying the inverse trans-
form to achieve a noise-reduced image. They then applied a circle-fitting 
technique to identify the location of the melt pool, and extracted the 
width. Su et al. (2022) similarly used filtering to remove noise from melt 
pool images before extracting the width as a control input. Hofman et al. 
(2012) used a single-step process, applying a Gauss-shaped point spread 
function to remove single bright pixels which they attributed to spatter, 
before measuring melt pool width. However, image-processing increases 
the calculation time and neither study discusses how successfully the 
spatter is removed from the image, or whether the image-processing has 
influenced the subsequent measurement. 

Analysis of melt pool images from additive manufacturing processes 
can also be carried out for the identification of build defects as they 
occur. The literature on this has often concentrated on complex tech-
niques including the neural networks and deep learning approaches 
used by Kwon et al. (2020) and Yang et al. (2019). An alternative 
approach, developed by Liao et al. (2022), used a finite-element simu-
lation combined with live monitoring of melt pool depth for DED power 
modulation. For industrial applications, these have a high barrier to 
entry, requiring complex coding, significant computing power and large 
volumes of training data. 

Camera-based systems provide a wider scope for extracting 
descriptive characteristics. A widely-used technique is to determine a 
threshold intensity value corresponding to the edge of the melt pool, and 
from this measure either a width (Akbari and Kovacevic, 2019) or an 
area (Hu et al., 2002). Using the width allows the virtual measurement 
to be calibrated to a physical measurement from a built component, as 
demonstrated by Akbari and Kovacevic (2019), adding a link in the 
chain of process qualification. Melt pool images have also been used 
with pixel tracking to calculate live cooling rates (Farshidianfar et al., 
2021). 

The next stage is the adjustment of the control parameter, based on 
this input. DED has a large number of build parameters including power, 
speed, hatch spacing, layer thickness, scan strategy and powder flow 
rate. Commonly, the adjusted parameter is either the laser power 
(Akbari and Kovacevic, 2019) or travel speed (Farshidianfar et al., 
2021), but studies have also considered live modifications to the scan 
strategy to avoid localised heat build-up (Nassar et al., 2015). 
Comprehensive parameter studies have demonstrated that laser power is 
the most significant factor affecting melt pool width (Qi et al., 2010). 
Additionally, by controlling on laser power, the distance travelled be-
tween control points is uniform across the component. 

While there are many studies investigating different ways to incor-
porate closed-loop control within DED, there is limited evidence for it 
improving bulk mechanical properties. As Smoqi et al. (2022) identifies, 
the majority of DED closed-loop control studies produce comparatively 
small samples, often only single-hatch walls, not representative of a 
production-size components. From an industrial perspective, knowing 
that a control algorithm is sufficiently robust to operate without issues 
over a representative build duration is extremely useful, particularly 
when it relies on transferring large volumes of data between different 
components of a control system. Further, while these studies demon-
strate improved stability in the measured characteristic (e.g. melt pool 
width), this only confirms that the control algorithm is affecting that 
characteristic, not necessarily that it is improving the built product. 

Farshidianfar et al. (2021) used dendrite arm spacing and hardness 
to analyse their control approach, but the data would benefit from 
further statistical analysis as the results are not conclusive. Smoqi et al. 
(2022) showed that closed-loop control yielded a more uniform porosity 
distribution and greater microstructural homogeneity at the grain-size 
scale, but the effect on microhardness and cooling rate (determined 
from dendrite arm spacing) was less clear. Akbari and Kovacevic (2019) 
also stated their control approach yielded a more uniform solidification 
cell size, although the difference in projected cooling rate was minimal. 
Hofman et al. (2012) showed a clearer effect from closed-loop control in 
laser cladding, measuring hardness as a function of depth for a deposi-
tion with varying substrate thickness. A very recent work by Su et al. 
(2022) reports tensile data, but the test samples were cut from single 
hatch walls, with the gauge section including only 1–2 layers and taking 
three samples from each build condition, which is insufficient for ana-
lysing statistical significance. 

In this work, we have concentrated on developing a closed-loop 
control approach that could be easily applied to an industrial process 
and validating its effect on bulk mechanical properties. To achieve this, 
we have incorporated a low-cost coaxial camera, running at a compar-
atively low frame rate, within an industrial-scale DED system. We have 
used statistical filtering methods to identify representative images from 
the live-stream as the control input, rather than filtering and smoothing 
the individual images. Using simple single-walled geometries, we have 
calibrated the greyscale intensity to identify the melt pool edge, 
generate a width measurement and used this to control laser power. We 
have then tested this approach across a range of single walled and block 
geometries, and demonstrated that it delivers a reduction in geometry- 
driven mechanical property variation. 

F. Freeman et al.                                                                                                                                                                                                                                
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2. Experimental 

The powder used was gas atomised 316 L steel powder from Sandvik 
(referred to here as GA316), at a flow rate of 7.2 ± 1.3 g/min (Freeman 
et al., 2021). The powder had a nominal size range of 45–90 µm. 

Builds were carried out on a 5-axis BeAM Magic 800 Directed Energy 
Deposition system, with a 0.75 mm laser spot diameter (10Vx build 
head) and a 3.5 mm working distance (Fig. 1a-b). Imaging was carried 
out using a co-axial Basler acA1440–73gm camera with CMOS sensor, 
filtered to accept wavelengths in the range 660 – 1000 nm, excluding 
reflected light from the laser. 12-bit images, with 500 × 500 pixel field 
of view, were collected from the camera at 28 frames per second with an 
exposure of 4000 µs. The 12-bit range extends from 0 to 4095 for each 
pixel, but the majority of images only required the 0–500 section of this 

range; adjusting to a longer exposure time would use more of the range. 
All build parameters quoted are the nominal values used in the 

program, without adjustment for any efficiency losses through the 
optics. 

Builds without control included helical cylinders and blocks. The 
cylinders were built by moving the nozzle slowly in the vertical linear 
axis (Z) and rotating the turntable around the horizontal C axis, while 
keeping the horizontal linear axes (X & Y) and tilt axis (B) fixed. The 
cylinders were 30 mm diameter and 30 mm tall, built using 250 W and 
350 W laser power, at a travel speed of 2200 mm/min and a 0.2 mm 
layer height. The cylinder at 250 W power was repeated to analyse the 
process variation. 

The blocks used 270 W power, 2200 mm/min travel speed, 50 mm 
hatch length, 0.2 mm layer thickness and 0.4 mm hatch spacing. The 

Fig. 1. a) Schematic of the 10Vx DED head used in this work, showing the location of the coaxial Basler camera, the powder feed pipework and the nozzle; b) Image 
of the DED build chamber, also showing the 24Vx head (not used in this work) and the turntable; c) Cylinder built at 250 W, 2200 mm/min, repeat #1 showing good 
build quality with uniform surface finish; d) Coaxial image from cylinder built at 350 W, 2200 mm/min showing high intensity melt pool; e) Coaxial image from 
cylinder built at 250 W, 2200 mm/min repeat #1 showing lower intensity melt pool; f) Coaxial image from cylinder built at 250 W, 2200 mm/min repeat #2 
showing comparable melt pool intensity to repeat #1. Melt pool images show the 0–500 section of the intensity range for ease of viewing; all analysis used the full 
0–4095 range. 

Fig. 2. ImageSum for GA316 cylinders as a moving average over 30 images (≈1 s); a) All three cylinders combined; b) Cylinder at 250 W 2200 mm/min Repeat #1; 
c) Cylinder at 250 W 2200 mm/min Repeat #2; d) Cylinder at 350 W 2200 mm/min. Scale of b) and c) is expanded compared to that in a) and d) for clarity. 
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‘Wide & Flat’ block had 80 hatches and 25 layers (32 ×5×50 mm); the 
‘Square’ block had 34 hatches and 55 layers (13.6 ×11×50 mm), while 
the ‘Tall & Thin’ block had 16 hatches and 165 layers 
(6.4 ×33×50 mm). All blocks used a raster pattern, with hatches 
deposited in alternating direction across each layer. 

Identical blocks were built with control, using the same build files 
but allowing power to be determined by the control algorithm. In 
addition, a set of cylinders were built with control, all 30 mm high, at 
0.2 mm layer height, but with different diameters and travel speeds. The 
smallest cylinder was 10 mm diameter, with a travel speed of 1400 mm/ 
min and starting power of 250 W. The medium cylinder was 20 mm 
diameter with a travel speed of 1800 mm/min and a starting power of 
300 W. The largest cylinder was 30 mm diameter with a travel speed of 
2200 mm/min and a starting power of 300 W. 

Test pieces were harvested from the block samples for 3-point bend 
testing (span 28.2 mm). The nominal test-piece size was 45 × 3×3 mm, 
with the actual dimensions of each individual test-piece measured 
before bending. The load-displacement was converted to flexural stress- 
strain, and the maximum stress achieved was determined for each test- 
piece individually. 

3. Results & discussion 

3.1. Baseline without control 

The single-walled cylinders all showed good build quality, with 
smooth sides and no visible defects (Fig. 1c). Fig. 1d-f shows the 2000th 
image from each of the cylinder builds. The 12-bit images can achieve an 
intensity range of 0–4095; Fig. 1d-f show just the 0–500 section of this 
range to allow the melt pool to be observed more easily. Videos from the 
start and middle of each build are also available in the Appendix. The 
top of each image is the leading edge of the melt pool and the right side 
of each image is the outer face of the cylinder. 

The coaxial images captured from the cylinders were initially ana-
lysed using ‘ImageSum’, defined as the sum of the intensity of all the 
pixels in the image. With 12-bit images (0–4095) containing 500 × 500 
pixels, ImageSum can range from 0 to 109. 

The time series of ImageSum with build height, displayed as a 
moving average over 30 images (≈1 s), showed a gradual increase as the 
build progressed upwards from the baseplate (Fig. 2). The 350 W build 
had a higher ImageSum throughout, with a more significant increase 
than the 250 W builds and was still increasing at the end of the build. 
The two 250 W builds showed comparable behaviour, with any differ-
ence between them being negligible compared to the difference between 

Fig. 3. ImageSum for every image from a) GA316 cylinder at 250 W 2200 mm/min Repeat #1; b) GA316 Wide & Flat block with 80 hatches and 25 layers at 270 W 
2200 mm/min. Block data shows short drops in ImageSum every 1.4 s, corresponding to the end of each hatch, and longer drops corresponding to the end of 
each layer. 

Fig. 4. ImageSum for GA316 blocks as a moving average over 300 images (≈10 s), all built at 270 W 2200 mm/min; a) All three blocks combined; b) Wide & Flat 
block with 80 hatches and 25 layers; c) Square section block with 34 hatches and 55 layers; d) Tall & Thin block with 16 hatches and 165 layers. Periodic drops in 
ImageSum correspond to the laser switching off between layers. 
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the 250 W and 350 W builds. 
The effect of build geometry on ImageSum was further explored with 

three blocks of different cross sections. False-colour videos of the coaxial 
monitoring of the blocks are available in the Appendix, covering 300 
images (≈10 s of build time, 7–8 hatches) showing the position of the 
melt pool within the image shifting depending on travel direction. 

The data from the blocks was much noisier than that of the cylinders, 
possibly due to the laser changing direction and switching off between 
layers and hatches. This is illustrated in Fig. 3, which shows the 
ImageSum for every image (not a moving average) in a 50 s window 
from Repeat #1 of the 250 W cylinders and from the ‘Wide & Flat’ block. 

The data for the ‘Wide & Flat’ block (80 hatches, 25 layers) showed 
that ImageSum dropped every 1.4 s, for 2–3 images, before increasing 

again. These drops appeared in groups of 80 repetitions, separated by 25 
longer drops lasting around 100 images. Examination of the data on 
nozzle position and laser power confirmed that these drops coincided 
with the ends of hatches and layers, and corresponding patterns were 
observed in the data for the other two blocks. 

For the blocks, the time series of ImageSum with build height (Fig. 4) 
is displayed as a moving average over 300 images (≈10 s); a longer 
window than used for the cylinders to counteract the increased noise. 

The blocks showed a gradual decrease in ImageSum at the start of the 
build, in contrast to the increase observed with the cylinders. There was 
also a drop in ImageSum at the end of each layer, when the laser 
switched off and the nozzle moved back to the start position. For the 
‘Tall & Thin’ block, with only 16 hatches per layer, this noise was very 

Video 1. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  
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significant. 
A final observation was that all builds showed frequent incidences of 

very high ImageSum values (> 3 ×106), most clearly seen in Fig. 3. It 
was identified that these were from images with small, very intense 
regions, probably caused by the ejection of hot particles from the melt 
pool (spatter). This can be observed in the videos 1–13 (Appendix). 

ImageSum provides useful information about the build behaviour, 
but it is a relatively coarse parameter, given that a small, hot melt pool 
could generate an image with the same ImageSum as a larger, cooler 
melt pool. This has been investigated using data from the Repeat #1 of 
the 250 W, 2200 mm/s cylinder (Fig. 5). 

Image #932, near the start of the build, had an ImageSum of 
1.686 × 106 and shows a small, bright melt pool with spatter at the 
leading edge. Image #8191, near the end of the build, had an ImageSum 

of 1.697 × 106, and shows a larger, lower intensity melt pool. While the 
exact ImageSum values are slightly different, they were both close to the 
mean ImageSum for the whole build (1.683 ×106) and the difference 
between them was only 2% of the standard deviation (5.009 ×105), so 
they are judged to have a sufficiently comparable ImageSum for this 
assessment. 

3.2. Control algorithm design 

3.2.1. Noise filtering 
As shown above and in the videos (Appendix), the livestream of raw 

image data was noisy, including images where the laser was off and 
images with spatter, and therefore required filtering. The aim of the 
filtering was not to select the best image at a given time, or perfectly 

Video 2. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  

F. Freeman et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.jmatprotec.2022.117823


Journal of Materials Processing Tech. 311 (2023) 117823

7

identify those with spatter, but to give a computationally efficient way 
to ensure the images used for the control input were representative of 
the current melt pool condition. The behaviour of the filtering sequence 
is illustrated in Fig. 6, using a set of images from the Square block build. 

A control loop was triggered every 30 images, capturing approxi-
mately 1 s of build time and the ImageSum was calculated for each 
image individually (Fig. 6a). This number of images was selected as it is 
commonly regarded as the minimum number of observations for sta-
tistical analysis. A higher number would reduce the update frequency, 
while a smaller number would potentially reduce the ability to eliminate 
non-representative images. 

The first stage was to remove images where there was no melt pool, 
as these were considered to be a separate population from those required 
for the control input. Histograms of the ImageSum data for each block 

(Fig. 7) showed split distributions; the majority of the ImageSum data in 
the range 1×106 to 5×106 but with a second peak below 1.5 × 105, 
corresponding to the images at the ends hatches and layers. It was 
judged that a fixed threshold of 1.5 × 105 would be an efficient way to 
exclude the majority of the dark images, retaining only those judged to 
contain a visible melt pool (Fig. 6b). 

The next stage was to ensure the images used for width measurement 
were representative of the current melt pool condition. The remaining 
image set was used to calculate the ImageSum mean, x, and standard 
deviation, σ, and to define thresholds at (x+σ) and (x − σ). Those with 
ImageSum outside the ±1σ thresholds were filtered out (Fig. 6c), an 
approach based on statistical process control techniques (Stapenhurst, 
2005, pp. 14–16). The calculations of mean and standard deviation were 
quick, allowing them to be updated for each control loop based on the 

Video 3. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  
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current image set. 
Updating the mean and standard deviation on each control loop 

ensured that the filtering range responded to underlying trends in the 
ImageSum data and differences between components, such as the 
baseplate heat sink effect discussed earlier. 

Finally, from the set of images which passed the filtering, the most 
recent 5 were used as the control input (Fig. 6d) as these are most 
representative of the current state of the process. If, at any stage, there 
were fewer than 5 images to pass to the next stage, the loop terminated 
and restarted with a new set of images. 

In the example illustrated in Fig. 6, four images were filtered out for 
being outside the filtering thresholds; these are shown in the top row of 
Fig. 8 and all exhibit ‘hotspots’ associated with spatter. Five images were 
selected for width measurement; these are shown in the bottom row of 

Fig. 8, and all have clear melt pools with no apparent spatter. 
This approach was computationally efficient, as calculating Image-

Sum and applying the filtering thresholds were comparatively quick 
calculations. Extracting melt pool width, which was used as the control 
input was more computationally intensive, but was only carried out on 
images which had passed the filtering process and were judged to be 
representative of the current melt pool condition. In an offline test, 
calculation of the filtering thresholds took 2 ms for the full set of 30 
images, while width measurement took 1 ms per image, giving an 
overall time of 7 ms per loop with the filtering approach, a 4x reduction 
against > 30 ms if width was measured on every image. This becomes 
more important during a build, when the computer is also managing the 
livestream from the camera and communication with the BeAM over the 
OPC-UA interface. 

Video 4. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  
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3.2.2. Calibration 
To use the images as the input to a closed-loop control algorithm, the 

melt pool width was measured, where the greyscale threshold defining 
the melt pool edge was calibrated against physical measurements from a 
single-walled build (Akbari and Kovacevic, 2019). 

The physical measurements were taken from the single-walled cyl-
inders, which were built keeping the nozzle stationary and rotating the 
turntable around the vertical axis. This fixed the position of the melt 
pool within the image, keeping melt pool width parallel to the horizontal 
axis of the image (Fig. 1). 

To determine the greyscale threshold for the GA316 powders, the 
cylinders were sectioned vertically with a cutting wheel and the width of 
the single hatch wall was measured using calipers at 5 positions from 
base to top, with 3 measurements at each position. Caliper 

measurements were taken slightly back from the cut surface to avoid the 
effect of flash at the cut edge. 

Measuring at multiple heights accommodated the increase in width 
observed during the build (Fig. 9a). The images were analysed, varying 
the greyscale threshold to minimise the error between the image width 
and the physical width over all positions on all cylinders (Fig. 9b). The 
minimum error was achieved by defining the melt pool edge at a grey-
scale value of 18. 

The width measurement was extracted from the image by binarising 
using the greyscale threshold, and extracting a bounding box across the 
resulting black & white image (Fig. 9c-e). 

The coaxial images collected from the earlier GA316 cylinders and 
blocks were post-processed through the control algorithm described 
above to generate a width time series. The cylinders (Fig. 10a) showed 

Video 5. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  
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an increase in width at the start of the build, as expected from the 
literature. 

The blocks (Fig. 10b-d) all showed a decrease in width over the first 
1000 s of the build, at varying levels and in contrast to the increase 
observed with the cylinders. This was least apparent in the Square block, 
but the melt pool width of the Tall & Thin block reduced by 80 µm 
during the first 500 s of build time (20 layers, 4 mm build height). This 
has not been reported previously, and highlights the extent to which 
geometry influences the balance between different heat loss 
mechanisms. 

The data from the blocks was extremely noisy, with limited stabili-
sation. Analysing the data for the second half of each build only, to 
exclude the baseplate heat sink effect, there was evidence of a compo-
nent geometry effect, with a statistically significant difference in the 

median width between the three geometries (Kruskal-Wallis test, 
p = 0.000); the Wide&Flat block achieved a width of 829 ± 62 µm, the 
Square block achieved a width of 815 ± 65 µm, while the Tall&Thin 
block achieved a width of 776 ± 58 µm. 

3.2.3. Power modulation 
The second part of the control algorithm was the adjustment of laser 

power. The measured width was divided by the target width to give an 
error ratio ϵ (e.g. measured 880 µm, target 800 µm, error ratio 1.1). The 
error ratio ϵ was converted to a scaling factor F using the following 
relationship, where the value of β determined the strength of power 
adjustment. To prevent damage to the machine, F was limited to a 
maximum of 1.5 and minimum of 0.5. 

Video 6. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  
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F = β(1− ϵ)+ 1 

The scaling factor was pushed to the BeAM through the OPC-UA 
interface, and applied to the initial power set in the programme G- 
code. A programme with an initial power of 300 W, with a scaling factor 
of 0.8 therefore produced an instantaneous power of 240 W. 

A series of blocks, 6 hatches wide and 20 layers high, were used to 
assess the performance of different values of β, with the aim of cor-
recting deviations quickly without causing oscillation through over-
correction; good results were achieved with β = 0.50. The calculation 
used at this stage was relatively simple, compared with the techniques in 
the literature, and a more complex calculation could be applied in future 
if required. 

The resolution of the power modulation is determined by the 

resolution of the original image, the target width and the current power. 
In these images, 1 pixel = 5.4 µm, giving a scaling factor resolution of 
0.00338 for a target width of 800 µm. For a current power of 270 W, this 
corresponds to a power modulation step size of 0.911 W. A larger step 
size would be driven by a lower image resolution, a smaller target width 
or a larger initial power. 

3.3. Validation 

The control algorithm was tested by building a series of simple ge-
ometries: blocks (as previously) and cylinders with different diameters 
and initial laser power/speed. The blocks were direct repeats of those 
previously built without control, using the same program, while the 
cylinders at 20 mm and 10 mm diameter were new geometries which 

Video 7. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  
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were only built using control. 
As the cylinder diameter reduces, the time for the laser to return over 

a given position also reduces, giving less time for heat to dissipate away. 
If the laser power is not reduced, or the travel speed increased, suffi-
ciently to counteract effect this then there is a risk of the melt pool size 
increasing to the extent that it may bridge to the nozzle, causing the 
build to fail and potentially damaging the nozzle. Given this risk, there 
was no attempt to build the smaller cylinders using the same starting 
conditions without control. 

The 30 mm diameter cylinder was built first, with an initial power of 
300 W based on an average of the earlier ‘No Control’ cylinder builds. 
The 20 mm diameter cylinder was then built, reading across the starting 
power of 300 W; this stabilised to a final power of 212 W, a scaling 
factor of 0.7. As the control algorithm limits to a scaling factor between 

0.5 and 1.5 of the initial power, the initial power for the 10 mm cylinder 
was set to 250 W, expecting that it would require an even lower final 
power. The cylinder speeds were chosen to avoid excessive rotational 
speed which could damage the turntable, given that these were built 
with the nozzle stationary and the turntable rotating around the vertical 
axis. 

The builds all converged on the target width of 800 µm within 20 s 
(Fig. 11 & Table 1), and maintained this throughout the build duration. 
For the Square block, the mean interval between control adjustments 
was 1.04 ± 0.30 s with a standard deviation of 0.30 s, correlating well 
with the programmed frequency. There were no errors or lags in image 
capture from the camera, or in data transfer across the OPC-UA interface 
between the control algorithm and the BeAM equipment. 

At a fixed travel speed of 2200 mm/min, this control frequency 

Video 8. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  
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corresponds to one control point every 36 mm. This gave good results 
for a component with a hatch length of 50 mm, but might not be 
appropriate for components with smaller features. In this situation, the 
control loop could be triggered from fewer images, allowing a higher 
control frequency. 

The blocks without control had displayed an initial drop in width 
during the first 1000 s of the build; this was successfully corrected in the 
control builds, which showed a stable width measurement during this 
time and a corresponding increase in power (Fig. 12). While the control 
algorithm corrected for component-scale trends, it did not affect the 
low-level noise which was comparable with and without control 
(Table 1). 

The blocks manufactured from GA316 with and without control were 
stress relieved using a heat treatment (650 ◦C for 2 h) and then sectioned 

by EDM into matchsticks, each approximately 45 × 3×3 mm for 3-point 
bend testing. The tests were used to generate flexural stress-strain curves 
and extract the ultimate flexural strength (Fig. 12). Bend test samples 
were only harvested from the blocks, the single wall cylinders were too 
thin and curved for meaningful data to be collected. 

Bend testing was selected as it permitted a large number of samples 
to be harvested from the blocks, yielding 35 samples from each of the 
‘No Control’ and ‘With Control’ conditions, and a minimum of 11 
samples from each individual geometry, enabling meaningful statistical 
analysis. This also allowed an assessment of the spread of mechanical 
properties throughout each block. Bend testing is more forgiving of in-
ternal porosity, which can be an issue with additively manufactured 
parts, but it was regarded as appropriate for this study assessing the 
impact of component geometry and control on the variation in 

Video 9. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  
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mechanical properties (Fig. 13). 
The ultimate flexural strength (UFS) was used to compare the two 

control conditions by applying a series of statistical tests in Minitab. The 
first analysis compared the UFS distribution for ‘No Control’ and ‘With 
Control’ overall, with UFS data from all three block geometries com-
bined (Fig. 12c-d):  

1. The data for ‘No Control’ and ‘With Control’ each fitted a normal 
distribution (Anderson-Darling test, p > 0.1 in both cases).  

2. The mean of the ‘No Control’ and ‘With Control’ datasets were not 
significantly different (2-sample T-test, p = 0.365).  

3. The variance of the ‘With Control’ dataset was smaller than that of 
the ‘No Control’ dataset (2-Variances test, p = 0.004).  

4. The Weibull modulus of the ‘With Control’ dataset (36.9) was higher 
than that of the ‘No Control’ dataset (22.5). 

The second analysis considered the UFS distribution from the three 
block geometries individually (Fig. 12e-f):  

1. The data from each block geometry individually fitted a normal 
distribution (Anderson-Darling test, p > 0.1 in all cases).  

2. The means for the ‘No Control’ blocks were different (1-way ANOVA, 
p = 0.011).  

3. The means for the ‘With Control’ blocks were not different (1-way 
ANOVA, p = 0.250). 

Using control has achieved more consistent mechanical behaviour, 

Video 10. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  
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which was the goal of this work. Reducing variation is an essential first 
step in process improvement, creating a solid baseline for subsequent 
activity. Once the variation (noise) is minimised, it is easier to assess 
whether changes to the input conditions (e.g. target width) have carried 
through to an improvement in mechanical properties. 

4. Summary & conclusions 

The aim of this work was to develop a simple image-based closed- 
loop control system for DED, and use it to investigate the effect of 
component geometry on mechanical properties. This incorporated a 
low-cost coaxial camera running at a comparatively low frame rate on 
an industrial-scale DED system, using statistical filtering to identify 
representative images for the control input. The control system was 

tested across a range of geometries, including larger components with 
long build times to confirm robustness, and validated by statistical 
analysis of mechanical test data. 

The statistical filtering approach was designed to provide a compu-
tationally efficient method of ensuring the control input consisted only 
of images known to be typical of the current melt pool condition. It was 
not designed to be perfect at identifying images with spatter, or those 
where the laser was off. Further, it was judged to be faster and more 
robust than running noise reduction on each image individually. 

Statistical process control is commonly used to monitor the output of 
conventional manufacturing processes, and is therefore well understood 
by industry. Other studies have used fast Fourier transforms (Akbari and 
Kovacevic, 2019) or noise filtering (Hofman et al., 2012) to remove 
spatter from the individual images, but these risk affecting the 

Video 11. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  
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subsequent measurement. The statistical process control approach takes 
measurements from the unmodified images, which produces a more 
traceable result, and avoids the computing burden of more complex 
techniques. 

Melt pool width was selected as the control parameter, being 
straightforward to measure both on the physical component and on the 
images, and has been used successfully in the literature (Akbari and 
Kovacevic, 2019). False colour videos from the cylinders show a long tail 
at the bottom of the image (opposite to travel direction), which could be 
the trailing edge of the melt pool or could be a stream of hot gas, both of 
which would contribute to the intensity of the image in this region. As 
the camera cannot distinguish between these, the measurement of melt 
pool length and area are judged to be less reliable than the measurement 
of width. 

Single walled cylinders built without control showed an increase in 
melt pool width with build height; this has been reported previously and 
attributed to the heat sink effect of the baseplate. However, the multi- 
hatch blocks built without control showed the opposite, with melt 
pool width decreasing during the early layers, highlighting how geom-
etry influences the competing heat loss mechanisms. 

The mechanical properties of the blocks were quantified by 3-point 
bend tests using samples harvested from the blocks. This showed that 
the variance of the ultimate flexural strength distribution ‘With Control’ 
was tighter than that from ‘No Control’ and the Weibull modulus ‘With 
Control’ was higher than ‘No Control’. The Weibull modulus is a 
parameter which maps the probability of failure; a higher modulus de-
notes a more homogenous material with more predictable behaviour. 

Further, the analysis showed that the means of the three ‘No Control’ 

Video 12. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  
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blocks were different, indicating that, for fixed build parameters, 
component geometry can significantly influence mechanical properties. 
In contrast, the means of the three ‘With Control’ blocks were not 
different, confirming that the control algorithm had successfully elimi-
nated the effect of geometry on mechanical behaviour, improving me-
chanical homogeneity across different geometries and providing a 
robust baseline for future process improvement. 

While this analysis has shown very promising results, there are a 
number of refinements which could be explored in future work. Incor-
porating a laser profilometer adjacent to the deposition nozzle would 
allow the physical width to be measured at a frequency comparable with 
the image capture, and therefore refine the calibration between image 
width and physical width. The power modulation calculation is very 
basic and while the control algorithm corrected the component-scale 

trends, there was no improvement in the low-level noise. A more com-
plex modulation calculation could provide control over this low-level 
noise, achieve control more quickly, and yield a further reduction in 
mechanical property variation.  

• Used fixed build parameters, component geometry was observed to 
affect melt pool width and resulting bulk mechanical properties in 
multi-hatch, multi-layer blocks built from 316 L by directed energy 
deposition  

• Thin walled structures showed an increase in melt pool width with 
build height while the multi-hatch, multi-layer blocks showed a 
decrease, indicating a further geometry influence in the balance 
between different heat loss mechanisms 

Video 13. A video clip is available online. Supplementary material related to this article can be found online at doi:10.1016/j.jmatprotec.2022.117823.  

F. Freeman et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.jmatprotec.2022.117823


Journal of Materials Processing Tech. 311 (2023) 117823

18

Fig. 6. Graphical demonstration of filtering approach, using 30 images from the Square block build. a) All 30 images brought into one control loop; b) Selection of 
images where the laser is on; c) Selection of images within 1 standard deviation of the mean; d) Selection of the most recent 5 images. 

Fig. 5. Images from cylinder built at 250 W, 2200 mm/s, Repeat #1. Two images with comparable ImageSum but different melt pool size and intensity. Arrow shows 
laser travel direction. Images show the 0–200 section of the intensity range. 

Fig. 7. Histograms of ImageSum for the three blocks, with the fixed threshold at 1.5 × 105 identified. Difference in y-axis scale highlights the difference in time spent 
with the laser off (ImageSum <1.5 ×105) for the different geometries. 
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Fig. 9. a) Measured width of single hatch cylinders as a function of height; b) Calibration of greyscale threshold for identifying melt pool edge, aiming to minimise 
error between physical measurement of single hatch wall width and image measurement of melt pool width across all three cylinder builds; c)-e) Sequence of 
binarising and extracting width measurement from an image. 

Fig. 8. Top row: Images from Fig. 6 which were rejected for being outside the selection threshold; Bottom row: Images from Fig. 6 which are acceptable to be used for 
width measurement. 
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Fig. 11. Width for GA316 cylinders and blocks built ‘With Control’. a) All three cylinders combined; b) Wide & Flat block with 80 hatches and 25 layers; c) Square 
section block with 34 hatches and 55 layers; d) Tall & Thin block with 16 hatches and 165 layers. Cylinder data displayed as moving average over 30 images (≈1 s), 
block data displayed as moving average over 300 images (≈10 s). 

Fig. 10. Width for GA316 cylinders and blocks built ‘No Control’. a) All three cylinders combined; b) Wide & Flat block with 80 hatches and 25 layers; c) Square 
section block with 34 hatches and 55 layers; d) Tall & Thin block with 16 hatches and 165 layers. Cylinder data displayed as moving average over 30 images (≈1 s), 
block data displayed as moving average over 300 images (≈10 s). 

Table 1 
Summary data for each build, by geometry and control type. Final power and mean width are calculated from the second half of each build, to exclude baseplate effects. 
Error shown is 1 standard deviation.  

Geometry Control Type Speed mm/s Initial Power W Final Power W Mean Width µm 

Block Wide & Flat No Control 

2200 270 

N/A 829 ± 62 
With Control 262 ± 16 799 ± 60 

Block Square No Control N/A 815 ± 65 
With Control 269 ± 21 799 ± 60 

Block Tall & Thin No Control N/A 776 ± 58 
With Control 277 ± 19 799 ± 58 

Cylinder 10 mm Φ With Control 1400 250 174 ± 2 803 ± 13 
Cylinder 20 mm Φ With Control 1800 300 212 ± 2 802 ± 12 
Cylinder 30 mm Φ With Control 2200 300 246 ± 3 801 ± 13  
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Fig. 12. Laser power for GA316 cylinders and blocks built ‘With Control’. a) All three cylinders combined; b) Wide & Flat block with 80 hatches and 25 layers; c) 
Square section block with 34 hatches and 55 layers; d) Tall & Thin block with 16 hatches and 165 layers. Cylinder data displayed as moving average over 30 images 
(≈1 s), block data displayed as moving average over 300 images (≈10 s). 

Fig. 13. 3-point bend test data for GA316 across three block geometries. a) Flexural stress-strain for ‘No Control’; b) Flexural stress-strain for ‘With Control’; c) 
Histograms and d) Weibull probability distributions for ultimate flexural strength for ‘No Control’ and ‘With Control’ with the three blocks geometries combined; e) 
and f) Boxplots for the individual block geometries. 
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• Closed-loop control of laser power produced a statistically significant 
reduction of the mechanical property distribution and eliminated the 
effects of component geometry and distance from the baseplate  

• Statistical process control techniques were used to filter the live 
signal and extract representative images, successfully excluding 
those with spatter or where the laser is switched off  

• The control approach, monitoring melt pool width using a low-cost 
coaxial camera running at a framerate of 30 Hz, was sufficiently 
robust to maintain an update frequency of 1 Hz over build durations 
of > 1 h 
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