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The properties of rotating turbulence driven by precession are studied using direct numerical simulations and analysis
of the underlying dynamical processes in Fourier space. The study is carried out in the local rotating coordinate
frame, where precession gives rise to a background shear flow, which becomes linearly unstable and breaks down into
turbulence. We observe that this precession-driven turbulence is in general characterized by coexisting two dimensional
(2D) columnar vortices and three dimensional (3D) inertial waves, whose relative energies depend on the precession
parameter Po. The vortices resemble the typical condensates of geostrophic turbulence, are aligned along the rotation
axis (with zero wavenumber in this direction, kz = 0) and are fed by the 3D waves through nonlinear transfer of energy,
while the waves (with kz 6= 0) in turn are directly fed by the precessional instability of the background flow. The
vortices themselves undergo inverse cascade of energy and exhibit anisotropy in Fourier space. For small Po < 0.1 and
sufficiently high Reynolds numbers, the typical regime for most geo-and astrophysical applications, the flow exhibits
strongly oscillatory (bursty) evolution due to the alternation of vortices and small-scale waves. On the other hand, at
larger Po > 0.1 turbulence is quasi-steady with only mild fluctuations, the coexisting columnar vortices and waves in
this state give rise to a split (simultaneous inverse and forward) cascade. Increasing the precession magnitude causes a
reinforcement of waves relative to vortices with the energy spectra approaching the Kolmogorov scaling and, therefore,
the precession mechanism counteracts the effects of the rotation.

I. INTRODUCTION

Rotating turbulence is an ubiquitous phenomenon in a
broad context ranging from astrophysical and geophysical
flows1–4 to industrial applications5,6. Understanding the im-
pact of rotation on the turbulence dynamics is far from triv-
ial due to the complexity of the nonlinear processes involved.
In general, when a fluid is subjected to rotational motion,
the nonlinear interactions are affected by the Coriolis force
whose strength is quantified by the Rossby number, Ro (the ra-
tio of the advection time-scale to the rotation time-scale) and
the Reynolds number, Re (the ratio of advective to viscous
time-scale). If the Coriolis force is strong enough the for-
mation of coherent columnar vortices occurs inside the fluid
flow. This phenomenon has been observed in experimental
campaigns for several systems such as oscillating grids7, for
decaying turbulence8,9, forced turbulence10–12, and turbulent
convection13,14. Also numerical simulations have been instru-
mental to analyze such tendency in a myriad of cases15–21,
making use of large eddy simulations22–24 and even turbu-
lence models25,26.

The emergence of columnar vortices aligned along the flow
rotation axis is accompanied by inertial waves which are in-
herent to rotating fluids. Their frequency magnitude ranges
between zero and twice the rotation rate Ω of the objects27.
The dynamics and mutual couplings between these two ba-
sic types of modes largely depend on Re and Ro. The
results of the asymptotic analysis at Ro ≪ 1 indicate that

three-dimensional (3D) inertial waves and two-dimensional
(2D) vortices are essentially decoupled and evolve indepen-
dently: vortices undergo inverse cascade, while the wave en-
ergy cascades forward through resonant wave interactions in
the regime of weakly nonlinear inertial wave turbulence28–31.
However, this picture does not carry over to moderate Rossby
numbers Ro ∼ 0.1, where the situation is much more com-
plex, since 3D inertial waves (the so called fast modes) and 2D
vortices (also called slow modes) can coexist and be dynami-
cally coupled. In this case, asymptotic analysis cannot be used
and more complex mathematical models have been proposed
to explain the geostrophic vortices-wave interaction, such as
the quartic instability32 or near-resonant instability33. How-
ever progress can be made mainly by numerical simulations.
Several works are devoted to the study of these two manifolds
and their interactions for forced rotating turbulence29,34–36 and
also for convective and rotating turbulence37,38.

Indeed other forcing mechanisms have been shown to be
characterized by this interplay of vortices and waves, such as
elliptical instabilities39–43 and tidal forcing44–48. In this re-
spect, the precession-driven dynamics represents a possible
candidate for the development of both 3D waves with embed-
ded 2D vortices36,49 but so far these studies does not investi-
gate a wide range of governing parameters. Other works were
devoted to the stability analysis of the precession flows50.

The modified local Cartesian model of a precession-driven
flow was proposed by Mason and Kerswell51 and later used
by Barker45 to study its nonlinear evolution. In the first paper,
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rigid and stress-free axial boundaries in the vertical direction
were used , while in the second paper an unbounded preces-
sional flow was considered in the planetary context, employ-
ing the decomposition of perturbations into shearing waves. In
this paper, we follow primarily the approach of Barker45, who
analyzed the occurrence of vortices, function of the precession
parameter (Poincaré number), including energy spectrum and
dissipation properties. The main advantage of the local model
is that it allows high-resolution study of linear and nonlin-
ear dynamical processes in precession-driven flows, which is
much more challenging in global models. Also, this model
allows to focus only on the dynamics of the bulk flow itself
avoiding the complications due to boundary layers. This is
important for gaining a deeper understanding of perturbation
evolution in unbounded precessional flows and then, compar-
ing with the global simulations, for pinning down specific ef-
fects caused by boundaries.

In this paper, we continue this path and investigate in de-
tail the underlying dynamical processes in the turbulence of
precessional flow in the local model. We decompose pertur-
bations into 2D and 3D manifolds and analyse their dynam-
ics and interplay in Fourier space. Our main goal is to ad-
dress and clarify several key questions: (i) how the presence
and properties of columnar vortices depend on the precession
strength and Reynolds number (here defined as the inverse Ek-
man number), (ii) what are the mechanisms for the formation
of the columnar vortices in precessing driven flows, in particu-
lar, how their dynamics are affected by precessional instability
of inertial waves, that is, if there are effective nonlinear trans-
fers (coupling) between vortices and the waves; (iii) what are
the dominant nonlinear processes (channels) in this vortex-
wave system, i.e., the interaction of 2D-3D modes or 2D-2D
modes (inverse cascade), (iv) in terms of total shell-average
spectral analysis, what type of cascades (inverse, forward) oc-
cur and what kind of spectra characterize precessional flows.

The paper is organized as follows: in Section II the local
model and governing equations in physical and Fourier space
are presented, and numerical methods introduced. Section III
presents general evolution of the volume-averaged kinetic en-
ergy and dynamical terms as well as flow structure. In Section
II B we investigate the nonlinear dynamics of 2D vortices and
3D inertial waves and nonlinear interaction between them in
Fourier space. In this section we also characterize turbulent
dissipation as a function of precession parameter Po. Discus-
sions and the future perspectives are presented in Section V.

II. MODEL AND EQUATIONS

We consider a precessional flow in a local rotating Cartesian
coordinate frame (also referred to as the ‘mantle frame’ of a
precessing planet) in which the mean total angular velocity of
fluid rotation Ω = Ωez is directed along the z-axis. In this
frame, the equations of motion for an incompressible viscous

fluid take the form (see a detailed derivation in Refs.45,51):

∂U

∂ t
+U ·∇U +2Ω(ez +ǫ(t))×U =

−
1
ρ
∇P+ν∇2U +2zΩ2ǫ(t), (1)

∇ ·U = 0, (2)

where U is the velocity in this frame, ρ is the spatially uni-
form density and P is the modified pressure equal to the
sum of thermal pressure and the centrifugal potential. The
last two terms on the left-hand side in the brackets are the
Coriolis and the Poincaré forces, respectively, and ǫ(t) =
Po(cos(Ωt),−sin(Ωt),0)T is the precession vector with Po

being the Poincaré number characterizing the strength of the
precession force. The last term on the right-hand side (RHS)
is the second part of the precession force with vertical shear,
which is the main cause of hydrodynamic instability in the
system, refereed to as the precessional instability.52 ν is the
constant kinematic viscosity.

The basic precessional shear flow in this local frame rep-
resents an unbounded horizontal flow with a linear shear
along the vertical z-axis and oscillating in time t, i.e., Ub =
(Ubx(z, t),Uby(z, t),0) with the components given by45,51

Ub =−2Ω Po





0 0 sin(Ωt)
0 0 cos(Ωt)
0 0 0
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where r= (x,y,z) is the local position vector. Our local model
deals with perturbations to this basic flow, u = U −Ub, for
which from Eq. (1) we obtain the governing equation:

∂u

∂ t
+u ·∇u=−

1
ρ
∇P+ν∇2u−2Ωez ×u−

2Ωε(t)×u−Mu−Mr ·∇u, (3)

where the last three terms on the RHS are related to precession
and proportional to Po. The flow field is confined in a cubic
box with the same length L in each direction, Lx = Ly = Lz =
L. In other words, both horizontal and vertical aspect ratios of
the box are chosen to be equal to one in this paper. Varying
these aspect ratios affects the linearly unstable modes that can
be excited in the flow and the properties of the vortices39.

Below we use the non-dimensionalization of the variables
by taking Ω−1 as the unit of time, box size L as the unit
of length, ΩL as the unit of velocity, ρL2Ω2 as the unit of
pressure and perturbation kinetic energy density E = ρu2/2.
Thus, in our units Ω = L = ρ = 1 and every variable is nor-

malized in terms of them. The key parameters governing a
precession-driven flow are the Reynolds number (inverse Ek-
man) defined as

Re =
ΩL2

ν

and the Poincaré number Po introduced above.
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FIG. 1. Sketch of the periodic cubic domain with length L in each
direction where the base flow inside it is Ub with superimposed per-
turbation velocity u.

A. Governing equations in Fourier space

Our main goal is to perform the spectral analysis of
precession-driven turbulence in Fourier (wavenumber k-)
space in order to understand dynamical processes (energy in-
jection and nonlinear transfers) underlying its sustenance and
evolution. To this end, following39,45, we decompose the per-
turbations into spatial Fourier modes (shearing waves) with
time-dependent wavevectors k(t),

f (r, t) = ∑
k

f̄ (k(t), t)eik(t)·r, (4)

where f ≡ (u,P), the Fourier transforms of these fields are
f̄ ≡ (ū, P̄). Here, the summation is take over a discreet set of
wavenumbers in the cubic box, ki = ni∆ki, where i = (x,y,z)
and ∆ki = 2π/Li = 2π/L is the grid cell size in Fourier
space, which is the same in each direction, with integer ni =
0,±1,±2, ...,±Ni/2. In decomposition (4), the wavevector of
modes oscillates in time,

k(t) = (kx0,ky0,kz0 +2Po(−kx0cos(t)+ ky0sin(t)))T , (5)

about its constant average value 〈k(t)〉= (kx0,ky0,kz0) due to
the periodic time-variation of the basic precessional flow Ub.
Substituting Eq. (4) into Eq. (3) and taking into account the
above non-dimensionalization, we obtain the following equa-
tion governing the evolution of velocity amplitude

dū

dt
=−ik(t)P̄−

k2

Re
ū−2ez × ū

−2ε(t)× ū−M(t)ū+Q , (6)

k(t) · ū= 0. (7)

Note that the wavevector k(t) as given by expression (5) sat-
isfies the ordinary differential equation

dk

dt
=−MTk (8)

and as a result the last term on the RHS of Eq. (3) related to
the basic flow has disappeared when substituting (4) into it.
The term Q(k, t) on the RHS of Eq. (6) represents the Fourier

Re = 103.5

Po N 〈E〉

0.01 64 -
0.025 64 -
0.05 64 -

0.075 64 -
0.1 64 -

0.125 64 -
0.15 64 -

0.175 64 -
0.2 64 -

0.225 64 -
0.25 64 -
0.3 64 6.09×10−5

Re = 104

Po N 〈E〉

0.01 64 -
0.025 64 -
0.05 64 -

0.075 128 -
0.1 128 -

0.125 128 1.89×10−5

0.15 128 6.04×10−5

0.175 128 1.42×10−4

0.2 128 3.54×10−4

0.225 128 6.11×10−4

0.25 128 9.94×10−4

0.3 128 2.10×10−3

Re = 104.5

Po N 〈E〉

0.01 128 -
0.025 128 -
0.05 128 1.02×10−5

0.075 128 3.82×10−5

0.1 128 1.13×10−4

0.125 128 4.93×10−4

0.15 256 1.30×10−3

0.175 256 2.30×10−3

0.2 256 5.40×10−3

0.225 256 6.20×10−3

0.25 256 6.40×10−3

0.3 256 9.00×10−3

0.5 256 1.25×10−2

Re = 105

Po N 〈E〉

0.01 256 -
0.025 256 -
0.05 256 4.55×10−5

0.075 256 2.37×10−4

0.1 256 1.10×10−3

0.125 256 5.90×10−3

0.15 256 6.80×10−3

0.175 256 7.50×10−3

0.2 256 8.90×10−3

0.225 256 1.02×10−2

0.25 256 1.14×10−2

0.3 256 1.15×10−2

TABLE I. List of all simulations performed in the present work.
Each subtable corresponds to a specific Reynolds number and var-
ious Poincaré numbers Po (first column). The second column shows
numerical resolution N (before dealiasing), which is the same in each
direction, Nx = Ny = Nz = N (total number of point is N3). The third
column shows the time- and volume-averaged kinetic energy 〈E〉.
Runs marked with hyphen are not sustained and quickly decay. No-
tice that for Re = 104.5 we have run also a simulation at very large
Po = 0.5.

transform of the nonlinear advection term u ·∇u = ∇ · (uu)
in the original Eq. (3) and is given by the convolution35,53

Qm(k, t) =−i∑
n

∑
k′

knūm(k
′, t)ūn(k−k′, t), (9)

where the indices (m,n) = (x,y,z). This term describes the
net effect of nonlinear triadic interactions (transfers) among a
mode k with two others k−k′ and k′ and thus plays a key
role in turbulence dynamics.

Multiplying both sides of Eq. (6) by the complex conju-
gate of spectral velocity ū∗, the contribution from Coriolis
and part of the Poincaré force in the total kinetic energy of
a mode cancel out, since they do not do any work on the
flow, ū∗ · (2ez × ū−2ε(t)× ū) = 0, and as a result we obtain
the equation for the (non-dimensional) spectral kinetic energy
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density E = |ū|2/2 in Fourier space as

dE

dt
=

1
2

[
ū∗ (Mū)+ ū(Mū)∗

]

︸ ︷︷ ︸

in jection

+
1
2
[ū∗Q+ ūQ∗]

︸ ︷︷ ︸

nonlinear trans f er

−
2k2

Re
E

︸ ︷︷ ︸

dissipation

.

(10)
The pressure term also cancels out since ū∗ ·k(t)P̄ = 0. Thus,
the RHS of Eq. (10) contains three main terms:

• Injection

A ≡
1
2

[
ū∗ (Mū)+ ū(Mū)∗

]
,

which is of linear origin, being determined by the
matrix M , i.e., by the precessing background flow
and describes energy exchange between the perturba-
tions and that flow. If A > 0, kinetic energy is in-
jected from the flow into inertial wave modes and
hence they grow, which is basically due to precessional
instability45,51,52,54, whereas at A < 0 modes give en-
ergy to the flow and decay.

• Nonlinear transfer

NL ≡
1
2
[ū∗Q+ ūQ∗]

describes transfer (cascade) of spectral kinetic energy
among modes with different wavenumbers in Fourier
space due to nonlinearity. The net effect of this term in
the spectral energy budget summed over all wavenum-
bers is zero i.e.,

∑
k

NL(k, t) = 0,

which follows from vanishing of the nonlinear advec-
tion term in the total kinetic energy equation integrated
in physical space. Thus, the main effect of the nonlinear
term is only to redistribute energy among modes that is
injected from the basic flow due to A, while keeping the
total spectral kinetic energy summed over all wavenum-
bers unchanged. Although the nonlinear transfers NL

produce no net energy for perturbations, they play a
central role in the turbulence dynamics together with
the injection term A. The latter is thus the only source
of new energy for perturbations drawn from the infi-
nite reservoir of the background precessional flow. Due
to this, below we focus on these two main dynamical
terms – linear injection and nonlinear transfer functions,
compute their spectra and analyse how they operate in
Fourier space in the presence of precession instability
using the tools of Ref.53,55.

• Viscous dissipation

D ≡−
2k2

Re
E

is negative definite and describes the dissipation of ki-
netic energy due to viscosity.

B. 2D-3D decomposition

In the present section we follow a widely used approach in
the theory of rotating anisotropic turbulence29,31,35–37,39 and
decompose the flow field into 2D and 3D modes in Fourier
space to better characterize this anisotropy between horizon-
tal and vertical motions. This choice is motivated by the ob-
servation of two main types of perturbations: vortices, which
are essentially 2D structures, and 3D inertial waves in rotating
turbulent flows with external forcing such as libration, ellip-
tical instability39,42, precession36,45 and other artificial types
of forcing concentrated at a particular wavenumber34,35,56.
The 2D vortical modes, also called slow (geostrophic) modes,
have dominant horizontal velocity over the vertical one and
are almost uniform, or aligned along the z−axis, i.e., their
wavenumber parallel to this axis is zero kz = 0. This slow
manifold is also referred to as 2D and three-component
(2D3C) field in the literature, since it varies only in the hori-
zontal (x,y)-plane perpendicular to the rotation axis, but still
involves all three components of velocity with the horizon-
tal one being dominant. On the other hand, 3D inertial wave
modes, called fast (with nonzero frequency ω = ±2Ωkz/k)
modes, have comparable horizontal and vertical velocities
and vary along z-axis, i.e., parallel wavenumber is nonzero
kz 6= 057. Specifically, these two mode manifolds are

Ψ2D =
{
k | kx,ky;kz = 0

}
, Ψ3D =

{
k | kx,ky;kz 6= 0

}
. (11)

and the spectral velocities for 2D vortices and 3D inertial
waves can be defined as

ū(k) =

{
ū2D(k) if k ∈ Ψ2D

ū3D(k) if k ∈ Ψ3D.
(12)

Note that the definition of 2D manifolds here differs from the
Taylor-Proudman problem since it does not necessarily have
vanishing vertical flow. Indeed, velocity for both the 3D and
2D modes can be decomposed in turn into respective horizon-
tal ūh = (ūx, ūy,0) and vertical ūz components.
Using the general Eq. (10), separate equations can be written
for 2D and 3D mode spectral energies defined, respectively,
as E2D = |ū2D|

2/2 and E3D = |ū3D|
2/2,35,39,58

dE2D

dt
= A2D +NL2D2D +NL3D2D

︸ ︷︷ ︸

NL2D

+D2D, (13)

dE3D

dt
= A3D +NL3D3D +NL2D3D

︸ ︷︷ ︸

NL3D

+D3D. (14)

Since injection A and dissipation D terms are of linear origin,
they act for 2D and 3D modes separately, i.e.,

A2D = A(k), D2D = D(k), for k ∈ Ψ2D

A3D = A(k), D3D = D(k), for k ∈ Ψ3D.

However, the nonlinear transfers can act only among modes
which lie respectively within the slow or the fast manifold,
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that is, nonlinear interactions separately among 2D-2D modes
(vortex-vortex),

NL2D2D =−ū2D · (u2D ·∇u2D),

and among 3D-3D modes (wave-wave),

NL3D3D =−ū3D · (u3D ·∇u3D),

(long bars denote Fourier transforms) as well as between these
two manifolds, that is, nonlinear cross interactions/couplings
between 2D and 3D modes (vortex-wave)35,59,

NL3D2D =−ū2D · (u3D ·∇u3D).

NL2D3D =−ū3D · (u2D ·∇u3D)− ū3D · (u3D ·∇u2D).

In this case, in a triad, 2D modes can receive/lose energy via
nonlinear interaction of two 3D modes with opposite signs of
kz, while 3D modes can receive/lose energy via interaction of
only 2D and another 3D mode (interaction between 2D and
2D modes obviously cannot feed 3D modes).

The 2D-2D and 3D-3D nonlinear transfers are each conser-
vative, ∑k NL2D2D = 0 and ∑k NL3D3D = 0, whereas the cross
transfer terms NL2D3D and NL3D2D are not, but their sum is
conservative, as the net effect of these terms summed over all
wavenumbers, as it should be, are equal in absolute value but
have opposite signs i.e.,

∑
k∈Ψ3D

NL3D2D (k) =− ∑
k∈Ψ2D

NL2D3D (k) . (15)

Below we analyse the action of these injection and transfer
terms for different Po and Re (Table I).

In the following we will mostly use shell-averages of these
spectra, which are defined in the standard way as31

f(k) = ∑
k≤|k|≤k+∆k

f (k),

for each spectral quantity f ≡ (E,A,NL,D). For 3D modes
k ∈ Ψ3D the summation is done over spherical shells with ra-
dius k = (k2

x + k2
y + k2

z )
1/2 and width ∆k = 2π/L, while for

2D modes, having k ∈ Ψ2D, the summation is over rings in
the (kx,ky)−plane with radius k = (k2

x + k2
y)

1/2 and the same
width ∆k. When we plot spectra for 2D and 3D quantities, we
implicitly assume each depends on its respective wavenumber
magnitude k and ignore any anisotropy in each spectrum.

C. Numerical method

We solve Eq. (3) using the pseudo-spectral code
SNOOPY60,61 which is a general-purpose code, solving hy-
drodynamic (HD) and magnetohydrodynamic (MHD) equa-
tions, including shear, rotation, weak compressibility, and sev-
eral other physical effects. The Fourier transforms are com-
puted using the FFTW3 library. Nonlinear terms are com-
puted using a pseudospectral algorithm with antialiasing 3/2-
rule. The original version of the code has been modified45

FIG. 2. Time-evolution of the volume-averaged total (2D+3D) ki-
netic energy at Re = 104.5 and different Po. The impact of the pre-
cession parameter on the energy evolution is clearly seen, which is
characterized by quasi-periodic bursts at small Po = 0.075 and grad-
ually becomes statistically steady turbulence with minor fluctuations
and increasing amplitude as Po increases. Inset panel zooms in the
initial exponential (appearing as linear in logarithmic y-axis) growth
and early saturation phases.

to include precessional forcing and hence variables are de-
composed in terms of shearing waves with periodically time-
varying wavevector (Eq. 5) due to the basic shear flow Ub

induced by precession. In this way, the shearing-periodic
boundary conditions in the local domain (which are in fact
fully periodic in the frame co-moving with the basic flow) are
naturally satisfied in the code. We stress that the inclusion

of precession-related terms in the code has been already

tested through a linear stability analysis45. Indeed, the last

three terms on the RHS of Eq. (3) are linear, therefore the

comparison against the growth rate of precession instabil-

ity predicted by linear stability theory52,54 (as in fact done

in Section 4.2 of Barker45, see his Fig. 1) is a sufficient test.

The resolution of the various simulations are listed in Ta-

ble I. As it is seen, for the largest Re and Po we accordingly

increase the number of grid points. This type of resolu-

tions are consistent with the ones typically used in forced

rotating turbulence studies36,45,62. For further details re-

garding the numerical accuracy see Appendix A.

III. GENERAL FEATURES OF THE
PRECESSION-DRIVEN TURBULENCE

The simulations performed in this paper for different pairs
of (Po,Re) are listed in Table I. All the runs start with

small solenoidal random noise perturbations of the ve-

locity on top of the basic flow composed of wavenum-

bers k/2π ∈ [1,21] with random phases and the same am-

plitude for each k, so that in physical space this yields
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Δt2

Δt1

FIG. 3. Time-evolution of the volume-averaged kinetic energies for
2D vortices, 〈E2D〉 (solid), and 3D inertial waves, 〈E3D〉 (dashed), for
Re = 104.5 and three different precession parameters representative
of three characteristic regimes shown in Fig. 2: bursts at weak (Po =
0.075) and quasi-steady turbulence at medium (Po = 0.2) and strong
(Po= 0.3) precessions. Two intervals ∆t1 (from t = 2690 to t = 2770)
in State 1 and ∆t2 (from t = 2880 to t = 3080) in State 2 denote those
time intervals over which spectral analysis is performed for these two
different states.

Po=0.075

State 1 State 2

Po=0.2 Po=0.3

FIG. 4. Snapshot of the vertical component of vorticity, ωz =
(∇×u)z (log-scale), in physical space for three characteristic pre-
cession parameters: Po = 0.075,0.2,0.3 and Re = 104.5 in the satu-
rated state (at t = 3000). The upper two boxes show the structures in
State 1 (left), dominated by vertically-varying 3D inertial waves, and
State 2 (right), dominated by 2D vortices nearly uniform along the
z-axis. Large-scale 2D columnar vortices are also evident together
with turbulent field of waves at Po = 0.2 and 0.3.
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FIG. 5. Regime diagram in the (Po,Re)−plane. The colors represent
the ratio of time-averaged 2D to total (2D+3D) energies, 〈E2D〉/〈E〉,
in the saturated state, while the empty points correspond to the cases
stable to precessional instability when perturbations decay.

the root mean square (RMS) of the perturbed velocity

〈u2〉1/2 = 1.12× 10−4. We have checked that the results

do not depend on different realizations of the random

noise, because shortly after the evolution starts the most

unstable mode emerges and determines subsequent time-

development.

In Figure 2, we plot the time evolution of the volume-
averaged kinetic energy, which is equal to the sum of en-
ergies of 2D and 3D modes over all wavenumbers, 〈E〉 =
∑k E = ∑k(E2D + E3D), for several precession parameters
Po and at an intermediate Reynolds number Re = 104.5 (see
Appendix B for the effect of varying Re). In the early lin-
ear regime, the energy grows exponentially corresponding to
dominant 3D inertial waves being excited first by the preces-
sional instability45,51,52,54 (see inset in Fig. 2). In the given
range of Po, the growth rate of the precession instability in-
creases with Po. After about several hundreds of orbital times
the exponential growth attains sufficient amplitude for nonlin-
earity to come into play and cause the instability to saturate
with higher amplitudes and shorter saturation times for larger
Po. Depending on Po, the saturated states are qualitatively dif-
ferent, exhibiting statistically steady turbulence at higher Po&
0.1 with only mild fluctuations, whereas strong quasi-periodic
oscillations (bursts) are observed at small Po . 0.1 with more
than an order of magnitude variations in the kinetic energy.
This temporal behavior of the volume-averaged kinetic energy
in the nonlinear state of the precessional instability with Po is
consistent with previous related local studies36,45. Below we
interpret this temporal evolution of the total kinetic energy in
terms of the dynamics of 2D vortices and 3D waves and their
interplay.

A first comparison between the 2D and 3D mode dynamics
is shown in Fig. 3 where the evolution of the total kinetic en-
ergies for 2D modes, 〈E2D〉, and 3D modes, 〈E3D〉, are plotted
for three precession parameters. For larger Po & 0.1 the en-
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FIG. 6. Evolution of the volume-averaged dynamical terms – energy
injection 〈A〉 for 3D waves (top) and 2D vortices (bottom) together
with nonlinear transfer 〈NL2D3D〉 between these two modes (middle)
in corresponding Eqs. (13) and (14) for different Po and Re = 104.5.

ergy of 2D modes is more than one order of magnitude larger
than that of 3D modes. However, the saturated value of 〈E3D〉
tends to increase more than that of 〈E2D〉 with increasing Po,
implying that the waves, as they should be, are more affected
and intensified by precession rather than the vortices. The 2D
vortices are linearly stable against precession instability and
hence cannot grow due to the latter.52 They are driven and en-

ergetically supplied by waves via nonlinear transfers45, which
will be examined in detail below using the spectral analy-
sis. On the other hand, for the lowest precession parameter
Po = 0.075, corresponding to the bursty regime, the energy of
3D waves periodically dominates over the 2D vortical mode
energy during the growth (burst) phase (referred to as State
1). In this burst phase, waves excited by the precessional in-
stability, lose their energy to 2D vortices due to nonlinearity.
As a consequence, the energy of the waves drops by about an
order of magnitude (affected additionally by viscous dissipa-
tion) relative to the 2D mode energy (State 2). After that it
starts to increase again due to precessional instability, clos-
ing the cycle. Although 2D mode energy also decreases at
this stage, it does so much slower, on a viscous time45. This
cyclic behavior of both components is remarkable, indicat-
ing the quasi-periodic nature of evolution due to weak preces-
sional forcing (Po . 0.1), which is relevant to astrophysical
and geophysical regimes45,63,64. We explore this behavior in
more detail in the spectral analysis section below.

Figure 4 shows the structure of the vertical component of
vorticity, ωz = (∇×u)z, in physical space well after the sat-
uration for the above regimes of weak, moderate and strong
precessions. The top row shows the two different states in
the Po = 0.075 case with bursts. In State 1, the energy of

3D waves dominates over that of 2D vortical mode (Fig.

3), and consequently small-scale structures, varying along

the z−axis, are more pronounced in the vorticity field. By
contrast, in State 2, where the wave energy quickly decays
afterwards and 2D modes dominate, only vertically uniform
columnar vortical structures aligned with the rotation z-axis
are present. At larger Po = 0.2 and Po = 0.3 shown, respec-
tively, in bottom left and right panels of Fig. 4, the non-
linear states consist of vortices embedded in 3D waves, co-
existing at all times. At medium Po = 0.2, two columnar
vortices aligned with the rotation axis with opposite vortic-
ity (cyclonic/anticyclonic) are clearly seen in the small scale
waves, whose strength with respect to vortices has increased
compared to that in the above bursty regime. At even higher
Po = 0.3, the contribution of 3D wave energy is somewhat
larger (Fig. 3) and therefore small-scale turbulent wave struc-
tures are more pronounced with respect to a single 2D vortex.

The regime diagram in Fig. 5 summarizes the properties
of all the runs for different pairs (Po,Re). The colored dots
represent the ratio of the time- and volume-averaged energy of
2D vortices, 〈E2D〉, to the total energy of all the modes, 〈E〉,
in the statistically steady turbulent state, as shown in Figs. 2
and 3. The empty points represent the cases where the energy
drops to negligible value meaning that the local flow in the
box is stable against precessional instability. The colors show
that at given Re, the fraction of 2D mode energy vs. total
energy initially increases with Po when Po . 0.1, then reaches
a maximum at medium precessions Po ∼ 0.1 and decreases at
larger Po & 0.1. The maximum shifts towards smaller Po with
increasing Re. We will carry out the analysis distinguishing
the latter three groups in the following sections.

Having analyzed the time-development of the mode ener-
gies, next in Fig. 6 we plot the evolution of the volume-
averaged (or equivalently integrated in Fourier space) dynam-
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FIG. 7. Kinetic energy density of 2D vortices (left panels) and 3D wave modes (taken at z = 0) in the (x,y)−plane (middle panels) and in
(y,z)−plane (right panels) in the saturated state at Po = 0.2 (top row), Po = 0.3 (bottom row) both with Re = 104.5. The green dotted line,
which is at x =−0.33 for Po = 0.2 and at x = 0.2 for Po = 0.3, marks that (y,z)−section where 3D energy is plotted.

ical terms in Eqs. (13) and (14), i.e., the energy injection,
〈A〉 = ∑k A, for 3D waves (top) and 2D vortical (bottom)
modes together with nonlinear transfer terms between them,
〈NL〉 = ∑k NL (middle). To obtain a better visualization and
a clear trend of temporal evolution, we have smoothed these
volume-averaged terms additionally over short time intervals
around each time moment, thereby removing fast temporal
oscillations and getting meaningful time-averages. For 3D
waves, energy injection occurs due to the precession insta-
bility and hence increases with increasing precession strength
Po, while the 2D modes are excited by the nonlinear inter-
action among these waves via NL3D2D term, which also in-
creases with Po. This term is overall positive in time, im-
plying transfer of energy from 3D waves to 2D vortices (see
also Ref.39). The excited 2D modes in turn also extract en-
ergy from the basic flow via positive 〈A2D〉 > 0 term. Note
that 〈A2D〉 is not necessarily zero, unlike for the 2D linear
modes in the background precessional flow. As a result, the
evolution of 〈A2D〉 is determined by the nonlinear transfer
term 〈NL2D3D〉 and hence follows the latter, as it is seen in
Fig. 6 where the peaks of both these functions nearly coin-
cide. For Po = 0.2, 〈A2D〉 ≈ 〈A3D〉 (red), while for Po = 0.3,
A3D > A2D (orange curves), indicating that the precession in-
stability feeds the waves, while the waves in turn feed vortices
via nonlinear cascade. Below we will see how this process oc-
curs scale by scale in Fourier space.

In Fig. 4 we have shown the total vorticity field includ-
ing both 2D vortices and 3D waves. To better visualize these
fields, we computed the inverse Fourier transforms from ū2D

and ū3D and show respective energy densities in physical
space in the saturated regime in Fig. 7. The left panels of this
figure show energy of 2D modes, where now we can clearly
distinguish two vortices for Po = 0.2 (top row) and a single
vortex for Po = 0.3 (bottom row). The middle panels show
the small-scale 3D mode energies in the (x,y)−plane at the
central height (z = 0) of the box. There is a noticeable differ-
ence between the Po = 0.2 and Po = 0.3 cases: for Po = 0.2
we observe larger-scale wave structures, whereas for Po = 0.3
the wave field is more fluctuating and rich in smaller scales,
implying that increasing precession parameter intensifies first
of all 3D waves and indirectly vortices due to their nonlinear
coupling with the former. Note also that the 3D wave struc-
tures are concentrated around the vortices – a feature observed
experimentally in a precessing spherical containers65. The
right panels show the vertical structure of 3D mode energy in
the (y,z)−plane at the center of vortices (located at x =−0.33
and x = −0.2, respectively, for Po = 0.2 and 0.3, which are
marked with a green dotted line in the middle row). Again,
the Po = 0.3 case shows more fluctuating behavior with fine
scales surrounding the column. So, the main dynamical pic-
ture consists of the coexisting columnar (geostrophic) vortices
and waves whose magnitudes and length-scales depend on the
precession strength.
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FIG. 8. Shell-averaged spectra for the injection A (blue), viscous dissipation D (black), and nonlinear transfers among modes inside the 2D
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in the State 1 (upper row) and State 2 (bottom row) at Po = 0.075 and Re = 104.5.

IV. SPECTRAL DYNAMICS OF PRECESSION-DRIVEN
TURBULENCE: VORTICES, WAVES AND THEIR
INTERPLAY

So far the study has been mainly conducted in the phys-
ical (coordinate) space. However, a deeper insight into the
precession-driven turbulence dynamics can be gained by in-
vestigating the dynamical processes – energy injection, non-
linear transfers and viscous dissipation – in Fourier space,
where a much richer dynamical picture unfolds and becomes
more accessible to analysis. Following the approach of
Refs.35,53,55, we individually compute and visualize the in-
jection A, viscous dissipation D and various nonlinear trans-
fer NL terms entering spectral energy Eqs. (13) and (14) in
Fourier space using the simulation data, and analyze their in-
terplay in different regimes with respect to the precession pa-
rameter identified above.

A. Quasi-periodic bursts: Po = 0.075

As we have seen above, the case with weak precession forc-
ing is characterized by cyclic bursts, where the system alter-
nates between State 1 and State 2 and the purpose of this sec-
tion is to understand the underlying mechanisms of this be-
havior. With this goal, we analyze and compare the dynamics
in two different intervals shown in Fig. 3: ∆t1 corresponding
to State 1, when the energy of 3D wave modes initially in-
creases due to precessional instability, while the energy of 2D
modes is still at its minimum, and ∆t2 corresponding to State
2, when both 3D and 2D mode energies drop.

The shell-averaged spectra of the linear injection A and dis-
sipation D terms for 2D and 3D modes as well as nonlinear
transfer terms for 2D-2D, NL2D2D, for 2D-3D, NL2D3D and
NL3D2D, and for 3D-3D NL3D3D mode interactions in these
two states (also averaged over ∆t1 and ∆t2 time intervals, re-
spectively) are shown in Fig. 8. The basic dynamical picture
in this regime is the following. In State 1 (top row), the most
important contribution is due to A3D (blue), which injects en-
ergy into waves from the basic flow due to the initial devel-
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2/2 (red) components. Grey vertical line shows the location of Zeman scale kΩ.

opment of precessional instability. This reaches a large peak
at k = 8π whose value is positive and larger than the compa-
rable effects of viscous dissipation D3D (black) and transfer
NL2D3D (red), which are both negative reaching a minimum
at the same wavenumber. The effect of nonlinear transfers
among waves, NL3D3D (green) is relatively small at this time.
This also implies that the viscosity is already important at the
injection scale, that is, there is not a good scale separation (in-
ertial range) between the injection and viscous scales. Never-
theless, A3D > 0 is sufficiently large to overcome both these
negative (sink) terms and give rise to wave growth in State
1. Since NL2D3D < 0 at the injection wavenumbers, its coun-
terpart for 2D modes NL3D2D > 0, indicating that the waves
nonlinearly transfer their energy to and amplify 2D vortices,
but at lower wavenumbers near the peak k = 2π of this term.
These vortices additionally receive some energy from the ba-
sic flow due to the positive A2D (blue) term. However, the
dissipation D2D < 0 (black curve in top left panel) for vortices
is quite high, prevailing over the positive NL3D2D (red) and
A2D and as a result vortices do not yet grow at these times.

The nonlinear transfers between waves and vortices,
NL3D2D and NL2D3D, increase by absolute value (but retain
their signs) with time and already in State 2 the mostly neg-
ative NL2D3D, together with dissipation D3D < 0, dominates
the positive injection A3D (bottom right plot in 8). As a re-
sult, wave energy quickly drops in State 2 (see also Fig. 3).
On the other hand, the 2D vortices, which now receive much
more energy from waves via the term NL3D2D > 0, also de-
velop an inverse cascade themselves described by NL2D2D

(bottom left panel). This is manifested in the emergence of
large-scale vortices in physical space in State 2 (top right plot
of Fig. 4). The injection A2D is relatively small/insignificant
at these times. However, dissipation D2D is still larger than
the nonlinear replenishment by NL3D2D and consequently the
energy of vortices slowly decreases too (which is consistent
with Fig. 3). Once vortices have become weak enough, the

waves can grow again due to the precessional instability and
close the cycle loop. Thus, we can conclude that the bursts
are caused by a quasi-periodic behavior of 3D dynamical
terms which in State 1 with ∑k(A3D +NL3D +D3D)> 0 lead-
ing to wave energy amplification, whereas in State 2 with
∑k(A3D +NL3D +D3D)< 0 leading to energy decay.

B. Quasi-steady turbulence: Po = 0.2 and 0.3

In this section we present a similar analysis of the dynami-
cal processes in Fourier space, focusing on the regime of large
Po = 0.2 and 0.3 where the saturated state is characterized by
a quasi-steady turbulence, where both 3D and 2D mode en-
ergies evolve in time with only mild fluctuations in contrast
to the small-Po regime displaying quasi-periodic bursts (Fig.
3). In this section, we keep the Reynolds number fixed at
Re = 104.5 to focus on the impact of increasing precession on
the spectral properties and dynamical balances of the turbu-
lence.

1. Energy spectrum

Figure 9 shows the shell-averaged kinetic energy spectra
of 2D vortices and 3D waves divided further into horizon-
tal, Eh = (|ūx|

2 + |ūy|
2)/2, and vertical, Ez = |ūz|

2/2, com-
ponents at Po = 0.2 (left panel) and 0.3 (right panel). The
time-average has been done over ∆t ≈ 1000 in the saturated
state.66 In this figure, the grey vertical line marks the loca-
tion of Zeman wavenumber kΩ defined in the presence of
the energy injection due to the precessional instability as
kΩ = (Ω3/〈A2D + A3D〉)

1/2 (equal to 1/〈A2D + A3D〉
1/2 in

non-dimensional units), where 〈A2D + A3D〉 is the volume-
averaged total injection term introduced. This definition of
kΩ differs from the usual one used in the rotating turbulence
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FIG. 10. Maps of the time-averaged spectral energy E (left panels), injection A (middle panels) and the total nonlinear transfer term NL (right
panels) in the (kx,ky)−plane for 2D vortical modes with kz = 0 (top row) and 3D wave modes at the first kz = 2π/Lz in the box (bottom row)
in the quasi-steady turbulent state with Po = 0.2 and Re = 104.5. Note the noticeable anisotropy of 2D manifold spectra compared with nearly
isotropic spectra of 3D manifold.

FIG. 11. The same as in Fig. 10, but for Po = 0.3. Note the change of sign of NL2D compared to the Po = 0.2 case.

theory31,34,67 in that the energy injection rate, ε , due to an
external forcing is replaced here by the injection due to the
instability but these definitions are consistent in steady state.
The most remarkable aspect is the different shape and scal-
ing of energy spectra for the 2D and 3D modes. The 2D

mode energy dominates over the 3D one at small wavenum-
bers k . 10 where it increases with decreasing k, reaching a
maximum at the largest box scale, with its horizontal compo-
nent being about an order of magnitude larger than the ver-
tical one. This corresponds to large-scale horizontal vortical
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FIG. 12. Shell-averaged spectra for the injection A (blue), viscous dissipation D (black), and nonlinear transfers among modes inside 2D
manifold, NL2D2D (green, left panels), inside 3D manifold NL3D3D (green, right panels) and cross transfers NL3D2D (red, left column) and
NL2D3D (red, right panels) between the modes in these two manifolds. For 2D vortical modes (left panels) and 3D wave modes (right panels)
in the quasi-steady turbulent state at Po = 0.2 (top row), 0.3 (bottom row) and Re = 104.5. Dotted black vertical line marks the peak of the
injection term A3D, while the dash-dotted line the peak of A2D.

motions in physical space, as is seen in Figs. 4 and 7. At
higher 10 . k . kΩ, the horizontal and vertical components
are comparable in the E2D spectrum and its slope is close to
k−3, exhibiting the same power-law dependence of rotating
geostrophic 2D turbulence,20,29,35,36,68,69 which does not ap-
pear to change with precession parameter Po.

The energy spectrum of 3D waves, E3D, has a peak at
larger k ≈ 15 than that of E2D (which approximately coin-
cides with the peak of injection A3D in Fig. 12). E3D de-
creases then at lower wavenumbers, while at higher wavenum-
bers 15 . k . kΩ follows a scaling ∼ k−2±0.5 which has been
typically observed in forced rotating turbulence of inertial
waves.30,31,34,36,59 However, in contrast to these papers using
a forcing in a very narrow wavenumber band, we do not pre-
scribe the forced wavenumber a priori, instead the injection
wavenumbers are determined by the background flow itself
through the precessional instability and extend over a broad
range (see below). Precession influences the scaling expo-
nent of the E3D spectrum: its slope seems to become shal-
lower with increasing Po, as is seen in Figs. 9 (compare left

and right panels) and 14 below. Like for 2D mode energy,
also for 3D mode energy, horizontal and vertical components
are comparable at higher wavenumbers, but the horizontal one
dominates at lower wavenumbers.

It is seen in Fig. 9 that the observed power-law scalings
of both 2D and 3D mode energy spectra occur at k < kΩ

and therefore are strongly influenced by rotation and preces-
sion, deviating from the classical Kolmogorov k−5/3 spec-
trum. However, as it is seen in this figure, with increasing
precession strength Po, the Zeman wavenumber kΩ (grey ver-
tical lines) decreases, that is, the effect of rotation becomes
increasingly weaker for smaller and smaller k. We will see
below that in this case the energy spectrum at k > kΩ indeed
approaches the Kolmogorov spectrum.

2. Dynamical balances in Fourier space

To see the structure of spectra of energy and dynamical
terms in the quasi-steady precessional turbulence, in Figs. 10
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and 11 we show the time-averaged spectra of the kinetic en-
ergy E, energy injection A and the total nonlinear transfer NL

in two different horizontal (kx,ky)−planes: at kz = 0 for the
2D modes and at kz = 2π/Lz for the 3D wave modes. We
have chosen kz = 2π/Lz because it corresponds to the maxi-
mum injection along kz-axis, for which therefore the preces-
sion instability reaches the largest growth rate in the box.50

The most striking observation is the anisotropic nature of the
2D manifold in Fourier space (top row), for A2D and NL2D

and hence for the kinetic energy spectrum E2D determined
by the joint action of these terms, which are all localized at
smaller wavenumbers, with a clear inclination towards the kx

axes. The injection term A2D is always positive, implying
some energy injection from the basic flow into vortices, how-
ever, NL2D is negative at the same wavenumbers for Po = 0.2,
but changes sign at Po = 0.3. As a result, the dynamical bal-
ances for 2D modes are different for these two values of Po,
which will be discussed below. In contrast, the 3D manifold
exhibits a quasi-isotropic distribution (bottom row, similarly
at larger kz > 2π/Lz not shown here) for both Po = 0.2 and
0.3, whose range extends over larger wavenumbers than that
of 2D quantities. Notice the impact of Po on the 3D mani-
fold: for Po = 0.2 a weak preferential direction (anisotropy)
is present in the center of the wave-plane which tends to
isotropize increasing Po. Comparing the A3D and NL3D, the
first injection term, which is due to the precessional instabil-
ity, is always positive and appreciable at 5 < |kx|, |ky| < 25
(yellow/red area), while the second nonlinear term is negative
(blue) and also appreciable at these wavenumbers. The simi-
lar shape of these two functions in Fourier space and compara-
ble absolute values, imply that these two processes are in bal-
ance: 3D modes receive energy from the precessional back-
ground flow predominantly in the range 5 < |kx|, |ky| < 25,
while nonlinearity, counteracting injection at these wavenum-
bers, transfer this energy to other 3D and 2D modes with dif-
ferent wavenumbers.

From Figs. 10 and 11 showing the distribution of total non-
linear terms NL2D and NL3D in Fourier space, one cannot es-
tablish specifically what kind of transfer mechanisms oper-
ate, that is, whether the cascades inside a given manifold are
direct or inverse or if there are transfers of energy between
these two manifolds, since these terms encapsulate nonlinear
interactions among all kinds of modes. To get insight into the
details of linear (energy injection) and nonlinear cascade pro-
cesses in the precessional turbulence, in Fig. 12 we show the
shell- and time-averaged spectra of all the dynamical terms –
injection A, nonlinear NL and dissipation D terms – entering
Eqs. (13) and (14) again for Po = 0.2 and Po = 0.3, as we
did for the bursty case Po = 0.075 in the above section. The
precession instability injects energy into 3D waves, which is
described by positive A3D (blue, right panels). Unlike the case
of a forcing localized about certain wavenumber35, the injec-
tion due to the instability extends over a range of wavenum-
bers, reaching a peak at k = 6π , and increases with increasing
Po. Since it is a quasi-steady state, the energy injection is bal-
anced by nonlinear transfers, A3D +NL3D3D +NL2D3D ≈ 0,
at those dynamically active wavenumbers where A3D > 0 is
appreciable (the role of viscous dissipation D3D (black, right

FIG. 13. Total energy flux F(k) with the vertical lines represent-
ing, for reference, the wave numbers kin,2D = 2π (dashed-dotted)
and kin,3D = 6π (dotted) at the peak of the injection, respectively,
for 2D and 3D modes as well as the Zeman wavenumber kΩ (solid
grey). Top panel is for Po = 0.2 and bottom for Po = 0.3. The flux
is predominantly positive, F > 0, for larger wavenumbers k > kin,2D

corresponding to forward cascade. Inset zooms into the inverse cas-
cade range at small k, where F < 0.

panels) is not important at these wavenumbers). Therefore,
being negative at those injection wavenumbers, NL3D3D < 0
(green, left panels) and NL2D3D < 0 (red, left panels) drain
energy from the active 3D modes there and transfer it, respec-
tively, to smaller-scale 3D waves due to positive NL3D3D > 0
at k > 40 (forward/direct cascade) and to 2D vortical modes.
The latter process is mediated by positive NL3D2D > 0 (red,
left panels) at k > 18, peaking at the same k = 6π . At these
wavenumbers, 2D-2D transfer term is negative NL2D2D < 0
(green, left panels), with a minimum also at k = 6π , and
causes inverse cascade of 2D mode energy to even smaller
wavenumbers, where it is positive NL2D2D > 0 and reaches
a maximum at k = 2π that corresponds to the the largest
box scale. These vortices draw some energy from the ba-
sic flow as well due to A2D term, which has a peak at the
same k = 2π as NL2D2D > 0. It is seen that A2D decreases,



14

E
3
D
(
k
)
 
k
 

 
5
/
3

E (Po=0.2)

E (Po=0.3)

E (Po=0.5)

k  (Po=0.2)

k  (Po=0.3)

k  (Po=0.5)

FIG. 14. Kinetic energy spectra for 3D wave modes compensated
by the Kolmogorov law k−5/3. Solid lines represent E3D for three
different precession parameters Po = 0.2, 0.3 and 0.5 at Re = 104.5,
while the vertical dashed lines represent the corresponding (in terms
of colors) Zeman wavenumbers kΩ. As Po is increased, kΩ decreases
and the spectrum approaches Kolmogorov scaling at k > kΩ.

<
D
>

Re=10
5

Re=10
4.5

Re=10
4

0.05 Po
3

FIG. 15. Absolute value of the time- and volume-averaged dissipa-
tion term |〈D〉| as a function of the precession parameter. The vari-
ous curves represent three different Reynolds numbers and the black
solid line is the scaling ∼ Po3 given for reference. Inset plot zooms
into the jump around Po ≈ 0.1 in the linear scale associated with the
transition from bursty to statistically steady turbulent regimes.

whereas NL2D2D increases with Po. Notice that in the basic
shear flow Ub, idealized steady 2D vortices would be linearly
stable against precessional instability (i.e., A2D = 0)52, so the
positive A2D > 0 in this case can be attributed to the fact that
these vortices are being nonlinearly generated by the waves.
The 2D-3D nonlinear interaction term NL2D3D is positive at
large wavenumbers k > 40, redistributing part of energy of
2D large-scale vortices back to smaller-scale 3D waves (for-

ward cascade). Thus, as it is shown from Fig.12 (left panels),
similar to that for 3D modes, also for 2D modes, there is a
balance among production of these modes by 2D-3D trans-
fers, energy extraction, 2D-2D transfers, and viscous dissipa-
tion, A2D +NL2D2D +NL3D2D +D2D ≈ 0. Note that viscous
dissipation for 2D and 3D modes have completely different
behavior (compare black curves in left and right panels). It
is stronger and more significant for the 2D vortices: D2D has
a clear a minimum at low wavenumber k = 2π , which coin-
cides with the peak of A2D and NL3D2D, and counteracts these
terms, indicating a dissipative nature of the vortices. On the
other hand, for 3D modes viscosity is important only at higher
k > 40, i.e., small scales are dissipative, in contrast to that in
the bursty regime, where viscous and injection scales coincide
(right panels in Fig. 8).

Note that the strength of all the dynamical processes de-
picted in Fig. 12 increases with increasing Po. In all cases, the
peaks of energy injections into 3D wave modes due to the pre-
cessional instability are concentrated at wavenumbers smaller
than the corresponding Zeman wavenumber, kin,3D = 6π < kΩ

(grey vertical lines in Fig. 9). As we have seen in the left
panels of Fig. 12, this injection affects the 2D-3D non-
linear transfer NL3D2D, which describes driving of 2D vor-
tices by 3D wave modes, and also has a maximum at the
same kin. This is in agreement with the general condition
for the upscale/inverse energy cascade of 2D vortices towards
wavenumbers smaller than the injection one, i.e. k < kin, in
rotating turbulence35. However, in the present case of pre-
cessional driving, in the inverse cascade regime, the energy
spectrum of 2D modes is slightly steeper than the k−3 slope
(Fig. 9), which is usually observed in the same regime in a
purely rotating case.

Overall the above-described processes of nonlinear trans-
fers inside the 3D manifold, inside the 2D manifold, and the
coupling between these two manifolds are consistent with
previous spectral analysis of turbulence dynamics under ro-
tation and an imposed external forcing31,35,59. In particular,
in Fig. 12 we observe the split (simultaneous inverse and
forward) cascade of energy typical of rotating turbulence as
demonstrated in those papers, that is, forward cascade of 3D
wave mode energy to high wavenumbers (small-scales) due
to NL3D3D and NL2D3D, and inverse cascade of 2D modes to
small wavenumbers (large-scales) due to NL2D2D.

To confirm the overall type (direction) of the nonlinear cas-
cades inferred above on the basis of the nonlinear transfers
NL as a function of k, we also analyze shell-to-shell flux of
the total energy defined as31

F(k) = ∑
k′≥k

NL
(
k′
)
. (16)

Figure 13 shows the resulting flux function F(k) and, for ref-
erence, the wavenumbers kin,2D = 2π and kin,3D = 6π at which
the injection terms A2D and A3D, respectively, reach their max-
imum (Fig. 12). The grey line in this figure represents the
Zeman wavenumber kΩ. The shape of the total fluxes are
qualitatively similar for Po = 0.2 and 0.3 and indeed display
split/dual cascade: they are positive, F > 0, at k > kin,2D with
a maximum value around k ≈ 50, indicating a forward cas-
cade of energy, and negative, F < 0, at small wavenumbers
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k < kin,2D, indicating inverse cascade. These forward/inverse
cascade regimes deduced from the behavior of the energy flux
function F(k) in fact confirm those found above based on the
behavior of the transfer functions in Fig. 12. Specifically, the
forward cascade at k > kin,2D, is related to the transfer of 3D
wave mode energy to higher-k, while the inverse cascade at
k < kin,2D is related to the transfer of 2D vortical mode energy
to smaller-k.

3. Precession forcing: a way to isotropic Kolmogorov
turbulence

In this section, we draw conclusions on the properties of 3D
wave modes which are the ones directly influenced and driven
by the precession instability. We have already seen clear in-
dications that these modes exhibit characteristics of isotrop-
icity, direct cascade and decreasing the wavenumber range
where the rotation is substantially dominant, that is, decreas-
ing the Zeman wavenumber kΩ, with increasing precession in-
tensity. In order to confirm and generalize these concepts, we
run another simulation for quite a high precession parameter
Po = 0.5 and with the same Re = 104.5 to check this trend.

Figure 14 shows the spectra of 3D mode energy for the three
precession parameters. This time we compensated E3D spec-
tra with the Kolmogorov spectrum k−5/3 to better see if the en-
ergy spectrum approaches the Kolmogorov one. Indeed, it is
seen in this figure that increasing Po, the Zeman wavenumber
decreases and the compensated spectrum at k > kΩ becomes
gradually flatter, indicating approach to the Kolmogorov one
k−5/3 already at Po = 0.5, that is, the regime of isotropic ho-
mogeneous turbulence. Thus, we showed that the rotating-
dominated range of wavenumbers k < kΩ is narrowed as Po in-
creases because of dramatic decrease in Zeman wavenumbers
(e.g., kΩ = 103 for Po= 0.2 reducing to kΩ = 38 for Po= 0.5).
This is also reflected in the increase of Rossby number at the

injection scales Ro =
(

A2Dk2
in,2D +A3Dk2

in,3D

)1/3
/Ω. Specif-

ically, we have Ro ≈ 0.176 for Po = 0.2, Ro ≈ 0.24 for
Po = 0.3 and Ro = 0.32 for Po = 0.5.

4. Turbulent dissipation

We examine the dissipative nature of the precession-driven
turbulent flow. Dissipation rate is an important quantity used
in both experiments and numerical works to check global
changes in the flow behavior such as hysteresis cycles or tran-
sition to turbulence, resulting in noticeable increase of this
quantity. Figure 15 plots the absolute value of the time- and
volume-averaged dissipation term |〈D〉| as a function of Po at
different Re. It is seen in this figure that the turbulent dissipa-
tion more depends on Po and changes only weakly with Re.
This result is in agreement with the observations by Goto et
al.70 according to which turbulence properties are mainly gov-
erned by Po rather than Re. At larger Po & 0.1, the turbulent
dissipation scales with Po3 in accordance with Ref.45. More-
over, around Po ≈ 0.1 we observe a jump which is consistent
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FIG. 16. Sketch of the main mechanism underlying precession-
driven turbulence.

with the global simulation results in cylindrical geometry71–73

as well as with the local analysis45. This jump is associated
with the transition of the bursty regime at Po. 0.1, dominated
by large-scale columnar vortices where waves and hence tur-
bulent dissipation are relatively weak, to the quasi-steady tur-
bulence regime at Po & 0.1, where the contribution of small-
scale waves is larger leading to efficient dissipation. There-
fore, the well-known transition observed in precessing fluid
filled cylinders (connected with the hysteresis regime74) can
be interpreted in light of the results of this work.

V. SUMMARY AND DISCUSSIONS

In the present work, we have studied the properties of tur-
bulence developed in precession-driven flows by using nu-
merical simulations in the local model with a periodic box.
Through an extended data-set of simulations, new results have
been obtained concerning the role of precessional forcing
modeled as a background flow which injects energy into our
local patch. In this case, the precession ratio, or Poincaré
number, is a crucial parameter to trigger and sustain a turbu-
lent state in the flow, as observed in global simulations64,71–73

as well as in experiments65,74,75. Our detailed analysis was
motivated mainly by the works of Barker39,45 and it was de-
veloped both in physical and mainly in Fourier (wavenumber
k-) space. Precessional turbulence is a type of rotating turbu-
lence, where energy injection comes from the precessional in-
stability instead of an externally imposed forcing, and shares
several common features with those in the presence of other
forcing mechanisms such as the concurrence of waves and
geostrophic structures. We have used the 2D-3D manifold de-
composition method (where 2D modes have kz = 0 while 3D
ones kz 6= 0) to distinguish and quantify the vortices and the
waves as used by several authors for other external forcings
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localized in a narrow band of wavenumbers29,35,36,49,59. By
contrast, precessional instability injects energy into turbulence
over a broad range of wavenumbers which also modifies the
character of nonlinear transfers compared with that in the case
of external forcing. We quantified the nonlinear interactions
between 3D waves and 2D geostrophic vortices, obtain the
spectral scalings and determine the types of cascades in each
manifold. We extended the study not just limiting to the shell-
averaged approach, generalizing spectral analysis in Fourier
space. In this way, we identified the anisotropic structure of
these modes. Each phenomena deserves a more extended dis-
cussion:

1. Different states observed: precession forcing is respon-
sible for the appearance of a turbulent state and its
magnitude (i.e Poincaré number) determines the flow
response. We have identified three different states:
quasi-periodic, or bursty states, characterized by the
competition between geostrophic vortex columns and
3D inertial waves at small Po . 0.1 (for large enough
Re & 104); intermediate states at Po ∼ 0.1 with coexist-
ing 2D vortices and 3D waves with comparable ampli-
tudes, and the state dominated by smaller scale waves
with some mixture of vortices at high-Po. At very small
Po < 0.05, our models (with numerically accessible Re)
are linearly stable against precessional instability and
hence turbulence has not been observed.

2. Bursting evolution: in this regime at small Po, a cyclic
trend of the flow is observed where the vortices recur-
rently appear and disappear. This dynamical behavior
shifts to larger Po with decreasing Re (see Appendix B).
In this state, the precession instability injects energy in
the 3D waves which they transfer directly to vortices
due to nonlinearity. However, they decay due to their
large dissipative character which is not counteracted by
the energy supply from the 3D waves. This explanation
is consistent with the analogous behavior observed for
tidal elliptical instability. Indeed the bursty nature of
vortices due to viscosity strongly weakens when a hy-
perviscosity model is adopted, i.e., when dissipation is
concentrated only at large wavenumbers.39,45

3. Quasi-steady turbulent states: at moderate and large
precession parameters the essential dynamical picture
and balances in the precessional-driven turbulence is
described in Fig. 16 and can be summarized as follows.
The precession background flow is unstable to preces-
sion instability, whose nonlinear development causes
transition to sustained turbulence. In this state, the
instability injects energy in the 3D waves, which in
turn, is transferred partly to 2D vortices and partly
dissipated at small scales through a forward cascade.
The 2D vortices receive energy from 3D waves and at
the same time they interact with the background flow.
These vortices are subjected to inverse cascade which
is balanced by dissipation at large scales. Their en-
ergy spectra scales as E(k) ∼ k−3 reminiscent of the
typical geostrophic turbulence while 3D waves have

E(k)∼ k−2±0.5 as found in several works on the forced
turbulence34,49. The small differences in this scalings
can be attributed to the influence of precession. Over-
all, we observe a so-called split, or dual cascade: in-
verse cascade for 2D vortices and direct cascade for 3D
waves. The borderline between these two types of cas-
cade occurs near the peak of energy injection for 2D
vortices (see e.g., Fig. 13).
In any case, the 2D vortices represent condensates that
gain energy from smaller-scale waves without dissipat-
ing it at the same rate76. Consistent with what was
observed by Smith et al.29 the vortices are produced
mainly by the energy transfer from 3D waves and grow
in size by the 2D inverse cascade; this is a clear in-
dication of strongly nonlinear phenomena at moderate
Rossby numbers, Ro ∼ 0.1. By contrast, the weakly
nonlinear wave theory at small Ro ≪ 1 prohibits the
interaction of geostrophic vortical mode and waves30

allowing only resonant triads between fast 3D wave
modes. This scenario, sometimes called Greenspan’s

theorem28 has led to the idea that the geostrophic flows
in precessing cylinders can arise only by the nonlinear
interaction in the Ekman layers at the endcaps, that is a
purely boundary effect.77–79 Our local model, which by
definition has no boundary layers, proves that this con-
dition in fact is not necessary, since vortices can arise
also in unbounded precessional flows for moderate Ro.
In this regard, our results are also important in relation
to the recent work by LeReun43 who showed that the
inertial waves can excite the geostrophic mode through
an instability driven by near-resonant triadic nonlinear
interactions. A more complex scenario based on the in-
teraction of 4 or 5 waves (called precession resonance)
has been recently propose80 to explain the generation of
low frequency structure in atmospheric-like flow.
The anisotropic nature of 2D vortices is demonstrated
by two aspects: they have a preferential direction with
the substantial part of energy being horizontal; from
a spectral point of view the kinetic energy, injection
and nonlinear transfer have a preferential direction in
(kx,ky)−plane.

4. The role of precession parameter Po: the precession,
as other forcing mechanisms, counteracts the effects
of rotation. This fact has been shown through several
phenomena: the larger the precession ratio the stronger
the 3D waves, thereby the flow is more isotropic and
the vortices are weaker. The Zeman scale decreases
with the precession ratio and this means that the range
of rotationally-dominated wavenumbers is reduced, ex-
tending the inertial range (characterized by the direct
cascade), while the range of wavenumbers where in-
verse cascade occurs shrinks. Finally, the increase of
precession parameter brings the spectral law for 3D en-
ergy from k−2 to the classical Kolmogorov k−5/3. This
kind of shift was proposed initially by Zhou81 but for
the transition from strong rotation to non-rotation.
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A. Importance of this study in the context of global
simulations, laboratory experiments and geophysical
applications

Even though our simple model is based on a local version of
the Poincaré flow (which is typical of spheroidal containers),
some similarities with the global cases has been found. For in-
stance, the dissipation shows a quite steep jump around an in-
termediate precession parameter Po ∼ 0.1 consistent with the
transition to turbulence observed in global simulations64,70–73

and experiments74,82. Moreover, the presence of a geostrophic
flow which dominates the bulk region is a hallmark of precess-
ing cylinders at rather large Po71,83,84 and could correspond to
2D vortices in our local model. At large precession parame-
ters Po & 0.1, the turbulent dissipation scales as Po3 as found
already in Ref.45 and this fact somehow challenges the analyti-
cal results by Kerswell85 where an upper bound on dissipation
for fluid filled precessing container has been claimed to be in-
dependent of Po. The knowledge of the dissipation behavior
at strong precessions is crucial to predict the power required to
drive the experimental facilities86. The coexistence of vortices
and small-scale 3D waves has been observed in a precessing
sphere by Horimoto et al.65, however, they argue that large
vortices sustain small-scale eddies through a forward cascade.
This conflicts in part with our scenario since the precession in-
jects energy directly into small-scale 3D waves, which in turn
nonlinearly transfer energy to 2D vortices. Therefore, in our
model, precession itself sustains small-scale waves.
One of the main goals of this work was to put a theoretical
basis for the analysis of turbulence properties in precession-
driven flows in the context of the upcoming DRESDYN
(DREsden Sodium facility for DYNamo and thermohydraulic
studies) precession experiment87–89. This motivates the in-
terest in the moderate to large Po, which are different from
the ones of geophysical and astrophysical objects. However,
some speculations can be made since the different regimes ob-
served here at Re = 104.5 may carry over to large-Re regime
too. Because of normally weak precession of geo- and as-
trophysical objects, we can speculate that they would be also
characterized by the bursty behavior as described in Section
IV A. If this is the case, it would influence the planetary evo-
lution, producing a series of formation and destruction events
(bursts) of vortices due to the nonlinear transfer between 2D
and 3D flows and oscillating dissipation.

Let us finish with some discussions related to the magne-
tohydrodynamic (MHD) dynamo effect. It has been demon-
strated numerically that precession can in general drive
dynamo90–96. Within our local model, we can further inves-
tigate the properties of MHD turbulence and related dynamo
action and how the magnetic field, when sufficiently strong,
influences the studied here 2D and 3D flows. The work by
Barker45 indicates that the precession instability is able in
principle to drive dynamo action locally and the turbulent flow
dynamics changes completely due to the back-reaction of the
magnetic field. The main debate in the dynamo community
about large/small scale dynamos should be investigated in the
context of precession driven MHD as has been done in recent
study for global simulations97.
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Appendix A: Resolution study

To check the impact of numerical resolution on the results,
we have selected one of the most explored case with Po = 0.3
and Re = 104.5 and made additional two runs at lower 1283

and higher 5123 resolutions. The results of this resolution
study are presented in Fig. 17. The top plot in this figure
shows the time-evolution of the volume-averaged total kinetic
energy, while the bottom plot the shell-averaged dissipation
spectra k2E (averaged in time over the range 500 < t < 600)
at different resolutions. It is seen that both these quantities
exhibit a very good agreement (convergence) with resolution,
proving that the choice of the resolution 2563 in this study is
well justified. In particular, k2E spectra coincide at wavenum-
bers common to these three resolutions and the zoomed in
curves in the inset show that even the lower resolution cap-
tures not just the qualitative (shape) but also the quantitative
properties of the spectrum.

As a final remark, we note that the resolutions used in this
work are standard ones often adopted in numerical simula-
tions of rotating forced turbulence.36,39,45 A good reference to
check the scale of turbulent structures studied here is the Tay-
lor microscale λ given in our non-dimensional units as:98,99

λ ∼

( ∫

k E(k)dk
∫

k k2E(k)dk

)1/2

=

(
νu2

rms

〈D〉

)1/2

=

(
u2

rms

Re〈D〉

)1/2

and the associated Reynolds number

Reλ =
urmsλ

ν
= urmsλRe,

where urms =
√

〈u2〉 =
√

〈2E〉 is the RMS of turbulent ve-
locity fluctuations and in our units viscosity ν = 1/Re. Note
that the two definitions of λ are equivalent in the sense that
the first one is in spectral space while the second is in physi-
cal space. In the considered case of Po = 0.3 and Re = 104.5,
the Taylor scale is λ = 0.051 and for its ratio to the grid size
∆x = ∆y = ∆z = L/N we get λ/∆x = 6, 12, 24 at resolutions
N = 128, 256, 512, respectively, which thus appears to be
well resolved. For reference, we also give the values of Tay-
lor miscroscale Reynolds number Reλ ≈ 150, 141, 143 for
N = 128, 256, 512, respectively, which do not appear to vary
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FIG. 17. Resolution study showing the comparison of the time-
evolution of the volume-averaged total kinetic energy (top) and shell-
and time-averaged kinetic energy spectrum E(k) multiplied by k2,
which is proportional to the dissipation function D, k2E = Re · |D|/2
(bottom), for different resolutions.

much with resolution. This demonstrates that the adopted res-
olutions N = 128 and 256 are quite adequate for the present
problem of precession-driven turbulence at Po ∈ [0.01, 0.5]
and Re ∈ [103.5, 105] (Table I) with typical Reλ ∼ 150. This
resolution and value of Reλ being consistent with the ones
typically used in forced rotating turbulence studies36,45,62 are,
however, much smaller than those for pure homogeneous
isotropic hydrodynamic turbulence with forcing (see, e.g.,
Ref.100), where resolution as high as 40963 can be reached
for Reλ ≈ 1200.

Appendix B: Impact of Reynolds number

In this section, we discuss how the Reynolds number af-
fects the behavior of precession-driven turbulence. First we

consider the bursty regime. For this purpose, we analyse the
time-evolution of the kinetic energy for the leftmost points
at a given Re of the regime diagram in Fig. 5. The results
are shown in the top row (left and right panels) of Fig. 18,
where we have separately put the lower Re ≤ 104.5 and higher
Re ≥ 105 cases, respectively. This choice is motivated by
the fact that we would like to highlight the difference in the
duration of the bursts, which is basically determined by vis-
cous decay of vortices. Indeed, the nature of time-evolution
is qualitatively similar in all these cases. The lower Reynolds
number cases exhibit shorter decay periods because of rela-
tively small viscous times compared to higher Reynolds ones
where viscous time is correspondingly large (for instance the
Re = 105.5 seems to have a period approximately between
2000 < t < 7500). From the right-top plot it is seen that at
high Re ≥ 105, the time-average value of the kinetic energy
seems to be more sensitive to Po and only weakly increases
with Re. An analogous behavior is observed in the case of
hyperviscosity where the bursty behavior is noticeably weak-
ened due to shifting of viscous dissipation towards large wave
numbers and is reduced at lower wavenumbers corresponding
to vortical modes.

The bottom left panel of Fig. 18 shows the impact of Re on
the evolution of the quasi-steady turbulence at Po= 0.3. At all
three considered values Re = 104, 104.5 and 105, the curves
are quite steady with only minor fluctuations. The level of
the saturated kinetic energy increases with Re, but seems to
converge at higher Re ≥ 104.5. Therefore, the results about
the spectral behaviors discussed in this paper for Re = 104.5

can be extended also to larger Re regimes.
For a given value of Po, the evolution of the volume-

averaged kinetic energy at lower Re corresponds to the bursty
regime, while at higher Re to the quasi-steady regime, as is
seen in Fig. 18 for Po = 0.3 where these two states are occur-
ring, respectively, at Re = 103.5 (blue, top left) and Re = 105

(black, bottom left). A similar situation is shown for Po =
0.075 in the bottom right panel, with bursts at Re = 104.5 and
quasi-steady turbulence at Re = 105. From this we can con-
clude that the threshold value Poc, demarcating these main
two regimes in the precessional flow increases with decreas-
ing Re, but still is of the order of Poc ∼ 0.1 in the chosen range
of Re ∈ [103.5, 105].
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