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Phase transitions in non-linear urns with interacting types

Marcelo Costa

Universidad de Buenos Aires ∗

Jonathan Jordan

University of Sheffield †

November 1, 2021

Abstract

We investigate reinforced non-linear urns with interacting types, and show that where
there are three interacting types there are phenomena which do not occur with two types.
In a model with three types where the interactions between the types are symmetric, we
show the existence of a double phase transition with three phases: as well as a phase with
an almost sure limit where each of the three colours is equally represented and a phase with
almost sure convergence to an asymmetric limit, which both occur with two types, there is
also an intermediate phase where both symmetric and asymmetric limits are possible. In a
model with anti-symmetric interactions between the types, we show the existence of a phase
where the proportions of the three colours cycle and do not converge to a limit, alongside a
phase where the proportions of the three colours can converge to a limit where each of the
three is equally represented.
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1 Introduction and definitions

In general terms, an urn model is a system containing a number of particles of different types
(often regarded as balls of different colours, for ease of visualisation). At each time step, a set of
particles is sampled from the system, whose contents are then altered depending on the sample
which was drawn. Pemantle [10] surveys several ways to approach this model framework.

This paper is limited to models with a single urn from which a single ball is drawn, its colour
is noted and it is then returned to the urn along with one new ball of that same colour. In
addition, we introduce a graph-based interaction according to which the probability of choosing
a ball of a given colour is reinforced not only by its own proportion in the urn, but also by the
proportions of balls of other colours. Therefore, the interaction arises among balls of different
colours, as opposed to the so-called interacting urn models consisting of systems of multiple urns
(e.g. Benäım et al [2], Launay and Limic [7]) in which different urns (each containing balls of
different colours) interact with one another. Our model is also different from the graph-based
competition described in van der Hofstad et al [11], where the colours correspond to edges of
the graph, which compete with, as opposed to being reinforced by, other edges incident on the
same vertices.

We now formally define our model. Consider an urn containing balls of d colours. The vector
x(n) = (x1(n), . . . , xd(n)) ∈ N

d denotes the number of balls of each colour at time n = 0, 1, 2, ....
The strength of the reinforcement is given by a positive real number β > 0 and we denote by
xβ(n) the coordinate-wise β power of the column vector x(n). The interaction is defined as
follows. Given a non-negative matrix A = (aij)

d
i,j=1, define the column vector

u(n) := Axβ(n) (1)

Let Fn be the σ-algebra generated by the x(m) for 0 ≤ m ≤ n and write ui(n) for the i-th
component of u(n). The transition probabilities are then

P(x(n+ 1)− x(n) = ei | Fn) =
ui(n)

∑d
j=1 uj(n)

, i = 1, . . . , d, (2)

where ei is the unit vector in direction i. That is, one ball is added to the urn at each time step,
and the right hand side of (2) gives the probability that it is of colour i.

Now, let n0 > 0 be the initial number of balls so that at time n the urn contains n + n0 balls.
Then, the proportion of balls of each colour is a process in the (d−1)-dimensional simplex ∆d−1
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given by the vector
x̄(n) = x(n)/(n+ n0). (3)

When A is a multiple of the identity matrix (therefore, x̄(n) having no interaction) it is well-
known (see Oliveira [8]) that the process x̄ undergoes a phase transition as follows. For β < 1, the
process converges almost surely to the ‘centre’ of the simplex, that is, the asymptotic proportion
of balls of each colour are all the same. For β = 1, commonly referred to as the Pólya urn model,
the process converges almost surely to a non-trivial random variable supported in the interior of
the simplex. For β > 1, the process converges almost surely to one of the corners of the simplex.
In this case that a single type dominates was proved by Khanin and Khanin [5] following on
from the two-type case which can be covered using Rubin’s Theorem in Davis [4].

For a two-colour urn model d = 2 and symmetric interaction,

A =

(

1 a
a 1

)

, a > 0,

it was proved by the first author in Theorem 2.2.1, [3], that there was a phase transition as
follows.

(i) if
(

1−a
1+a

)

β ≤ 1, then x̄(n) → (12 ,
1
2) a.s.

(ii) if
(

1−a
1+a

)

β > 1, then x̄(n) → Ψ a.s.,

where Ψ is a random vector supported on
{(

1
1+r ,

r
1+r

)

,
(

r
1+r ,

1
1+r

)}

and r := r(a, β) is the

unique root in (0, 1) of Pa,β(z) = azβ+1 − zβ + z − a = 0. In case (ii), P[x̄(n) → (12 ,
1
2)] = 0.

Note that for β = 1, the process (u(n))n≥0 is a Friedman’s urn model and statement (i) yields
u(n)/(u1(n) + u2(n)) → (12 ,

1
2) a.s. as expected.

Some similar results appear in Laruelle and Pagès [6]. The definition of the model there allows for
a more general skewing function than xβ as above, but in the d = 2 case gives phase transitions
similar to those in [3], and relates them to the eigenvalues of the generating matrix H, which is
related to our matrix A. Furthermore they show that, for any d, for a concave skewing function
(corresponding to β < 1 in our model) and a bi-stochastic generating matrix there is almost sure
convergence to the centre of the simplex, and they give conditions, related to the eigenvalues of
the generating matrix, under which for a convex skewing function (our β > 1) there is probability
zero of converging to the centre of the simplex.

In this paper, we follow up on the results for d = 2 in [3] and those in [6], with the aim to
generalise from d = 2 to larger values of d and to see whether more types of behaviour emerge
when this is done. We show that this is indeed the case when d = 3, where we consider two
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particular choices of A. Our results can be seen as extensions of those of [6] in certain specific
cases.

First of all, we consider a choice of A with a symmetric interaction of the same strength a for
each pair of colours. The following theorem shows that in this system there are three phases,
as opposed to two when d = 2; there are phases where there is almost sure convergence to a
symmetric limit and where there is almost sure convergence to one of a number of asymmetric
limits, which are analogues of the phases when d = 2, but there is also an intermediate phase
where both symmetric and asymmetric limits are possible.

Theorem 1.1. Let A be the matrix




1 a a
a 1 a
a a 1



 , a > 0. (4)

(i) Fix a < 1. Then there exists β1(a) satisfying 1 < β1(a) <
1+2a
1−a , with β1(a) an increasing

function of a satisfying β1(a) → ∞ as a → 1, and we have the following three phases.

(a) Symmetric limit almost surely. If β < β1(a), then almost surely x̄(n) →
(

1
3 ,

1
3 ,

1
3

)

.

(b) Symmetric or asymmetric limit. If β1(a) < β < 1+2a
1−a then there exists r2 > 1

such that almost surely x̄(n) converges to one of the four points in ∆2 given by
(

1
3 ,

1
3 ,

1
3

)

,
(

r2
2+r2

, 1
2+r2

, 1
2+r2

)

,
(

1
2+r2

, r2
2+r2

, 1
2+r2

)

and
(

1
2+r2

, 1
2+r2

, r2
2+r2

)

. All of these

points have positive probability of being limits.

(c) Asymmetric limit almost surely. If β > 1+2a
1−a then there exists r+ > 1 such that almost

surely x̄(n) converges to one of the three points in ∆2 given by
(

r+
2+r+

, 1
2+r+

, 1
2+r+

)

,
(

1
2+r+

, r+
2+r+

, 1
2+r+

)

and
(

1
2+r+

, 1
2+r+

, r+
2+r+

)

.

(ii) Fix a ≥ 1. Then almost surely x̄(n) →
(

1
3 ,

1
3 ,

1
3

)

.

Theorem 1.1 presents the results in terms of phase transitions in β with a fixed. However,
because both β1(a) and

1+2a
1−a are increasing functions of a which converge to 1 as a → 0 and to

∞ as a → 1, it is also possible to see them as phase transitions in a with β > 1 fixed: if a < β−1
2+β

then we will be in case (c), if β−1
2+β < a < β−1

1 (β) then we will be in case (b), and if a > β−1
1 (β)

we will be in case (a).

Theorem 1.1 can be seen as an extension of the results of Proposition 2.15 of Laruelle and
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Pagès [6] in the case where the matrix H = 1
1+2a





1 a a
a 1 a
a a 1



 in that their result shows the

non-convergence to (13 ,
1
3 ,

1
3) in the case (i)(c), as the second largest eigenvalue of H is 1−a

1+2a . We

can also state the condition β > 1+2a
1−a in terms of the eigenvalues of A: the right hand side can

be seen as the ratio of the two largest eigenvalues. It might be reasonable to conjecture that an
extension to d > 3 of Theorem 1.1 might involve a similar condition on the eigenvalues; however
we note that the other phase transition does not appear to be related to the eigenvalues of A.
We discuss the question of what happens with d > 3 further in Section 5.4.

We also consider a system where each colour is reinforced by itself and by one other, in a cyclic
way. For this system, the following theorem shows the existence of a phase transition between a
phase with convergence with positive probability to a symmetric limit and a phase where there
is no convergence to a limit and there is cycling behaviour.

Theorem 1.2. Let A be the matrix




1 1 0
0 1 1
1 0 1



 .

• When β < 4 there is positive probability that X̄(n) → (1/3, 1/3, 1/3).

• When β > 4, almost surely X̄(n) fails to converge, and the limit set is either a periodic
orbit or a connected union of periodic orbits.

In Section 2 we discuss the stochastic approximation methods we use in the proofs, while the
proofs themselves are in Section 3 for Theorem 1.1 and Section 4 for Theorem 1.2. In the final
Section 5, we illustrate the results with some examples and simulations, including some examples
beyond those covered by Theorems 1.1 and 1.2.

2 Stochastic approximation approach

In this section we introduce some of the stochastic approximation ideas which appear in our
proofs.

The type of stochastic approximation process we will be interested in is a Robbins-Monro al-
gorithm in R

d, following section 4.2 of Benäım [1]. This is a stochastic process (y(n))n∈N, with
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natural filtration (Fn), taking values in R
d which satisfies

y(n+ 1)− y(n) = γn(F (y(n)) + ξn+1), (5)

where F : Rd → R
d is a deterministic vector field, γn is a step size satisfying certain conditions,

and E(ξn+1|Fn) = 0 with ξn being Fn-measurable. For most results it is required that γn → 0
as n → ∞ but that

∑∞
n=1 γn = ∞, and some conditions are also needed on the noise term

ξn+1, typically that it is bounded in Lq for some q which depends on the γn: see for example
Proposition 4.2 of Benäım [1].

The above sequence can be thought as a numerical approximating method with varying step size
γn for solving the ODE dx/dt = F (x). Under the conditions discussed above, the asymptotic
behavior of (x̄n)n∈N and the underlying ODE are closely connected: as described in [1], define
an interpolated version (X(t))t≥0 by defining τ0 = 0 and for n ∈ N τn =

∑n
i=1 γi, then defining

X(τn + s) = x̄n + x̄n+1−x̄n

γn+1
for 0 ≤ s < γn+1. Then the interpolated process (X(t))t≥0 is an

asymptotic pseudotrajectory for the ODE. This is called the ODE method or the dynamical
system approach, which alongside some probabilistic techniques, is applied to examine almost
sure dynamics of stochastic approximation processes.

Let Φ : R+ × R
d → R

d be the semiflow induced by the vector field F , so that (Φ(t, x))t≥0) is
the trajectory of F started at x. A useful situation for analysis of stochastic approximation
processes is where there is a Lyapunov function for the vector field F : a function V : Rd → R

d

such that on a trajectory (Φ(t, x))t≥0 of the vector field, V (Φ(t, x)) is strictly decreasing in t
except where Φ(t, x) is a stationary point of F . If this holds, then under mild conditions then
the Robbins-Monro algorithm will converge almost surely to a (possibly random) limit, which
will be a stationary point of F . See section 6.2 of Benäım [1], and in particular Corollary 6.6
therein.

We now show that our process (x̄n) can be put into Robbins-Monro form, and that the as-
sumptions of Proposition 4.2 of Benäım [1] are satisfied, allowing the theory of asymptotic
pseudotrajectories to be used. For a general matrix A and a given configuration of balls x(n)
at time n, let in+1 ∈ {1, . . . , d} be the random colour of the ball to be added in the urn at time
n+ 1. Then, note that

x̄(n+ 1) =
x(n) + ein+1

n0 + n+ 1
=

(n0 + n)x̄(n) + ein+1

n0 + n+ 1

=

(

1− 1

n0 + n+ 1

)

x̄(n) +
ein+1

n0 + n+ 1
, (6)

implying

x̄(n+ 1)− x̄(n) =
1

n0 + n+ 1
(ein+1

− x̄(n)). (7)
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To put (7) into Robbins-Monro form, we rearrange the right-hand side into a deterministic part
and a zero mean “noise”. More specifically, let

F (x̄(n)) := E[ein+1
| Fn]− x̄(n), (8)

and
ξn+1 := ein+1

− E[ein+1
| Fn]. (9)

By setting γn = 1/(n0 + n+ 1), we obtain

x̄(n+ 1)− x̄(n) = γn(F (x̄(n)) + ξn+1). (10)

We note that the components of ξn+1 are uniformly bounded in modulus by 2, meaning that the
conditions of Proposition 4.2 of Benáım [1] are satisfied, meaning that the interpolated process
(X(t))t≥0 is indeed an asymptotic pseudotrajectory of F .

We can write the components of F as

Fi(x) =
ui

∑d
j=1 uj

− xi, i = 1, . . . , d,

where ui has the same relationship to x as ui(n) to x(n).

For a stochastic approximation heuristic, and to apply some of the results we use, it is necessary
to classify the stationary points, for which we use the following terminology.

Definition 1. Consider a stationary point p of F . We will say that p is stable if it is an
attractor for the vector field F , meaning that there exists a neighbourhood W of p where for
x ∈ W the trajectory (Φ(t, x))t≥0 satisfies Φ(x, t) → p as t → ∞, uniformly in W . Furthermore,
if all eigenvalues of DF (p) have negative real part, p is said to be linearly stable, while if some
eigenvalue has positive real part, p is said to be linearly unstable. If all eigenvalues have positive
real part, then p is said to be a source.

Typically convergence happens with positive probability to a stable stationary point but with
probability zero to a linearly unstable one. For the former, Theorem 7.3 of Benäım [1], which
holds under the assumptions on the noise of Proposition 4.2, shows that a stable stationary point
has positive probability of being a limit as long as its basin of attraction W contains points which
are attainable in the sense that the process has positive probability of being indefinitely close
to them at indefinitely large times, a condition which is usually satisfied for all points in the
simplex for urn type processes under mild conditions; see Example 7.2 of [1].

To show that linearly unstable stationary points have zero probability of being limits it is
usually necessary to check that there is expectation bounded away from zero of the positive
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part of the component of the noise in any given direction; see Pemantle [9], Theorem 1. This
condition ensures that the process has zero probability of being trapped on a stable manifold
and converging to the unstable point. Theorem 1 of [9] also requires the noise term ξn+1 (in our
notation) to be uniformly bounded; as noted above this is satisfied in our process.

3 Proofs for the symmetric case

In this section we prove Theorem 1.1.

Throughout this section we let A be the matrix




1 a a
a 1 a
a a 1



 , a > 0. (11)

In this case the vector field F is given by

F1(x1, x2, x3) =
xβ1 + axβ2 + axβ3

(1 + 2a)(xβ1 + xβ2 + xβ3 )
− x1 (12)

F2(x1, x2, x3) =
axβ1 + xβ2 + axβ3

(1 + 2a)(xβ1 + xβ2 + xβ3 )
− x2 (13)

F3(x1, x2, x3) =
axβ1 + axβ2 + xβ3

(1 + 2a)(xβ1 + xβ2 + xβ3 )
− x3 (14)

The stochastic approximation approach indicates that the possible limits of our process will be
stationary points of F , so we start by identifying these. Noting that the lines x1 = x2, x1 = x3
and x2 = x3 are each invariant under F , define the function

Pa,β(z) = azβ+1 − zβ + (1 + a)z − 2a, (15)

which we will see is related to the dynamics restricted to one of these lines. The following result
shows that all stationary points of F are located on at least one of these lines and expresses
them in terms of solutions to Pa,β(z) = 0.

Proposition 3.1. All stationary points (x1, x2, x3) of F have at least two of x1, x2, x3 equal,
and are of one of the forms ( r

r+2 ,
1

r+2 ,
1

r+2), (
1

r+2 ,
r

r+2 ,
1

r+2) or ( 1
r+2 ,

1
r+2 ,

r
r+2), with r a solution

of Pa,β(z) = 0 in R
+.
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Furthermore, there are at most three possible values of r, one of which is always 1, corresponding
to the stationary point (13 ,

1
3 ,

1
3).

Proof. We start off by showing that any stationary point has at least two co-ordinates equal.
We do this by writing the stationary point in the form (x, rx, sx) and showing that one of r = 1,
s = 1 or r = s must hold.

Rearranging (12), (13) and (14) at (x, rx, sx) gives

x =
1 + a(rβ + sβ)

(2a+ 1)(1 + rβ + sβ)
(16)

rx =
rβ + a(1 + sβ)

(2a+ 1)(1 + rβ + sβ)
(17)

sx =
sβ + a(1 + sβ)

(2a+ 1)(1 + rβ + sβ)
. (18)

It follows that

rβ + a(1 + sβ) = r(1 + a(rβ + sβ)) (19)

sβ + a(1 + rβ) = s(1 + a(rβ + sβ)). (20)

Take the linear combination (s+ 1
a)×(19)−(r + 1)×(20). This eliminates sβ and sβ+1, giving

(rβ + a)s− ar(1 + rβ) = (arβ + 1)s−
(

a(1 + rβ) +
r

a
− rβ

a
+ rβ+1 − 1

)

, (21)

which can be rearranged to give

s(rβ − 1)(a− 1) = (rβ+1 − 1)(1− a) + (rβ − r)

(

a− 1

a

)

. (22)

Assuming a 6= 1, (22) gives r = 1 or

s =
a(rβ + 1)(1− r) + rβ − r

a(rβ − 1)
=

Pa,β(r)− arβ + a

a(1− rβ)
. (23)

Using this form for s in (20) gives (if r 6= 1)

sβ =
−arβ+1 + rβ + a− r

a(r − 1)
=

Pa,β(r)

a(1− r)
+ 1. (24)
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Combining (23) and (24) tells us that either r = 1 or s = 1 or

sβ − 1

s− 1
=

rβ − 1

r − 1
,

and the latter case implies r = s. Hence any stationary point has two co-ordinates equal.

We now assume, without loss of generality, that the stationary point is of the form (x, x, rx) or

equivalently
(

1
r+2 ,

1
r+2 ,

r
r+2

)

. That the stationary point equations for a point of this form imply

Pa,β(r) = 0 is easy to check, and it is also easy to check that Pa,β(1) = 0 for any a, β > 0.

The function Pa,β satisfies Pa,β(0) < 0 and Pa,β(z) → ∞ as z → ∞; furthermore it is concave

for z < β−1
a(β+1) and convex for z > β−1

a(β+1) , which indicates that it has either one root or three in

R
+, counting multiplicity. This completes the proof.

We now show that the process will indeed, almost surely, converge to one of the stationary points
identified in Proposition 3.1.

Lemma 3.2. The limit set of the process (x̄(n))n∈N, defined in (3) with given matrix (11), will,
almost surely, be a single point which is a stationary point of F .

Proof. Let

L(x1, x2, x3) = (x1 + x2 + x3)−
1

2a+ 1

[

a log(x1x2x3)−
1

β
(a− 1) log(xβ1 + xβ2 + xβ3 )

]

. (25)

Then L is a strict Lyapunov function for F . In fact, straightforward differentiation gives

∂L

∂xi
= − 1

xi
Fi.

Then, denoting an trajectory of F by x(t) = (x1(t), x2(t), x3(t)), we obtain

d(L ◦ x)
dt

=

3
∑

i=1

∂L

∂xi

dxi
dt

= −
3

∑

i=1

xi

(

∂L

∂xi

)2

≤ 0,

where the equality holds in the above inequality if and only if F (x) = 0. Hence L(x(t)) is
decreasing in t, and strictly decreasing except where x(t) is a stationary point of F .
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We now apply Corollary 6.6 of Benäım [1] to show that the limit set of (x̄(n))n∈N will almost
surely be a stationary point of F . As ∆2 is precompact and we have identified a strict Lyapunov
function, the only condition which needs to be checked is that F has countably many stationary
points, which follows from Proposition 3.1. In fact, Proposition 3.1 shows that F has no con-
nected sets of stationary points other than single points, so the limit set must be a single point,
which is one of the stationary points of F .

Note that the Lyapunov function L generalises in an obvious way to more than three types, as
long as all off-diagonal entries are equal.

Proposition 3.3. Consider Pa,β(z) = azβ+1 − zβ + (1 + a)z − 2a for z ∈ R
+, with a, β > 0.

(i) For a given value of a > 1, Pa,β has only one root at z = 1.

(ii) For a given value of a < 1, there exists β1(a) satisfying
1+2a
1−a > β1(a) > 1 such that

(a) If β > 1+2a
1−a then P ′

a,β(1) < 0 and we have that Pa,β has three roots in R
+, 1, r− and

r+, labelled so that r− < 1 < r+. As functions of β for fixed a, r+ is increasing and
r− is decreasing.

(b) If β1(a) < β < 1+2a
1−a then P ′

a,β(1) > 0 and Pa,β has three roots in R
+, 1, r1 and r2,

labelled so that 1 < r1 < r2. As functions of β for fixed a, r2 is increasing and r1 is
decreasing.

(c) If β < β1(a) then P ′
a,β(1) > 0 and the only root of Pa,β in R

+ is 1.

Furthermore β1(a) is an increasing function of a with β1(a) → ∞ as a → 1.

Proof. We start by observing that Pa,β(0) = −2a and that Pa,β(z) → ∞ as z → ∞, indicating
that Pa,β has an odd number of roots in R

+, counting multiplicity. Differentiating with respect
to z, we have

P ′
a,β(z) = a(β + 1)zβ − βzβ−1 + 1 + a (26)

and
P ′′
a,β(z) = zβ−2(aβ(β + 1)z − β(β − 1)). (27)

Because P ′′
a,β(z) is increasing on z ∈ R

+ there cannot be more than three roots of Pa,β in R
+.

(i) First, if β < 1 we have that P ′′
a,β(z) > 0 in R

+ implying that P ′
a,β(z) is strictly increasing.

Moreover, P ′
a,β(z) goes from −∞ to +∞ when z ranges from 0 to +∞ and P ′

a,β(1) > 0. Then
P ′
a,β(z) changes sign only once at some z∗ < 1. Now, since Pa,β(0) = −2a < 0 and Pa,β(z) is

decreasing for z < z∗ < 1 and increasing otherwise, it follows that Pa,β(z) crosses the z = 0 line
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only once at z = 1. Second, the same happens for β > 1 since P ′
a,β(z) > 0 in R

+ and so Pa,β(z)
is strictly increasing. The case β = 1 is trivial.

(ii) If β > 1+2a
1−a we have P ′

a,β(1) = 1 + 2a− β(1− a) < 0, indicating that in this case Pa,β must

have three roots. Note that if β = 1+2a
1−a then P ′

a,β(1) = 0 but that P ′′
a,β(1) < 0, showing that

this is a double root, not a triple root, and so there must be another root in that case for larger
z. If β < 1+2a

1−a then P ′
a,β(1) > 0 and Pa,β has no root less than 1. Then, there must be either

none, one double, or two distinct additional roots greater than 1.

The derivative of Pa,β(z) with respect to β, for fixed a and z, is (az− 1)(log z)zβ . Thus, for any
z ∈ (1, 1/a), Pa,β(z) is decreasing in β, and it follows that if there are roots of Pa,β in this range
for a particular value of β there must also be for any larger β. As Pa,β(z) > 0 if z ≥ 1/a, this
shows that there exists β1(a) ∈ [1, 1+2a

1−a ] such that there is one root of Pa,β when β < β1(a) and
three when β > β1(a).

Let β0(a) >
2

1−a − 1 > 1 be the unique solution to

1 + a =

((

1− 2

β + 1

)

1

a

)β−1

. (28)

(It can be seen that (28) has a unique solution for fixed a < 1, as in that case the right hand
side is increasing in β if the right hand side is greater than 1, is equal to 1 at β = 1 and tends
to ∞ as β → ∞. That β0(a) >

2
1−a − 1 can be seen by noting that if β is a solution of (28) we

must have
(

1− 2
β+1

)

1
a > 1.) Then if β < β0(a) we have P ′

a,β(z) > 0 for all z and hence Pa,β is

increasing in z and so z = 1 is the only root. This shows that β1(a) ≥ β0(a) > 1.

Now, the fact that as mentioned above there is a root greater than 1 when β = 1+2a
1−a together

with the continuity of Pa,β(z) in β ensures that there remains a root greater than 1 for β ∈
(

1+2a
1−a − ǫ, 1+2a

1−a

)

for some ǫ > 0, so β1(a) <
1+2a
1−a .

The claims that r+ and r2 are increasing functions of β and that r1 is a decreasing function of
β also follow from the negative derivative of Pa,β(z) with respect to β for z ∈ (1, 1/a). Similarly
the claim that r− is a decreasing function of β follows from the derivative of Pa,β(z) with respect
to β being positive on (0, 1).

To see that β1(a) is an increasing function of a, note that the derivative of Pa,β(z) with respect
to a is zβ+1 + z − 2, and for fixed z > 1 this is positive, meaning that if we are in case (c) for
particular choices of a and β we will also be in case (c) for the same value of β and any larger
value of a. That β1(a) → ∞ as a → 1 follows from β0(a) >

2
1−a − 1.
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We now investigate the stability of these roots, for which recall the terminology in Definition 1.

Proposition 3.4. If a stationary point for F is of the form (x, x, rx) or (x, rx, x) or (rx, x, x),

then it is linearly stable if P ′
a,β(r) > 0 and rβ+2

r+2 > β(1−a)
2a+1 , and linearly unstable if either

P ′
a,β(r) < 0 or rβ+2

r+2 < β(1−a)
2a+1 .

Proof. Without loss of generality we focus on the case (x, x, rx).

We note that the differential equation driven by F keeps the line x1 = x2 invariant, so we
consider it restricted to this line; the equation for F3 gives

F3

(

1− x3
2

,
1− x3

2
, x3

)

=
2a

(

1−x3

2

)β
+ xβ3

(1 + 2a)
(

2
(

1−x3

2

)β
+ xβ3

) − x3.

Let x3 = z/(z + 2) so that x1 = x2 = 1/(z + 2). Then

F3

(

1− x3
2

,
1− x3

2
, x3

)

=
−2Pa,β(z)

(1 + 2a)(2 + zβ)
,

and so is positive when Pa,β(z) is negative and vice versa. Hence a stationary point (x, x, rx) is
stable in this direction if P ′

a,β(r) > 0 and linearly unstable in this direction if P ′
a,β(r) < 0.

Because F is symmetric in x1 and x2, the other direction in which we need to consider stability
will be perpendicular to this one. Hence we consider

F1(x+ ǫ, x− ǫ, rx) =
(x+ ǫ)β + (x− ǫ)β + arβxβ

(2a+ 1)((x+ ǫ)β + (x− ǫ)β + rβxβ)
− x− ǫ

= F1(x, x, rx) + ǫ

(

−1 +
β(1− a)

(2a+ 1)(2 + rβ)x

)

+ o(ǫ)

= F1(x, x, rx) + ǫ

(

−1 +
β(1− a)(r + 2)

(2a+ 1)(2 + rβ)

)

+ o(ǫ).

(29)

It follows that (x, x, rx) is a stable stationary point in the direction perpendicular to the line x1 =

x2 if rβ+2
r+2 > β(1−a)

2a+1 and linearly unstable in that direction if the reverse inequality applies.

We shall henceforth restrict ourselves to the case a < 1 since Propositions 3.1, 3.3(1) and 3.4
imply that if a > 1, (13 ,

1
3 ,

1
3) is the only stable stationary point for F and by Lemma 3.2,

(x̄(n))n∈N must converge to it. The case a = 1 has the probabilities of each colour being 1/3
regardless of x̄(n) and so it is easily seen that x̄(n) → (1/3, 1/3, 1/3) almost surely.

13



Corollary 3.5. Assume a < 1.

(i) If β < β1(a), then the stationary point (13 ,
1
3 ,

1
3) is stable, and is the limit with probability

1.

(ii) If β1(a) < β < 1+2a
1−a , then the stationary points (13 ,

1
3 ,

1
3) and

(

1
r2+2 ,

1
r2+2 ,

r2
r2+2

)

(and its

permutations) are stable, while the stationary point
(

1
r1+2 ,

1
r1+2 ,

r1
r1+2

)

and its permutations

are linearly unstable.

(iii) If β > 1+2a
1−a , then there are three stationary points of F of the form (x, x, rx) corresponding

to the three solutions r− < 1 < r+ of Pa,β(z) = 0 in R
+. The stationary points (13 ,

1
3 ,

1
3) and

(

1
r
−
+2 ,

1
r
−
+2 ,

2
r
−
+2

)

(and its permutations) are linearly unstable, while
(

1
r++2 ,

1
r++2 ,

r+
r++2

)

and its permutations are stable.

Proof. (i) Stability follows from Proposition 3.4, and almost sure convergence from Lemma 3.2.

(ii) The shape of Pa,β as discussed in the proof of Proposition 3.3 ensures that r1, r2 > 1 and

that P ′
a,β(r1) < 0 and P ′

a,β(r2) > 0, showing that
(

1
r1+2 ,

1
r1+2 ,

r1
r1+2

)

is linearly unstable, and

that for the other two stationary points we just need to check the stability perpendicular to the

line x1 = x2. But
rβ
2
+2

r2+2 > 1 > β(1−a)
2a+1 by our assumption on β, so the condition from Propostion

3.4 is satisfied and so (13 ,
1
3 ,

1
3) and

(

1
r2+2 ,

1
r2+2 ,

r2
r2+2

)

are stable. (iii) That Pa,β(z) = 0 has

three solutions follows from Proposition 3.3. As P ′
a,β(1) < 0 it follows from Propostion 3.4 that

(13 ,
1
3 ,

1
3) is linearly unstable, and as r− < 1 we have

rβ
−

+2

r
−
+2 < 1 < β(1−a)

2a+1 , so
(

1
r
−
+2 ,

1
r
−
+2 ,

r
−

r
−
+2

)

is also linearly unstable. The global minimum of the Lyapunov function on ∆2 must be a

stable stationary point of F , so the remaining stationary points,
(

1
r++2 ,

1
r++2 ,

r+
r++2

)

and its

permutations, must be stable.

The following result completes the proof of Theorem 1.1.

Proposition 3.6. Let l(x̄) denote the limit set of the process (x̄(n))n∈N defined in (10) and
recall the stability criteria in Proposition 3.4. Then we have

(i) P[l(x̄) = {p}] > 0 for stable points p of F .

(ii) P[l(x̄) = {p}] = 0 for linearly unstable points p of F .

14



Proof. Without loss of generality we focus on the case (x, x, rx).

(i) Let us now show that the process x̄ in fact converges with positive probability toward a
given stable fixed point. Of course, it is necessary that the process has positive probability of
being arbitrarily close to the attractor at arbitrarily large times. That is, a point p is said to be
attainable by a process X if for each t > 0 we have that P[∃ s ≥ t : X(s) ∈ Np] > 0 for every
neighborhood Np of p. It turns out that if the function F + Id associated with an urn process
X maps the simplex into its interior, it follows that every point of the simplex is attainable by
X. This is indeed the case for our process x̄. Finally, Benäım [1] Theorem 7.3 ensures that a
given attainable attractor p with non-empty basin of attraction is such that P[l(x̄) = {p}] > 0.

(ii) Let p be a linearly unstable critical point in the interior of ∆2 and Np ⊂ ∆2 a neighborhood
of p. The simplex is considered as a differential manifold by identifying its tangent space at any
point with the linear subspace T∆2 = {x ∈ R

3 :
∑

i xi = 0}. We need to check Pemantle’s
non-convergence criteria (Theorem 1 in [9]). As we have γn = 1/(n0 + n + 1) and we have
bounded noise, the only condition we need to check is condition (6): that the expectation of
the positive part of the component of the noise in any given direction is uniformly bounded
away from zero. Formally, we need that whenever x̄n ∈ Np, there is a constant κ such that
E[max{ξn+1 · θ, 0} | Fn] ≥ κ for every unit vector θ = (θ1, θ2, θ3) ∈ T∆2, where ξn+1 is the noise
term from (9). For notational simplicity, write ũi = ui(n)/(

∑

j uj(n)) and note that

E[max{ξn+1 · θ, 0} | Fn] =ũ1max{θ1(1− ũ1)− θ2ũ2 − θ3ũ3, 0}+
ũ2max{−θ1ũ1 + θ2(1− ũ2)− θ3ũ3), 0}+
ũ3max{θ1ũ1 − θ2ũ2 + θ3(1− ũ3), 0}. (30)

Now, write θ = (θ1, θ2, θ3) with θ1+θ2+θ3 = 0 and θ21+θ22+θ23 = 1, and suppose that θi < 0 for
exactly two coordinates, without loss of generality i = 2, 3. Then min θ2, θ3 ≤ − 1√

6
, as otherwise

(−θ2 − θ3)
2 + θ22 + θ23 < 1. Then we can write

θ1(1− ũ1)− θ2ũ2 − θ3ũ3 = −θ2(1− ũ1 + ũ2)− θ3(1− ũ1 + ũ3) ≥
2a

(1 + 2a)
√
6
,

as ũ1 ≤ 1
1+2a , meaning that the first term on the right hand side of (30) is at least 2a2

(1+2a)2
√
6
.

On the other hand, suppose that θi < 0 for exactly one coordinate; without loss of generality
assume θ3 < 0. Then if θ1 > θ2 we can write

θ1(1− ũ1)− θ2ũ2 − θ3ũ3 = θ1(1− ũ1 + ũ3)− θ2(ũ2 − ũ3).

If ũ3 ≥ ũ2 then this is at least θ1(1 − ũ1 + ũ3) ≥ 2a
(1+2a)

√
6
, while if ũ3 < ũ2 it is at least

θ1(1 − ũ1 − ũ2 + 2ũ3), which is equal to 3θ1ũ3 because ũ1 + ũ2 + ũ3 = 1. Hence in that case
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θ1(1− ũ1)− θ2ũ2 − θ3ũ3 ≥ 3a
(1+2a)

√
6
, so that again the first term on the right hand side of (30)

is at least 3a2

(1+2a)2
√
6
. If θ2 ≥ θ1 similar arguments show the the same but for the second term.

Hence we can set κ = 2a2

(1+2a)2
√
6
> 0, and apply Theorem 1 of [9] to conclude the result.

4 Proofs for the cyclic case

4.1 Introduction

In this section we prove Theorem 1.2. Here A is the matrix





1 1 0
0 1 1
1 0 1



 ,

and we have

F1(x1, x2, x3) =
xβ1 + xβ2

2(xβ1 + xβ2 + xβ3 )
− x1

F2(x1, x2, x3) =
xβ2 + xβ3

2)(xβ1 + xβ2 + xβ3 )
− x2

F3(x1, x2, x3) =
xβ3 + xβ1

2(xβ1 + xβ2 + xβ3 )
− x3

First, we note that for any choice of β, (13 ,
1
3 ,

1
3) is a stationary point of F . The following two

results give information on its stability and show that it is in fact the only stationary point.

Lemma 4.1. For the vector field F , the stationary point at (13 ,
1
3 ,

1
3) is stable if β < 4, and a

linearly unstable source if β > 4.

Proof. As we are working with x ∈ ∆2, write x3 = 1 − x1 − x2. Routine calculus then shows
that the Jacobian matrix at (13 ,

1
3 ,

1
3) is

(β
2 − 1 β

2

−β
2 −1

)

.
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The eigenvalues of this Jacobian are then the roots λ of

λ2 + λ

(

2− β

2

)

−
(

β

2
− 1

)

+

(

β

2

)2

which are
(

β

4
− 1

)

± i
√
3β

4
.

Since the real part of both eigenvalues is positive if β > 4 and negative if β < 4, the result
follows.

Lemma 4.2. The only stationary point of F in ∆2 is (13 ,
1
3 ,

1
3).

Proof. For x = (x1, x2, x3) ∈ ∆2 with F1(x) = F2(x) = F3(x) = 0, we have x1 =
xβ
1
+xβ

2

xβ
2
+xβ

3

x2 and

similarly x2 =
xβ
2
+xβ

3

xβ
3
+xβ

1

x3 and x3 =
xβ
3
+xβ

1

xβ
1
+xβ

2

x1. Using this,

x1 − x2 = x2
xβ1 − xβ3

xβ2 + xβ3
,

indicating that (if x2 > 0) if x1 > x2 then also x1 > x3, while if x1 < x2 then x1 < x3. Similarly,
if x3 > 0 then the signs of x2 − x3 and x2 − x1 are the same, and if x1 > 0 then the signs of
x3 − x1 and x3 − x2 are the same. Hence the only stationary point of F in the interior of ∆2 is
(13 ,

1
3 ,

1
3).

It is also easy to check that if x1 = 0 then x2 = 0, and similarly that if x2 = 0 then x3 = 0 and
if x3 = 0 then x1 = 0. Hence there are no stationary points of F on the boundary of ∆2.

We can now complete the proof of Theorem 1.2.

That we only have one stationary point, and that it is never a saddle, restricts the possibilities for
chain transitive sets. In two dimensions Theorem 6.12 of Benäım [1] states that chain transitive
sets must be unions of stationary points, periodic orbits and cyclic orbit chains. However, with
only one stationary point which is not a saddle cyclic orbit chains are impossible. We can thus
conclude that the limit set must be a connected union of periodic orbits and stationary points.

By Lemma 4.1, if β < 4 then by Lemma 4.1 the stationary point (13 ,
1
3 ,

1
3) is stable, and hence

is an attractor for the flow given by F . As in the proof of Proposition 3.6, by Theorem 7.3 of
Benäım [1], to show that there is positive probability of convergence to (13 ,

1
3 ,

1
3) it is enough
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to show that it is an attainable point, that is that we have that P[∃ s ≥ t : X(s) ∈ N ] > 0
for every neighborhood N of (13 ,

1
3 ,

1
3). This is straightforward to show: for any ǫ > 0 there

will be points of the form
(

n1

n , n2

n , n3

n

)

with n1, n2, n3 integers satisfying n1 + n2 + n3 = n and
max

{

n1

n − 1
3 ,

n2

n − 1
3 ,

n3

n − 1
3

}

< ǫ for arbitrarily large n. Because even if only one colour is
present in the urn initially, there will be positive probability that a second colour is chosen at
the first time step, and once two colours are present in the urn all three colours have positive
probability of being chosen at each step, there will be positive probability of any such point
being reached, so (13 ,

1
3 ,

1
3) is indeed attainable.

If β > 4, then by Lemma 4.1 (13 ,
1
3 ,

1
3) is linearly unstable, so as in Proposition 3.6 it will follow

that it is a limit with probability zero if we have positive expectation of the positive part of the
component of the noise in any given direction. In fact, the same argument as in Proposition
3.6 will work here, except that the explicit bounds for the ũi must be replaced by the fact that
in a neighbourhood of (13 ,

1
3 ,

1
3) there will exist δ such that δ < ũi < 1 − δ for each i, giving

κ = δ2/
√
6. So we can conclude that x̄(n) has probability zero of converging to a stationary

point, and it follows that the limit set must be a periodic orbit or a connected union of periodic
orbits, completing the proof of Theorem 1.2.

5 Examples and simulations

In this section we consider some examples, including some where exact calculations are possible,
and some simulations. We also consider some examples which go beyond the cases covered by
Theorems 1.1 and 1.2.

5.1 The symmetric case with β = 2

In the case of Theorem 1.1 with β = 2, the possible limits and the phase transitions can be
explicitly identified. We find that Pa,2(z) = (z − 1)(az2 + (a − 1) + 2a), with roots given by

z = 1 and z = 1−a±
√
1−2a−7a2

2a . If a <
√
8−1
7 , then these are real and positive, and letting

λ1 = 3a+1−
√
1−2a−7a2

4(2a+1) , λ2 = 3a+1+
√
1−2a−7a2

4(2a+1) , λ3 = a+1−
√
1−2a−7a2

2(2a+1) and λ4 = a+1+
√
1−2a−7a2

2(2a+1) , we

obtain linearly stable stationary points (λ1, λ1, λ4), (λ1, λ4, λ1) and (λ4, λ1, λ1), and linearly
unstable stationary (except at a = 1

4) points (λ2, λ2, λ3), (λ2, λ3, λ2), (λ3, λ2, λ2). In addition,
the stationary point (13 ,

1
3 ,

1
3) is linearly stable if a > 1

4 , and linearly unstable if a < 1
4 .
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If a >
√
8−1
7 , then (13 ,

1
3 ,

1
3) is the only stationary point, and is stable. In the notation of Theorem

1.1, we have β1

(√
8−1
7

)

= 2, and the three phases are as follows:

Figure 1: 20 simulations of the symmetric model for β = 2

(i) a = 0.2 (ii) a = 0.26 (iii) a = 0.5

• When a < 1
4 , (

1
3 ,

1
3 ,

1
3) is linearly unstable; there are three other stationary points, (λ1, λ1, λ4)

and permutations, placed symmetrically, which are stable. For example when a = 1
5 ,

(0.1847, 0.1847, 0.6306) and permutations are stable. Almost surely, one of these three
points will be the limit. A simulation of 20 trajectories of the stochastic process in this
case appears in Figure 1i.

• For 1
4 < a <

√
8−1
7 , (13 ,

1
3 ,

1
3) is now stable but there are also stable stationary points else-

where, near (14 ,
1
4 ,

1
2). In this case, both symmetric and asymmetric limits have positive

probability. For example, at a = 0.26, there are stable stationary points at (0.2792, 0.2792, 0.4416)
and permutations as well as (13 ,

1
3 ,

1
3). A simulation of 20 trajectories of the stochastic pro-

cess in this case appears in Figure 1ii.

• For a >
√
8−1
7 , (13 ,

1
3 ,

1
3) is the only stationary point, and is stable, and will be the limit

almost surely. A simulation of 20 trajectories of the stochastic process in the a = 1
2 case

appears in Figure 1iii.

At the critical value a = 1
4 , (13 ,

1
3 ,

1
3) = (λ2, λ2, λ3) has zeros as eigenvalues of its Jacobian

and so is neither linearly stable nor linearly unstable, while there are stable stationary points

at (14 ,
1
4 ,

1
2) and permutations; similarly at the critical value a =

√
8−1
7 the stationary point

(λ2, λ2, λ3) = (λ1, λ1, λ4) is neither linearly stable nor linearly unstable.
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5.2 The symmetric case with β = 3

It is also possible to do some explicit calculations when β = 3. In this case (13 ,
1
3 ,

1
3) is linearly

stable when a > 2
5 and linearly unstable when a < 2

5 , and we have

Pa,3(z) = (z − 1)(az3 + (a− 1)z2 + (a− 1)z + 2a),

where the cubic factor has one real root (which is negative) when a > ac =
1

166(3.(2)
1/2.(3)1/4 +

24.(3)1/2 + 13.(2)1/2.(3)3/4 − 20) = 0.4160306 and three real roots (one of which is negative)
when a < ac. (In the notation of Theorem 1.1, β1(ac) = 3.) Hence for a > ac we get almost sure
convergence to (13 ,

1
3 ,

1
3), for a < 2

5 we get almost sure convergence to one of three asymmetric
stationary points, and for 2

5 < a < ac the process may converge either to (13 ,
1
3 ,

1
3) or to an

asymmetric stationary point, each with positive probability.

5.3 The cyclic model

Figure 2i shows 20 simulations of the cyclic model when β = 3, showing convergence to (13 ,
1
3 ,

1
3).

Figure 2ii shows 20 simulations with β = 6, showing apparent convergence to a single limit cycle.

Figure 2: 20 simulations of the cyclic model

(i) β = 3 (ii) β = 6

5.4 The symmetric case with more than three types

It is natural to extend Section 3 to d > 3 types, letting A be the d × d matrix with aii = 1
for each i and aij = a for i 6= j. It is straightforward to extend the Lyapunov function (25)

20



to this case, meaning that Lemma 3.2 applies. However, the later calculations, starting with
Proposition 3.1, do not apply. It thus may be interesting to investigate whether more complex
patterns of phases can occur in this case than when d = 3; however, numerical solution of the
stationary point equations for particular values of a when d = 4, 5, 6 suggests that the behaviour
is in fact very similar to the d = 3 case, with three phases which parallel those found in Theorem
1.1.

5.5 A more general cyclic case

It is natural to extend Section 4 by allowing the matrix A to take the form





1 a 0
0 1 a
a 0 1



 ,

allowing for different strengths of the cyclic reinforcement. It is straightforward to extend Lemma
4.1 to this case, showing that the stationary point at (13 ,

1
3 ,

1
3) is linearly stable if a ≥ 2 or if

a < 2 and β < 2(1+a)
2−a , and linearly unstable if a < 2 and β > 2(1+a)

2−a . However Lemma 4.2 does
not apply for general a and there may be other stationary points.

Numerical investigation when β = 2 suggests that there are three phases in a: in addition to a
phase with almost sure convergence to (13 ,

1
3 ,

1
3) and a phase with convergence to a limit cycle,

there is a phase up to a ≈ 0.25057 where there are stable stationary points other than (13 ,
1
3 ,

1
3)

and that the process usually converges to one of these.
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