

Deposited via The University of Leeds.

White Rose Research Online URL for this paper:

<https://eprints.whiterose.ac.uk/id/eprint/193910/>

Version: Accepted Version

Article:

Gilmer, JI, Farries, MA, Kilpatrick, Z et al. (2023) An emergent temporal basis set robustly supports cerebellar time-series learning. *Journal of Neurophysiology*, 129 (1). pp. 159-176. ISSN: 0022-3077

<https://doi.org/10.1152/jn.00312.2022>

Copyright © 2022, Journal of Neurophysiology. This is an author produced version of a paper published in Journal of Neurophysiology. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1 **An emergent temporal basis set robustly supports cerebellar time-series learning**

2 Jesse I. Gilmer^{1,2}, Michael A. Farries³, Zachary Kilpatrick⁴, Ioannis Delis⁵, Jeremy Cohen⁶, and Abigail L.
3 Person²

4

5 1. Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora CO
6 2. Dept. Physiology and Biophysics, University of Colorado School of Medicine, Aurora CO
7 3. Knoebel Institute for Healthy Aging, University of Denver, Denver CO
8 4. Department of Applied Mathematics, University of Colorado Boulder, Boulder CO
9 5. School of Biomedical Sciences, University of Leeds, Leeds UK
10 6. University of North Carolina Neuroscience Center, Chapel Hill NC

11 **ABSTRACT**

12 The cerebellum is considered a ‘learning machine’ essential for time interval estimation underlying motor
13 coordination and other behaviors. Theoretical work has proposed that the cerebellum’s input recipient
14 structure, the granule cell layer (GCL), performs pattern separation of inputs that facilitates learning in
15 Purkinje cells (P-cells). However, the relationship between input reformatting and learning has remained
16 debated, with roles emphasized for pattern separation features from sparsification to decorrelation. We
17 took a novel approach by training a minimalist model of the cerebellar cortex to learn complex time-series
18 data from time varying inputs, typical during movements. The model robustly produced temporal basis
19 sets from these inputs, and the resultant GCL output supported better learning of temporally complex
20 target functions than mossy fibers alone. Learning was optimized at intermediate threshold levels,
21 supporting relatively dense granule cell activity, yet the key statistical features in GCL population activity
22 that drove learning differed from those seen previously for classification tasks. These findings advance
23 testable hypotheses for mechanisms of temporal basis set formation and predict that moderately dense
24 population activity optimizes learning. **NEW AND NOTEWORTHY:** During movement, mossy fiber
25 inputs to the cerebellum relay time-varying information with strong intrinsic relationships to ongoing
26 movement. Are such mossy fibers signals sufficient to support Purkinje signals and learning? In a model,
27 we show how the GCL greatly improves Purkinje learning of complex, temporally dynamic signals
28 relative to mossy fibers alone. Learning-optimized GCL population activity was moderately dense, which
29 retained intrinsic input variance while also performing pattern separation.

30

31 **INTRODUCTION**

32 The cerebellum refines movement and maintains calibrated sensorimotor transformations by learning to
33 predict outcomes of behaviors through error-based feedback (Ito, 1972; Herzfeld et al., 2015; Medina
34 2000; Mauk and Buonomano, 2004; Raymond et al., 1996). A major site of cerebellar learning is in the
35 cerebellar cortex, where Purkinje cells (P-cells) receive sensorimotor information from parallel fibers
36 (Huang et al. 2013) whose synaptic strengths are modified by the conjunction of presynaptic (parallel
37 fiber) activity and climbing fiber inputs to P-cells thought to convey instructive feedback (McCormick et
38 al., 1982; Yang and Lisberger, 2014; Mauk et al., 1986; De Zeeuw et al., 1998). P-cell activity is
39 characterized by rich temporal dynamics during movements, representing putative computations of
40 internal models of the body and the physics of the environment (Wolpert et al., 1998; Shadmehr and
41 Mussa-Ivaldi 1994). Parallel fibers are the axons of cerebellar granule cells (GCs), a huge neuronal
42 population (comprising roughly half of the neurons in the entire brain; Herculano-Houzel 2010), which

43 are the major recipient of extrinsic inputs to the cerebellum. Thus, understanding the output of the GCL is
44 key in determining the encoding capacity and information load of incoming activity projected to the
45 cerebellum. Inputs to GCs arise from mossy fibers (MFs), which convey sensorimotor information for P-
46 cell computations (Rancz et al., 2007; Ishikawa et al., 2015). There are massively more GCs than MFs
47 and each GC typically receives input from just 4 MFs (Palkovits et al., 1971), such that the information
48 carried by each MF is spread among many GCs, but each GC samples from only a tiny fraction of total
49 MFs (Jakab and Hamori 1988; Eccles et al., 1967).

50
51 The GCL has been the focus of theoretical work spanning decades, which has explored the computational
52 advantages of the unique feedforward architecture of the structure. Notably, early studies of the cerebellar
53 circuit by Marr (1969) and Albus (1971) proposed that a key component of the cerebellar algorithm is the
54 sparse representation of MF inputs by GCs. In this view, the cerebellum often must discriminate between
55 overlapping, highly correlated patterns of MF activity with only subtle differences distinguishing them
56 (Bengsston and Jorntell 2009). Sparse recoding of MF activity in a much larger population of GCs
57 (“expansion recoding”) increases the dimensionality of population representation and transforms
58 correlated MF activity into independent activity patterns among a subset of GCs (Litwin-Kumar et al.,
59 2017; Cayco-Gajic et al., 2017; Gilmer and Person 2018). These decorrelated activity patterns are easier
60 to distinguish by learning algorithms operating in P-cells, leading to better associative learning and credit
61 assignment (Cayco-Gajic et al., 2017; Sanger et al., 2020).

62
63 The machine learning perspective of the Marr-Albus theory tends to assume that the cerebellum is
64 presented with a series of static input patterns that must be distinguished and categorized. However,
65 during movements, neuronal population dynamics are rarely, if ever, static. Mauk and Buonomano (2004)
66 revisited cerebellar expansion recoding in the context of temporal encoding, a necessary computation for
67 the cerebellar-dependent task of delay eyelid conditioning. They proposed that a static activity pattern in
68 MFs could be recoded in the GC layer as a temporally evolving set of distinct activity patterns, termed a
69 temporal basis set. P-cells could learn to recognize the GC activity pattern present at the correct delay and
70 initiate an eyeblink to avert the “error” signal representing the air puff to the eye. This transformative
71 theory has given rise to an emerging literature exploring mechanisms of basis set formation. A variety of
72 mechanisms have been proposed for how such time-varying population activity might emerge, including
73 local inhibition, short-term synaptic plasticity, diverse unipolar brush cell properties and varying GC
74 excitability (Chabrol et al., 2015; Duguid et al., 2012; Crowley et al., 2009; Rudolph et al., 2015;
75 Buonomano and Mauk 1994; Kanichay and Silver 2008; Simat et al., 2007; Mapelli et al., 2009; Rossi et
76 al., 1996; Gall et al., 2005; Armano et al., 2000; Rizwan et al. 2016; Tabuchi et al., 2019; D’Angelo and
77 De Zeeuw 2009; Kennedy et al., 2014, Guo et al., 2021; Dino et al. 2000).

78
79 Despite these promising avenues, the problem of learning more complex movements presents a distinct
80 set of questions about how the cerebellum processes and uses time variant inputs to learn complex P-cell
81 signals, a type of timeseries. Therefore, to test how expansion recoding of time-varying input contributes
82 to learning, we used a simple model of the GCL and a time-series prediction task to explore the effect of
83 putative GCL filtering mechanisms on expansion recoding and learning. Similar to previous models, this
84 simplified model made GC activity sparser relative to MF inputs (Marr 1969; Albus 1971) and increased
85 the dimensionality of the input activity (Litwin-Kumar et al., 2017) while preserving information
86 (Billings et al., 2014). The model greatly enhanced learning accuracy and speed by P-cells on a difficult

87 time series prediction task when compared to MF inputs alone. Together, these results suggest that the
88 cerebellar GCL provides a rich basis for learning in downstream Purkinje cells, providing a mixture of
89 lossless representation (Billings et al., 2014) and enhanced spatiotemporal representation (Litwin-Kumar
90 et al. 2017) that are selected for by associative learning to support the learning of diverse outputs that
91 support adaptive outputs in a variety of tasks (Fujita 1982; Dean and Porrill 2008).

92 METHODS

93 Model construction

94 The model presented here incorporated only the dominant features of the granule cell layer (GCL) circuit
95 anatomical organization and physiology. The features chosen for the model were the sparse sampling of
96 inputs (GCs have just 4 synaptic input branches in their segregated dendrite complexes on average),
97 which was reflected in the connectivity matrix between the input pool and the GCs, where each GC
98 received 4 inputs with weights of $1/4^{\text{th}}$ (i.e. 1 divided by the number of inputs; 1/M) of the original input
99 strength, summing to a total weight of 1 across all inputs. The other features were thresholding,
100 representing inhibition from local inhibitory Golgi neurons and intrinsic excitability of the GCs. The
101 degree of inhibition and intrinsic excitability (threshold) was a free parameter of the model, and the
102 dynamics were normalized to the z-score of the summated inputs. This feature reflects the monitoring of
103 inputs by Golgi cells while maintaining simplicity in their mean output to GCs. While this model
104 simplifies many aspects of previous models of the GCL, it recreated many of the important features of
105 those models, suggesting that the sparse sampling and firing are the main components dictating GCL
106 functionality.

107 The model, in total, uses the following formulas to determine GC output:

108

$$109 \quad \text{Eq 1: } GC_i(t) = [(\sum_{k_1}^{k_M} \frac{MF_k(t)}{M}) - \theta]_+$$

110 where k is a random selection of M MFs from the MF population. The inputs are summed and divided by
111 the total number of MF inputs to the GC, M , so that their total weight is equal to 1. Unless noted as a
112 variable, we used $M = 4$, reflecting the mean connectivity between MFs and GCs, and the optimal ratio
113 for expansion recoding (Litwin-Kumar et al. 2017), and the point of best input variance retention (Fig. 5).
114 This function is then linearly rectified, i.e. $[x]_+ = x$ if $x > 0$ and 0 otherwise so that there are no negative
115 rates present in the GC activity. The θ function which determines the threshold, estimating the effects of
116 intrinsic excitability and feedforward inhibition, was formulated as:

117

$$118 \quad \text{Eq 2: } \theta = \overline{MF} + (z * \sigma(MF))$$

119 Here, z sets the number of standard deviations from the MF mean. z is the only free parameter,
120 which determines the minimum value below which granule cell activity is suppressed. Therefore
121 we report z as the ‘threshold’. Note that the summated MF inputs are divided by the number of
122 inputs per GC (M) in Eq. 1 such that their received activity relative to θ is proportional to the
123 input size, M . Since the input to GCs is Gaussian in our model, the summed activity integrated by the
124 GCs is Gaussian as well. For that reason, we found it convenient to define the GC thresholding term in
125 terms of a z-score. Thus, a GC with a threshold of “zero” has its threshold set at the mean value of its MF
126 inputs; such a GC would be silent 50% of the time on average because the Gaussian presynaptic input

130 would be below the mean value half the time. This makes it possible to discuss functionally similar
131 thresholds across varying network architectures (e.g., a GC with a threshold of zero would discard half of
132 its input on average regardless of whether it received 2 or 8 MF inputs).

133

134 **OU input construction**

135 To provide a range of inputs with physiological-like temporal properties that could be parameterized, we
136 used a class of randomly generated signals called Ornstein-Uhlenbeck Processes (OU), defined by the
137 following formula:

138
$$Eq\ 3: OU(t) = (OU(t - \Delta t) * e^{(-\frac{\Delta t}{\tau})}) + (\sigma * \sqrt{1 - e^{-2 * \frac{\Delta t}{\tau}}} * R)$$

139

140 Here t is the time point being calculated, Δt is the time interval (the time base is in ms and Δt is 1 ms). σ is
141 the predetermined standard deviation of the signal, and R is a vector of normally distributed random
142 numbers. This process balances a decay term, the exponential with e raised to $-\Delta t/\tau$, and an additive term
143 which introduces random fluctuations. Without the additive term, this function decays to zero as time
144 progresses. For all simulations, unless noted otherwise, τ was 100 ms. This resulted in a mean
145 autocorrelation τ of 502 \pm 52 ms, which was intermediate between pontine neurons and reach-related
146 electromyograms autocorrelation τ s of 351 \pm 120 ms and 567 \pm 151 ms, used below as model inputs,
147 respectively. After the complete function has been calculated, the desired mean is added to the timeseries
148 to set the mean to a predetermined value.

149

150 The vector R can also be drawn from a matrix of correlated numbers, as was the case in Fig. 7 – figure
151 supplement 1 B & C. These numbers were produced with the MATLAB functions `randn()` for normal
152 random numbers, and `mvnrnd()` for matrices with a predetermined covariance matrix supplied to the
153 function. The covariance matrix used for these experiments was always a 1-diagonal with a constant,
154 predetermined, covariance value on the off-diagonal coordinates.

155

156 **Introduction of noise to input and GCL population**

157 To test whether fluctuations riding on input signals influence GCL basis set formation, we introduced
158 Gaussian noise that was re-calculated trial to trial and added it to the MF input population. The amplitude
159 of the introduced noise was scaled to the amplitude of the input, so that the proportion of the signal that is
160 noise could be described with a percentage: % Noise = 100 * Noise Amp. / (Signal Amp. + noise Amp.).
161 For example, if the amplitude of the noise was equal to the amplitude of the input, the % noise would be
162 equivalent to 1 / (1 + 1) = .5, or 50% noise.

163

164 To determine the stability of representations in the MF and GCL populations with introduced noise, we
165 measured the displacement of the temporal location where peak firing occurred between noiseless and
166 noisy activity patterns at threshold 0 (unless noted). This measurement was rectified to obtain the absolute
167 displacement of peak firing time.

168

169 **Learning accuracy and speed assay**

170 To understand how the GCL contributed to learning, we constructed an artificial Purkinje cell (P-cell)
171 layer. The P-cell unit learned to predict a target function through a gradient descent mechanism, such that
172 the change in weight for each step was:

173
174
175
176
177

$$\text{Eq 4: } Err(t) = |P(t) - TF(t)|$$

$$\text{Eq 5: } \Delta W_i = W_i - (Err(t) * GC_i(t) * \eta)$$

178 Where $P(t)$ is the output of the P-cell at time t , $TF(t)$ is the target function at time t , W_i is the weight
179 between the Purkinje cell and the i^{th} GC, and η is a small scalar termed the ‘step size’. η was 1E-3 for
180 GCs, and 1E-5 for MF alone in simulations shown in this study where the step size was held fixed, which
181 was chosen to maximize learning accuracy and stability of learning for both populations. While not
182 strictly physiological because of membrane time constant temporal filtering and variable eligibility
183 windows for plasticity, this form of learning is widely applied in neural models, including cerebellar (e.g.
184 Bouvier et al., 2018). Physiological equivalents of negative weights found by gradient descent could be
185 achieved by molecular layer interneuron feedforward inhibition to P-cells. The learning process in Eq. 4
186 and 5 was repeated for T trials at every time point in the desired signal. The number of trials was chosen
187 so that learning reached asymptotic change across subsequent trials. Typically, 1000 trials were more than
188 sufficient to reach asymptote, so that value was used for the experiments in this study.

189
190
191
192

The overall accuracy of this process was determined by calculating the mean squared error between the
predicted and desired function:

193
194
195
196
197
198
199

$$\text{Eq 6: } MSE = \frac{1}{T} \sum_{t=1}^T (P(t) - TF(t))^2$$

The learning speed was determined by fitting an exponential decay function to the MSE across every trial
and taking the tau of the decay (See methods: Model output metrics, Time decay). A percentage form of
this measure is given in Fig. 3B, bottom, to give intuition to the total decrease in MSE when comparing
MFs to GCL output. $\%MSE = (MSE_{\text{MF}} - MSE_{\text{GCL}})/MSE_{\text{MF}}$.

200
201

GCL output metrics

To assay the properties of the GCL output that influence learning, we measured the features of GCL
output across a spectrum of metrics that have theoretically been associated with GCL functions like
pattern separation or expansion, as well as optimization or cost-related metrics developed for this paper.
These included: dimensionality, spatiotemporal sparseness, contributing principal components, spatial
sparseness (mean population pairwise correlation), temporal sparseness (mean unit autocovariance
exponential decay), population variance, temporal lossiness, population lossiness, and temporal cover.

202
203
204
205
206
207
208
209
210
211
212
213
214

We considered three forms of lossiness here, two related to the dimensions of sparseness considered
above, time and space, and one that is a measure of sparseness on the individual GC level. Temporal
lossiness is a measure of the percentage of time points that are not encoded by any members of the GCL
population, essentially removing the ability of P-cells to learn at that time point and producing no output
at that time in the final estimation of the target function. Increases in the value are guaranteed to degrade
prediction accuracy for any target function that does not already contain a zero value at the lossy time
point.

215
Eq 7:

$$Temp. Lossiness = \frac{1}{T} \sum_{t=1}^T x_t \text{ where } x_t \begin{cases} \left(\sum_{i=1}^N GC_i(t) \right) \leq 0 = 1 \\ else = 0 \end{cases}$$

216

217 Here, T is the total number of points in the encoding epoch, the bracketed portion of the formula is a
 218 summation of inputs from all GCs (N = population size) at that timepoint. When all GCs are silent, the
 219 sum is 0, and the temporal lossiness is calculated as 1, and when all time points are covered by at least
 220 one GC, total temporal lossiness is 0.

221

222 Spatial lossiness, or population lossiness, is the proportion of GCs in the population that are silent for the
 223 entirety of the measured epoch. This is thought to reduce total encoding space and deprive downstream P-
 224 cells of potential information channels and could potentially impact learning efficacy. It is defined as:

225

226

Eq 8:

$$Pop. Lossiness = \frac{1}{N} \sum_{i=1}^N x_i \text{ where } x_i \begin{cases} \left(\sum_{t=1}^T GC_t \right) \leq 0 = 1 \\ else = 0 \end{cases}$$

227

228 Here, N is the total population size of the GCL, and the bracketed portion of the formula is a sum of the
 229 activity of GCs across all timepoints, such that if a GC is silent across all timepoints x_i is calculated as 1,
 230 indicating the 'loss' of that GC unit's contribution. When all GCs are silent, population lossiness is 1, and
 231 when all GCs are active for at least one time point, population lossiness is 0.

232

233 Additionally, we looked at the mean sparseness of activity across the population by measuring the
 234 'coverage' or proportion of time points each GC was active during, defined as:

235

Eq 9:

$$Coverage = \frac{1}{N} \sum_{i=1}^N \left(\frac{1}{T} \sum_{t=1}^T x_i \text{ where } x_i \begin{cases} GC_i(t) > 0 = 1 \\ else = 0 \end{cases} \right)$$

236

237 As before, N is the number of cells in the population and T is the total length of the epoch. The bracketed
 238 function counts the number of time points where GC_i is active, and divides that by the total time period
 239 length to get the proportion of time active. This value is summed across all GCs and divided by N to
 240 calculate the average coverage in the population. This value has strong synonymy with population
 241 variance, so it was not used for fitting assays in later experiments (Fig. 6), but reflects the effect of
 242 thresholding on average activity in the GCL population.

243

244 Dimensionality is a measure of the number of independent dimensions needed to describe a set of signals,
 245 similar in concept to the principal components of a set of signals. This measure is primarily influenced by
 246 covariance between signals, and when dimensionality approaches the number of signals included in the
 247 calculation (n), the signals become progressively independent. The GCL has previously been shown to
 248 enhance the dimensionality of input sets and does so in the model presented here too. Dimensionality is
 249 calculated with:

250 Eq 10: $Dim = (\sum_{i=1}^n \lambda_i)^2 / (\sum_{i=1}^n \lambda_i^2)$

251
252 Provided by Litwin-Kumar, et al, 2016. This is the ratio of the squared sum of the eigenvalues to the sum
253 of the squared eigenvalues of the covariance matrix of the signals.

254
255 Spatiotemporal Sparseness (STS) was a calculated cost function meant to measure the divergence of GC
256 population encoding from a ‘perfect’ diagonal function where each GC represents one point in time and
257 does not overlap in representation with other units. This form of representation is guaranteed to produce
258 perfect learning, and transformations between the diagonal and any target function can be achieved in a
259 single learning step, making this form of representation an intriguing form of GCL representation, if it is
260 indeed feasible. We calculated the cost as:

261
262 Eq 11: $STS = (1 - L_t) * (\frac{1}{T}) * (\frac{W}{GC_w})$

263
264 Where $(1 - L_t)$ is the cost of temporal lossiness, defined above (Eq. 7), and T is the total length of the
265 epoch. W is the number of unique combinations (termed ‘words’, akin to a barcode of activity across the
266 population), of GCs across the epoch at each point of discrete time, and GC_w is the average number of
267 words each GC is active at all within the time-bins chosen (e.g. a binary representation of GC activity).
268 The intuition used here is that when there is no temporal lossiness, all points in time are represented,
269 leading the $1 - L_t$ term to have no effect on the STS equation, and when W, the number of unique
270 combinations of GC activities is equal to T, then each point in time has a unique ‘word’ associated with it.
271 Finally, when GC_w is 1, W/GC_w is equal to W, which only occurs when each GC contributes to a single
272 word. When these conditions are met, $STS = 1$, otherwise when GCs contribute to more than one word,
273 GC_w increases and W is divided by a number larger than 1, decreasing STS. Alternately, when there are
274 not many unique combinations, such as when every GC has the exact same output, W/GC_w is equal to
275 $(1/T)$, decreasing STS. Finally, because lossiness causes the occurrence of a ‘special’, but non-associable,
276 word, we multiplied the above calculations by $(1 - L_t)$ to account for the effect of the unique non-encoding
277 word (i.e. all GCs inactive) on distance from the ideal diagonal matrix.

278
279 Mean temporal decay, i.e. temporal sparseness, is a measure of variance across time for individual
280 signals, where a low value would indicate that the signals coherence across time is weak, meaning that the
281 signal varies quickly, whereas a high value would mean that trends in the signal persist for long periods of
282 time. This value is extracted by fitting an exponential decay function to the autocovariance of each unit’s
283 signal and measuring the tau of decay in the function:

284
285 Eq 12: $y = a * e^{(-x/\tau)}$

286
287 This is converted to the ms form by taking the ratio of $1000/\tau$. y here τ is a description of the
288 autocovariance of the activity of a MF or GC signal, so when the descriptor τ is a large number, the decay
289 in autocovariance is longer, or slower, when τ is a small number, the autocovariance across time decays
290 more quickly, making the change in activity faster.

292 While dimensionality and STS are metrics rooted in a principled understanding of potentially desirable
293 properties of population encoding, the gradient descent algorithm can extract utility from population
294 statistics that are much noisier and correlated than the ideal populations that dimensionality and STS
295 account for. To measure a more general pattern separation feature in GCL output that could still be
296 associated with the complex target function, we turned to principal component analysis (PCA) with the
297 intuition that components which explain variance in the GCL output could be utilized by the downstream
298 Purkinje cell units to extract useful features from the input they receive (Lanore et al., 2021). We
299 parameterized the utility of this measure by taking the proportion of the PCs derived from the GCL output
300 which explained variance (of the GCL output) in that population by more than or equal to 1/N, where N is
301 the number of GCs, suggesting that they explain more variance than would be expected from chance.
302

303 Population correlation, was measured by taking the mean correlation between all pairwise combinations
304 of GCs using the corr() function in MATLAB and excluding the diagonal and top half of the resultant
305 matrix.

306
307 Population aggregate variance is a measure related to the expansion or collapse of total space covered by
308 the encoding done by a population, and higher or expanded values in this metric are thought to assist in
309 pattern separation and classification learning.
310

311 Eq 13: Pop. Var = $\sum_{n=1}^N (x_n - \mu)^2$
312

313 As shown in Cayco-Gajic et al. (2017). Here x is the activity of one of n cells across a measured epoch,
314 and μ is the mean of that activity. This value is reported relative to the number of GC units, such that Pop.
315 Var reported in Fig. 6 is normalized to Pop. Var / N.
316
317

318 **Variance retained assay**
319 To test the recovery of inputs by a feedforward network with a granule cell layer (GCL), we used
320 explained variance, R^2 , to quantify the quality of recovery of a sequence of normal random variables
321 (Fig. 5) across $N_w = 1000$ numerical experiments. To distinguish this metric from the MSE and R^2
322 metrics to evaluate other models in the study, we rename this ‘variance retained’. Within each numerical
323 experiment i , at each time point, a vector of inputs x_t of length M (representing the mossy fiber, MF,
324 inputs) was drawn from an M -dimensional normal distribution with no correlations, $x_t \sim \mathcal{N}(\mathbf{0}, I_M)$. This
325 vector is then left-multiplied by a random binary matrix W with N rows and M columns with n 1’s per
326 row and the rest zeros, followed by a threshold linearization to obtain the GCL output, $y_t = [Wx_t - z]_+$
327 with threshold. This process is then repeated $T = 1000$ times and a downstream linear readout was fit to
328 optimally recover x_t from y_t . It can be shown multivariate linear regression (MATLAB’s regress())
329 function, employing least squares to minimize mean squared error) solves this problem, identifying for
330 each MF input stream $x_{1:T}^j$, the optimal weighting $B_{1:T}$ from the GCL to estimate $\hat{x}_{1:T}^j = B_{j,1:N}y_{1:T}$.
331 Across time $t = 1:T$, we then computed the squared error across the vector, $MSE_i = \sum_{t=1}^T \sum_{j=1}^M (\hat{x}_t^j -$
332 $x_t^j)^2$, as well as the summed variance of the actual input, $Var_i = \frac{1}{MT} \sum_{j=1}^M \sum_{t=1}^T (x_t^j - \bar{x}^j)^2$, where
333 $\bar{x}^j = \frac{1}{T} \sum_{t=1}^T x_t^j$ is the mean of the j th MF input stream. Lastly, to compute variance explained, we take

334 $R^2 = 1 - \frac{\sum_{i=1}^{N_w} MSE_i}{\sum_{i=1}^{N_w} Var_i}$, so the higher the relative mean squared error is, the lower the variance explained will
335 be. To generate the panels in Fig. 5, we always kept the number of timepoints and experiments the same,
336 but varied (Fig. 5B) the threshold along the axis and the number of inputs n per GC output; (Fig. 5C) the
337 total number of GC outputs N and input per output n ; (Fig. 5D) number of inputs M and outputs N ; and
338 finally (Fig. 5E) the number of inputs per GC output n along with the total number of outputs N .
339

340 **Generation of GCL output with defined statistical structure**

341 To determine if the sparseness measures had inherent benefits for learning, we supplemented the GCL
342 output with OU processes with known temporal and correlational properties to examine their effect on
343 learning accuracy (Figure 7 figure supplement 1). We varied the temporal properties by systematically
344 varying the tau value in the exponential decay function. To vary population correlation, the random draw
345 function in the OU process was replaced with a MATLAB function, mvnrnd(), which allowed for preset
346 covariance values to direct the overall covariance between random samples. We used a square matrix with
347 1s on the diagonal and the desired covariance on all off-diagonal locations for this process and varied the
348 covariance to alter the correlation between signals. The OU outputs from this controlled process were
349 then fed into model P cells with randomized OU targets, as per the normal learning condition described
350 above. To vary the effect of the input population size, the size of the supplemented population varied
351 from 10 to 3000 using a tau of 10 and drawing from normal random numbers.
352

353 To measure the effects of STS on learning, a diagonal matrix was used at the input to a Purkinje unit,
354 which represented population activity with an STS of 1 (see Eq 11 in Model output metrics). To degrade
355 the STS metric, additional overlapping activity was injected either by expanding temporal representation
356 or at random, for example, adding an additional point of activity causes inherent overlap in the diagonal
357 matrix, increasing the GC_w denominator of Eq 11 to $(1 + 2/N)$ because the overlapping and overlapped
358 units now each contribute to 1 additional neural word. This process was varied by increasing the amount
359 of overlap to sample STS from 0 to 1.
360

361 **Statistics of GCL output metrics and learning**

362 To estimate the properties of GCL output that contribute to enhanced learning of time series, we used
363 multiple linear regression to find the fit between measures of GCL population activity and observed MSE
364 in learning. Because there are large inherent correlations between the metrics used (dimensionality,
365 spatiotemporal sparseness, explanatory principal components of the GC population, population
366 variability, mean pairwise GC correlation, temporal sparseness, temporal lossiness, population lossiness,
367 and input variance retained) we used two linear regression normalization techniques: LASSO and RIDGE
368 regression. For Figure 7, LASSO was used to isolate the ‘top’ regressors, while RIDGE was used in
369 Figure 8 to preserve small contributions from regressors. The RIDGE regression method was then used to
370 compare resultant regression slopes (beta coefficients) to changes in task parameters (see Methods on
371 Simulation of cerebellar tasks).
372

373 Regressions were performed using the fitrlinear() function in MATLAB, with LASSO selected by using
374 the ‘SpaRSA’ (Sparse Reconstruction by Separable Approximation; Wright et al., 2009) solver, and
375 RIDGE selected with the ‘lbgfs’ (Limited-memory BFGS; Nocedal and Wright 2006) solver techniques.
376 The potential spread of MSE in the models was determined using a K-fold validation technique, with 10

377 ‘folds’ used, as well as for determining the range of absolute slopes shown in Figure 8C, of which the
378 mean and standard deviation of cross-validation trials are plotted with solid lines and shaded polygons,
379 respectively. Models were selected by choosing the model with the least complex fitting parameters (i.e.
380 the model with the highest Lambda) while still falling within the bounds of the model with the minimized
381 MSE plus the standard error (a standard ‘1SE’ method).

382

383 We reasoned that interactions between explanatory GCL statistical features might account for observed
384 learning accuracy to some degree. A standard method for selecting potential interactions while
385 constraining the regression model to a reasonable number of parameters is through selection by Bayesian
386 information criteria (BIC) stepwise regression. We used the MATLAB stepwiselm() function with the
387 BIC method to select from our 9 statistical features and allowed the regression function to select potential
388 interactions between them. The output of the regression listed which linear and interacting components
389 best fit the model. Although this output also included the Beta values of the fits, they were not regularized
390 in a way that was intuitively interpretable, so we therefore transferred the BIC selected parameters to a
391 RIDGE regressor to get the final Beta values and fit.

392

393 To convey the overall contribution of regressors to the above models of MSE, the slope relative to the
394 magnitude of all slopes were used as plotted metrics (Fig. 8C).

395

396 **Pontine neuron activity patterns**

397 To investigate the properties of GCL filtering on physiological inputs to the cerebellar cortex, we
398 extracted recordings of pontine neurons, a primary source of mossy fibers, from the work of Guo,
399 Sauerbrei and colleagues (Guo et al., 2021b) during a reaching task in mice. We used the first 50 neurons
400 for the recording to keep MF counts similar to the modelled OU population, and applied a 100 ms
401 Gaussian filter to the raw spiking data, aligned to reach onset, to obtain the estimated firing rate. The
402 firing rate values were range normalized for display and filtering (Fig. 1B,E) and are shown in order of
403 their peak firing rate time.

404

405 **Simulation of cerebellar tasks**

406 To simulate the transformation between motor commands and kinematic predictions, we used human
407 EMG as a proxy for a motor command-like input signal to the GCL. 30 muscles from 15 bilateral target
408 muscles were used (Delis et al., 2018; Hilt et al., 2018). The target function was a kinematic trajectory
409 recorded simultaneously with the recordings of EMG used for the study. Although many body parts and
410 coordinate dimensions were recorded of the kinematics, we opted to use the kinematic signal with the
411 largest variance to simplify the experiment to a single target function.

412

413 **Code Availability**

414 All computer code and simulation data is freely available at [https://github.com/jesse-](https://github.com/jesse-gilmer/2022-GCL-Paper)
415 [gilmer/2022-GCL-Paper](https://doi.org/10.6084/m9.figshare.20361849). Supplementary Figures are available at 10.6084/m9.figshare.20361849

416

417 **RESULTS**

418 **Temporal basis set formation as emergent property of GCL filtering of time-varying inputs**

419 In many motor tasks, both mossy fibers and P-cells show highly temporally dynamic activity patterns,
420 raising the question of how GCL output supports timeseries learning using time varying inputs, a
421 divergence from traditional classification tasks used in most cerebellar models (Fig. 1; Izawa et al. 2012).
422

423 We used a simple model, similar to previously published architectures (Cayco-Gajic et al., 2017; Litwin-
424 Kumar et al., 2017; Billings et al., 2014), capturing the dominant circuit features of the GCL: sparse
425 sampling of mossy fiber (MF) inputs by postsynaptic granule cells (GCs) and coincidence detection
426 regulated by cellular excitability and local feedforward inhibition (Fig. 1A; Eq.1,2; Marr 1969; Albus
427 1971; Palkovits et al., 1971; Chabrol et al., 2015). GC output is generated by summing MF inputs and
428 thresholding the resultant sum; anything below threshold is set to zero while suprathreshold summed
429 activity is passed on as GC output (Fig. 1A, center). The GC threshold level represents both intrinsic
430 excitability and the effect of local inhibition on regulating GC activity.
431

432 We fed two naturalistic sources of cerebellar inputs to the model: recordings from the mouse pontine
433 nucleus (PN, Fig. 1B, previously published in Guo, et al., 2021b) and electromyograms measured during
434 reaching tasks (EMG, Fig. 1C, from Delis et al. 2018). In both cases, the GCL enhanced the
435 spatiotemporal representation of input activity. To parameterize such time-varying inputs, we next
436 generated artificial MF activity using Ornstein-Uhlenbeck (OU) stochastic processes. These signals
437 provide a statistically tractable ensemble that was rich enough to capture the dynamic nature of
438 naturalistic inputs while remaining analytically tractable and easily parameterized, fully characterized by
439 just three parameters: correlation time, mean, and standard deviation. Example OU input functions are
440 shown in Fig. 1D (top). Importantly, OU functions preserve autocorrelations typical of physiological
441 signals, such that they are not random from moment-to-moment (Fig. 1D, tau of 100 ms). All OU MFs
442 had the same tau and were not correlated with one another. As with the naturalistic inputs, the model GCL
443 spatiotemporally diversified OU processes Fig. 1D (explored more thoroughly below). The emergence of
444 sparse spatiotemporal representation under the simplistic constraints of the model suggests that the
445 cerebellum's intrinsic circuitry is sufficient to produce spatiotemporal separation when given sufficiently
446 time-varying inputs. Below, we refer to the transformation of information between GCL inputs and
447 outputs as "GCL filtering".
448

449 **GCL temporal basis is robust to noise**

450 By relying on coincident peaks in time-varying mossy fibers, this mechanism of spatiotemporal
451 sparsening raised the question of whether such temporal basis sets were robust to noise. To address
452 whether noise degrades spatiotemporal representation, we ran repeated simulations, adding Gaussian
453 noise that changed from trial to trial to fixed OU functions, and compared the resultant GCL basis sets
454 (Fig. 2). We modeled trial-over-trial noise variance by superimposing a Gaussian fluctuation such that the
455 overall proportion of the total signal that was noise ranged from 25%-50%.
456

457 GCL population activity was generally stable across noise levels (Fig. 2B). To quantify stability, we
458 measured the shift in the time of peak rate for each GC over 100 trials at threshold of 0. 50% of granule
459 cells shifted 10 ms or less in the 25% noise condition (Fig. 2C, left) and 50% shifted less than 30 ms
460 when 50% of the signal was unstable noise (Fig. 2C, right). Thus, while the basis set structure is not
461 perfectly resistant to noise, the primary temporally correlated OU signal dominates the population's
462 temporal structure. The effect of high noise on the stability of the temporal basis was dependent on

463 threshold: higher thresholds coupled with higher noise degraded temporal stability. At a threshold of 0,
464 the mean time shift was 136 ms. While at a threshold of 1, the mean time shift was 305 ms.

465

466 **GCL improves time series learning accuracy**

467 If mossy fiber activity is naturally time-varying it raises the question of whether it, by itself, is
468 intrinsically suited to support timeseries learning, obviating a role for the GCL (Markanday et al., 2022;
469 Fig S1). To address this question, we tested whether GCL population activity assisted learning beyond
470 the temporal representations inherent in the mossy fibers. We devised a task where P-cells learned to
471 generate a specific time-varying signals (OU process with 10 ms autocorrelation time) using gradient
472 descent (Equations 4-5, Methods). Inputs to P-cells were either MFs or GCL populations. Initially, P-cell
473 output was distinct from the target function, but over repeated trials P-cell output converged towards the
474 target function (Fig. 4A). We quantified the convergence of the P-cell output to the target function and
475 compared performance between instances when MF activity was sent directly to P-cells (“MFs alone”)
476 versus GCL activity was used as P-cell input. Finally, we examined performance of these learning
477 simulations across different thresholds, expressed in terms of a z-score, such that a threshold of “zero”
478 indicates the threshold is at the mean of MF input.

479

480 The model achieved excellent learning with either MFs or GCL inputs. Notably, the GCL markedly
481 enhanced the convergence to a target function at thresholds between -1 and 1 (Fig. 3A), achieving a
482 minimized mean squared error (MSE) of roughly 0.005, outperforming learning using MFs alone (MSE
483 0.02; normalized to a range of [0,1]). To establish an intuition into the practical difference of the range of
484 MSEs achieved with GCL or MFs alone, we tasked the model with learning a timeseries which could be
485 rendered as a recognizable image to human viewers (Fig 3B). This function had an identical range of
486 target function values ([0,1], Fig. 3B). GCL inputs facilitated P-cell timeseries learning that recapitulated
487 the recognizable image (Fig. 3B, bottom; MSE 0.002). By contrast P-cells that received MFs alone
488 generated a timeseries that rendered an unrecognizable image, despite the seemingly excellent MSE of
489 0.02. Thus, the small errors of MF-driven output accumulated along the timeseries to degrade
490 performance, while GCL-driven P-cell output yielded an easily recognizable image (Fig. 3B top right vs
491 three thresholds, bottom). Importantly, this was not a consequence of the large population expansion
492 between MFs and GCs, as increasing the number of MFs alone did not improve performance to the levels
493 observed in the model GCL (Fig. S2A-B). Nevertheless, a sufficiently large GCL population is required
494 to improve learning (Fig. S2B).

495

496 **GCL model speeds time series learning**

497 Having found that the GCL improves the match between predicted output and target output over a range
498 of thresholds, we next examined whether the GCL also increased the speed of convergence. We examined
499 the MSE between the model output and the target function on each trial as training progresses (Fig. 4C,
500 *red circles*) and found that output usually converged rapidly at first then more slowly in later stages of
501 training (Fig. 4A). The reduction in MSE over training in our model was reasonably well fit by a double
502 exponential (Fig. 4B, *red curve*), of the form

503

$$() = _1 e^{(-_1)} + _2 e^{(-_2)} +$$

504

505 where n is the trial number. We measured the convergence speed of a simulation by the rate constants k_1
506 and k_2 . In the vast majority cases, one of these rate constants was 5-50 times larger than the other; we
507 denote the larger constant k_{fast} and the other k_{slow} . For most parameter values, k_{fast} accounts for more than
508 80% of learning.

509
510 We next examined the influence of several key model parameters on convergence speed, such as
511 threshold and gradient descent steps size. First, we looked at the effect of the GC threshold. Learning was
512 fastest for GCL thresholds near a z-score of zero (Fig. 4C, *red circles*), the level that filters out half of the
513 input received by a GC. Convergence in networks that lack a GCL (MFs directly innervating P-cells) was
514 consistently slower (Fig. 4C, *blue line*) than networks with a GCL. Convergence was also sped up by
515 increasing the size of the parameter jumps in synaptic weight space during gradient descent (the “step
516 size”), but only to a limited degree (Fig. S3A). Indeed, at a GCL threshold of 0, convergence speed
517 *decreased* as the step size increased beyond $\sim 10^{-6}$ (au). We speculated that this trade-off was a
518 consequence of a failure to converge in a subset of simulations. To test this, we looked at the fraction of
519 simulations that converged towards a low MSE as a function of the update magnitude. We found that the
520 fraction of simulations that converged (“fraction successful”) decreased with increasing step size (Fig.
521 S3B); in simulations that did not converge, the MSE increased explosively and synaptic weights diverged.
522 In such cases, we assume the large weight updates made it impossible to descend the MSE gradient; each
523 network weight update drastically changed the cost function such that local MSE minima were overshot.
524 When larger step sizes did permit convergence, progress was nevertheless slowed, likely because the
525 relatively large learning rates led to inefficient progress towards the MSE minimum.
526

527 Although larger step sizes eventually cause learning to slow and then fail entirely at a given GCL
528 threshold, higher thresholds permitted larger step sizes before failures predominated (Fig. S3B). Since
529 higher thresholds permit larger step sizes before convergence failure sets in, convergence speed might be
530 maximized by jointly optimizing step size and GCL threshold. We tested this by systematically raising
531 step sizes at each threshold until convergence success fell to 50%. We defined the “maximum
532 convergence rate” for a given threshold as the maximum convergence rate (derived from fitting the MSE
533 trajectory with a double exponential) yielding successful convergence at least 50% of the time. We found
534 that the threshold giving the fastest convergence was indeed higher when step size was also optimized
535 (Fig. S3B) than when step size was fixed (Fig. 4C). Thus, increased GCL thresholding can allow the
536 network to trade learning accuracy for increased speed of learning.
537

538 **Recovering GCL input from GCL output**

539 Having established a framework for studying GCL processing of time varying inputs, we wanted to
540 understand to what extent thresholding GCL activity led to the loss of information supplied by MF inputs,
541 which potentially contains useful features for learning. In other words, would Purkinje neurons be
542 deprived of behaviorally relevant mossy fiber information if these inputs are severely filtered by the
543 GCL? To assess this issue, we used a metric of information preservation called *explained variance*,
544 (Achen 1982); however, in this special case, we use the term ‘*variance retained*’, because this metric
545 represents the preservation of information about the input after being subjected to filtering in the GCL
546 layer and we wanted to avoid confusing when describing linear regression results below. Let x_t denote the
547 MF input at time t . If the GCL activity preserves the information present in x_t , then it should be possible
548 to reconstruct the activity of MFs from GCL activity (see Methods for details on how this reconstruction

549 was performed). The variance retained is then the mean squared error between the actual MF input x_t and
550 the reconstructed input, normalized by the MF input variance:
551

$$R^2 = 1 - \frac{\sum_{t=1}^T \langle (\hat{x}_t - x_t)^2 \rangle}{\sum_{t=1}^T \text{Var}[x_t]}$$

552
553 Our primary finding is that the GCL transmits nearly all of the information present in the MF inputs even
554 at fairly high thresholds, but only if the GCL is sufficiently large relative to the MF population. The
555 threshold, feedforward architecture, and relative balance of MF inputs and GC outputs all affect the
556 quality of the reconstruction. Variance retained by the reconstruction layer decreased with the GC layer
557 threshold, since it masked some subthreshold input values (Fig. 5B). Allowing more MF inputs per GC
558 recovered some of this masked information, since some subthreshold values are revealed through
559 summing with sufficiently suprathreshold values. However, these gains cease beyond a few MF inputs
560 per GC, since the exponential growth of MF combinations rapidly exceeds the number that the GCs can
561 represent (Marr 1969; Gilmer and Person 2017).
562

563 To disentangle the information contained in the summed inputs, many different combinations of inputs
564 must be represented to disambiguate the contributions of each MF input. Increasing the number of GCs
565 generally increases the variance retained, since more combinations of MF inputs are represented, and
566 reveal subthreshold input values (Fig. 5C). Interestingly, variance retained by the network varied non-
567 monotonically with the number of MF inputs (M) when the number of GCs (N) was fixed. This is because
568 having too few MF inputs means there may not be a sufficient number of combinations so that
569 subthreshold values can be revealed (by summing them with suprathreshold inputs) but having too many
570 saturates the information load of the GC layer (Fig. 5D). Lastly, when fixing the number of MF inputs
571 and GCs, there is an optimal number of MF inputs to each GC, which aligns with the anatomical
572 convergence factor of 4 MF/GC (Fig. 5E), related to previous findings that suggest the best way to
573 maximize dimensionality in the GC output layer is to provide sparse input from the mossy fibers (Litwin-
574 Kumar et al., 2017; Cayco-Gajic et al., 2017). Thus, there are two key features that shape the information
575 transferred to the GCL from the MF inputs. First, the way in which MF inputs are combined to form the
576 total input to each GC determines how much information about subthreshold inputs can be transferred
577 through the nonlinearity. Second, the total number of GC outputs determines how many MF input
578 combinations can be represented, so that, ultimately, the random sums of MFs can be disentangled by the
579 downstream reconstruction layer. Together, information transfer requires a combined summation and
580 downstream decorrelation process accomplished by the three-layer feedforward network.
581

582 **General statistical features of GCL population activity**

583 We were ultimately interested in which features of GCL signal processing account for learning. As a first
584 step, we examined a variety of population metrics across threshold levels, which had previously been
585 proposed to support perceptron learning. The first set of metrics related to pattern separation: (1)
586 dimensionality (Dim), (2) the number of explanatory principal components (PCs), (3) spatiotemporal
587 sparseness (STS), and (4) population variability (See methods for details). Most of these pattern
588 separation metrics, (Dim, PCs, and STS) showed non-monotonic relationships with threshold and peaked
589 at thresholds ranging between 0.5 and 1.5 (Fig. 6 A, B). Population variability, however, decreased with
590 increasing thresholds (Fig. 6C). Intuitively, this relationship captures the effect of low thresholds allowing

591 GC activity to relay the mean input, with no pattern separation occurring. With increasing threshold, GC
592 activity is driven by coincidence detection, leading to higher dimensional population output. At high
593 thresholds, inputs rarely summate to threshold, leading to lost representation that drives a roll-off in
594 pattern separation within the population. Notably, Dim, PCs, and STS peaked at higher thresholds than
595 peak learning performance, which was best at threshold zero, thus none of these three pattern separation
596 metrics alone map directly to learning performance. Population variability (i.e. GCL variance per unit) is
597 thought to aid classification and separability of GCL output (Cayco-Gajic et al., 2017). This metric's
598 decrease with increasing threshold was likely due to the decrease in overall representation by each unit
599 due to sparsening and diminishing the dynamic range of GC rates due to threshold subtraction (Fig. 2A
600 top, Fig. 6C).

601

602 The second set of metrics are related to sparseness: (1) temporal sparseness and (2) spatial sparseness.
603 Temporal sparseness – defined by the exponential decay of GC autocovariance, where smaller values
604 typify signals that change quickly with time— decreased as a function of threshold because of sparsened
605 representation at higher thresholds (Fig. 6D). Spatial sparseness – defined as the mean pairwise GC
606 correlation – shared a drop-off after a threshold of 0, but increased again at high thresholds because only a
607 few MF signals were retained at high threshold and thus were highly correlated (Fig. 6E). By
608 experimental design, decorrelation was already maximized in OU inputs. Similar to the pattern separation
609 metrics, these sparseness metrics did not show an obvious relationship to the U-shaped learning
610 performance seen in Fig. 3A, bottom.

611

612 Finally, we examined three metrics of lossiness defined to quantify (1) the fraction of the total epoch with
613 no activity in any GC unit (e.g. with “temporal lossiness” of 0.1, 10% of the total epoch has no activity in
614 any GCs) (2) the proportion of granule cells with any activity over the entire epoch (“population
615 lossiness”); and (3) the mean fraction of the epoch in which each granule cell is active (“temporal cover”).
616 Not surprisingly, each lossiness metric increased with high thresholds (Fig. 6F). However, despite
617 diminishing activity in individual GCs with increasing threshold, (the blue curve Fig. 6F), each GC was
618 resistant to becoming completely silent (green curve drop, Fig. 6F), owing to a few dominant inputs.
619

620

621 Notably, none of these metrics alone obviously tracked the U-shaped learning performance (Fig. 3A).
622 However, collectively, these descriptive statistics of model GCL population activity set the stage for
623 analyzing how information preprocessing by the basic GCL architecture relates to learning time series,
624 explored below.

625

625 **Improved learning with GCL transformations**

626 With the knowledge that thresholding drives changes both in learning time series (Fig. 3, 4) and in GC
627 population metrics that are theorized to modulate learning (Fig. 5, 6), we next directly investigated the
628 relationships of these metrics to learning performance. To test this, we used LASSO regression to identify
629 variables driving learning performance, taken from the metrics described in Figures 5 and 6 (Fig. 7A,
630 C). We found that a three-term model using the most explanatory variables—STS, the number of
631 explanatory PCs and variance retained (Fig. 7B, C, D)—accounted for 91% of learning variance. The
632 three-term model performance is plotted against the observed MSE over a range of thresholds in Fig. 7D,
633 showing strong similarity.

634

635 Although this model accounted for most learning, its performance was notably poorer at threshold ranges
636 where the GCL-based learning was best. We reasoned that interactions between GCL statistical metrics
637 might account for this deviation. To select potential metric interactions while constraining a regression
638 model, we used Bayesian information criteria (BIC) stepwise regression to identify variables that
639 accounted for learning (See Methods for normalization methods; Fig 7E). This model produced a better
640 approximation of learning (Fig. 7F). We found that a handful of competing variables (i.e. pattern
641 separation competing with retention of lossless representation) provided a small but crucial representation
642 of learning, which offset the poor learning between thresholds of -1 to 1 in the purely linear model (Fig.
643 7D vs Fig. 7F). While these interaction components were necessary to produce the best fitting model for
644 learning, the interactions were not the dominant regressors, as indicated by their relatively small Beta
645 values, and PCs and population variance remained top features explaining learning, similar to the linear
646 model.

647
648 These results were somewhat surprising given prior studies showing benefits of population sparseness or
649 decorrelation to learning. We noted that with the GCL filter model we could not clamp specific
650 population metrics to determine their contribution to learning, thus to interrogate this seeming disparity,
651 we constructed fictive GCL population activity that had specific statistical features and used these as
652 inputs to P-cells. Consistent with previous reports, decorrelation and temporal sparseness improved
653 learning accuracy, with complete decorrelation and temporally sparse supporting the best performance
654 (Fig S4; Cayco-Gajic et al., 2018). Thus, on their own, population, temporal and idealized spatiotemporal
655 sparseness do modulate learning when their contribution is independent. Nevertheless, these features did
656 not emerge as features driving learning using GCL output from OU inputs to learn timeseries. This
657 discrepancy raises the possibility that the pattern separation metrics that drive learning may be dependent
658 on MF input statistics.

659
660 **GCL properties that enhance learning in naturalistic tasks**
661 Together, these models suggest that the GCL can reformat inputs in ways that support rapid and accurate
662 timeseries learning. We next asked whether the GCL metrics that drive best learning change when inputs
663 were inherently matched to outputs. This question is motivated by the topographical modules that
664 characterize the real cerebellum, each with associated specialized afferents (Apps and Garwickz, 2005; De
665 Zeeuw, 2020). Might these specialized afferents with specific statistical structure be especially suited to
666 support P-cell tuning for specific behaviors?

667
668 To examine whether statistical features that drive learning are sensitive to intrinsic input-output
669 relationships, we tested whether model inputs with naturalistic, behaviorally correlated statistics, derived
670 from electromyogram (EMG) signaling could support learning movement kinematics. In this assay, “MF
671 inputs” were EMG signals from human subjects performing a point-to-point reaching task. We tested
672 whether the model could learn associated limb kinematics from this input (Fig. 8A, B; Delis et al. 2018;
673 Tseng et al. 2007; Miall and Wolpert 1996; Wolpert et al., 1998).

674
675 Consistent with our previous observations, model P-cell output better learned kinematic target functions
676 when EMG inputs were preprocessed by the model GCL rather than fed directly to P-cells (Fig. 8A).
677 Moreover, thresholds that supported best learning were comparable to those using OU functions as inputs
678 (Fig. 8A vs Fig. 3A) and the accuracy of the learned outputs strongly resembled the recorded kinematic

679 positions (Fig. 8B). We observed a slight negative shift in thresholds supporting best performance using
680 EMG, suggesting that GCL population statistics that retain more of their inherent relationship to
681 kinematics (i.e. that the EMG alone predicted kinematics well), facilitated by lower threshold, might be
682 beneficial to learning kinematics. However, some EMG-kinematic pairings had stronger intrinsic
683 relationships than others. We used this variability to assay whether the strength of the intrinsic
684 relationship influenced which population metrics supported best learning. We first identified which
685 population statistics drove learning using RIDGE regression, which preserves even small contributions of
686 regressor variables to the model. We then looked at the slope of regressors that predicted learning as a
687 function of the MSE of MFs alone. We found that when the P-cell MSE was already low with direct MF
688 inputs, the information retention (Fig. 5) emerged as a key predictor of learning (i.e. GCL MSE, Fig. 8C,
689 green). Conversely, when MF based learning was poor (high MSE) a pattern separation metric, number of
690 explanatory PCs, became a more important driver of learning (Fig. 8C, orange). This observation is
691 captured in the metric “Regression Coeff. Ratio” Fig. 8C, which quantifies the coefficient of the variance
692 retained or explanatory PC regressor divided by the sum of all regressor coefficients computed in the
693 RIDGE regression. In effect, this method shows the normalized size of their impact on the regression.
694 Together this suggests that different population statistical features of GCL reformatting may serve
695 learning under different conditions: When intrinsic relationships are strong, the GCL’s preservation of
696 MF input variance (variance retained) is an important population statistical feature; when MF activity is
697 more arbitrary relative to what the P-cell needs to encode, explanatory PCs (a pattern separation feature)
698 are more valuable for learning. Thus, “pattern separation” by the GCL is not one universal transform that
699 has broad utility. This observation raises the possibility that regional circuit specializations within the
700 cerebellar cortex, such as density of unipolar brush cells (Dino et al. 2000; Guo et al., 2021), Golgi cells,
701 or neuromodulators could bias GCL information reformatting to be more suitable for learning of different
702 tasks.

703

704 **DISCUSSION**

705 Here we asked a simple question: how does the cerebellar granule layer support temporal learning? The
706 question of the function of GCL architecture has captivated theorists for decades, leading to a hypothesis
707 of cerebellar learning that posits that the GCL reformats information to best suit associative learning in
708 Purkinje cells. Recent work has called many of these foundational ideas into question, however, including
709 whether GCL activity is sparse; high dimensional; and what properties of ‘pattern separation’ best support
710 learning (Wagner et al., 2017; Giovannucci et al., 2017; Knogler et al., 2017; Cayco-Gajic et al., 2017;
711 Gilmer and Person 2017). To reconcile empirical observations with theory, we hypothesized that input
712 statistics and task structures influence how the GCL supports learning. Here, we used naturalistic and
713 artificial time-varying inputs to a model GCL and identified pattern separation features that supported
714 learning time series, with an arbitrary but temporally linked input-output mapping, recapitulating
715 important features of physiological cerebellar learning tasks (Buonomano and Mauk 1994, Mauk and
716 Donnegan, 1997, Kennedy et al., 2014). Here we attempt to bridge these findings by examining
717 naturalistic challenges faced by the real circuit. Several important observations stemmed from these
718 simulations: (1) with naturalistic input statistics, the GCL produces temporal basis sets akin to those
719 hypothesized to support learned timing with minimal assumptions; (2) this reformatting is highly
720 beneficial to learning at intermediate thresholds; (3) maximal pattern separation does not support the best
721 learning; (4) rather, tradeoffs between loss of information and reformatting favored best learning at
722 intermediate network thresholds; and finally (5) different learning tasks are differentially supported by

723 diverse GCL population statistical features. Together these findings provide insight into the granule cell
724 layer as performing pattern separation of inputs that transform information valuable for gradient descent-
725 like learning.

726

727 *Emergence of spatiotemporal representation and contribution to learning*

728 A perennial question in cerebellar physiology is how the granule cell layer produces temporally varied
729 outputs that could support learned timing (Mauk and Buonomano 2004). While cellular and synaptic
730 properties have been shown to contribute (Chabrol et al., 2015; Duguid et al., 2012; Guo et al., 2021a;
731 Crowley et al., 2009; Rudolph et al., 2015; Buonomano and Mauk 1994; Kanichay and Silver 2008;
732 Simat et al., 2007; Mapelli et al., 2009; Rossi et al., 1996; Gall et al., 2005; Armano et al., 2000; Rizwan
733 et al. 2016; Tabuchi et al., 2019; D'Angelo and De Zeeuw 2009), we observed that with naturalistic
734 inputs, temporal basis set formation is a robust emergent property of the feedforward architecture of the
735 cerebellum coupled with a threshold-linear input-output function of granule cells receiving multiple
736 independent time-varying inputs (Fig. 1B-D). But is this reformatting beneficial to learning? We
737 addressed this question by comparing learning of a complex time-series in model Purkinje cells receiving
738 either mossy fibers alone or reformatted output from the GCL. We found that indeed the GCL
739 outperformed MFs alone in all tasks (Figs. 3, 4, 7). Nevertheless, we wondered what features of the
740 population activity accounted for this improved learning. While sparseness, decorrelation, dimensionality
741 and lossless encoding have been put forward as preprocessing steps supporting learning, we found that
742 none of these alone accounted for the goodness of model performance. Rather, disparate pattern
743 separation metrics appear to strike a balance between maximizing sparseness without trespassing into
744 lossy encoding space that severely, and necessarily, degrades learning of time-series.

745

746 These observations are interesting in light of a long history of work on granule layer function. Marr,
747 Albus, and others proposed that the granule cell layer performs pattern separation useful for classification
748 tasks. In this framework, sparseness is the key driver of performance, and could account for the vast
749 number of granule cells. Nevertheless, large-scale GCL recordings unexpectedly showed high levels of
750 correlation and relatively non-sparse activity (Wagner et al., 2017; Giovannucci et al., 2017; Knogler et
751 al., 2017). Despite methodological caveats, alternate recording methods seem to support the general
752 conclusion that sparseness is not as high as originally thought (Lanore et al. 2021; Kita et al., 2021;
753 Gurgani and Silver 2021). Indeed, subsequent theoretical work showed that sparseness has deleterious
754 properties (Cayco-Gajic et al., 2017; Billings et al., 2014), also observed in the present study, that may
755 explain dense firing patterns seen *in vivo*. Here we found that the best learning occurred when individual
756 granule cell activity occupied around half of the observed epoch (Fig. 6F, blue trace), achieved with
757 intermediate thresholding levels. We also observed temporal organization that is consistent with the firing
758 patterns observed *in vivo*. While these findings seem to suggest that sparseness is not the 'goal' of GCL
759 processing, our findings and others (Litwin-Kumar et al., 2016; Cayco-Gajic et al., 2017) suggest that
760 pattern separation broadly is a positive modulator of GCL support of learning processes.

761

762 Previous work proposed that time-series prediction was possible with access to a diverse set of geometric
763 functions represented in the GC population (Sanger et al., 2020). However, that study left open the
764 question of how such a diverse collection of basis functions would emerge. The GCL model used here
765 minimized free parameters by incorporating very few independent circuit elements, suggesting that a
766 single transform is sufficient to produce a basis set which is universally able to learn arbitrary target

767 functions. We used a simple threshold-linear filter with a singular global threshold that relied on sparse-
768 sampling to produce spatiotemporally varied population outputs. This simple function worked to support
769 learning at a broad range of inputs and thresholding values, ultimately allowing the Purkinje cells
770 downstream to associate the spatiotemporally sparser inputs with feedback to learn arbitrary and complex
771 target functions. The emergence of this basis set is remarkable given the very simple assumptions applied,
772 but is also physiologically realistic, given the simple and well characterized anatomical properties of the
773 MF divergence and convergence patterns onto GCs, which are among the simplest neurons in the brain
774 (Jakab and Hamori, 1988; Palay and Chan-Palay, 1974; Palkovits et al., 1971). Although we suggest that
775 the key regulator of thresholding in the system is the feedforward inhibition from Golgi cells, many
776 factors may regulate the transformation between input and GC output in the network, allowing for
777 multiple levels and degrees of control over the tuning of the filter or real mechanism that controls the
778 outcomes of GCL transformations. Golgi cell dynamics may prove critical for enforcing the balance
779 between pattern separation metrics and lossy encoding (Hull 2020) thus are critical players in mean
780 thresholding found here to optimize learning. Additional mechanistic considerations may also play a role,
781 including short-term synaptic plasticity (Chabrol et al. 2015) network recurrence (Gao et al. 2016; Houck
782 and Person 2014; 2015; Judd et al., 2021), and UBCs (Dino et al. 2000), allowing for a more nuanced and
783 dynamic regulatory system than the one shown here.

784

785 *Recapturing input information in the filtered GCL output*

786 Two schools of thought surround what information is relayed to Purkinje cells through GCs. Various
787 models assume that Purkinje cells inherit virtually untransformed MF information capable of explaining
788 kinematic tuning in P-cells (Markanaday et al. 2022; Herzfeld et al., 2020; Krauzlis and Lisberger, 1991).
789 This view is in contrast to suggestions of Marr and Albus, where the GCL sparsens information to such a
790 degree that Purkinje cells receive only a small remnant of the sensorimotor information present in mossy
791 fiber signals. These divergent views have never been reconciled to our knowledge. We addressed this
792 disconnect by determining the fraction of MF input variance recoverable in GCL output. Interestingly, the
793 GCL population retains sufficient information to recover more than 90% the input variance despite
794 filtering out 50% or more of the original signal (Fig. 5). This information recovery is achieved at the
795 population level and thus requires sufficient numbers of granule cells so that the subset of signals that are
796 subthreshold are also super-threshold in other subsets of GCs through probabilistic integration with other
797 active inputs. While variance recovery is not a true measure of mutual information, it is indicative of the
798 utility that the intersectional filtering performed by the GCL. The expansion of representations in the
799 GCL population achieved by capturing the coincidence of features in the input population creates a
800 flexible representation in the GCL output that has many beneficial properties, including the preservation
801 of information through some degree of preserved mutual information between the GCL and its inputs. Yet
802 despite this retention of input variance by the GCL, its transformations nevertheless greatly improve
803 learning.

804

805 *Enhanced learning speed*

806 Our model not only improved learning accuracy, but also speed, compared to MFs alone (Fig. 4). Both
807 learning speed and accuracy progressed in tandem: threshold parameter ranges that enhanced overall
808 learning speed also minimized mean squared error, suggesting that speed and accuracy are enhanced by
809 similar features in GCL output. Learning speed was well described by a double exponential function with
810 a slow and fast component. This dual time course in the model with only one learning rule is interesting

811 in light of observations of behavioral adaptation that also follow dual time courses (Herzfeld et al., 2014;
812 Smith et al., 2006). Some behavioral studies have postulated that these time courses suggest multiple
813 underlying learning processes (Yang and Lisberger, 2014). Our model indicates that even with a single
814 learning rule and site of plasticity, multiple time-courses can emerge, presumably because when error
815 becomes low, update rates also slow down.

816

817 Another observation stemming from simulations studying learning speed was that the behavior of the
818 model varied as a function of the learning ‘step size’ parameter of the gradient descent method (Fig. S3).
819 The step size— ie. the typically small, scalar regulating change in the weights between GCs and P-cells
820 following an error— determined the likelihood of catastrophically poor learning: when the step size was
821 too large, it led to extremely poor learning because the total output ‘explodes’ and fails to converge on a
822 stable output. Nevertheless, the model tolerated large steps and faster learning under some conditions,
823 since the threshold also influenced the likelihood of catastrophic learning. Generally, higher thresholds
824 prevented large weight changes from exploding, suggesting that sparse outputs may have an additional
825 role in speeding learning by supporting larger weight changes in Purkinje cells. Indeed, appreciable
826 changes in simple spike rates occur on a trial-by-trial basis, gated by the theorized update signals that
827 Purkinje cells receive, climbing fiber mediated complex spikes. These plastic changes in rate could reflect
828 large weight updates associated with error. Moreover, graded complex spike amplitudes that alter the size
829 of trial-over-trial simple spike rate changes suggest that update sizes are not fixed (Najafi et al., 2014;
830 Herzfeld et al., 2020; Medina and Raymond 2018). Thus, although gradient descent is not wholly
831 physiological, this finding predicts that the amplitude of synaptic weight changes following a complex
832 spike might be set by tunable circuitry in the molecular layer to optimize learning speed relative to the
833 statistics of the GCL output.

834

835 Together, this study advances our understanding of how the GCL may diversify time-varying inputs and
836 informs interpretation of empirical results. For instance, the timecourse of learning varies widely across
837 tasks. Eyeblink conditioning paradigms require hundreds of trials to learn (Millenson 1997; Khilkevich et
838 al., 2016; Lincoln et al., 1982), while saccade adaptation and visuomotor adaptation of reaches (Raymond
839 and Lisberger; Martin et al. 1996), require just tens of trials (Tseng et al., 2007; Shadmehr and Mussa-
840 Ivaldi 1994; Ruttle et al., 2021; Calame et al., 2021). A prediction from our study is that the temporal
841 diversity of the GCL basis set during a behavior influences learning speed. Time-invariant cues such as
842 those seen in EBC would be difficult, if not impossible, for our model GCL to reformat and sparsen, as
843 they are incompatible with thresholding-based filtering of input signals. Supportive of this view, recent
844 work showed that EBC learning was faster if the animal is locomoting during training (Albergaria et al.,
845 2018). We hypothesize that naturalistic time-variant signals associated with ongoing movements entering
846 the cerebellum support robust temporal pattern separation in the GCL, enhancing learning accuracy and
847 speed, while time invariant associative signals used in typical classical conditioning paradigms result in
848 an impoverished ‘basis’, making learning more difficult, despite other circuit elements that may
849 contribute to the GCL basis formation.

850

851 **ACKNOWLEDGEMENTS**

852 We are grateful to Dr. Pauline M Hilt in the Delis laboratory for use of the EMG and kinematic data used
853 in Figure 1 and 8. We thank Drs Adam Hantman and Britton Sauerbrei for access to pontine neuron

854 recording datasets. We thank the members of the Person lab for helpful feedback on initial drafts of the
855 manuscript and Drs. Dan Denman and Alon Polog-Polsky for helpful discussions during the development
856 of the study. This work was supported by NRSA NS113409 to JIG and NS114430, NSF CAREER
857 1749568 and the Simons Foundation as part of the Simons-Emory International Consortium on Motor
858 control to ALP.

859

860 REFERENCES

861 Achen CH (1982) Interpreting and Using Regression. Sage University Paper Series on Quantitative
862 Applications in the Social Sciences, vol. 29.

863

864 Albergaria C, Silva NT, Pritchett DL, Carey MR (2018) Locomotor activity modulates associative
865 learning in mouse cerebellum. *Nature Neuroscience* 21, 725–735. doi:10.1038/s41593-018-0129-x

866

867 Albus JS (1971) A theory of cerebellar function. *Mathematical Biosciences* 10, 25–61. doi:10.1016/0025-
868 5564(71)90051-4

869

870 Albus JS (1975) Data Storage in the Cerebellar Model Articulation Controller (CMAC). *ASME. J. Dyn.*
871 *Sys., Meas., Control.* 97(3): 228–233.

872

873 Armano S, Rossi P, Taglietti V, D'Angelo E (2000) Long-term potentiation of intrinsic excitability at the
874 mossy fiber–granule cell synapse of rat cerebellum. *J Neurosci* 20:5208–5216, pmid:10884304.

875

876 Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information
877 processing. *Nat Rev Neurosci* 6:297-311

878

879 Arenz A, Silver RA Schaefer AT, Margrie TW (2008) The contribution of a single synapse to sensory
880 representation *in vivo*. 321:977-80

881

882 Bengtsson F, Jorntell H (2009) Sensory transmission in cerebellar granule cells relies on similarly coded
883 mossy fiber inputs. *Proceedings of the National Academy of Sciences* 106, 2389–2394.
884 doi:10.1073/pnas.0808428106

885

886 Billings G, Piasini E, Lőrincz A, Nusser Z, Silver RA (2014) Network Structure within the Cerebellar
887 Input Layer Enables Lossless Sparse Encoding. *Neuron* 83, 960–974. doi:10.1016/j.neuron.2014.07.020

888

889 Buonomano DV, Mauk MD (1994) Neural Network Model of the Cerebellum: Temporal Discrimination
890 and the Timing of Motor Responses. *Neural Computation* 6, 38–55. doi:10.1162/neco.1994.6.1.38

891

892 Calame DJ, Becker MI, Person AL (2021) Associative learning underlies skilled reach adaptation.
893 *Biorxiv* 2021.12.17.473247

894

895 Cayco-Gajic NA, Clopath C, Silver RA (2017) Sparse synaptic connectivity is required for decorrelation
896 and pattern separation in feedforward networks. *Nature Communications* 8. doi:10.1038/s41467-017-
897 01109-y

898
899 Cayco-Gajic NA, Silver RA (2019) Re-evaluating Circuit Mechanisms Underlying Pattern Separation.
900 *Neuron* 101, 584–602. doi:10.1016/j.neuron.2019.01.044
901
902 Chabrol FP, Arenz A, Wiechert MT, Margrie TW, Digregorio DA (2015) Synaptic diversity enables
903 temporal coding of coincident multisensory inputs in single neurons. *Nature Neuroscience* 18, 718–727.
904 doi:10.1038/nn.3974
905
906 Crowley JJ, Fioravante D, Regehr WG (2009) Dynamics of fast and slow inhibition from cerebellar Golgi
907 cells allow flexible control of synaptic integration. *Neuron* 63:843–853.
908 doi:10.1016/j.neuron.2009.09.004 pmid:19778512
909
910 D'Angelo E, De Zeeuw CI (2009) Timing and plasticity in the cerebellum: focus on the granular layer.
911 *Trends Neurosci* 32:30–40. doi:10.1016/j.tins.2008.09.007 pmid:18977038
912
913 De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ (1998) Microcircuitry
914 and function of the inferior olive. *Trends Neurosci.* 21: 391–400
915
916 De Zeeuw CI (2020) Bidirectional learning in upbound and downbound microzones of the cerebellum.
917 *Nat Rev Neurosci* 22: 92–110
918
919 Dean P, Porrill J (2008) Adaptive-filter Models of the Cerebellum: Computational Analysis. *The
920 Cerebellum* 7, 567–571. doi:10.1007/s12311-008-0067-3
921
922 Delis I, Hilt PM, Pozzo T, Panzeri S, Berret B (2018) Deciphering the functional role of spatial and
923 temporal muscle synergies in whole-body movements. *Scientific Reports* 8. doi:10.1038/s41598-018-
924 26780-z
925
926 Hilt PM, Delis I, Pozzo T, Berret B (2018) Space-by-Time Modular Decomposition Effectively Describes
927 Whole-Body Muscle Activity During Upright Reaching in Various Directions. *Front Comput Neurosci.*
928 2018;12:20. doi:10.3389/fncom.2018.00020
929
930 Dino MR, Schuerger RJ, Liu Y, Slater NT, Mugnaini E (2000) Unipolar brush cell: a potential
931 feedforward excitatory interneuron of the cerebellum. *Neuroscience* 98:625–636.
932
933 Duguid I, Branco T, London M, Chadderton P, Hausser M (2012) Tonic Inhibition Enhances Fidelity of
934 Sensory Information Transmission in the Cerebellar Cortex. *The Journal of Neuroscience* 32, 11132–
935 11143. doi:10.1523/jneurosci.0460-12.2012
936
937 Eccles JC, Ito M, Szentágothai J (1967) *The Cerebellum as a Neuronal Machine*, Springer, New York
938 (1967)
939 Eriksson, JL, Robert A (1999) The representation of pure tones and noise in a model of cochlear nucleus
940 neurons. *The Journal of the Acoustical Society of America* 106, 1865–1879. doi:10.1121/1.427936
941

942 Fujita M (1982) Adaptive filter model of the cerebellum. *Biological Cybernetics* 45, 195–206.
943 doi:10.1007/bf00336192

944

945 Gall D, Prestori F, Sola E, D'Errico A, Roussel C, Forti L, Rossi P, D'Angelo E (2005) Intracellular
946 calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the
947 cerebellum input stage. *J Neurosci* 25:4813–4822, doi:10.1523/JNEUROSCI.0410-05.2005,
948 pmid:15888657.

949

950 Gao Z, Proietti-Onori M, Lin Z, Ten Brinke MM, Boele HJ, Potters JW, Ruigrok TJ, Hoebeek FE, De
951 Zeeuw CI (2016) Excitatory cerebellar nucleocortical circuit provides internal amplification during
952 associative conditioning. *Neuron* 89:645–657. 10.1016/j.neuron.2016.01.008

953

954 Gilmer JI, Person AL (2017) Morphological Constraints on Cerebellar Granule Cell Combinatorial
955 Diversity. *The Journal of Neuroscience* 37, 12153–12166. doi:10.1523/jneurosci.0588-17.2017

956

957 Gilmer JI, Person AL (2018) Theoretically Sparse, Empirically Dense: New Views on Cerebellar Granule
958 Cells. *Trends in Neurosciences* 41, 874–877. doi:10.1016/j.tins.2018.09.013

959

960 Giovannucci A, Badura A, Deverett B, Najafi F, Pereira TD, Gao Z, Ozden I, Kloth AD, Pnevmatikakis
961 E, Paninski L, De Zeeuw CI, Medina JF, Wang SS-H (2017) Cerebellar granule cells acquire a
962 widespread predictive feedback signal during motor learning. *Nature Neuroscience* 20, 727–734.
963 doi:10.1038/nn.4531

964

965 Guo C, Huson V, Macosko EZ, Regehr WG (2021) Graded heterogeneity of metabotropic signaling
966 underlies a continuum of cell-intrinsic temporal responses in unipolar brush cells. *Nat Comm* 12:5491

967

968 Guo J-Z, Sauerbrei BA, Cohen JD, Mischiati M, Graves AR, Pisanello f, Branson KM, Hantman AW
969 (2021) Disrupting cortico-cerebellar communication impairs dexterity *eLife* 10:e65906.

970

971 Gurnani H, Silver RA (2021) Multidimensional population activity in an electrically coupled inhibitory
972 circuit in the cerebellar cortex. *Neuron* 109, 1739–1753.e8. doi:10.1016/j.neuron.2021.03.027

973

974 Herculano-Houzel S (2010) Coordinated scaling of cortical and cerebellar numbers of neurons. *Front
975 Neuroanat* 4:12. doi:10.3389/fnana.2010.00012 pmid:20300467

976

977 Herzfeld DJ, Hall NJ, Tringides M, Lisberger, SG (2020) Principles of operation of a cerebellar learning
978 circuit. *eLife* 9. doi:10.7554/elife.55217

979

980 Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R (2015) Encoding of action by the Purkinje cells of the
981 cerebellum. *Nature* 526, 439–442. doi:10.1038/nature15693

982

983 Houck BD, Person AL (2014) Cerebellar loops: a review of the nucleocortical pathway. *Cerebellum*
984 13:378–385. 10.1007/s12311-013-0543-2

985

986 Houck BD, Person AL (2015) Cerebellar premotor output neurons collateralize to innervate the cerebellar
987 cortex. *J Comp Neurol* 523:2254–2271. doi:10.1002/cne.23787

988

989 Huang CC, Sugino K, Shima Y, Guo C, Bai S, Mensh BD, Nelson SB, Hantman AW (2013)
990 Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. *eLife*
991 2:e00400. doi:10.7554/eLife.00400 pmid:23467508

992

993 Hull C (2020) Prediction signals in the cerebellum: beyond supervised motor learning. *eLife*. 9:e54073.
994 doi: 10.7554/eLife.54073. PMID: 32223891; PMCID: PMC7105376.

995

996 Ishikawa T, Shimuta M, Häusser, M (2015) Multimodal sensory integration in single cerebellar granule
997 cells in vivo. *eLife* 4. doi:10.7554/elife.12916

998

999 Ito M, Shiida T, Yagi N, Yamamoto M (1974) Visual influence on rabbit horizontal vestibulo-ocular
1000 reflex presumably effected via the cerebellar flocculus. *Brain Res* 65:170 –174.

1001

1002 Izawa J, Criscimagna-Hemminger SE, Shadmehr R (2012) Cerebellar Contributions to Reach Adaptation
1003 and Learning Sensory Consequences of Action. *The Journal of Neuroscience* 32, 4230–4239.
1004 doi:10.1523/jneurosci.6353-11.2012

1005

1006 Jakab RL, Hamori J (1988) Quantitative morphology and synaptology of cerebellar glomeruli in the rat.
1007 *Anatomy and Embryology* 179, 81–88. doi:10.1007/bf00305102

1008

1009 Judd EN, Lewis SM, Person AL (2021) Diverse inhibitory projections from the cerebellar interposed
1010 nucleus. *eLife*. 10:e66231. doi: 10.7554/eLife.66231. PMID: 34542410; PMCID: PMC8483738.

1011

1012 Kalmbach BE, Voicu H, Ohyama T, Mauk MD (2011) A Subtraction Mechanism of Temporal Coding in
1013 Cerebellar Cortex. *The Journal of Neuroscience* 31, 2025–2034. doi:10.1523/jneurosci.4212-10.2011

1014

1015 Kanichay RT, Silver RA (2008) Synaptic and Cellular Properties of the Feedforward Inhibitory Circuit
1016 within the Input Layer of the Cerebellar Cortex. *The Journal of Neuroscience* 28, 8955–8967.
1017 doi:10.1523/jneurosci.5469-07.2008

1018

1019 Kennedy A, Wayne G, Kaifosh P, Alviña K, Abbott LF, Sawtell NB (2014) A temporal basis for
1020 predicting the sensory consequences of motor commands in an electric fish. *Nature Neuroscience* 17,
1021 416–422. doi:10.1038/nn.3650

1022

1023 Khilkevich A, Halverson HE, Canton-Josh JE, Mauk MD (2016) Links Between Single-Trial Changes
1024 and Learning Rate in Eyelid Conditioning. *The Cerebellum* 15, 112–121. doi:10.1007/s12311-015-0690-8

1025

1026 Kita K, Albergaria C, Machado AS, Carey MR, Müller M, Delvendahl I (2021) GluA4 facilitates
1027 cerebellar expansion coding and enables associative memory formation. *eLife* 10. doi:10.7554/elife.65152

1028

1029 Knogler LD, Markov DA, Dragomir EI, Štih V, Portugues R (2017) Sensorimotor Representations in
1030 Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally
1031 Patterned. *Current Biology* 27, 1288–1302. doi:10.1016/j.cub.2017.03.029

1032

1033 Krauzlis RJ, Lisberger SG (1991) Visual motion commands for pursuit eye movements in the cerebellum.
1034 *Science* 253:568-71

1035

1036 Lanore F, Cayco-Gajic NA, Gurnani H, Coyle D, Silver, RA (2021) Cerebellar granule cell axons support
1037 high-dimensional representations. *Nature Neuroscience* 24, 1142–1150. doi:10.1038/s41593-021-00873-x

1038

1039 Lincoln JS, McCormick DA, Thompson RF (1982) Ipsilateral cerebellar lesions prevent learning of the
1040 classically conditioned nictitating membrane/eyelid response. *Brain Research* 242, 190–193.
1041 doi:10.1016/0006-8993(82)90510-8

1042

1043 Litwin-Kumar A, Harris KD, Axel R, Sompolinsky H, Abbott LF (2017) Optimal Degrees of Synaptic
1044 Connectivity. *Neuron* 93, 1153–1164.e7. doi:10.1016/j.neuron.2017.01.030

1045

1046 Liu, Y, Tiganj, Z, Hasselmo, ME, Howard, MW (2019) A neural microcircuit model for a scalable scale-
1047 invariant representation of time. *Hippocampus*. 29: 260– 274.

1048

1049 Mapelli L, Rossi P, Nieuw T, D'Angelo E (2009) Tonic activation of GABAB receptors reduces release
1050 probability at inhibitory connections in the cerebellar glomerulus. *J Neurophysiol* 101:3089–3099.
1051 doi:10.1152/jn.91190.2008 pmid:19339456

1052

1053 Markanday A, Hong S, Inoue J, De Schutter E, Their P (2022) Multidimensional cerebellar computations
1054 for flexible kinematic control of movements. *bioRxiv* 2022.01.11.475785

1055

1056 Marr D (1969) A theory of cerebellar cortex. *The Journal of Physiology* 202, 437–470.
1057 doi:10.1113/jphysiol.1969.sp008820

1058

1059 Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through
1060 prisms: I. Focal olivocerebellar lesions impair adaptation. *Brain* 119, 1183–1198.
1061 doi:10.1093/brain/119.4.1183

1062

1063 Mauk MD, Buonomano DV (2004) THE NEURAL BASIS OF TEMPORAL PROCESSING. *Annual
1064 Review of Neuroscience* 27, 307–340. doi:10.1146/annurev.neuro.27.070203.144247

1065

1066 Mauk MD, Donegan NH. A model of Pavlovian eyelid conditioning based on the synaptic organization of
1067 the cerebellum. *Learn Mem.* 1997 May-Jun;4(1):130-58. doi: 10.1101/lm.4.1.130. PMID: 10456059.

1068

1069 Mauk MD, Steinmetz JE, Thompson RF (1986) Classical conditioning using stimulation of the inferior
1070 olive as the unconditioned stimulus. *Proc Natl Acad Sci USA*, 83 pp. 5349-5353

1071

1072 McCormick DA, Clark GA, Lavond DG, Thompson RF (1982) Initial localization of the memory trace for
1073 a basic form of learning. *Proceedings of the National Academy of Sciences* 79, 2731–2735.
1074 doi:10.1073/pnas.79.8.2731

1075 Medina J (2000) Mechanisms of cerebellar learning suggested by eyelid conditioning. *Current Opinion in*
1076 *Neurobiology* 10, 717–724. doi:10.1016/s0959-4388(00)00154-9

1077

1078 Miall RC, Wolpert DM (1996) Forward Models for Physiological Motor Control. *Neural Netw.* 9:1265–
1079 1279.

1080

1081 Millenson JR, Kehoe EJ, Gormezano I (1977) Classical conditioning of the rabbit's nictitating membrane
1082 response under fixed and mixed CS–US intervals. *Learn Motiv*, 8 pp. 351-366

1083

1084 Najafi F, Giovannucci A, Wang SS, Medina JF (2014) Coding of stimulus strength via analog calcium
1085 signals in Purkinje cell dendrites of awake mice. *Elife.* 2014;3:e03663. doi:10.7554/eLife.03663

1086

1087 Nocedal J, Wright SJ (2006) *Numerical Optimization*, 2nd ed., New York: Springer.

1088

1089 Palay S, Chan-Palay V (1974) *Cerebellar cortex: Cytology and Organization*, pp 100–132. Berlin-
1090 Heidelberg: Springer-Verlag.

1091

1092 Palkovits M, Magyar P, Szentágothai J (1971) Quantitative histological analysis of the cerebellar cortex
1093 in the cat. *Brain Research* 32, 15–30. doi:10.1016/0006-8993(71)90152-1

1094

1095 Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Häusser M (2007) High-fidelity transmission
1096 of sensory information by single cerebellar mossy fibre boutons. *Nature* 450, 1245–1248.

1097

1098 Raymond JL, Lisberger SG (1998) Neural Learning Rules for the Vestibulo-Ocular Reflex. *The Journal*
1099 *of Neuroscience* 18, 9112–9129. doi:10.1523/jneurosci.18-21-09112.1998

1100

1101 Raymond JL, Medina JF (2018) Computational Principles of Supervised Learning in the Cerebellum.
1102 *Annu Rev Neurosci.* 41:233-253. doi: 10.1146/annurev-neuro-080317-061948. PMID: 29986160;
1103 PMCID: PMC6056176.

1104

1105 Rizwan AP, Zhan X, Zamponi GW, Turner RW (2016) Long-Term Potentiation at the Mossy Fiber–
1106 Granule Cell Relay Invokes Postsynaptic Second-Messenger Regulation of Kv4 Channels. *The Journal of*
1107 *Neuroscience* 36, 11196–11207. doi:10.1523/jneurosci.2051-16.2016

1108

1109 Rossi P, D'Angelo E, Taglietti V (1996) Differential long-lasting potentiation of the NMDA and non-
1110 NMDA synaptic currents induced by metabotropic and NMDA receptor coactivation in cerebellar granule
1111 cells. *Eur J Neurosci* 8:1182–1189, doi:10.1111/j.1460-9568.1996.tb01286.x, pmid:8752588.

1112

1113 Rudolph S, Hull C, Regehr WG (2015) Active dendrites and differential distribution of calcium channels
1114 enable functional compartmentalization of Golgi cells. *J Neurosci* 35:15492–15504.
1115 doi:10.1523/JNEUROSCI.3132-15.2015 pmid:26609148

1116 Ruttle JE, Marius 't Hart B, Henriques DYP (2021) Implicit motor learning within three trials. *Sci Rep.*
1117 11(1):1627. doi: 10.1038/s41598-021-81031-y.

1118

1119 Sanger TD, Yamashita O, Kawato M (2020) Expansion coding and computation in the cerebellum: 50
1120 years after the Marr–Albus codon theory. *The Journal of Physiology* 598, 913–928. doi:10.1113/jp278745
1121

1122 Saviane C, Silver RA (2006) Fast vesicle reloading and a large pool sustain high bandwidth transmission
1123 at a central synapse. *Nature* 439:983–987. doi:10.1038/nature04509 pmid:16496000
1124

1125 Shadmehr R, Mussa-Ivaldi F (1994) Adaptive representation of dynamics during learning of a motor task.
1126 *The Journal of Neuroscience* 14, 3208–3224. doi:10.1523/jneurosci.14-05-03208.1994
1127

1128 Simat M, Parpan F, Fritschy JM (2007) Heterogeneity of glycinergic and gabaergic interneurons in the
1129 granule cell layer of mouse cerebellum. *J Comp Neurol* 500:71–83. doi:10.1002/cne.21142
1130 pmid:17099896
1131

1132 Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales
1133 underlie short-term motor learning. *PLoS Biol* 4: e179, 2006. doi:10.1371/journal.pbio.0040179
1134

1135 Solinas S, Nieus T, D'Angelo E (2010) A realistic large-scale model of the cerebellum granular layer
1136 predicts circuit spatio-temporal filtering properties. *Front Cell Neurosci*. 2010 May 14;4:12. doi:
1137 10.3389/fncel.2010.00012. PMID: 20508743; PMCID: PMC2876868.
1138

1139 Tabuchi S, Gilmer JI, Purba K, Person AL (2019) Pathway-Specific Drive of Cerebellar Golgi Cells
1140 Reveals Integrative Rules of Cortical Inhibition. *The Journal of Neuroscience* 39, 1169–1181.
1141 doi:10.1523/jneurosci.1448-18.2018
1142

1143 Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ. (2007) Sensory prediction errors drive
1144 cerebellum-dependent adaptation of reaching. *J Neurophysiol*. 2007 Jul;98(1):54-62. doi:
1145 10.1152/jn.00266.2007. Epub 2007 May 16. PMID: 17507504.
1146

1147 Tyrrell T, Willshaw D (1992) Cerebellar cortex: its simulation and the relevance of Marr's theory. *Philos
1148 Trans R Soc Lond B Biol Sci.* 29;336(1277):239-57.
1149

1150 Van Kan PL, Gibson AR, Houk JC (1993) Movement-related inputs to intermediate cerebellum of
1151 monkey. 69:74-94
1152

1153 Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L (2017) Cerebellar granule cells encode the
1154 expectation of reward. *Nature* 544, 96–100. doi:10.1038/nature21726
1155

1156 Williams A, Roberts PD, Leen TK (2003) Stability of negative-image equilibria in spike-timing-
1157 dependent plasticity. *Phys Rev E* 68, 021923
1158

1159 Wolpert DM, Miall RC, Kawato, M (1998) Internal models in the cerebellum. Trends in Cognitive
1160 Sciences 2, 338–347. doi:10.1016/s1364-6613(98)01221-2

1161

1162 Wright SJ, Nowak RD, Figueiredo MAT (2009) Sparse Reconstruction by Separable Approximation.
1163 Trans. Sig. Proc., Vol. 57, No 7: 2479–2493.

1164

1165 Yang Y, Lisberger SG (2014) Role of Plasticity at Different Sites across the Time Course of Cerebellar
1166 Motor Learning. The Journal of Neuroscience 34, 7077–7090. doi:10.1523/jneurosci.0017-14.2014

1167

1168 Zhou S, Masmanidis SC, Buonomano DV (2020) Neural Sequences as an Optimal Dynamical Regime for
1169 the Readout of Time. Neuron. 108(4):651-658.e5. doi: 10.1016/j.neuron.2020.08.020. Epub 2020 Sep 17.
1170 PMID: 32946745; PMCID: PMC7825362.

1171

1172 **Figure Legends**

1174 **Figure 1: Model architecture and effects of thresholding on GCL population activity**

1175 **A.** Diagram of algorithm implementation. Left shows Ornstein-Uhlenbeck processes (see Methods) as
1176 proxies for mossy fiber (MFs, blue) inputs to granule cell units (GCs, red), with convergence and
1177 divergence of MFs to GCs noted beneath MFs. GCs employ threshold-linear filtering shown beneath the
1178 red parallel fibers. GC outputs are then transmitted to downstream Purkinje cells (P-cells). P-cells learn to
1179 predict target functions by reweighting GC inputs. Differences between the prediction and true target are
1180 transmitted as an ‘error’, which updates synaptic weights to P-cells. **B.** Emergence of temporal basis sets
1181 in model GCLs using inputs derived from pontine neuron recordings. Top, Pontine recordings in mice
1182 during pellet reaching task, aligned to reach onset at 0 ms. Bottom, Model GCL output using PN activity
1183 as input **C.** Same as B, but using EMGs as MF inputs. Top, electromyogram (EMG) recordings from
1184 human subject in point-to-point reaching task (EMG, top). Bottom, model GCL output using EMG as
1185 input **D.** Same as B, but using OU functions as MF inputs. Bottom, model GCL output using OU
1186 processes as inputs. The model GCL enhanced spatiotemporal representation for all three input types (B-
1187 D).

1188 **Figure 2: Effect of increased input noise on GCL peak activity timing**

1189 **A.** Example MF input modeled as an OU process without noise (left), and with (right).
1190 **B.** Example of a GCL population with stable OU process as input (noiseless; left), and the population
1191 with addition of noise (middle and right). The GC population is ordered by timing of peak rate in the
1192 noiseless condition. **C.** Cumulative distribution of peak rate time shift between ‘no noise’ and 25% noise
1193 (left) or 50% noise (right), with MFs in black and GCs in red. X-axis is bounded to capture ~85% of
1194 population. CDF step length is 1 ms.

1195 **Figure 3: Enhanced time series learning using GCL mode.**

1196 **A:** Top: GCL output at different threshold levels. Bottom, relationship of threshold level to learning
1197 accuracy (MSE) for P-cells fed MFs directly (blue) or the output of the GCL (orange; error, standard
1198 deviation). **B.** Top left: P-cells were tasked with learning a complex timeseries that could be rendered as

1203 an image recognizable to humans, a cat with superimposed text. Top right: If P-cells were fed MF input
1204 directly, their best learning output was not recognizable as a cat, despite seemingly low MSE of 0.02.
1205 Bottom row: If P-cells were fed GCL output, they learned timeseries that rendered a matching image,
1206 with MSEs dependent on threshold, but varying between 0.0078 and 0.0016. This figure provides an
1207 intuitive sense of the practical difference between MSE of 0.02 and 0.0016, achieved with P-cells learning
1208 using MFs directly or with the support of GCL preprocessing.
1209
1210
1211

1212 **Figure 4. Learning speed increases with GCL**

1213 A. Example of learned predictions after 1,5, and 50 trials of learning, with predictions in red and target
1214 function in black. **B.** Example learning trajectory of MSE fit with a double exponential. Black circles:
1215 MSE of network output on each trial. Red line: double exponential fit MSE during learning. Here, step
1216 size was 10^{-6} and z-scored GCL threshold was 0. We use the exponents k from the exponential fit to
1217 measure learning speed. **C.** Learning speed as a function of GCL threshold (red dots). Blue line: learning
1218 speed in networks lacking GCL, i.e. mossy fibers directly innervate output Purkinje unit, gradient descent
1219 step size was 10^{-6} .
1220

1221 **Figure 5: Recovering inputs with an optimal linear readout**

1222 A. Network model schematic. Granule cell (GC, red, center) layer thresholds the sum of (4 here)
1223 randomly chosen mossy fiber (MF, black, left) inputs, which are then fed into a reconstruction layer
1224 which uses the optimal weighting from all N GCs to approximate each of the M inputs (compare blue
1225 readouts to grey inputs). **B.** Increasing the threshold of the GC layer (N=500 outputs) decreases the
1226 explained variance (i.e. variance retained) of the best reconstruction layer (M=50), but the effect is
1227 reduced with an intermediate number of MF inputs per GC. **C.** Variance retained increases with the ratio
1228 of GCs per MF but gains from increasing the number of inputs to each GC are limited (max at 4 inputs).
1229 Here there are M=50 MF Inputs at the threshold = 0. **D.** For a fixed number of GC outputs N, there is an
1230 optimal number of MF inputs (M) for which the variance retained of the reconstruction layer is
1231 maximized. **E. i.** For a fixed number of GC outputs N and MF inputs M=50, there is an optimal number
1232 of inputs per G (around 4) for maximizing variance retained. **ii.** Same as i, but with each value normalized
1233 to its maximum to show maximized values at inputs = 4.
1234

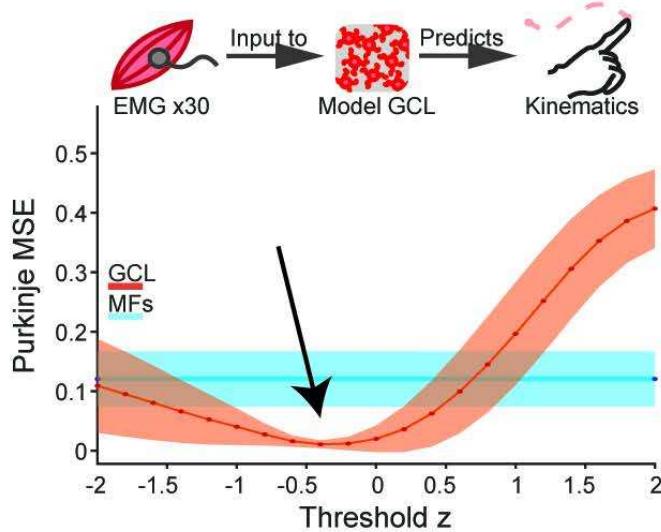
1235 **Figure 6: Statistical features of GCL output** **A.** GCL dimensionality (red) and MF dimensionality
1236 (blue) as a function of threshold. Note peak near a threshold of 1 for the GCL. **B.** Two metrics of pattern
1237 separation in GCL output—STS (light orange) and PCs (dark orange)—as a function of threshold. Note
1238 peaks near 1.5 and 0.5, respectively. **C.** The sum of GCL variance produced by the model as a function of
1239 threshold. Note monotonic decrease with threshold. **D.** Temporal sparseness as a function of thresholding.
1240 Note monotonic decrease in GCL with thresholding. **E.** Mean pairwise correlation of the population
1241 plotted as a function of threshold. Note trough near 1. **F:** Three forms of lossiness in GCL output as a
1242 function of threshold. Each metric had differential sensitivity to thresholding but note that all decrease
1243 with increasing threshold. Across metrics, function maxima and minima ranged widely and were not
1244 obviously related to thresholds of optimized learning.
1245

1246 **Figure 7. Relationship between GCL population statistics and MSE** **A.** LASSO regression was used
1247 to identify GCL population metrics that predicted learning performance. **A** shows the model selection as a
1248 function of progression of the Lambda parameter (which is the penalty applied to each regressor). The
1249 following potential regressors were used: dimensionality (Dim.), spatiotemporal sparseness (STS),
1250 explanatory principal components of the GC population (PCs), population variability (Pop. Var.), spatial
1251 sparseness (S. Sparse.), temporal sparseness (T. Sparse.), temporal lossiness (T. Loss.), population
1252 lossiness (P. Loss.), and input variance retained (Var. Ret; Figure 5). Arrow shows selection point of
1253 LASSO regression MSE using “1SE” (1 standard error) method (see Methods, purple lines, black dot and
1254 arrow indicating the selected model, with red arrow showing selection point in the parameter reduction
1255 plot, red). **B.** Relationship between LASSO model (predicted relative MSE) against the observed relative
1256 MSE (ratio of GC MSE to MF alone MSE) with fit line and variance explained by regression ($R^2 = 0.91$)
1257 **C.** Regression slopes of the selected LASSO model from A, showing that STS, PCs, and Input Variance
1258 Retained are the selected regressors, with Var. Ret. being the largest contributing factor. All factors
1259 normalized to a normal distribution for comparison. **D.** The output of the selected model and the observed
1260 MSE plotted against threshold for a comparison of fits, demonstrating high accuracy in the 0-2 range, but
1261 less accuracy in the -2-0 range. **E-F**, Similar to C-D except using Bayesian information criteria stepwise
1262 regression model to select metrics that explain learning.
1263

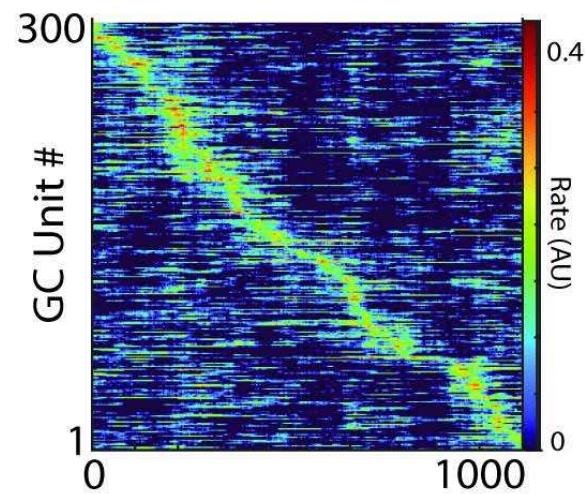
1264 **Figure 8. Relationship of MF input to learned output influences how GCL supports**
1265 **learning** **A.** Top, Schematic of model task, using recorded EMGs as an input to the model GCL to
1266 predict kinematics. Bottom, MSE of model as a function of threshold when using EMG alone (MFs; blue)
1267 or GCL (red) as input to model P-cell. At a range of thresholds, P-cells that receive GCL input outperform
1268 P-cells receiving MFs alone. **B.** Example of learned kinematic position after training for MF Alone (blue
1269 line) and GCL network (red) showing good metric fit by the GCL model. **C.** Plot showing the strength of
1270 different GCL population statistical features driving learning that vary as a function of how well MFs
1271 intrinsically support learned P-cell output (MF Alone MSE). When MFs are already excellent predictors,
1272 information retention (variance retained) has a high regression slope (RIDGE regression method). When
1273 MFs are poorer intrinsic predictors, the number of explanatory PCs (a pattern separation metric) emerges
1274 as a stronger driver of learning performance. Goodness of fit (R^2) was between 0.83-0.95 across all MF-
1275 Alone MSEs used.

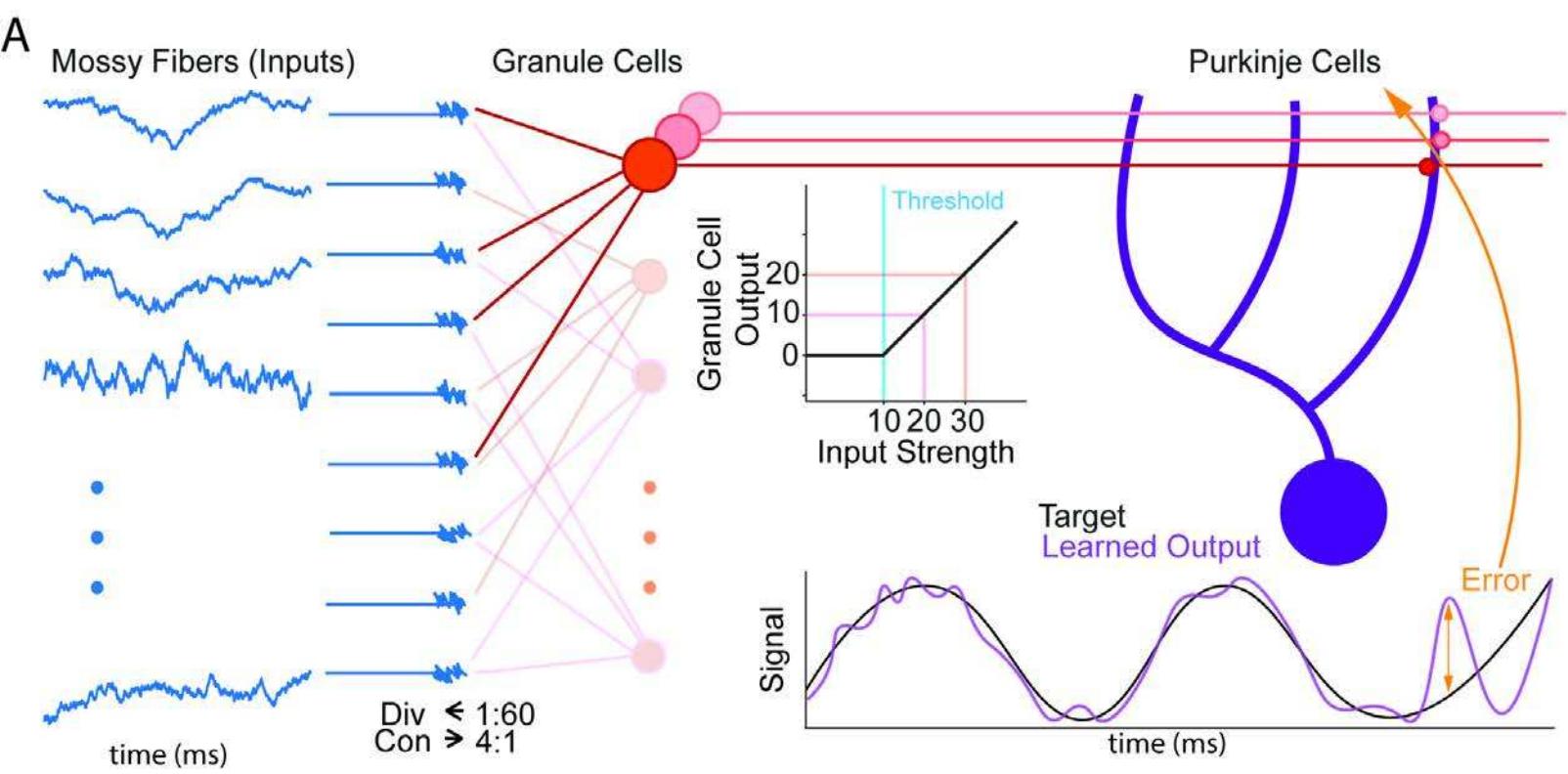
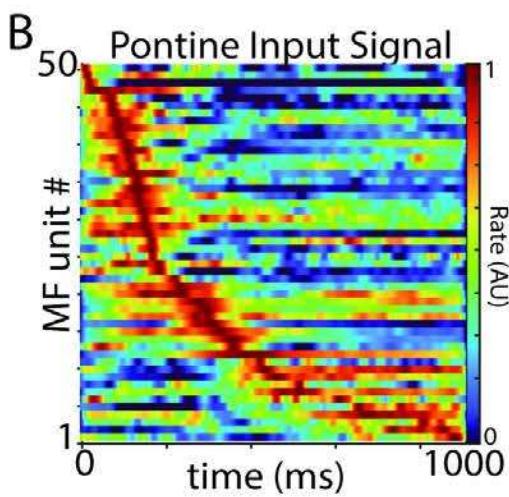
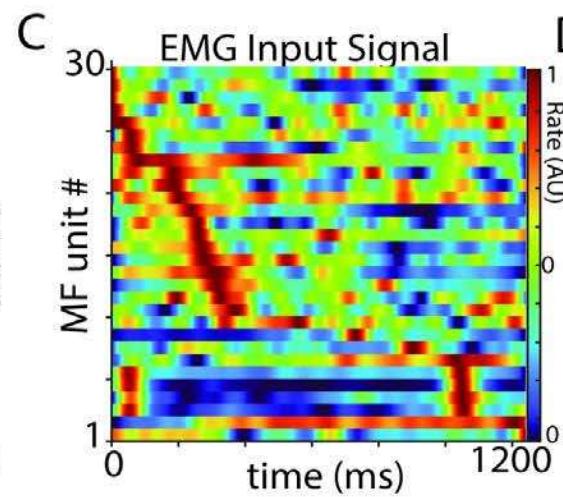
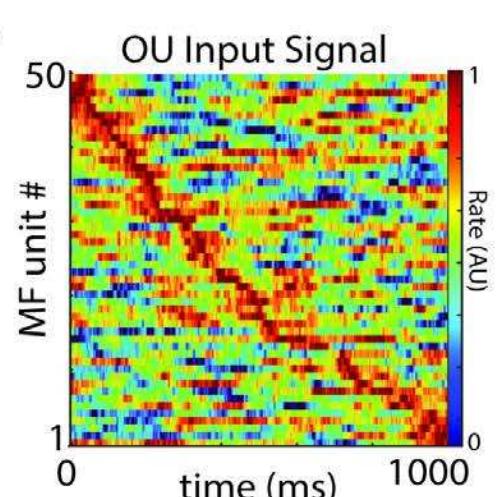
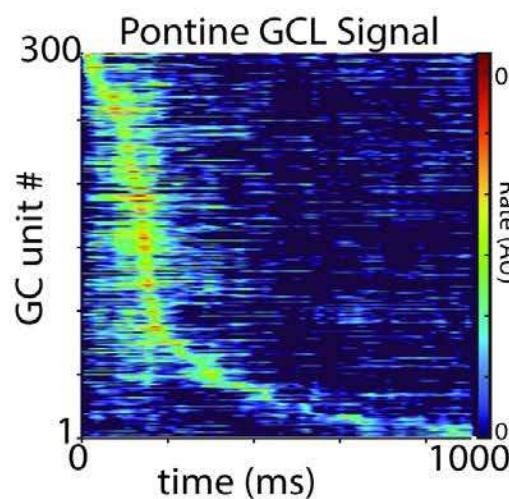
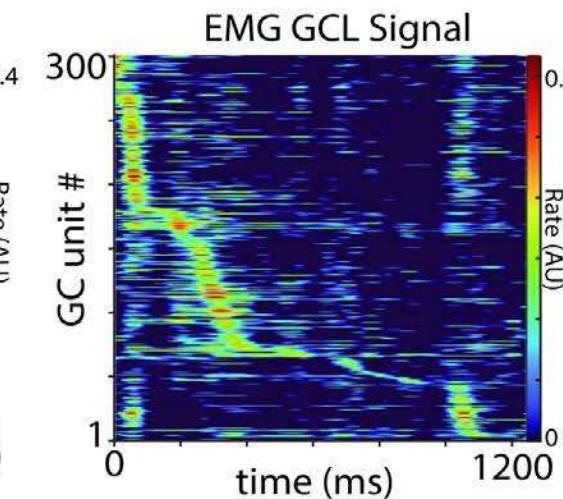
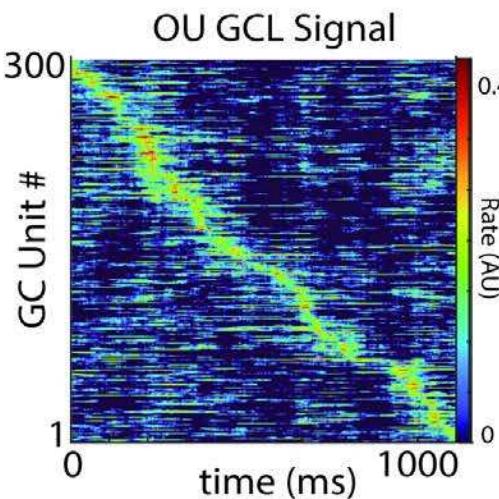
We all know that pattern separation supports classification learning, but what about temporal learning?

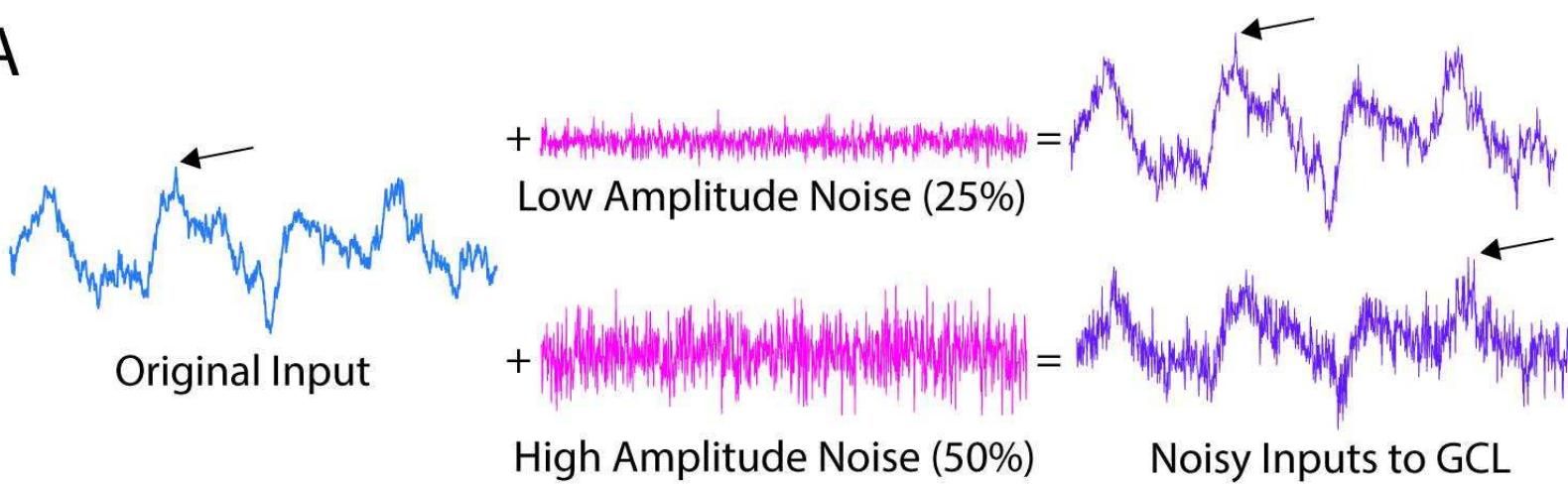
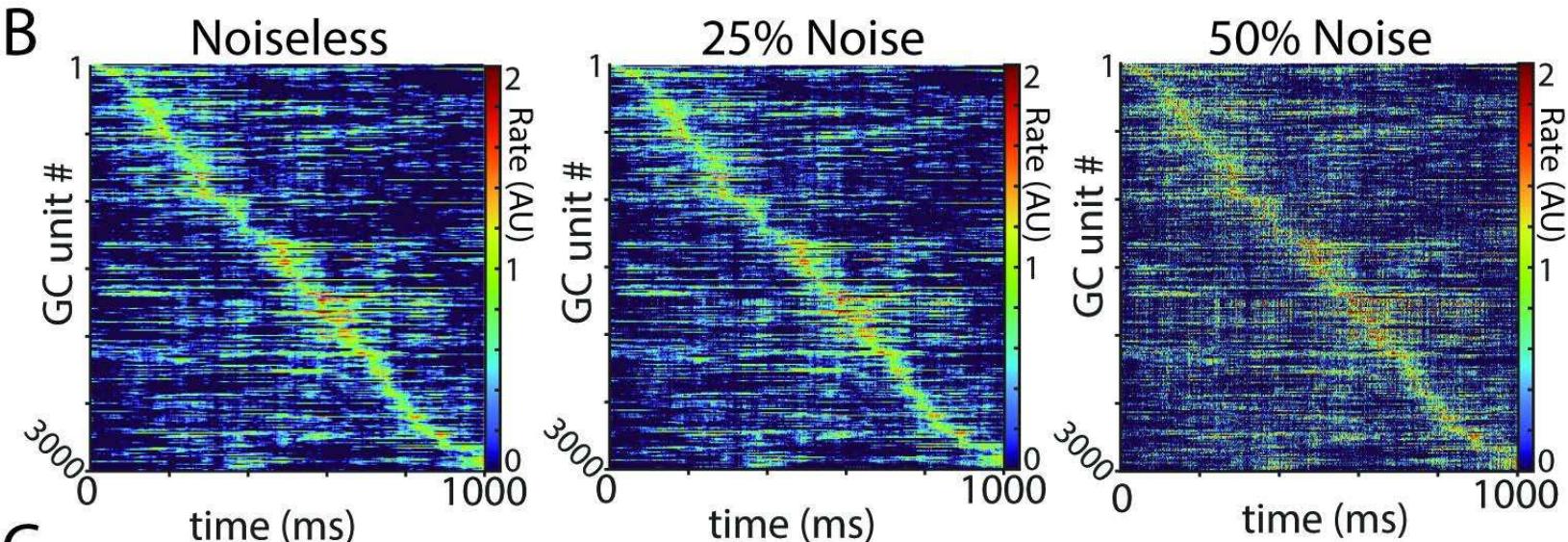
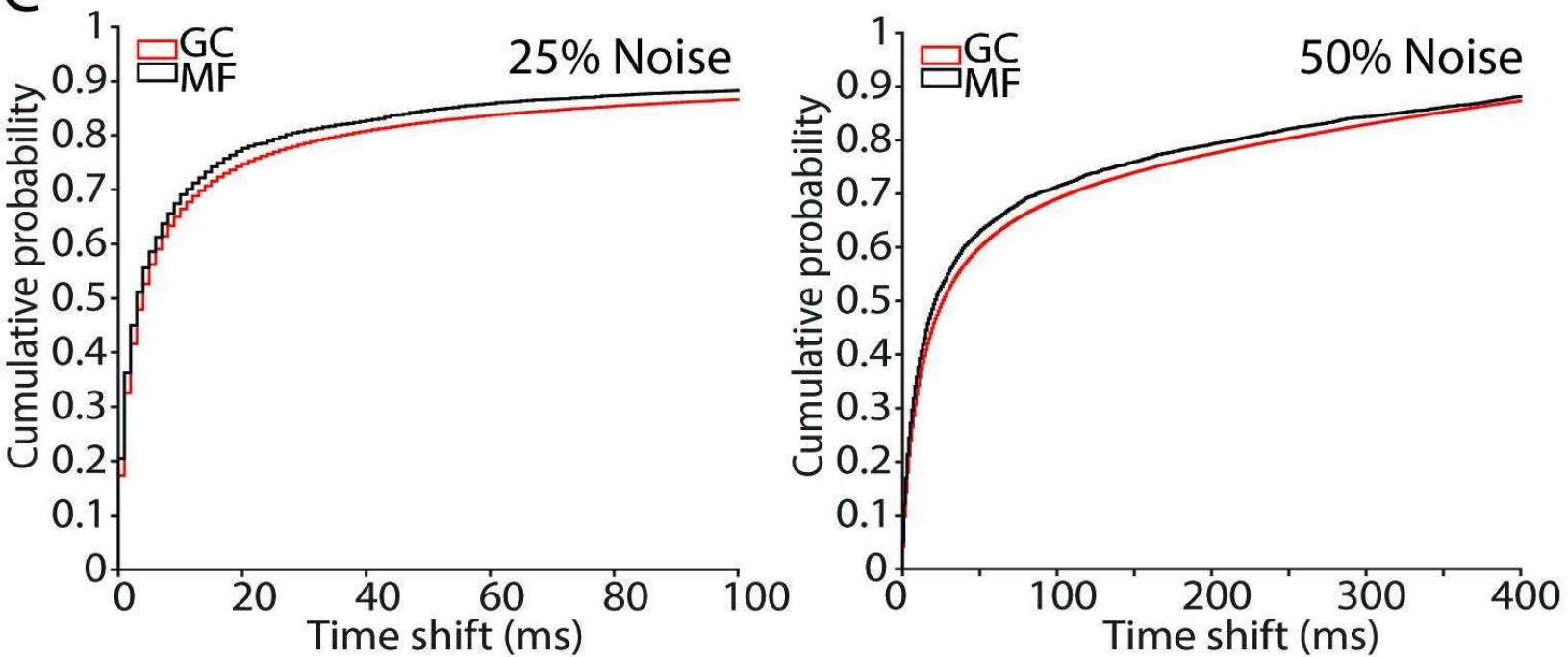
1. At intermediate thresholds, a model cerebellar granule layer leads to better learning in Purkinje units than mossy fibers alone.

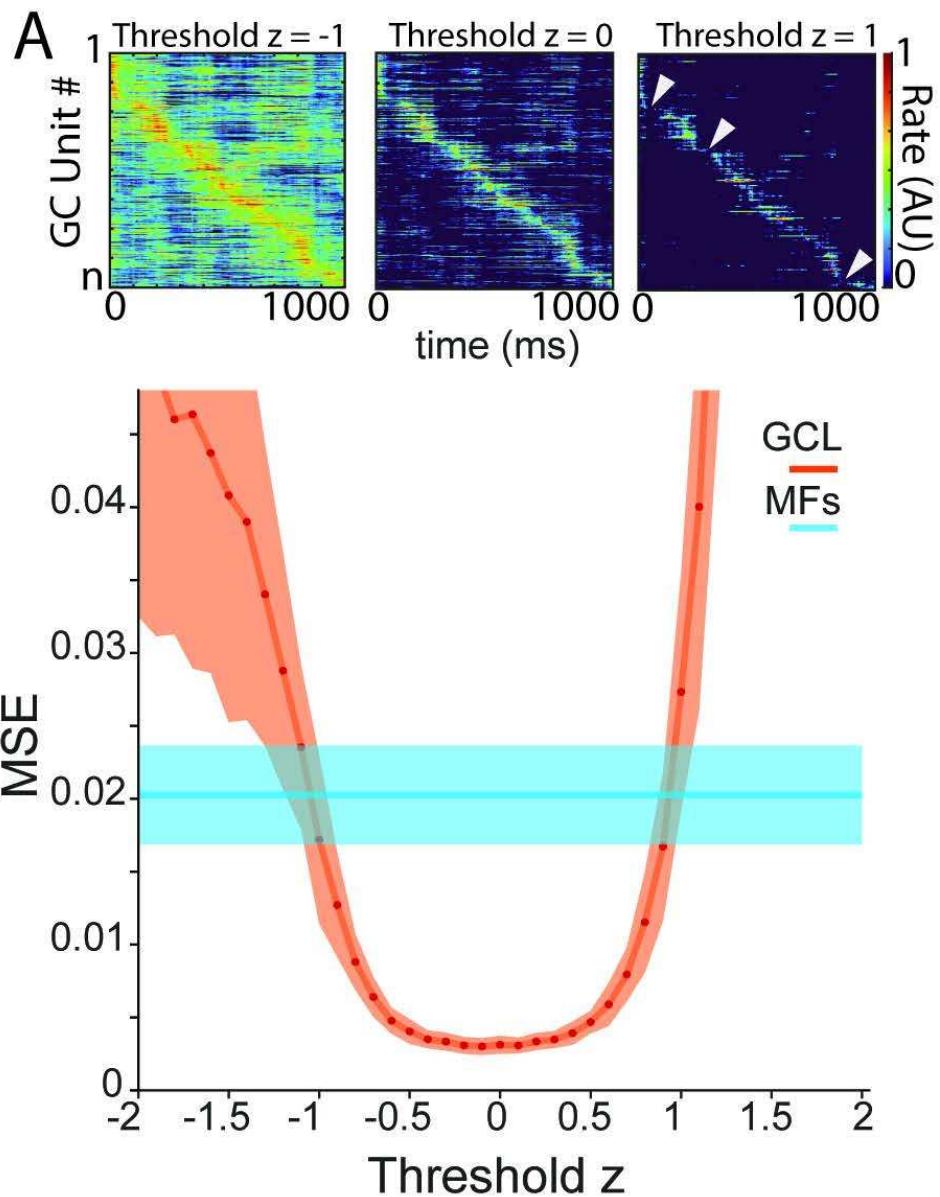


2. Why? Basic GCL architecture improves temporal pattern separation of temporally varying inputs typical of movements.





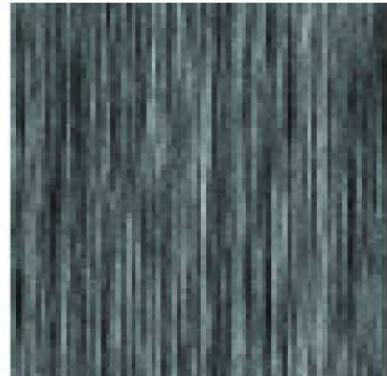
A**B****C**



B

Target Function
MSE: 0

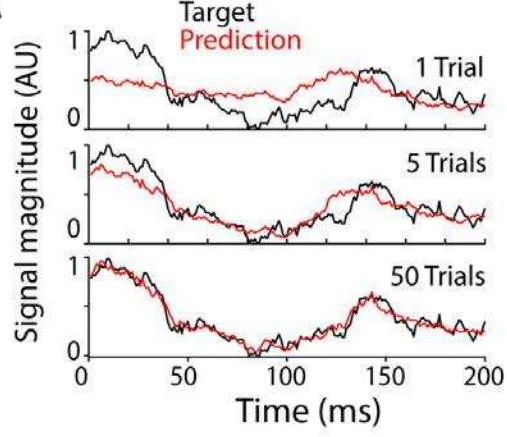
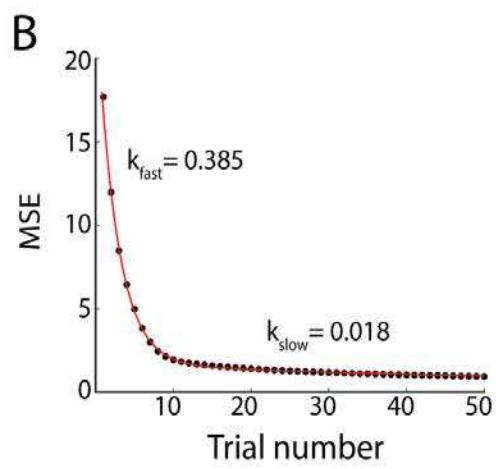
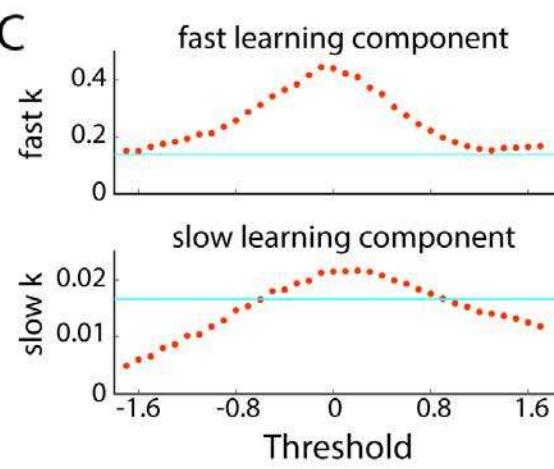
MF Alone
MSE: 2e-2



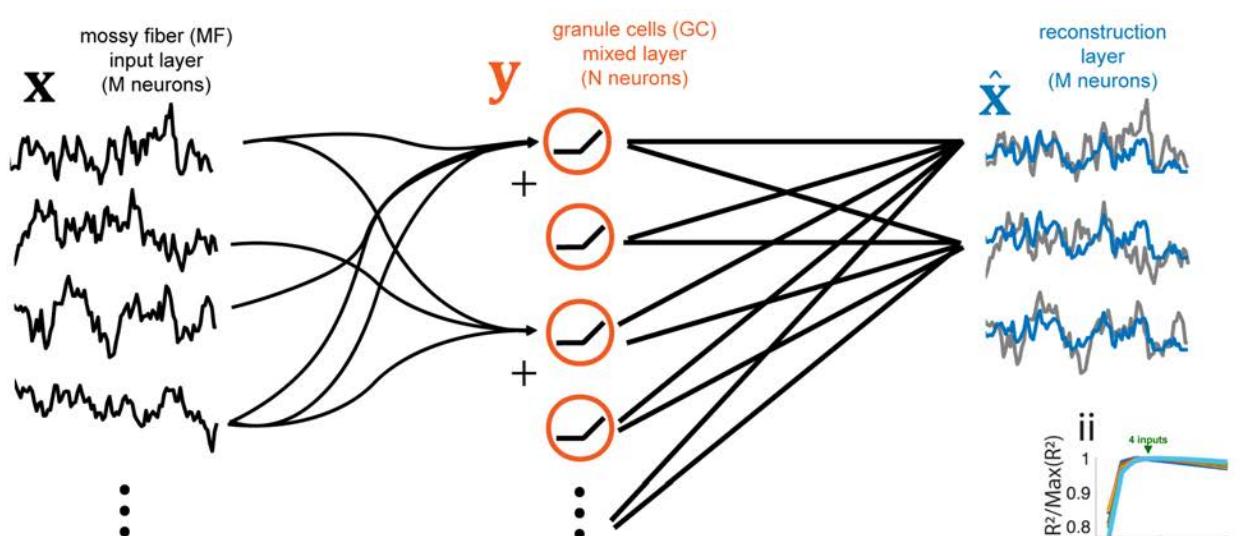
Thr z: -0.75
MSE: .0076

Thr z: 0
MSE: .0016

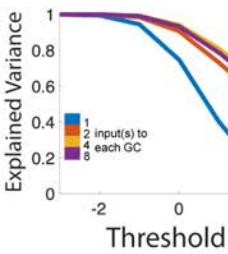
Thr z: 0.75
MSE: .0078

A**B****C**

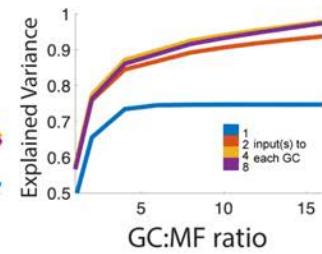
A



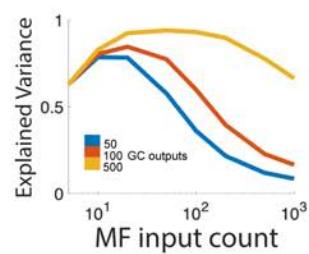
B



C



D



E

