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Jesse 1. Gilmer'?, Michael A. Farries’, Zachary Kilpatrick®, Ioannis Delis’, Jeremy Cohen®, and Abigail L.

Person’
1. Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora CO
2. Dept. Physiology and Biophysics, University of Colorado School of Medicine, Aurora CO
3. Knoebel Institute for Healthy Aging, University of Denver, Denver CO
4. Department of Applied Mathematics, University of Colorado Boulder, Boulder CO
5. School of Biomedical Sciences, University of Leeds, Leeds UK
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ABSTRACT

The cerebellum is considered a ‘learning machine’ essential for time interval estimation underlying motor
coordination and other behaviors. Theoretical work has proposed that the cerebellum’s input recipient
structure, the granule cell layer (GCL), performs pattern separation of inputs that facilitates learning in
Purkinje cells (P-cells). However, the relationship between input reformatting and learning has remained
debated, with roles emphasized for pattern separation features from sparsification to decorrelation. We
took a novel approach by training a minimalist model of the cerebellar cortex to learn complex time-series
data from time varying inputs, typical during movements. The model robustly produced temporal basis
sets from these inputs, and the resultant GCL output supported better learning of temporally complex
target functions than mossy fibers alone. Learning was optimized at intermediate threshold levels,
supporting relatively dense granule cell activity, yet the key statistical features in GCL population activity
that drove learning differed from those seen previously for classification tasks. These findings advance
testable hypotheses for mechanisms of temporal basis set formation and predict that moderately dense
population activity optimizes learning. NEW AND NOTEWORTHY: During movement, mossy fiber
inputs to the cerebellum relay time-varying information with strong intrinsic relationships to ongoing
movement. Are such mossy fibers signals sufficient to support Purkinje signals and learning? In a model,
we show how the GCL greatly improves Purkinje learning of complex, temporally dynamic signals
relative to mossy fibers alone. Learning-optimized GCL population activity was moderately dense, which
retained intrinsic input variance while also performing pattern separation.

INTRODUCTION

The cerebellum refines movement and maintains calibrated sensorimotor transformations by learning to
predict outcomes of behaviors through error-based feedback (Ito, 1972; Herzfeld et al., 2015; Medina
2000; Mauk and Buonomano, 2004; Raymond et al., 1996). A major site of cerebellar learning is in the
cerebellar cortex, where Purkinje cells (P-cells) receive sensorimotor information from parallel fibers
(Huang et al. 2013) whose synaptic strengths are modified by the conjunction of presynaptic (parallel
fiber) activity and climbing fiber inputs to P-cells thought to convey instructive feedback (McCormick et
al., 1982; Yang and Lisberger, 2014; Mauk et al., 1986; De Zeeuw et al., 1998). P-cell activity is
characterized by rich temporal dynamics during movements, representing putative computations of
internal models of the body and the physics of the environment (Wolpert et al., 1998; Shadmehr and
Mussa-Ivaldi 1994). Parallel fibers are the axons of cerebellar granule cells (GCs), a huge neuronal
population (comprising roughly half of the neurons in the entire brain; Herculano-Houzel 2010), which
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are the major recipient of extrinsic inputs to the cerebellum. Thus, understanding the output of the GCL is
key in determining the encoding capacity and information load of incoming activity projected to the
cerebellum. Inputs to GCs arise from mossy fibers (MFs), which convey sensorimotor information for P-
cell computations (Rancz et al., 2007; Ishikawa et al., 2015). There are massively more GCs than MFs
and each GC typically receives input from just 4 MFs (Palkovits et al., 1971), such that the information
carried by each MF is spread among many GCs, but each GC samples from only a tiny fraction of total
MFs (Jakab and Hamori 1988; Eccles et al., 1967).

The GCL has been the focus of theoretical work spanning decades, which has explored the computational
advantages of the unique feedforward architecture of the structure. Notably, early studies of the cerebellar
circuit by Marr (1969) and Albus (1971) proposed that a key component of the cerebellar algorithm is the
sparse representation of MF inputs by GCs. In this view, the cerebellum often must discriminate between
overlapping, highly correlated patterns of MF activity with only subtle differences distinguishing them
(Bengsston and Jorntell 2009). Sparse recoding of MF activity in a much larger population of GCs
(“expansion recoding”) increases the dimensionality of population representation and transforms
correlated MF activity into independent activity patterns among a subset of GCs (Litwin-Kumar et al.,
2017; Cayco-Gajic et al., 2017; Gilmer and Person 2018). These decorrelated activity patterns are easier
to distinguish by learning algorithms operating in P-cells, leading to better associative learning and credit
assignment (Cayco-Gajic et al., 2017; Sanger et al., 2020).

The machine learning perspective of the Marr-Albus theory tends to assume that the cerebellum is
presented with a series of static input patterns that must be distinguished and categorized. However,
during movements, neuronal population dynamics are rarely, if ever, static. Mauk and Buonomano (2004)
revisited cerebellar expansion recoding in the context of temporal encoding, a necessary computation for
the cerebellar-dependent task of delay eyelid conditioning. They proposed that a static activity pattern in
MFs could be recoded in the GC layer as a temporally evolving set of distinct activity patterns, termed a
temporal basis set. P-cells could learn to recognize the GC activity pattern present at the correct delay and
initiate an eyeblink to avert the “error” signal representing the air puff to the eye. This transformative
theory has given rise to an emerging literature exploring mechanisms of basis set formation. A variety of
mechanisms have been proposed for how such time-varying population activity might emerge, including
local inhibition, short-term synaptic plasticity, diverse unipolar brush cell properties and varying GC
excitability (Chabrol et al., 2015; Duguid et al, 2012; Crowley et al., 2009; Rudolph et al., 2015;
Buonomano and Mauk 1994; Kanichay and Silver 2008; Simat et al., 2007; Mapelli et al., 2009; Rossi et
al., 1996; Gall et al., 2005; Armano et al., 2000; Rizwan et al. 2016; Tabuchi et al., 2019; D’ Angelo and
De Zeeuw 2009; Kennedy et al., 2014, Guo et al., 2021; Dino et al. 2000).

Despite these promising avenues, the problem of learning more complex movements presents a distinct
set of questions about how the cerebellum processes and uses time variant inputs to learn complex P-cell
signals, a type of timeseries. Therefore, to test how expansion recoding of time-varying input contributes
to learning, we used a simple model of the GCL and a time-series prediction task to explore the effect of
putative GCL filtering mechanisms on expansion recoding and learning. Similar to previous models, this
simplified model made GC activity sparser relative to MF inputs (Marr 1969; Albus 1971) and increased
the dimensionality of the input activity (Litwin-Kumar et al., 2017) while preserving information
(Billings et al., 2014). The model greatly enhanced learning accuracy and speed by P-cells on a difficult
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time series prediction task when compared to MF inputs alone. Together, these results suggest that the
cerebellar GCL provides a rich basis for learning in downstream Purkinje cells, providing a mixture of
lossless representation (Billings et al., 2014) and enhanced spatiotemporal representation (Litwin-Kumar
et al. 2017) that are selected for by associative learning to support the learning of diverse outputs that
support adaptive outputs in a variety of tasks (Fujita 1982; Dean and Porrill 2008).

METHODS

Model construction

The model presented here incorporated only the dominant features of the granule cell layer (GCL) circuit
anatomical organization and physiology. The features chosen for the model were the sparse sampling of
inputs (GCs have just 4 synaptic input branches in their segregated dendrite complexes on average),
which was reflected in the connectivity matrix between the input pool and the GCs, where each GC
received 4 inputs with weights of%4" (i.e. 1 divided by the number of inputs; 1/M) of the original input
strength, summing to a total weight of 1 across all inputs. The other features were thresholding,
representing inhibition from local inhibitory Golgi neurons and intrinsic excitability of the GCs. The
degree of inhibition and intrinsic excitability (threshold) was a free parameter of the model, and the
dynamics were normalized to the z-score of the summated inputs. This feature reflects the monitoring of
inputs by Golgi cells while maintaining simplicity in their mean output to GCs. While this model
simplifies many aspects of previous models of the GCL, it recreated many of the important features of
those models, suggesting that the sparse sampling and firing are the main components dictating GCL
functionality.

The model, in total, uses the following formulas to determine GC output:

Eql: GC(t) = [(E L)~
where k is a random selection of M MFs from the MF population. The inputs are summed and divided by
the total number of MF inputs to the GC, M, so that their total weight is equal to 1. Unless noted as a
variable, we used M = 4, reflecting the mean connectivity between MFs and GCs, and the optimal ratio
for expansion recoding (Litwin-Kumar et al. 2017), and the point of best input variance retention (Fig. 5).
This function is then linearly rectified, i.e. [x], = x if x > 0 and 0 otherwise so that there are no negative
rates present in the GC activity. The 8 function which determines the threshold, estimating the effects of
intrinsic excitability and feedforward inhibition, was formulated as:

Eq2: 8 = MF + (z * o(MF))

Here, z sets the number of standard deviations from the MF mean. z is the only free parameter,
which determines the minimum value below which granule cell activity is suppressed. Therefore
we report z as the ‘threshold’. Note that the summated MF inputs are divided by the number of
inputs per GC (M) in Eq. 1 such that their received activity relative to 8 is proportional to the
input size, M. Since the input to GCs is Gaussian in our model, the summed activity integrated by the
GCs is Gaussian as well. For that reason, we found it convenient to define the GC thresholding term in
terms of a z-score. Thus, a GC with a threshold of “zero” has its threshold set at the mean value of its MF
inputs; such a GC would be silent 50% of the time on average because the Gaussian presynaptic input
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would be below the mean value half the time. This makes it possible to discuss functionally similar
thresholds across varying network architectures (e.g., a GC with a threshold of zero would discard half of
its input on average regardless of whether it received 2 or 8 MF inputs).

OU input construction

To provide a range of inputs with physiological-like temporal properties that could be parameterized, we
used a class of randomly generated signals called Ornstein-Uhlenbeck Processes (OU), defined by the
following formula:

Eq3:0U(t) = (0U(t —At) * e(_%)) + (0 * ,fl— e_z*% * R)

Here t is the time point being calculated, At is the time interval (the time base is in ms and At is 1 ms). o is
the predetermined standard deviation of the signal, and R is a vector of normally distributed random
numbers. This process balances a decay term, the exponential with e raised to -At/z, and an additive term
which introduces random fluctuations. Without the additive term, this function decays to zero as time
progresses. For all simulations, unless noted otherwise, tau was 100 ms. This resulted in a mean
autocorrelation tau of 502+/- 52 ms, which was intermediate between pontine neurons and reach-related
electromyograms autocorrelation taus of 351+/-120 ms and 567 +/- 151 ms, used below as model inputs,
respectively. After the complete function has been calculated, the desired mean is added to the timeseries
to set the mean to a predetermined value.

The vector R can also be drawn from a matrix of correlated numbers, as was the case in Fig. 7 — figure
supplement 1 B & C. These numbers were produced with the MATLAB functions randn() for normal
random numbers, and mvnrnd() for matrices with a predetermined covariance matrix supplied to the
function. The covariance matrix used for these experiments was always a 1-diagonal with a constant,
predetermined, covariance value on the off-diagonal coordinates.

Introduction of noise to input and GCL population

To test whether fluctuations riding on input signals influence GCL basis set formation, we introduced
Gaussian noise that was re-calculated trial to trial and added it to the MF input population. The amplitude
of the introduced noise was scaled to the amplitude of the input, so that the proportion of the signal that is
noise could be described with a percentage: % Noise = 100 * Noise Amp. / (Signal Amp. + noise Amp.).
For example, if the amplitude of the noise was equal to the amplitude of the input, the % noise would be
equivalentto 1 /(1 + 1) =.5, or 50% noise.

To determine the stability of representations in the MF and GCL populations with introduced noise, we
measured the displacement of the temporal location where peak firing occurred between noiseless and
noisy activity patterns at threshold 0 (unless noted). This measurement was rectified to obtain the absolute
displacement of peak firing time.

Learning accuracy and speed assay

To understand how the GCL contributed to learning, we constructed an artificial Purkinje cell (P-cell)
layer. The P-cell unit learned to predict a target function through a gradient descent mechanism, such that
the change in weight for each step was:
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Eq4: Err(t) = |P(t) — TF(t)|
Eq5: AW; =W, — (Err(t) * GC; (t) * 1)

Where P(t) is the output of the P-cell at time t, TF(t) is the target function at time t, W; is the weight
between the Purkinje cell and the i™ GC, and 1) is a small scalar termed the ‘step size’. n was 1E-3 for
GCs, and 1E-5 for MF alone in simulations shown in this study where the step size was held fixed, which
was chosen to maximize learning accuracy and stability of learning for both populations. While not
strictly physiological because of membrane time constant temporal filtering and variable eligibility
windows for plasticity, this form of learning is widely applied in neural models, including cerebellar (e.g.
Bouvier et al., 2018). Physiological equivalents of negative weights found by gradient descent could be
achieved by molecular layer interneuron feedforward inhibition to P-cells. The learning process in Eq. 4
and 5 was repeated for T trials at every time point in the desired signal. The number of trials was chosen
so that learning reached asymptotic change across subsequent trials. Typically, 1000 trials were more than
sufficient to reach asymptote, so that value was used for the experiments in this study.

The overall accuracy of this process was determined by calculating the mean squared error between the
predicted and desired function:

Eq6: MSE = 21, (P(t) — TF(t))?

The learning speed was determined by fitting an exponential decay function to the MSE across every trial
and taking the tau of the decay (See methods: Model output metrics, Time decay). A percentage form of
this measure is given in Fig. 3B, bottom, to give intuition to the total decrease in MSE when comparing
MFs to GCL output. %MSE = (MSEur — MSEgcL)/MSEyg.

GCL output metrics

To assay the properties of the GCL output that influence learning, we measured the features of GCL
output across a spectrum of metrics that have theoretically been associated with GCL functions like
pattern separation or expansion, as well as optimization or cost-related metrics developed for this paper.
These included: dimensionality, spatiotemporal sparseness, contributing principal components, spatial
sparseness (mean population pairwise correlation), temporal sparseness (mean unit autocovariance
exponential decay), population variance, temporal lossiness, population lossiness, and temporal cover.

We considered three forms of lossiness here, two related to the dimensions of sparseness considered
above, time and space, and one that is a measure of sparseness on the individual GC level. Temporal
lossiness is a measure of the percentage of time points that are not encoded by any members of the GCL
population, essentially removing the ability of P-cells to learn at that time point and producing no output
at that time in the final estimation of the target function. Increases in the value are guaranteed to degrade
prediction accuracy for any target function that does not already contain a zero value at the lossy time
point.

Eq 7:
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Temp. Lossiness = T th where x; (2 GGi() =0=1
i=1

t=1 else =0

Here, T is the total number of points in the encoding epoch, the bracketed portion of the formula is a
summation of inputs from all GCs (N = population size) at that timepoint. When all GCs are silent, the
sum is 0, and the temporal lossiness is calculated as 1, and when all time points are covered by at least
one GC, total temporal lossiness is 0.

Spatial lossiness, or population lossiness, is the proportion of GCs in the population that are silent for the
entirety of the measured epoch. This is thought to reduce total encoding space and deprive downstream P-
cells of potential information channels and could potentially impact learning efficacy. It is defined as:

Eq 8:

T
N
1 _
Pop. Lossiness = N z x; where x; (Z GC) =0=1
— t=1

=1 else=0

Here, N is the total population size of the GCL, and the bracketed portion of the formula is a sum of the
activity of GCs across all timepoints, such that if a GC is silent across all timepoints X; is calculated as 1,
indicating the ‘loss’ of that GC unit’s contribution. When all GCs are silent, population lossiness is 1, and
when all GCs are active for at least one time point, population lossiness is 0.

Additionally, we looked at the mean sparseness of activity across the population by measuring the
‘coverage’ or proportion of time points each GC was active during, defined as:
Eq9:

T
GC(t)>0=1

in where x; { legl;e —0 })

t=1

~r=

L

C =— E

overage = . 1(
l=

As before, N is the number of cells in the population and T is the total length of the epoch. The bracketed
function counts the number of time points where GC; is active, and divides that by the total time period
length to get the proportion of time active. This value is summed across all GCs and divided by N to
calculate the average coverage in the population. This value has strong synonymy with population
variance, so it was not used for fitting assays in later experiments (Fig. 6), but reflects the effect of
thresholding on average activity in the GCL population.

Dimensionality is a measure of the number of independent dimensions needed to describe a set of signals,
similar in concept to the principal components of a set of signals. This measure is primarily influenced by
covariance between signals, and when dimensionality approaches the number of signals included in the
calculation (n), the signals become progressively independent. The GCL has previously been shown to
enhance the dimensionality of input sets and does so in the model presented here too. Dimensionality is
calculated with:
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Eq 10: Dim = (T4, 1)/ Ty 4%

Provided by Litwin-Kumar, et al, 2016. This is the ratio of the squared sum of the eigenvalues to the sum
of the squared eigenvalues of the covariance matrix of the signals.

Spatiotemporal Sparseness (STS) was a calculated cost function meant to measure the divergence of GC
population encoding from a ‘perfect’ diagonal function where each GC represents one point in time and
does not overlap in representation with other units. This form of representation is guaranteed to produce
perfect learning, and transformations between the diagonal and any target function can be achieved in a

single learning step, making this form of representation an intriguing form of GCL representation, if it is
indeed feasible. We calculated the cost as:

1 w
Eq11:STS = (1= L) * () * (5)

Where (1 —L) is the cost of temporal lossiness, defined above (Eq. 7), and T is the total length of the
epoch. W is the number of unique combinations (termed ‘words’, akin to a barcode of activity across the
population), of GCs across the epoch at each point of discrete time, and GC,, is the average number of
words each GC is active at all within the time-bins chosen (e.g. a binary representation of GC activity).
The intuition used here is that when there is no temporal lossiness, all points in time are represented,
leading the 1 —L, term to have no effect on the STS equation, and when W, the number of unique
combinations of GC activities is equal to T, then each point in time has a unique ‘word’ associated with it.
Finally, when GC,, is 1, W/GC,, is equal to W, which only occurs when each GC contributes to a single
word. When these conditions are met, STS = 1, otherwise when GCs contribute to more than one word,
GC,, increases and W is divided by a number larger than 1, decreasing STS. Alternately, when there are
not many unique combinations, such as when every GC has the exact same output, W/GC, is equal to
(1/T), decreasing STS. Finally, because lossiness causes the occurrence of a ‘special’, but non-associable,
word, we multiplied the above calculations by (1 —L) to account for the effect of the unique non-encoding
word (i.e. all GCs inactive) on distance from the ideal diagonal matrix.

Mean temporal decay, i.e. temporal sparseness, is a measure of variance across time for individual

signals, where a low value would indicate that the signals coherence across time is weak, meaning that the
signal varies quickly, whereas a high value would mean that trends in the signal persist for long periods of
time. This value is extracted by fitting an exponential decay function to the autocovariance of each unit’s
signal and measuring the tau of decay in the function:

Eql2:y=a x eC*/D
This is converted to the ms form by taking the ratio of 1000/t. y here t is a description of the
autocovariance of the activity of a MF or GC signal, so when the descriptor 7 is a large number, the decay

in autocovariance is longer, or slower, when 7 is a small number, the autocovariance across time decays
more quickly, making the change in activity faster.
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While dimensionality and STS are metrics rooted in a principled understanding of potentially desirable
properties of population encoding, the gradient descent algorithm can extract utility from population
statistics that are much noisier and correlated than the ideal populations that dimensionality and STS
account for. To measure a more general pattern separation feature in GCL output that could still be
associated with the complex target function, we turned to principal component analysis (PCA) with the
intuition that components which explain variance in the GCL output could be utilized by the downstream
Purkinje cell units to extract useful features from the input they receive (Lanore et al., 2021). We
parameterized the utility of this measure by taking the proportion of the PCs derived from the GCL output
which explained variance (of the GCL output) in that population by more than or equal to 1/N, where N is
the number of GCs, suggesting that they explain more variance than would be expected from chance.

Population correlation, was measured by taking the mean correlation between all pairwise combinations
of GCs using the corr() function in MATLAB and excluding the diagonal and top half of the resultant
matrix.

Population aggregate variance is a measure related to the expansion or collapse of total space covered by
the encoding done by a population, and higher or expanded values in this metric are thought to assist in
pattern separation and classification learning.

Eq 13: Pop. Var= ¥N_, (x, — n)?

As shown in Cayco-Gajic et al. (2017). Here x is the activity of one of n cells across a measured epoch,
and p is the mean of that activity. This value is reported relative to the number of GC units, such that Pop.
Var reported in Fig. 6 is normalized to Pop. Var / N.

Variance retained assay

To test the recovery of inputs by a feedforward network with a granule cell layer (GCL), we used
explained variance, R? , to quantify the quality of recovery of a sequence of normal random variables
(Fig. 5) across N,, = 1000 numerical experiments. To distinguish this metric from the MSE and R*
metrics to evaluate other models in the study, we rename this ‘variance retained’. Within each numerical
experiment i, at each time point, a vector of inputs x; of length M (representing the mossy fiber, MF,
inputs) was drawn from an M-dimensional normal distribution with no correlations, x; ~ N (0, I;). This
vector is then left-multiplied by a random binary matrix W with N rows and M columns with n 1’s per
row and the rest zeros, followed by a threshold linearization to obtain the GCL output, y, = [Wx; — 2],
with threshold. This process is then repeated T = 1000 times and a downstream linear readout was fit to
optimally recover x; from y,. It can be shown multivariate linear regression (MATLAB’s regress()
function, employing least squares to minimize mean squared error) solves this problem, identifying for

each MF input stream x’i:T, the optimal weighting B;.; from the GCL to estimate ﬂ;r = Bj1.nY1.1-
Across time t = 1: T, we then computed the squared error across the vector, MSE; = »'7_; Z?’Ll(’;\?{ -

j : : 1 i
xi)z, as well as the summed variance of the actual input, Var; = v 9"=1 Zgl(xi — x)?, where

1

X = T tT=1 xi is the mean of the jth MF input stream. Lastly, to compute variance explained, we take
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RZ=1- so the higher the relative mean squared error is, the lower the variance explained will

be. To generate the panels in Fig. 5, we always kept the number of timepoints and experiments the same,
but varied (Fig. 5B) the threshold along the axis and the number of inputs n per GC output; (Fig. 5C) the
total number of GC outputs N and input per output n; (Fig. SD) number of inputs M and outputs N; and
finally (Fig. SE) the number of inputs per GC output n along with the total number of outputs N.

Generation of GCL output with defined statistical structure

To determine if the sparseness measures had inherent benefits for learning, we supplemented the GCL
output with OU processes with known temporal and correlational properties to examine their effect on
learning accuracy (Figure 7 figure supplement 1). We varied the temporal properties by systematically
varying the tau value in the exponential decay function. To vary population correlation, the random draw
function in the OU process was replaced with a MATLAB function, mvnrnd(), which allowed for preset
covariance values to direct the overall covariance between random samples. We used a square matrix with
Is on the diagonal and the desired covariance on all off-diagonal locations for this process and varied the
covariance to alter the correlation between signals. The OU outputs from this controlled process were
then fed into model P cells with randomized OU targets, as per the normal learning condition described
above. To vary the effect of the input population size, the size of the supplemented population varied
from 10 to 3000 using a tau of 10 and drawing from normal random numbers.

To measure the effects of STS on learning, a diagonal matrix was used at the input to a Purkinje unit,
which represented population activity with an STS of 1 (see Eq 11 in Model output metrics). To degrade
the STS metric, additional overlapping activity was injected either by expanding temporal representation
or at random, for example, adding an additional point of activity causes inherent overlap in the diagonal
matrix, increasing the GC,, denominator of Eq 11 to (1 + 2/N) because the overlapping and overlapped
units now each contribute to 1 additional neural word. This process was varied by increasing the amount
of overlap to sample STS from 0 to 1.

Statistics of GCL output metrics and learning

To estimate the properties of GCL output that contribute to enhanced learning of time series, we used
multiple linear regression to find the fit between measures of GCL population activity and observed MSE
in learning. Because there are large inherent correlations between the metrics used (dimensionality,
spatiotemporal sparseness, explanatory principal components of the GC population, population
variability, mean pairwise GC correlation, temporal sparseness, temporal lossiness, population lossiness,
and input variance retained) we used two linear regression normalization techniques: LASSO and RIDGE
regression. For Figure 7, LASSO was used to isolate the ‘top’ regressors, while RIDGE was used in
Figure 8 to preserve small contributions from regressors. The RIDGE regression method was then used to
compare resultant regression slopes (beta coefficients) to changes in task parameters (see Methods on
Simulation of cerebellar tasks).

Regressions were performed using the fitrlinear() function in MATLAB, with LASSO selected by using
the ‘SpaRSA’ (Sparse Reconstruction by Separable Approximation; Wright et al., 2009) solver, and

RIDGE selected with the ‘Ibfgs’ (Limited-memory BFGS; Nodecal and Wright 2006) solver techniques.
The potential spread of MSE in the models was determined using a K-fold validation technique, with 10
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“folds’ used, as well as for determining the range of absolute slopes shown in Figure 8C, of which the
mean and standard deviation of cross-validation trials are plotted with solid lines and shaded polygons,
respectively. Models were selected by choosing the model with the least complex fitting parameters (i.e.
the model with the highest Lamba) while still falling within the bounds of the model with the minimized
MSE plus the standard error (a standard ‘1SE’ method).

We reasoned that interactions between explanatory GCL statistical features might account for observed
learning accuracy to some degree. A standard method for selecting potential interactions while
constraining the regression model to a reasonable number of parameters is through selection by Bayesian
information criteria (BIC) stepwise regression. We used the MATLAB stepwiselm() function with the
BIC method to select from our 9 statistical features and allowed the regression function to select potential
interactions between them. The output of the regression listed which linear and interacting components
best fit the model. Although this output also included the Beta values of the fits, they were not regularized
in a way that was intuitively interpretable, so we therefore transferred the BIC selected parameters to a
RIDGE regressor to get the final Beta values and fit.

To convey the overall contribution of regressors to the above models of MSE, the slope relative to the
magnitude of all slopes were used as plotted metrics (Fig. 8C).

Pontine neuron activity patterns

To investigate the properties of GCL filtering on physiological inputs to the cerebellar cortex, we
extracted recordings of pontine neurons, a primary source of mossy fibers, from the work of Guo,
Sauerbrei and colleagues (Guo et al., 2021b) during a reaching task in mice. We used the first 50 neurons
for the recording to keep MF counts similar to the modelled OU population, and applied a 100 ms
Gaussian filter to the raw spiking data, aligned to reach onset, to obtain the estimated firing rate. The
firing rate values were range normalized for display and filtering (Fig. 1B,E) and are shown in order of
their peak firing rate time.

Simulation of cerebellar tasks

To simulate the transformation between motor commands and kinematic predictions, we used human
EMG as a proxy for a motor command-like input signal to the GCL. 30 muscles from 15 bilateral target
muscles were used (Delis et al., 2018; Hilt et al., 2018). The target function was a kinematic trajectory
recorded simultaneously with the recordings of EMG used for the study. Although many body parts and
coordinate dimensions were recorded of the kinematics, we opted to use the kinematic signal with the
largest variance to simplify the experiment to a single target function.

Code Availability
All computer code and simulation data is freely available at https://github.com/jesse-
gilmer/2022-GCL-Paper. Supplementary Figures are available at 10.6084/m9.figshare.20361849

RESULTS
Temporal basis set formation as emergent property of GCL filtering of time-varying inputs
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In many motor tasks, both mossy fibers and P-cells show highly temporally dynamic activity patterns,
raising the question of how GCL output supports timeseries learning using time varying inputs, a
divergence from traditional classification tasks used in most cerebellar models (Fig. 1; Izawa et al. 2012).

We used a simple model, similar to previously published architectures (Cayco-Gajic et al., 2017; Litwin-
Kumar et al., 2017; Billings et al., 2014), capturing the dominant circuit features of the GCL: sparse
sampling of mossy fiber (MF) inputs by postsynaptic granule cells (GCs) and coincidence detection
regulated by cellular excitability and local feedforward inhibition (Fig. 1A; Eq.1,2; Marr 1969; Albus
1971; Palkovits et al., 1971; Chabrol et al., 2015). GC output is generated by summing MF inputs and
thresholding the resultant sum; anything below threshold is set to zero while suprathreshold summed
activity is passed on as GC output (Fig. 1A, center). The GC threshold level represents both intrinsic
excitability and the effect of local inhibition on regulating GC activity.

We fed two naturalistic sources of cerebellar inputs to the model: recordings from the mouse pontine
nucleus (PN, Fig. 1B, previously published in Guo, et al., 2021b) and electromyograms measured during
reaching tasks (EMG, Fig. 1C, from Delis et al. 2018). In both cases, the GCL enhanced the
spatiotemporal representation of input activity. To parameterize such time-varying inputs, we next
generated artificial MF activity using Ornstein-Uhlenbeck (OU) stochastic processes. These signals
provide a statistically tractable ensemble that was rich enough to capture the dynamic nature of
naturalistic inputs while remaining analytically tractable and easily parameterized, fully characterized by
just three parameters: correlation time, mean, and standard deviation. Example OU input functions are
shown in Fig. 1D (top). Importantly, OU functions preserve autocorrelations typical of physiological
signals, such that they are not random from moment-to-moment (Fig. 1D, tau of 100 ms). All OU MFs
had the same tau and were not correlated with one another. As with the naturalistic inputs, the model GCL
spatiotemporally diversified OU processes Fig. 1D (explored more thoroughly below). The emergence of
sparse spatiotemporal representation under the simplistic constraints of the model suggests that the
cerebellum’s intrinsic circuitry is sufficient to produce spatiotemporal separation when given sufficiently
time-varying inputs. Below, we refer to the transformation of information between GCL inputs and
outputs as “GCL filtering”.

GCL temporal basis is robust to noise

By relying on coincident peaks in time-varying mossy fibers, this mechanism of spatiotemporal
sparsening raised the question of whether such temporal basis sets were robust to noise. To address
whether noise degrades spatiotemporal representation, we ran repeated simulations, adding Gaussian
noise that changed from trial to trial to fixed OU functions, and compared the resultant GCL basis sets
(Fig. 2). We modeled trial-over-trial noise variance by superimposing a Gaussian fluctuation such that the
overall proportion of the total signal that was noise ranged from 25%-50%.

GCL population activity was generally stable across noise levels (Fig. 2B). To quantify stability, we
measured the shift in the time of peak rate for each GC over 100 trials at threshold of 0. 50% of granule
cells shifted 10 ms or less in the 25% noise condition (Fig. 2C, left) and 50% shifted less than 30 ms
when 50% of the signal was unstable noise (Fig. 2C, right). Thus, while the basis set structure is not
perfectly resistant to noise, the primary temporally correlated OU signal dominates the population’s
temporal structure. The effect of high noise on the stability of the temporal basis was dependent on
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threshold: higher thresholds coupled with higher noise degraded temporal stability. At a threshold of 0,
the mean time shift was 136 ms. While at a threshold of 1, the mean time shift was 305 ms.

GCL improves time series learning accuracy

If mossy fiber activity is naturally time-varying it raises the question of whether it, by itself, is
intrinsically suited to support timeseries learning, obviating a role for the GCL (Markanday et al., 2022;
Fig S1). To address this question, we tested whether GCL population activity assisted learning beyond
the temporal representations inherent in the mossy fibers. We devised a task where P-cells learned to
generate a specific time-varying signals (OU process with 10 ms autocorrelation time) using gradient
descent (Equations 4-5, Methods). Inputs to P-cells were either MFs or GCL populations. Initially, P-cell
output was distinct from the target function, but over repeated trials P-cell output converged towards the
target function (Fig. 4A). We quantified the convergence of the P-cell output to the target function and
compared performance between instances when MF activity was sent directly to P-cells (“MFs alone™)
versus GCL activity was used as P-cell input. Finally, we examined performance of these learning
simulations across different thresholds, expressed in terms of a z-score, such that a threshold of “zero”
indicates the threshold is at the mean of MF input.

The model achieved excellent learning with either MFs or GCL inputs. Notably, the GCL markedly
enhanced the convergence to a target function at thresholds between —1 and 1 (Fig. 3A), achieving a
minimized mean squared error (MSE) of roughly 0.005, outperforming learning using MFs alone (MSE
0.02; normalized to a range of [0,1]). To establish an intuition into the practical difference of the range of
MSEs achieved with GCL or MFs alone, we tasked the model with learning a timeseries which could be
rendered as a recognizable image to human viewers (Fig 3B). This function had an identical range of
target function values ([0,1], Fig. 3B). GCL inputs facilitated P-cell timeseries learning that recapitulated
the recognizable image (Fig. 3B, bottom; MSE 0.002). By contrast P-cells that received MFs alone
generated a timeseries that rendered an unrecognizable image, despite the seemingly excellent MSE of
0.02. Thus, the small errors of MF-driven output accumulated along the timeseries to degrade
performance, while GCL-driven P-cell output yielded an easily recognizable image (Fig. 3B top right vs
three thresholds, bottom). Importantly, this was not a consequence of the large population expansion
between MFs and GCs, as increasing the number of MFs alone did not improve performance to the levels
observed in the model GCL (Fig. S2A-B). Nevertheless, a sufficiently large GCL population is required
to improve learning (Fig. S2B).

GCL model speeds time series learning

Having found that the GCL improves the match between predicted output and target output over a range
of thresholds, we next examined whether the GCL also increased the speed of convergence. We examined
the MSE between the model output and the target function on each trial as training progresses (Fig. 4C,
red circles) and found that output usually converged rapidly at first then more slowly in later stages of
training (Fig. 4A). The reduction in MSE over training in our model was reasonably well fit by a double
exponential (Fig. 4B, red curve), of the form

()=I(—1)+2(—2)+

Downloaded from journals.physiology.org/journal/jn at Univ of Leeds (129.011.035.158) on November 28, 2022.



505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

where n is the trial number. We measured the convergence speed of a simulation by the rate constants k;
and k,. In the vast majority cases, one of these rate constants was 5-50 times larger than the other; we
denote the larger constant kg, and the other k. For most parameter values, kz,, accounts for more than
80% of learning.

We next examined the influence of several key model parameters on convergence speed, such as
threshold and gradient descent steps size. First, we looked at the effect of the GC threshold. Learning was
fastest for GCL thresholds near a z-score of zero (Fig. 4C, red circles), the level that filters out half of the
input received by a GC. Convergence in networks that lack a GCL (MFs directly innervating P-cells) was
consistently slower (Fig. 4C, blue line) than networks with a GCL. Convergence was also sped up by
increasing the size of the parameter jumps in synaptic weight space during gradient descent (the “step
size”), but only to a limited degree (Fig. S3A). Indeed, at a GCL threshold of 0, convergence speed
decreased as the step size increased beyond ~10 (au). We speculated that this trade-off was a
consequence of a failure to converge in a subset of simulations. To test this, we looked at the fraction of
simulations that converged towards a low MSE as a function of the update magnitude. We found that the
fraction of simulations that converged (“fraction successful”) decreased with increasing step size (Fig.
S3B); in simulations that did not converge, the MSE increased explosively and synaptic weights diverged.
In such cases, we assume the large weight updates made it impossible to descend the MSE gradient; each
network weight update drastically changed the cost function such that local MSE minima were overshot.
When larger step sizes did permit convergence, progress was nevertheless slowed, likely because the
relatively large learning rates led to inefficient progress towards the MSE minimum.

Although larger step sizes eventually cause learning to slow and then fail entirely at a given GCL
threshold, higher thresholds permitted larger step sizes before failures predominated (Fig. S3B). Since
higher thresholds permit larger step sizes before convergence failure sets in, convergence speed might be
maximized by jointly optimizing step size and GCL threshold. We tested this by systematically raising
step sizes at each threshold until convergence success fell to 50%. We defined the “maximum
convergence rate” for a given threshold as the maximum convergence rate (derived from fitting the MSE
trajectory with a double exponential) yielding successful convergence at least 50% of the time. We found
that the threshold giving the fastest convergence was indeed higher when step size was also optimized
(Fig. S3B) than when step size was fixed (Fig. 4C). Thus, increased GCL thresholding can allow the
network to trade learning accuracy for increased speed of learning.

Recovering GCL input from GCL output

Having established a framework for studying GCL processing of time varying inputs, we wanted to
understand to what extent thresholding GCL activity led to the loss of information supplied by MF inputs,
which potentially contains useful features for learning. In other words, would Purkinje neurons be
deprived of behaviorally relevant mossy fiber information if these inputs are severely filtered by the
GCL? To assess this issue, we used a metric of information preservation called explained variance,
(Achen 1982); however, in this special case, we use the term ‘variance retained’, because this metric
represents the preservation of information about the input after being subjected to filtering in the GCL
layer and we wanted to avoid confusing when describing linear regression results below. Let x; denote the
MF input at time ¢. If the GCL activity preserves the information present in x,, then it should be possible
to reconstruct the activity of MFs from GCL activity (see Methods for details on how this reconstruction
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was performed). The variance retained is then the mean squared error between the actual MF input x, and
the reconstructed input, normalized by the MF input variance:

SR (@ - x0)?)

R?>=1
;fr=1var[xt]

Our primary finding is that the GCL transmits nearly all of the information present in the MF inputs even
at fairly high thresholds, but only if the GCL is sufficiently large relative to the MF population. The
threshold, feedforward architecture, and relative balance of MF inputs and GC outputs all affect the
quality of the reconstruction. Variance retained by the reconstruction layer decreased with the GC layer
threshold, since it masked some subthreshold input values (Fig. 5B). Allowing more MF inputs per GC
recovered some of this masked information, since some subthreshold values are revealed through
summing with sufficiently suprathreshold values. However, these gains cease beyond a few MF inputs
per GC, since the exponential growth of MF combinations rapidly exceeds the number that the GCs can
represent (Marr 1969; Gilmer and Person 2017).

To disentangle the information contained in the summed inputs, many different combinations of inputs
must be represented to disambiguate the contributions of each MF input. Increasing the number of GCs
generally increases the variance retained, since more combinations of MF inputs are represented, and
reveal subthreshold input values (Fig. 5C). Interestingly, variance retained by the network varied non-
monotonically with the number of MF inputs (M) when the number of GCs (N) was fixed. This is because
having too few MF inputs means there may not be a sufficient number of combinations so that
subthreshold values can be revealed (by summing them with suprathreshold inputs) but having too many
saturates the information load of the GC layer (Fig. 5D). Lastly, when fixing the number of MF inputs
and GCs, there is an optimal number of MF inputs to each GC, which aligns with the anatomical
convergence factor of 4 MF/GC (Fig. 5E), related to previous findings that suggest the best way to
maximize dimensionality in the GC output layer is to provide sparse input from the mossy fibers (Litwin-
Kumar et al., 2017; Cayco-Gajic et al., 2017). Thus, there are two key features that shape the information
transferred to the GCL from the MF inputs. First, the way in which MF inputs are combined to form the
total input to each GC determines how much information about subthreshold inputs can be transferred
through the nonlinearity. Second, the total number of GC outputs determines how many MF input
combinations can be represented, so that, ultimately, the random sums of MFs can be disentangled by the
downstream reconstruction layer. Together, information transfer requires a combined summation and
downstream decorrelation process accomplished by the three-layer feedforward network.

General statistical features of GCL population activity

We were ultimately interested in which features of GCL signal processing account for learning. As a first
step, we examined a variety of population metrics across threshold levels, which had previously been
proposed to support perceptron learning. The first set of metrics related to pattern separation: (1)
dimensionality (Dim), (2) the number of explanatory principal components (PCs), (3) spatiotemporal
sparseness (STS), and (4) population variability (See methods for details). Most of these pattern
separation metrics, (Dim, PCs, and STS) showed non-monotonic relationships with threshold and peaked
at thresholds ranging between 0.5 and 1.5 (Fig. 6 A, B). Population variability, however, decreased with
increasing thresholds (Fig. 6C). Intuitively, this relationship captures the effect of low thresholds allowing
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GC activity to relay the mean input, with no pattern separation occurring. With increasing threshold, GC
activity is driven by coincidence detection, leading to higher dimensional population output. At high
thresholds, inputs rarely summate to threshold, leading to lost representation that drives a roll-off in
pattern separation within the population. Notably, Dim, PCs, and STS peaked at higher thresholds than
peak learning performance, which was best at threshold zero, thus none of these three pattern separation
metrics alone map directly to learning performance. Population variability (i.e. GCL variance per unit) is
thought to aid classification and separability of GCL output (Cayco-Gajic et al., 2017). This metric’s
decrease with increasing threshold was likely due to the decrease in overall representation by each unit
due to sparsening and diminishing the dynamic range of GC rates due to threshold subtraction (Fig. 2A
top, Fig. 6C).

The second set of metrics are related to sparseness: (1) temporal sparseness and (2) spatial sparseness.
Temporal sparseness — defined by the exponential decay of GC autocovariance, where smaller values
typify signals that change quickly with time— decreased as a function of threshold because of sparsened
representation at higher thresholds (Fig. 6D). Spatial sparseness — defined as the mean pairwise GC
correlation — shared a drop-off after a threshold of 0, but increased again at high thresholds because only a
few MF signals were retained at high threshold and thus were highly correlated (Fig. 6E). By
experimental design, decorrelation was already maximized in OU inputs. Similar to the pattern separation
metrics, these sparseness metrics did not show an obvious relationship to the U-shaped learning
performance seen in Fig. 3A, bottom.

Finally, we examined three metrics of lossiness defined to quantify (1) the fraction of the total epoch with
no activity in any GC unit (e.g. with “temporal lossiness” of 0.1, 10% of the total epoch has no activity in
any GCs) (2) the proportion of granule cells with any activity over the entire epoch (“population
lossiness™); and (3) the mean fraction of the epoch in which each granule cell is active (“temporal cover”).
Not surprisingly, each lossiness metric increased with high thresholds (Fig. 6F). However, despite
diminishing activity in individual GCs with increasing threshold, (the blue curve Fig. 6F), each GC was
resistant to becoming completely silent (green curve drop, Fig. 6F), owing to a few dominant inputs.

Notably, none of these metrics alone obviously tracked the U-shaped learning performance (Fig. 3A).
However, collectively, these descriptive statistics of model GCL population activity set the stage for
analyzing how information preprocessing by the basic GCL architecture relates to learning time series,
explored below.

Improved learning with GCL transformations

With the knowledge that thresholding drives changes both in learning time series (Fig. 3, 4) and in GC
population metrics that are theorized to modulate learning (Fig. 5, 6), we next directly investigated the
relationships of these metrics to learning performance. To test this, we used LASSO regression to identify
variables driving learning performance, taken from the metrics described in Figures 5 and 6 (Fig. 7A,

C). We found that a three-term model using the most explanatory variables— STS, the number of
explanatory PCs and variance retained (Fig. 7B, C, D)— accounted for 91% of learning variance. The
three-term model performance is plotted against the observed MSE over a range of thresholds in Fig. 7D,
showing strong similarity.
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Although this model accounted for most learning, its performance was notably poorer at threshold ranges
where the GCL-based learning was best. We reasoned that interactions between GCL statistical metrics
might account for this deviation. To select potential metric interactions while constraining a regression
model, we used Bayesian information criteria (BIC) stepwise regression to identify variables that
accounted for learning (See Methods for normalization methods; Fig 7E). This model produced a better
approximation of learning (Fig. 7F). We found that a handful of competing variables (i.e. pattern
separation competing with retention of lossless representation) provided a small but crucial representation
of learning, which offset the poor learning between thresholds of -1 to 1 in the purely linear model (Fig.
7D vs Fig. 7F). While these interaction components were necessary to produce the best fitting model for
learning, the interactions were not the dominant regressors, as indicated by their relatively small Beta
values, and PCs and population variance remained top features explaining learning, similar to the linear
model.

These results were somewhat surprising given prior studies showing benefits of population sparseness or
decorrelation to learning. We noted that with the GCL filter model we could not clamp specific
population metrics to determine their contribution to learning, thus to interrogate this seeming disparity,
we constructed fictive GCL population activity that had specific statistical features and used these as
inputs to P-cells. Consistent with previous reports, decorrelation and temporal sparseness improved
learning accuracy, with complete decorrelation and temporally sparse supporting the best performance
(Fig S4; Cayco-Gaijic et al., 2018). Thus, on their own, population, temporal and idealized spatiotemporal
sparseness do modulate learning when their contribution is independent. Nevertheless, these features did
not emerge as features driving learning using GCL output from OU inputs to learn timeseries. This
discrepancy raises the possibility that the pattern separation metrics that drive learning may be dependent
on MF input statistics.

GCL properties that enhance learning in naturalistic tasks

Together, these models suggest that the GCL can reformat inputs in ways that support rapid and accurate
timeseries learning. We next asked whether the GCL metrics that drive best learning change when inputs
were inherently matched to outputs. This question is motivated by the topographical modules that
characterize the real cerebellum, each with associated specialized afferents (Apps and Garwicz, 2005; De
Zeeuw, 2020). Might these specialized afferents with specific statistical structure be especially suited to
support P-cell tuning for specific behaviors?

To examine whether statistical features that drive learning are sensitive to intrinsic input-output
relationships, we tested whether model inputs with naturalistic, behaviorally correlated statistics, derived
from electromyogram (EMG) signaling could support learning movement kinematics. In this assay, “MF
inputs” were EMG signals from human subjects performing a point-to-point reaching task. We tested
whether the model could learn associated limb kinematics from this input (Fig. 8A, B; Delis et al. 2018;
Tseng et al. 2007; Miall and Wolpert 1996; Wolpert et al., 1998).

Consistent with our previous observations, model P-cell output better learned kinematic target functions
when EMG inputs were preprocessed by the model GCL rather than fed directly to P-cells (Fig. 8A).
Moreover, thresholds that supported best learning were comparable to those using OU functions as inputs
(Fig. 8A vs Fig. 3A) and the accuracy of the learned outputs strongly resembled the recorded kinematic
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positions (Fig. 8B). We observed a slight negative shift in thresholds supporting best performance using
EMG, suggesting that GCL population statistics that retain more of their inherent relationship to
kinematics (i.e. that the EMG alone predicted kinematics well), facilitated by lower threshold, might be
beneficial to learning kinematics. However, some EMG-kinematic pairings had stronger intrinsic
relationships than others. We used this variability to assay whether the strength of the intrinsic
relationship influenced which population metrics supported best learning. We first identified which
population statistics drove learning using RIDGE regression, which preserves even small contributions of
regressor variables to the model. We then looked at the slope of regressors that predicted learning as a
function of the MSE of MFs alone. We found that when the P-cell MSE was already low with direct MF
inputs, the information retention (Fig. 5) emerged as a key predictor of learning (i.e. GCL MSE, Fig. 8C,
green). Conversely, when MF based learning was poor (high MSE) a pattern separation metric, number of
explanatory PCs, became a more important driver of learning (Fig. 8C, orange). This observation is
captured in the metric “Regression Coeff. Ratio” Fig. 8C, which quantifies the coefficient of the variance
retained or explanatory PC regressor divided by the sum of all regressor coefficients computed in the
RIDGE regression. In effect, this method shows the normalized size of their impact on the regression.
Together this suggests that different population statistical features of GCL reformatting may serve
learning under different conditions: When intrinsic relationships are strong, the GCL’s preservation of
MF input variance (variance retained) is an important population statistical feature; when MF activity is
more arbitrary relative to what the P-cell needs to encode, explanatory PCs (a pattern separation feature)
are more valuable for learning. Thus, “pattern separation” by the GCL is not one universal transform that
has broad utility. This observation raises the possibility that regional circuit specializations within the
cerebellar cortex, such as density of unipolar brush cells (Dino et al. 2000; Guo et al., 2021), Golgi cells,
or neuromodulators could bias GCL information reformatting to be more suitable for learning of different
tasks.

DISCUSSION

Here we asked a simple question: how does the cerebellar granule layer support temporal learning? The
question of the function of GCL architecture has captivated theorists for decades, leading to a hypothesis
of cerebellar learning that posits that the GCL reformats information to best suit associative learning in
Purkinje cells. Recent work has called many of these foundational ideas into question, however, including
whether GCL activity is sparse; high dimensional; and what properties of ‘pattern separation’ best support
learning (Wagner et al., 2017; Giovannucci et al., 2017; Knogler et al., 2017; Cayco-Gajic et al., 2017;
Gilmer and Person 2017). To reconcile empirical observations with theory, we hypothesized that input
statistics and task structures influence how the GCL supports learning. Here, we used naturalistic and
artificial time-varying inputs to a model GCL and identified pattern separation features that supported
learning time series, with an arbitrary but temporally linked input-output mapping, recapitulating
important features of physiological cerebellar learning tasks (Buonomano and Mauk 1994, Mauk and
Donnegan, 1997, Kennedy et al., 2014). Here we attempt to bridge these findings by examining
naturalistic challenges faced by the real circuit. Several important observations stemmed from these
simulations: (1) with naturalistic input statistics, the GCL produces temporal basis sets akin to those
hypothesized to support learned timing with minimal assumptions; (2) this reformatting is highly
beneficial to learning at intermediate thresholds; (3) maximal pattern separation does not support the best
learning; (4) rather, tradeoffs between loss of information and reformatting favored best learning at
intermediate network thresholds; and finally (5) different learning tasks are differentially supported by
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diverse GCL population statistical features. Together these findings provide insight into the granule cell
layer as performing pattern separation of inputs that transform information valuable for gradient descent-
like learning.

Emergence of spatiotemporal representation and contribution to learning

A perennial question in cerebellar physiology is how the granule cell layer produces temporally varied
outputs that could support learned timing (Mauk and Buonomano 2004). While cellular and synaptic
properties have been shown to contribute (Chabrol et al., 2015; Duguid et al, 2012; Guo et al., 2021a;
Crowley et al., 2009; Rudolph et al., 2015; Buonomano and Mauk 1994; Kanichay and Silver 2008;
Simat et al., 2007; Mapelli et al., 2009; Rossi et al., 1996; Gall et al., 2005; Armano et al., 2000; Rizwan
et al. 2016; Tabuchi et al., 2019; D’ Angelo and De Zeeuw 2009), we observed that with naturalistic
inputs, temporal basis set formation is a robust emergent property of the feedforward architecture of the
cerebellum coupled with a threshold-linear input-output function of granule cells receiving multiple
independent time-varying inputs (Fig. 1B-D). But is this reformatting beneficial to learning? We
addressed this question by comparing learning of a complex time-series in model Purkinje cells receiving
either mossy fibers alone or reformatted output from the GCL. We found that indeed the GCL
outperformed MFs alone in all tasks (Figs. 3, 4, 7). Nevertheless, we wondered what features of the
population activity accounted for this improved learning. While sparseness, decorrelation, dimensionality
and lossless encoding have been put forward as preprocessing steps supporting learning, we found that
none of these alone accounted for the goodness of model performance. Rather, disparate pattern
separation metrics appear to strike a balance between maximizing sparseness without trespassing into
lossy encoding space that severely, and necessarily, degrades learning of time-series.

These observations are interesting in light of a long history of work on granule layer function. Marr,
Albus, and others proposed that the granule cell layer performs pattern separation useful for classification
tasks. In this framework, sparseness is the key driver of performance, and could account for the vast
number of granule cells. Nevertheless, large-scale GCL recordings unexpectedly showed high levels of
correlation and relatively non-sparse activity (Wagner et al., 2017; Giovannucci et al., 2017; Knogler et
al., 2017). Despite methodological caveats, alternate recording methods seem to support the general
conclusion that sparseness is not as high as originally thought (Lanore et al. 2021; Kita et al., 2021;
Gurgani and Silver 2021). Indeed, subsequent theoretical work showed that sparseness has deleterious
properties (Cayco-Gajic et al., 2017; Billings et al., 2014), also observed in the present study, that may
explain dense firing patterns seen in vivo. Here we found that the best learning occurred when individual
granule cell activity occupied around half of the observed epoch (Fig. 6F, blue trace), achieved with
intermediate thresholding levels. We also observed temporal organization that is consistent with the firing
patterns observed in vivo. While these findings seem to suggest that sparseness is not the ‘goal’ of GCL
processing, our findings and others (Litwin-Kumar et al., 2016; Cayco-Gajic et al., 2017) suggest that
pattern separation broadly is a positive modulator of GCL support of learning processes.

Previous work proposed that time-series prediction was possible with access to a diverse set of geometric
functions represented in the GC population (Sanger et al., 2020). However, that study left open the
question of how such a diverse collection of basis functions would emerge. The GCL model used here
minimized free parameters by incorporating very few independent circuit elements, suggesting that a
single transform is sufficient to produce a basis set which is universally able to learn arbitrary target
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functions. We used a simple threshold-linear filter with a singular global threshold that relied on sparse-
sampling to produce spatiotemporally varied population outputs. This simple function worked to support
learning at a broad range of inputs and thresholding values, ultimately allowing the Purkinje cells
downstream to associate the spatiotemporally sparser inputs with feedback to learn arbitrary and complex
target functions. The emergence of this basis set is remarkable given the very simple assumptions applied,
but is also physiologically realistic, given the simple and well characterized anatomical properties of the
MF divergence and convergence patterns onto GCs, which are among the simplest neurons in the brain
(Jakab and Hamori, 1988; Palay and Chan-Palay, 1974; Palkovits et al., 1971). Although we suggest that
the key regulator of thresholding in the system is the feedforward inhibition from Golgi cells, many
factors may regulate the transformation between input and GC output in the network, allowing for
multiple levels and degrees of control over the tuning of the filter or real mechanism that controls the
outcomes of GCL transformations. Golgi cell dynamics may prove critical for enforcing the balance
between pattern separation metrics and lossy encoding (Hull 2020) thus are critical players in mean
thresholding found here to optimize learning. Additional mechanistic considerations may also play a role,
including short-term synaptic plasticity (Chabrol et al. 2015) network recurrence (Gao et al. 2016; Houck
and Person 2014; 2015; Judd et al., 2021), and UBCs (Dino et al. 2000), allowing for a more nuanced and
dynamic regulatory system than the one shown here.

Recapturing input information in the filtered GCL output

Two schools of thought surround what information is relayed to Purkinje cells through GCs. Various
models assume that Purkinje cells inherit virtually untransformed MF information capable of explaining
kinematic tuning in P-cells (Markanaday et al. 2022; Herzfeld et al., 2020; Krauzlis and Lisberger, 1991).
This view is in contrast to suggestions of Marr and Albus, where the GCL sparsens information to such a
degree that Purkinje cells receive only a small remnant of the sensorimotor information present in mossy
fiber signals. These divergent views have never been reconciled to our knowledge. We addressed this
disconnect by determining the fraction of MF input variance recoverable in GCL output. Interestingly, the
GCL population retains sufficient information to recover more than 90% the input variance despite
filtering out 50% or more of the original signal (Fig. 5). This information recovery is achieved at the
population level and thus requires sufficient numbers of granule cells so that the subset of signals that are
subthreshold are also super-threshold in other subsets of GCs through probabilistic integration with other
active inputs. While variance recovery is not a true measure of mutual information, it is indicative of the
utility that the intersectional filtering performed by the GCL. The expansion of representations in the
GCL population achieved by capturing the coincidence of features in the input population creates a
flexible representation in the GCL output that has many beneficial properties, including the preservation
of information through some degree of preserved mutual information between the GCL and its inputs. Yet
despite this retention of input variance by the GCL, its transformations nevertheless greatly improve
learning.

Enhanced learning speed

Our model not only improved learning accuracy, but also speed, compared to MFs alone (Fig. 4). Both
learning speed and accuracy progressed in tandem: threshold parameter ranges that enhanced overall
learning speed also minimized mean squared error, suggesting that speed and accuracy are enhanced by
similar features in GCL output. Learning speed was well described by a double exponential function with
a slow and fast component. This dual time course in the model with only one learning rule is interesting

Downloaded from journals.physiology.org/journal/jn at Univ of Leeds (129.011.035.158) on November 28, 2022.



811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849

850
851
852
853

in light of observations of behavioral adaptation that also follow dual time courses (Herzfeld et al., 2014;
Smith et al., 2006). Some behavioral studies have postulated that these time courses suggest multiple
underlying learning processes (Yang and Lisberger, 2014). Our model indicates that even with a single
learning rule and site of plasticity, multiple time-courses can emerge, presumably because when error
becomes low, update rates also slow down.

Another observation stemming from simulations studying learning speed was that the behavior of the
model varied as a function of the learning ‘step size’ parameter of the gradient descent method (Fig. S3).
The step size— ie. the typically small, scalar regulating change in the weights between GCs and P-cells
following an error— determined the likelihood of catastrophically poor learning: when the step size was
too large, it led to extremely poor learning because the total output ‘explodes’ and fails to converge on a
stable output. Nevertheless, the model tolerated large steps and faster learning under some conditions,
since the threshold also influenced the likelihood of catastrophic learning. Generally, higher thresholds
prevented large weight changes from exploding, suggesting that sparse outputs may have an additional
role in speeding learning by supporting larger weight changes in Purkinje cells. Indeed, appreciable
changes in simple spike rates occur on a trial-by-trial basis, gated by the theorized update signals that
Purkinje cells receive, climbing fiber mediated complex spikes. These plastic changes in rate could reflect
large weight updates associated with error. Moreover, graded complex spike amplitudes that alter the size
of trial-over-trial simple spike rate changes suggest that update sizes are not fixed (Najafi et al., 2014;
Herzfeld et al., 2020; Medina and Raymond 2018). Thus, although gradient descent is not wholly
physiological, this finding predicts that the amplitude of synaptic weight changes following a complex
spike might be set by tunable circuitry in the molecular layer to optimize learning speed relative to the
statistics of the GCL output.

Together, this study advances our understanding of how the GCL may diversify time-varying inputs and
informs interpretation of empirical results. For instance, the timecourse of learning varies widely across
tasks. Eyeblink conditioning paradigms require hundreds of trials to learn (Millenson 1997; Khilkevich et
al., 2016; Lincoln et al., 1982), while saccade adaptation and visuomotor adaptation of reaches (Raymond
and Lisberger; Martin et al. 1996), require just tens of trials (Tseng et al., 2007; Shadmehr and Mussa-
Ivaldi 1994; Ruttle et al., 2021; Calame et al., 2021). A prediction from our study is that the temporal
diversity of the GCL basis set during a behavior influences learning speed. Time-invariant cues such as
those seen in EBC would be difficult, if not impossible, for our model GCL to reformat and sparsen, as
they are incompatible with thresholding-based filtering of input signals. Supportive of this view, recent
work showed that EBC learning was faster if the animal is locomoting during training (Albergaria et al.,
2018). We hypothesize that naturalistic time-variant signals associated with ongoing movements entering
the cerebellum support robust temporal pattern separation in the GCL, enhancing learning accuracy and
speed, while time invariant associative signals used in typical classical conditioning paradigms result in
an impoverished ‘basis’, making learning more difficult, despite other circuit elements that may
contribute to the GCL basis formation.
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Figure Legends

Figure 1: Model architecture and effects of thresholding on GCL population activity

A. Diagram of algorithm implementation. Left shows Ornstein-Uhlenbeck processes (see Methods) as
proxies for mossy fiber (MFs, blue) inputs to granule cell units (GCs, red), with convergence and
divergence of MFs to GCs noted beneath MFs. GCs employ threshold-linear filtering shown beneath the
red parallel fibers. GC outputs are then transmitted to downstream Purkinje cells (P-cells). P-cells learn to
predict target functions by reweighting GC inputs. Differences between the prediction and true target are
transmitted as an ‘error’, which updates synaptic weights to P-cells. B. Emergence of temporal basis sets
in model GCLs using inputs derived from pontine neuron recordings. Top, Pontine recordings in mice
during pellet reaching task, aligned to reach onset at 0 ms. Bottom, Model GCL output using PN activity
as input C. Same as B, but using EMGs as MF inputs. Top, electromyogram (EMG) recordings from
human subject in point-to-point reaching task (EMG, top). Bottom, model GCL output using EMG as
input D. Same as B, but using OU functions as MF inputs. Bottom, model GCL output using OU
processes as inputs. The model GCL enhanced spatiotemporal representation for all three input types (B-
D).

Figure 2: Effect of increased input noise on GCL peak activity timing

A. Example MF input modeled as an OU process without noise (left), and with (right).

B. Example of a GCL population with stable OU process as input (noiseless; left), and the population
with addition of noise (middle and right). The GC population is ordered by timing of peak rate in the
noiseless condition. C. Cumulative distribution of peak rate time shift between ‘no noise’ and 25% noise
(left) or 50% noise (right), with MFs in black and GCs in red. X-axis is bounded to capture ~85% of
population. CDF step length is 1 ms.

Figure 3: Enhanced time series learning using GCL mode.

A: Top: GCL output at different threshold levels. Bottom, relationship of threshold level to learning
accuracy (MSE) for P-cells fed MFs directly (blue) or the output of the GCL (orange; error, standard
deviation). B. Top left: P-cells were tasked with learning a complex timeseries that could be rendered as
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an image recognizable to humans, a cat with superimposed text. Top right: If P-cells were fed MF input
directly, their best learning output was not recognizable as a cat, despite seemingly low MSE of 0.02.
Bottom row: If P-cells were fed GCL output, they learned timeseries that rendered a matching image,
with MSEs dependent on threshold, but varying between 0.0078 and 0.0016. This figure provides an
intuitive sense of the practical difference between MSE of 0.02 and 0.0016, achieved with P-cells learning
using MFs directly or with the support of GCL preprocessing.

Figure 4. Learning speed increases with GCL

A. Example of learned predictions after 1,5, and 50 trials of learning, with predictions in red and target
function in black. B. Exam4ple learning trajectory of MSE fit with a double exponential. Black circles:
MSE of network output on each trial. Red line: double exponential fit MSE during learning. Here, step
size was 107 and z-scored GCL threshold was 0. We use the exponents k from the exponential fit to
measure learning speed. C. Learning speed as a function of GCL threshold (red dots). Blue line: learning
speed in networks lacking GCL, i.e. mossy fibers directly innervate output Purkinje unit, gradient descent
step size was 107,

Figure 5: Recovering inputs with an optimal linear readout

A. Network model schematic. Granule cell (GC, red, center) layer thresholds the sum of (4 here)
randomly chosen mossy fiber (MF, black, left) inputs, which are then fed into a reconstruction layer
which uses the optimal weighting from all N GCs to approximate each of the M inputs (compare blue
readouts to grey inputs). B. Increasing the threshold of the GC layer (N=500 outputs) decreases the
explained variance (i.e. variance retained) of the best reconstruction layer (M=50), but the effect is
reduced with an intermediate number of MF inputs per GC. C. Variance retained increases with the ratio
of GCs per MF but gains from increasing the number of inputs to each GC are limited (max at 4 inputs).
Here there are M=50 MF Inputs at the threshold = 0. D. For a fixed number of GC outputs N, there is an
optimal number of MF inputs (M) for which the variance retained of the reconstruction layer is
maximized. E. i. For a fixed number of GC outputs N and MF inputs M=50, there is an optimal number
of inputs per G (around 4) for maximizing variance retained. ii. Same as i, but with each value normalized
to its maximum to show maximized values at inputs = 4.

Figure 6: Statistical features of GCL output A. GCL dimensionality (red) and MF dimensionality
(blue) as a function of threshold. Note peak near a threshold of 1 for the GCL. B. Two metrics of pattern
separation in GCL output— STS (light orange) and PCs (dark orange)— as a function of threshold. Note
peaks near 1.5 and 0.5, respectively. C. The sum of GCL variance produced by the model as a function of
threshold. Note monotonic decrease with threshold. D. Temporal sparseness as a function of thresholding.
Note monotonic decrease in GCL with thresholding. E. Mean pairwise correlation of the population
plotted as a function of threshold. Note trough near 1. F: Three forms of lossiness in GCL output as a
function of threshold. Each metric had differential sensitivity to thresholding but note that all decrease
with increasing threshold. Across metrics, function maxima and minima ranged widely and were not
obviously related to thresholds of optimized learning.
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Figure 7. Relationship between GCL population statistics and MSE A. LASSO regression was used
to identify GCL population metics that predicted learning performance. A shows the model selection as a
function of progression of the Lambda parameter (which is the penalty applied to each regressor). The
following potential regressors were used: dimensionality (Dim.), spatiotemporal sparseness (STS),
explanatory principal components of the GC population (PCs), population variability (Pop. Var.), spatial
sparseness (S. Sparse.), temporal sparseness (T. Sparse.), temporal lossiness (T. Loss.), population
lossiness (P. Loss), and input variance retained (Var. Ret; Figure 5). Arrow shows selection point of
LASSO regression MSE using “1SE” (1 standard error) method (see Methods, purple lines, black dot and
arrow indicating the selected model, with red arrow showing selection point in the parameter reduction
plot, red). B. Relationship between LASSO model (predicted relative MSE) against the observed relative
MSE (ratio of GC MSE to MF alone MSE) with fit line and variance explained by regression (R = 0.91)
C. Regression slopes of the selected LASSO model from A, showing that STS, PCs, and Input Variance
Retained are the selected regressors, with Var. Ret. being the largest contributing factor. All factors
normalized to a normal distribution for comparison. D. The output of the selected model and the observed
MSE plotted against threshold for a comparison of fits, demonstrating high accuracy in the 0-2 range, but
less accuracy in the -2-0 range. E-F, Similar to C-D except using Bayesian information criteria stepwise
regression model to select metrics that explain learning.

Figure 8. Relationship of MF input to learned output influences how GCL supports
learning A. Top, Schematic of model task, using recorded EMGs as an input to the model GCL to
predict kinematics. Bottom, MSE of model as a function of threshold when using EMG alone (MFs; blue)
or GCL (red) as input to model P-cell. At a range of thresholds, P-cells that receive GCL input outperform
P-cells receiving MFs alone. B. Example of learned kinematic position after training for MF Alone (blue
line) and GCL network (red) showing good metric fit by the GCL model. C. Plot showing the strength of
different GCL population statistical features driving learning that vary as a function of how well MFs
intrinsically support learned P-cell output (MF Alone MSE). When MFs are already excellent predictors,
information retention (variance retained) has a high regression slope (RIDGE regression method). When
MFs are poorer intrinsic predictors, the number of explanatory PCs (a pattern separation metric) emerges
as a stronger driver of learning performance. Goodness of fit (R*) was between 0.83-0.95 across all MF-
Alone MSEs used.
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