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ABSTRACT 11 
The cerebellum is considered a ‘learning machine’ essential for time interval estimation underlying motor 12 
coordination and other behaviors. Theoretical work has proposed that the cerebellum’s input recipient 13 
structure, the granule cell layer (GCL), performs pattern separation of inputs that facilitates learning in 14 
Purkinje cells (P-cells). However, the relationship between input reformatting and learning has remained 15 
debated, with roles emphasized for pattern separation features from sparsification to decorrelation. We 16 
took a novel approach by training a minimalist model of the cerebellar cortex to learn complex time-series 17 
data from time varying inputs, typical during movements. The model robustly produced temporal basis 18 
sets from these inputs, and the resultant GCL output supported better learning of temporally complex 19 
target functions than mossy fibers alone. Learning was optimized at intermediate threshold levels, 20 
supporting relatively dense granule cell activity, yet the key statistical features in GCL population activity 21 
that drove learning differed from those seen previously for classification tasks. These findings advance 22 
testable hypotheses for mechanisms of temporal basis set formation and predict that moderately dense 23 
population activity optimizes learning. NEW AND NOTEWORTHY: During movement, mossy fiber 24 
inputs to the cerebellum relay time-varying information with strong intrinsic relationships to ongoing 25 
movement. Are such mossy fibers signals sufficient to support Purkinje signals and learning? In a model, 26 
we show how the GCL greatly improves Purkinje learning of complex, temporally dynamic signals 27 
relative to mossy fibers alone. Learning-optimized GCL population activity was moderately dense, which 28 
retained intrinsic input variance while also performing pattern separation.  29 
 30 
INTRODUCTION 31 
The cerebellum refines movement and maintains calibrated sensorimotor transformations by learning to 32 
predict outcomes of behaviors through error-based feedback (Ito, 1972; Herzfeld et al., 2015; Medina 33 
2000; Mauk and Buonomano, 2004; Raymond et al., 1996). A major site of cerebellar learning is in the 34 
cerebellar cortex, where Purkinje cells (P-cells) receive sensorimotor information from parallel fibers 35 
(Huang et al. 2013) whose synaptic strengths are modified by the conjunction of presynaptic (parallel 36 
fiber) activity and climbing fiber inputs to P-cells thought to convey instructive feedback (McCormick et 37 
al., 1982; Yang and Lisberger, 2014; Mauk et al., 1986; De Zeeuw et al., 1998). P-cell activity is 38 
characterized by rich temporal dynamics during movements, representing putative computations of 39 
internal models of the body and the physics of the environment (Wolpert et al., 1998; Shadmehr and 40 
Mussa-Ivaldi 1994). Parallel fibers are the axons of cerebellar granule cells (GCs), a huge neuronal 41 
population (comprising roughly half of the neurons in the entire brain; Herculano-Houzel 2010), which 42 
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are the major recipient of extrinsic inputs to the cerebellum. Thus, understanding the output of the GCL is 43 
key in determining the encoding capacity and information load of incoming activity projected to the 44 
cerebellum. Inputs to GCs arise from mossy fibers (MFs), which convey sensorimotor information for P-45 
cell computations (Rancz et al., 2007; Ishikawa et al., 2015). There are massively more GCs than MFs 46 
and each GC typically receives input from just 4 MFs (Palkovits et al., 1971), such that the information 47 
carried by each MF is spread among many GCs, but each GC samples from only a tiny fraction of total 48 
MFs (Jakab and Hamori 1988; Eccles et al., 1967).  49 
 50 
The GCL has been the focus of theoretical work spanning decades, which has explored the computational 51 
advantages of the unique feedforward architecture of the structure. Notably, early studies of the cerebellar 52 
circuit by Marr (1969) and Albus (1971) proposed that a key component of the cerebellar algorithm is the 53 
sparse representation of MF inputs by GCs. In this view, the cerebellum often must discriminate between 54 
overlapping, highly correlated patterns of MF activity with only subtle differences distinguishing them 55 
(Bengsston and Jorntell 2009). Sparse recoding of MF activity in a much larger population of GCs 56 
(“expansion recoding”) increases the dimensionality of population representation and transforms 57 
correlated MF activity into independent activity patterns among a subset of GCs (Litwin-Kumar et al., 58 
2017; Cayco-Gajic et al., 2017; Gilmer and Person 2018). These decorrelated activity patterns are easier 59 
to distinguish by learning algorithms operating in P-cells, leading to better associative learning and credit 60 
assignment (Cayco-Gajic et al., 2017; Sanger et al., 2020). 61 
 62 
The machine learning perspective of the Marr-Albus theory tends to assume that the cerebellum is 63 
presented with a series of static input patterns that must be distinguished and categorized. However, 64 
during movements, neuronal population dynamics are rarely, if ever, static. Mauk and Buonomano (2004) 65 
revisited cerebellar expansion recoding in the context of temporal encoding, a necessary computation for 66 
the cerebellar-dependent task of delay eyelid conditioning. They proposed that a static activity pattern in 67 
MFs could be recoded in the GC layer as a temporally evolving set of distinct activity patterns, termed a 68 
temporal basis set. P-cells could learn to recognize the GC activity pattern present at the correct delay and 69 
initiate an eyeblink to avert the “error” signal representing the air puff to the eye. This transformative 70 
theory has given rise to an emerging literature exploring mechanisms of basis set formation. A variety of 71 
mechanisms have been proposed for how such time-varying population activity might emerge, including 72 
local inhibition, short-term synaptic plasticity, diverse unipolar brush cell properties and varying GC 73 
excitability (Chabrol et al., 2015; Duguid et al, 2012; Crowley et al., 2009; Rudolph et al., 2015; 74 
Buonomano and Mauk 1994; Kanichay and Silver 2008; Simat et al., 2007; Mapelli et al., 2009; Rossi et 75 
al., 1996; Gall et al., 2005; Armano et al., 2000; Rizwan et al. 2016; Tabuchi et al., 2019; D’Angelo and 76 
De Zeeuw 2009; Kennedy et al., 2014, Guo et al., 2021; Dino et al. 2000). 77 
 78 
Despite these promising avenues, the problem of learning more complex movements presents a distinct 79 
set of questions about how the cerebellum processes and uses time variant inputs to learn complex P-cell 80 
signals, a type of timeseries. Therefore, to test how expansion recoding of time-varying input contributes 81 
to learning, we used a simple model of the GCL and a time-series prediction task to explore the effect of 82 
putative GCL filtering mechanisms on expansion recoding and learning. Similar to previous models, this 83 
simplified model made GC activity sparser relative to MF inputs (Marr 1969; Albus 1971) and increased 84 
the dimensionality of the input activity (Litwin-Kumar et al., 2017) while preserving information 85 
(Billings et al., 2014). The model greatly enhanced learning accuracy and speed by P-cells on a difficult 86 
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time series prediction task when compared to MF inputs alone. Together, these results suggest that the 87 
cerebellar GCL provides a rich basis for learning in downstream Purkinje cells, providing a mixture of 88 
lossless representation (Billings et al., 2014) and enhanced spatiotemporal representation (Litwin-Kumar 89 
et al. 2017) that are selected for by associative learning to support the learning of diverse outputs that 90 
support adaptive outputs in a variety of tasks (Fujita 1982; Dean and Porrill 2008). 91 
 92 
METHODS  93 
Model construction  94 
The model presented here incorporated only the dominant features of the granule cell layer (GCL) circuit 95 
anatomical organization and physiology. The features chosen for the model were the sparse sampling of 96 
inputs (GCs have just 4 synaptic input branches in their segregated dendrite complexes on average), 97 
which was reflected in the connectivity matrix between the input pool and the GCs, where each GC 98 
received 4 inputs with weights of¼4th (i.e. 1 divided by the number of inputs; 1/M) of the original input 99 
strength, summing to a total weight of 1 across all inputs.  The other features were thresholding, 100 
representing inhibition from local inhibitory Golgi neurons and intrinsic excitability of the GCs. The 101 
degree of inhibition and intrinsic excitability (threshold) was a free parameter of the model, and the 102 
dynamics were normalized to the z-score of the summated inputs. This feature reflects the monitoring of 103 
inputs by Golgi cells while maintaining simplicity in their mean output to GCs. While this model 104 
simplifies many aspects of previous models of the GCL, it recreated many of the important features of 105 
those models, suggesting that the sparse sampling and firing are the main components dictating GCL 106 
functionality.   107 
The model, in total, uses the following formulas to determine GC output:  108 
 109 

Eq 1:  𝐺𝐶௜ሺ𝑡ሻ  ൌ ሾሺ ∑ ெிೖሺ௧ሻெ  ௞ಾ௞భ ሻ– െ 𝜃 ሿା   110 
 111 

where k is a random selection of M MFs from the MF population. The inputs are summed and divided by 112 
the total number of MF inputs to the GC, M, so that their total weight is equal to 1. Unless noted as a 113 
variable, we used M = 4, reflecting the mean connectivity between MFs and GCs, and the optimal ratio 114 
for expansion recoding (Litwin-Kumar et al. 2017), and the point of best input variance retention (Fig. 5). 115 
This function is then linearly rectified, i.e. ሾ𝑥ሿା ൌ 𝑥  if x > 0 and 0 otherwise so that there are no negative 116 
rates present in the GC activity. The 𝜃 function which determines the threshold, estimating the effects of 117 
intrinsic excitability and feedforward inhibition, was formulated as:  118 

 119 
Eq 2:  𝜃 ൌ  𝑀𝐹തതതതത  ൅  ሺ𝑧 ∗  𝜎ሺ𝑀𝐹ሻሻ  120 

   121 
Here, z sets the number of standard deviations from the MF mean. z is the only free parameter, 122 
which determines the minimum value below which granule cell activity is suppressed. Therefore 123 
we report z as the ‘threshold’.  Note that the summated MF inputs are divided by the number of 124 
inputs per GC (M) in Eq. 1 such that their received activity relative to 𝜃 is proportional to the 125 
input size, M.  Since the input to GCs is Gaussian in our model, the summed activity integrated by the 126 
GCs is Gaussian as well. For that reason, we found it convenient to define the GC thresholding term in 127 
terms of a z-score. Thus, a GC with a threshold of “zero” has its threshold set at the mean value of its MF 128 
inputs; such a GC would be silent 50% of the time on average because the Gaussian presynaptic input 129 
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would be below the mean value half the time. This makes it possible to discuss functionally similar 130 
thresholds across varying network architectures (e.g., a GC with a threshold of zero would discard half of 131 
its input on average regardless of whether it received 2 or 8 MF inputs).  132 
 133 
OU input construction  134 
To provide a range of inputs with physiological-like temporal properties that could be parameterized, we 135 
used a class of randomly generated signals called Ornstein-Uhlenbeck Processes (OU), defined by the 136 
following formula:  137 

Eq 3: 𝑂𝑈ሺ𝑡ሻ  ൌ ሺ 𝑂𝑈ሺ𝑡 െ ∆𝑡ሻ  ∗  𝑒ቀି∆೟ഓ ቁሻ  ൅ ሺ𝜎 ∗  ට1 െ  𝑒ିଶ∗∆೟ഓ  ∗  𝑅ሻ  138 
 139 

Here t is the time point being calculated, ∆t is the time interval (the time base is in ms and ∆t is 1 ms). 𝜎 is 140 
the predetermined standard deviation of the signal, and R is a vector of normally distributed random 141 
numbers. This process balances a decay term, the exponential with e raised to -∆t/𝜏, and an additive term 142 
which introduces random fluctuations. Without the additive term, this function decays to zero as time 143 
progresses. For all simulations, unless noted otherwise, tau was 100 ms. This resulted in a mean 144 
autocorrelation tau of 502+/- 52 ms, which was intermediate between pontine neurons and reach-related 145 
electromyograms autocorrelation taus of 351+/-120 ms and 567 +/- 151 ms, used below as model inputs, 146 
respectively. After the complete function has been calculated, the desired mean is added to the timeseries 147 
to set the mean to a predetermined value. 148 
 149 
The vector R can also be drawn from a matrix of correlated numbers, as was the case in Fig. 7 – figure 150 
supplement 1 B & C. These numbers were produced with the MATLAB functions randn() for normal 151 
random numbers, and mvnrnd() for matrices with a predetermined covariance matrix supplied to the 152 
function. The covariance matrix used for these experiments was always a 1-diagonal with a constant, 153 
predetermined, covariance value on the off-diagonal coordinates. 154 
 155 
Introduction of noise to input and GCL population 156 
To test whether fluctuations riding on input signals influence GCL basis set formation, we introduced 157 
Gaussian noise that was re-calculated trial to trial and added it to the MF input population. The amplitude 158 
of the introduced noise was scaled to the amplitude of the input, so that the proportion of the signal that is 159 
noise could be described with a percentage: % Noise = 100 * Noise Amp. / (Signal Amp. + noise Amp.). 160 
For example, if the amplitude of the noise was equal to the amplitude of the input, the % noise would be 161 
equivalent to 1 / (1 + 1) = .5, or 50% noise.  162 
 163 
To determine the stability of representations in the MF and GCL populations with introduced noise, we 164 
measured the displacement of the temporal location where peak firing occurred between noiseless and 165 
noisy activity patterns at threshold 0 (unless noted). This measurement was rectified to obtain the absolute 166 
displacement of peak firing time.  167 
 168 
Learning accuracy and speed assay  169 
To understand how the GCL contributed to learning, we constructed an artificial Purkinje cell (P-cell) 170 
layer. The P-cell unit learned to predict a target function through a gradient descent mechanism, such that 171 
the change in weight for each step was:  172 
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 173 
Eq 4:  𝐸𝑟𝑟ሺ𝑡ሻ ൌ |𝑃ሺ𝑡ሻ െ 𝑇𝐹ሺ𝑡ሻ|  174 

 175 
Eq 5:  𝛥𝑊௜ ൌ 𝑊௜ െ ሺ𝐸𝑟𝑟ሺ𝑡ሻ ∗ 𝐺𝐶௜  ሺ𝑡ሻ ∗  𝜂ሻ 176 

 177 
Where P(t) is the output of the P-cell at time t, TF(t) is the target function at time t, Wi is the weight 178 
between the Purkinje cell and the ith GC, and η is a small scalar termed the ‘step size’. η was 1E-3 for 179 
GCs, and 1E-5 for MF alone in simulations shown in this study where the step size was held fixed, which 180 
was chosen to maximize learning accuracy and stability of learning for both populations. While not 181 
strictly physiological because of membrane time constant temporal filtering and variable eligibility 182 
windows for plasticity, this form of learning is widely applied in neural models, including cerebellar (e.g. 183 
Bouvier et al., 2018). Physiological equivalents of negative weights found by gradient descent could be 184 
achieved by molecular layer interneuron feedforward inhibition to P-cells. The learning process in Eq. 4 185 
and 5 was repeated for T trials at every time point in the desired signal. The number of trials was chosen 186 
so that learning reached asymptotic change across subsequent trials. Typically, 1000 trials were more than 187 
sufficient to reach asymptote, so that value was used for the experiments in this study. 188 
 189 
The overall accuracy of this process was determined by calculating the mean squared error between the 190 
predicted and desired function:  191 
 192 

Eq 6: 𝑀𝑆𝐸 ൌ ଵ் ∑ ሺ𝑃ሺ𝑡ሻ െ 𝑇𝐹ሺ𝑡ሻሻଶ ௧்ୀଵ  193 
  194 
The learning speed was determined by fitting an exponential decay function to the MSE across every trial 195 
and taking the tau of the decay (See methods: Model output metrics, Time decay). A percentage form of 196 
this measure is given in Fig. 3B, bottom, to give intuition to the total decrease in MSE when comparing 197 
MFs to GCL output. %MSE = (MSEMF – MSEGCL)/MSEMF. 198 
 199 
GCL output metrics  200 
To assay the properties of the GCL output that influence learning, we measured the features of GCL 201 
output across a spectrum of metrics that have theoretically been associated with GCL functions like 202 
pattern separation or expansion, as well as optimization or cost-related metrics developed for this paper. 203 
These included: dimensionality, spatiotemporal sparseness, contributing principal components, spatial 204 
sparseness (mean population pairwise correlation), temporal sparseness (mean unit autocovariance 205 
exponential decay), population variance, temporal lossiness, population lossiness, and temporal cover.   206 
 207 
We considered three forms of lossiness here, two related to the dimensions of sparseness considered 208 
above, time and space, and one that is a measure of sparseness on the individual GC level. Temporal 209 
lossiness is a measure of the percentage of time points that are not encoded by any members of the GCL 210 
population, essentially removing the ability of P-cells to learn at that time point and producing no output 211 
at that time in the final estimation of the target function. Increases in the value are guaranteed to degrade 212 
prediction accuracy for any target function that does not already contain a zero value at the lossy time 213 
point.  214 

Eq 7:  215 
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𝑇𝑒𝑚𝑝. 𝐿𝑜𝑠𝑠𝑖𝑛𝑒𝑠𝑠 ൌ 1𝑇 ෍ 𝑥௧  ்
௧ୀଵ 𝑤ℎ𝑒𝑟𝑒 𝑥௧  ൞ሺ෍ 𝐺𝐶௜ሺ𝑡ሻሻ ே

௜ୀଵ ൑ 0 ൌ 1𝑒𝑙𝑠𝑒 ൌ 0 ൢ 

 216 
Here, T is the total number of points in the encoding epoch, the bracketed portion of the formula is a 217 
summation of inputs from all GCs (N = population size) at that timepoint. When all GCs are silent, the 218 
sum is 0, and the temporal lossiness is calculated as 1, and when all time points are covered by at least 219 
one GC, total temporal lossiness is 0. 220 
 221 
Spatial lossiness, or population lossiness, is the proportion of GCs in the population that are silent for the 222 
entirety of the measured epoch. This is thought to reduce total encoding space and deprive downstream P-223 
cells of potential information channels and could potentially impact learning efficacy. It is defined as: 224 
 225 

Eq 8:  226 

𝑃𝑜𝑝. 𝐿𝑜𝑠𝑠𝑖𝑛𝑒𝑠𝑠 ൌ 1𝑁  ෍ 𝑥௜  ே
௜ୀଵ 𝑤ℎ𝑒𝑟𝑒 𝑥௜  ൞ሺ෍ 𝐺𝐶௧ሻ ்

௧ୀଵ ൑ 0 ൌ 1𝑒𝑙𝑠𝑒 ൌ 0 ൢ 

 227 
Here, N is the total population size of the GCL, and the bracketed portion of the formula is a sum of the 228 
activity of GCs across all timepoints, such that if a GC is silent across all timepoints xi is calculated as 1, 229 
indicating the ‘loss’ of that GC unit’s contribution. When all GCs are silent, population lossiness is 1, and 230 
when all GCs are active for at least one time point, population lossiness is 0. 231 
 232 
Additionally, we looked at the mean sparseness of activity across the population by measuring the 233 
‘coverage’ or proportion of time points each GC was active during, defined as: 234 

Eq 9: 235 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ൌ 1𝑁  ෍ሺ1𝑇 ෍ 𝑥௜  𝑤ℎ𝑒𝑟𝑒 𝑥௜  ቄGC୧ሺ𝑡ሻ ൐ 0 ൌ 1𝑒𝑙𝑠𝑒 ൌ 0 ቅ ሻ்
௧ୀଵ  ே

௜ୀଵ  

 236 
As before, N is the number of cells in the population and T is the total length of the epoch. The bracketed 237 
function counts the number of time points where GCi is active, and divides that by the total time period 238 
length to get the proportion of time active. This value is summed across all GCs and divided by N to 239 
calculate the average coverage in the population. This value has strong synonymy with population 240 
variance, so it was not used for fitting assays in later experiments (Fig. 6), but reflects the effect of 241 
thresholding on average activity in the GCL population.  242 
 243 
Dimensionality is a measure of the number of independent dimensions needed to describe a set of signals, 244 
similar in concept to the principal components of a set of signals. This measure is primarily influenced by 245 
covariance between signals, and when dimensionality approaches the number of signals included in the 246 
calculation (n), the signals become progressively independent. The GCL has previously been shown to 247 
enhance the dimensionality of input sets and does so in the model presented here too. Dimensionality is 248 
calculated with:  249 
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Eq 10: 𝐷𝑖𝑚 ൌ ሺ∑ 𝜆௜௡௜ୀଵ ሻଶ/ሺ∑ 𝜆௜ଶ௡௜ୀଵ ሻ  250 
   251 
Provided by Litwin-Kumar, et al, 2016. This is the ratio of the squared sum of the eigenvalues to the sum 252 
of the squared eigenvalues of the covariance matrix of the signals.  253 
 254 
Spatiotemporal Sparseness (STS) was a calculated cost function meant to measure the divergence of GC 255 
population encoding from a ‘perfect’ diagonal function where each GC represents one point in time and 256 
does not overlap in representation with other units. This form of representation is guaranteed to produce 257 
perfect learning, and transformations between the diagonal and any target function can be achieved in a 258 
single learning step, making this form of representation an intriguing form of GCL representation, if it is 259 
indeed feasible. We calculated the cost as: 260 
 261 

Eq 11: 𝑆𝑇𝑆 ൌ ሺ1 െ 𝐿௧  ሻ ∗ ሺଵ்ሻ ∗ ሺ ௐீ஼ೢሻ 262 

 263 
Where (1 –Lt) is the cost of temporal lossiness, defined above (Eq. 7), and T is the total length of the 264 
epoch. W is the number of unique combinations (termed ‘words’, akin to a barcode of activity across the 265 
population), of GCs across the epoch at each point of discrete time, and GCw is the average number of 266 
words each GC is active at all within the time-bins chosen (e.g. a binary representation of GC activity). 267 
The intuition used here is that when there is no temporal lossiness, all points in time are represented, 268 
leading the 1 –Lt term to have no effect on the STS equation, and when W, the number of unique 269 
combinations of GC activities is equal to T, then each point in time has a unique ‘word’ associated with it. 270 
Finally, when GCw is 1, W/GCw is equal to W, which only occurs when each GC contributes to a single 271 
word. When these conditions are met, STS = 1, otherwise when GCs contribute to more than one word, 272 
GCw increases and W is divided by a number larger than 1, decreasing STS. Alternately, when there are 273 
not many unique combinations, such as when every GC has the exact same output, W/GCw is equal to 274 
(1/T), decreasing STS. Finally, because lossiness causes the occurrence of a ‘special’, but non-associable, 275 
word, we multiplied the above calculations by (1 –Lt) to account for the effect of the unique non-encoding 276 
word (i.e. all GCs inactive) on distance from the ideal diagonal matrix.  277 
 278 
Mean temporal decay, i.e. temporal sparseness, is a measure of variance across time for individual 279 
signals, where a low value would indicate that the signals coherence across time is weak, meaning that the 280 
signal varies quickly, whereas a high value would mean that trends in the signal persist for long periods of 281 
time. This value is extracted by fitting an exponential decay function to the autocovariance of each unit’s 282 
signal and measuring the tau of decay in the function:  283 
 284 

Eq 12: 𝑦 ൌ 𝑎 ∗  𝑒ሺି௫/ఛሻ 285 
  286 
This is converted to the ms form by taking the ratio of 1000/τ. y here τ is a description of the 287 
autocovariance of the activity of a MF or GC signal, so when the descriptor 𝜏 is a large number, the decay 288 
in autocovariance is longer, or slower, when 𝜏 is a small number, the autocovariance across time decays 289 
more quickly, making the change in activity faster. 290 
 291 
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While dimensionality and STS are metrics rooted in a principled understanding of potentially desirable 292 
properties of population encoding, the gradient descent algorithm can extract utility from population 293 
statistics that are much noisier and correlated than the ideal populations that dimensionality and STS 294 
account for. To measure a more general pattern separation feature in GCL output that could still be 295 
associated with the complex target function, we turned to principal component analysis (PCA) with the 296 
intuition that components which explain variance in the GCL output could be utilized by the downstream 297 
Purkinje cell units to extract useful features from the input they receive (Lanore et al., 2021). We 298 
parameterized the utility of this measure by taking the proportion of the PCs derived from the GCL output 299 
which explained variance (of the GCL output) in that population by more than or equal to 1/N, where N is 300 
the number of GCs, suggesting that they explain more variance than would be expected from chance. 301 
 302 
Population correlation, was measured by taking the mean correlation between all pairwise combinations 303 
of GCs using the corr() function in MATLAB and excluding the diagonal and top half of the resultant 304 
matrix.  305 
 306 
Population aggregate variance is a measure related to the expansion or collapse of total space covered by 307 
the encoding done by a population, and higher or expanded values in this metric are thought to assist in 308 
pattern separation and classification learning.  309 
 310 

Eq 13: Pop. Var ൌ ∑ ሺ𝑥௡ െ 𝝁ሻଶ ே௡ୀଵ  311 
 312 

As shown in Cayco-Gajic et al. (2017). Here x is the activity of one of n cells across a measured epoch, 313 
and μ is the mean of that activity. This value is reported relative to the number of GC units, such that Pop. 314 
Var reported in Fig. 6 is normalized to Pop. Var / N. 315 
 316 
 317 
Variance retained assay   318 
To test the recovery of inputs by a feedforward network with a granule cell layer (GCL), we used 319 
explained variance, 𝑅ଶ , to quantify the quality of recovery of a sequence of normal random variables 320 
(Fig. 5) across 𝑁௪ ൌ 1000 numerical experiments. To distinguish this metric from the MSE and R2 321 
metrics to evaluate other models in the study, we rename this ‘variance retained’. Within each numerical 322 
experiment 𝑖, at each time point, a vector of inputs 𝒙𝒕 of length 𝑀 (representing the mossy fiber, MF, 323 
inputs) was drawn from an 𝑀-dimensional normal distribution with no correlations, 𝒙𝒕 ∼ 𝓝ሺ𝟎, 𝑰𝑴ሻ. This 324 
vector is then left-multiplied by a random binary matrix 𝑊 with 𝑁 rows and 𝑀 columns with 𝑛 1’s per 325 
row and the rest zeros, followed by a threshold linearization to obtain the GCL output, 𝒚𝒕 ൌ ሾ𝑊𝒙𝒕 െ 𝒛ሿା 326 
with threshold. This process is then repeated 𝑇 ൌ 1000 times and a downstream linear readout was fit to 327 
optimally recover 𝒙𝒕 from 𝒚𝒕. It can be shown multivariate linear regression (MATLAB’s regress() 328 
function, employing least squares to minimize mean squared error) solves this problem, identifying for 329 
each MF input stream 𝒙𝟏:𝑻𝒋 , the optimal weighting 𝐵ଵ:் from the GCL to estimate 𝒙ෝ𝟏:𝑻𝒋 ൌ 𝐵௝,ଵ:ே𝒚𝟏:𝑻. 330 
Across time 𝑡 ൌ 1: 𝑇, we then computed the squared error across the vector, 𝑀𝑆𝐸௜ ൌ ∑ ∑ ሺ𝒙ෝ𝒕𝒋 െெ௝ୀଵ௧்ୀଵ331 𝒙𝒕𝒋ሻଶ, as well as the summed variance of the actual input, 𝑉𝑎𝑟௜ ൌ ଵெ் ∑ ∑ ሺ𝒙𝒕𝒋 െ 𝒙ഥ𝒋ሻ𝟐௧்ୀଵெ௝ୀଵ , where 332 𝒙ഥ𝒋 ൌ 𝟏𝑻 ∑ 𝒙𝒕𝒋𝑻𝒕ୀ𝟏   is the mean of the 𝑗th MF input stream. Lastly, to compute variance explained, we take 333 

Downloaded from journals.physiology.org/journal/jn at Univ of Leeds (129.011.035.158) on November 28, 2022.



 

𝑅ଶ ൌ 1 െ ∑ ெௌா೔ಿೢ೔సభ∑ ௏௔௥೔ಿೢ೔సభ , so the higher the relative mean squared error is, the lower the variance explained will 334 

be. To generate the panels in Fig. 5, we always kept the number of timepoints and experiments the same, 335 
but varied (Fig. 5B) the threshold along the axis and the number of inputs 𝑛 per GC output; (Fig. 5C) the 336 
total number of GC outputs 𝑁 and input per output 𝑛; (Fig. 5D) number of inputs 𝑀 and outputs 𝑁; and 337 
finally (Fig. 5E) the number of inputs per GC output 𝑛 along with the total number of outputs 𝑁.  338 
 339 
Generation of GCL output with defined statistical structure 340 
To determine if the sparseness measures had inherent benefits for learning, we supplemented the GCL 341 
output with OU processes with known temporal and correlational properties to examine their effect on 342 
learning accuracy (Figure 7 figure supplement 1). We varied the temporal properties by systematically 343 
varying the tau value in the exponential decay function. To vary population correlation, the random draw 344 
function in the OU process was replaced with a MATLAB function, mvnrnd(), which allowed for preset 345 
covariance values to direct the overall covariance between random samples. We used a square matrix with 346 
1s on the diagonal and the desired covariance on all off-diagonal locations for this process and varied the 347 
covariance to alter the correlation between signals. The OU outputs from this controlled process were 348 
then fed into model P cells with randomized OU targets, as per the normal learning condition described 349 
above. To vary the effect of the input population size, the size of the supplemented population varied 350 
from 10 to 3000 using a tau of 10 and drawing from normal random numbers.  351 
 352 
To measure the effects of STS on learning, a diagonal matrix was used at the input to a Purkinje unit, 353 
which represented population activity with an STS of 1 (see Eq 11 in Model output metrics). To degrade 354 
the STS metric, additional overlapping activity was injected either by expanding temporal representation 355 
or at random, for example, adding an additional point of activity causes inherent overlap in the diagonal 356 
matrix, increasing the GCw denominator of Eq 11 to (1 + 2/N) because the overlapping and overlapped 357 
units now each contribute to 1 additional neural word.  This process was varied by increasing the amount 358 
of overlap to sample STS from 0 to 1. 359 
 360 
Statistics of GCL output metrics and learning 361 
To estimate the properties of GCL output that contribute to enhanced learning of time series, we used 362 
multiple linear regression to find the fit between measures of GCL population activity and observed MSE 363 
in learning. Because there are large inherent correlations between the metrics used (dimensionality, 364 
spatiotemporal sparseness, explanatory principal components of the GC population, population 365 
variability, mean pairwise GC correlation, temporal sparseness, temporal lossiness, population lossiness, 366 
and input variance retained) we used two linear regression normalization techniques: LASSO and RIDGE 367 
regression. For Figure 7, LASSO was used to isolate the ‘top’ regressors, while RIDGE was used in 368 
Figure 8 to preserve small contributions from regressors. The RIDGE regression method was then used to 369 
compare resultant regression slopes (beta coefficients) to changes in task parameters (see Methods on 370 
Simulation of cerebellar tasks).  371 
 372 
Regressions were performed using the fitrlinear() function in MATLAB, with LASSO selected by using 373 
the ‘SpaRSA’ (Sparse Reconstruction by Separable Approximation; Wright et al., 2009) solver, and 374 
RIDGE selected with the ‘lbfgs’ (Limited-memory BFGS; Nodecal and Wright 2006) solver techniques. 375 
The potential spread of MSE in the models was determined using a K-fold validation technique, with 10 376 
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‘folds’ used, as well as for determining the range of absolute slopes shown in Figure 8C, of which the 377 
mean and standard deviation of cross-validation trials are plotted with solid lines and shaded polygons, 378 
respectively. Models were selected by choosing the model with the least complex fitting parameters (i.e. 379 
the model with the highest Lamba) while still falling within the bounds of the model with the minimized 380 
MSE plus the standard error (a standard ‘1SE’ method). 381 
 382 
We reasoned that interactions between explanatory GCL statistical features might account for observed 383 
learning accuracy to some degree. A standard method for selecting potential interactions while 384 
constraining the regression model to a reasonable number of parameters is through selection by Bayesian 385 
information criteria (BIC) stepwise regression. We used the MATLAB stepwiselm() function with the 386 
BIC method to select from our 9 statistical features and allowed the regression function to select potential 387 
interactions between them. The output of the regression listed which linear and interacting components 388 
best fit the model. Although this output also included the Beta values of the fits, they were not regularized 389 
in a way that was intuitively interpretable, so we therefore transferred the BIC selected parameters to a 390 
RIDGE regressor to get the final Beta values and fit. 391 
 392 
To convey the overall contribution of regressors to the above models of MSE, the slope relative to the 393 
magnitude of all slopes were used as plotted metrics (Fig. 8C). 394 
 395 
Pontine neuron activity patterns 396 
To investigate the properties of GCL filtering on physiological inputs to the cerebellar cortex, we 397 
extracted recordings of pontine neurons, a primary source of mossy fibers, from the work of Guo, 398 
Sauerbrei and colleagues (Guo et al., 2021b) during a reaching task in mice. We used the first 50 neurons 399 
for the recording to keep MF counts similar to the modelled OU population, and applied a 100 ms 400 
Gaussian filter to the raw spiking data, aligned to reach onset, to obtain the estimated firing rate. The 401 
firing rate values were range normalized for display and filtering (Fig. 1B,E) and are shown in order of 402 
their peak firing rate time. 403 
 404 
Simulation of cerebellar tasks 405 
To simulate the transformation between motor commands and kinematic predictions, we used human 406 
EMG as a proxy for a motor command-like input signal to the GCL. 30 muscles from 15 bilateral target 407 
muscles were used (Delis et al., 2018; Hilt et al., 2018). The target function was a kinematic trajectory 408 
recorded simultaneously with the recordings of EMG used for the study. Although many body parts and 409 
coordinate dimensions were recorded of the kinematics, we opted to use the kinematic signal with the 410 
largest variance to simplify the experiment to a single target function. 411 
 412 
Code Availability 413 
All computer code and simulation data is freely available at https://github.com/jesse-414 
gilmer/2022-GCL-Paper. Supplementary Figures are available at 10.6084/m9.figshare.20361849 415 
 416 
RESULTS 417 
Temporal basis set formation as emergent property of GCL filtering of time-varying inputs 418 
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In many motor tasks, both mossy fibers and P-cells show highly temporally dynamic activity patterns, 419 
raising the question of how GCL output supports timeseries learning using time varying inputs, a 420 
divergence from traditional classification tasks used in most cerebellar models (Fig. 1; Izawa et al. 2012). 421 
 422 
We used a simple model, similar to previously published architectures (Cayco-Gajic et al., 2017; Litwin-423 
Kumar et al., 2017; Billings et al., 2014), capturing the dominant circuit features of the GCL: sparse 424 
sampling of mossy fiber (MF) inputs by postsynaptic granule cells (GCs) and coincidence detection 425 
regulated by cellular excitability and local feedforward inhibition (Fig. 1A; Eq.1,2; Marr 1969; Albus 426 
1971; Palkovits et al., 1971; Chabrol et al., 2015). GC output is generated by summing MF inputs and 427 
thresholding the resultant sum; anything below threshold is set to zero while suprathreshold summed 428 
activity is passed on as GC output (Fig. 1A, center). The GC threshold level represents both intrinsic 429 
excitability and the effect of local inhibition on regulating GC activity.  430 
 431 
We fed two naturalistic sources of cerebellar inputs to the model: recordings from the mouse pontine 432 
nucleus (PN, Fig. 1B, previously published in Guo, et al., 2021b) and electromyograms measured during 433 
reaching tasks (EMG, Fig. 1C, from Delis et al. 2018). In both cases, the GCL enhanced the 434 
spatiotemporal representation of input activity. To parameterize such time-varying inputs, we next 435 
generated artificial MF activity using Ornstein-Uhlenbeck (OU) stochastic processes. These signals 436 
provide a statistically tractable ensemble that was rich enough to capture the dynamic nature of 437 
naturalistic inputs while remaining analytically tractable and easily parameterized, fully characterized by 438 
just three parameters: correlation time, mean, and standard deviation. Example OU input functions are 439 
shown in Fig. 1D (top). Importantly, OU functions preserve autocorrelations typical of physiological 440 
signals, such that they are not random from moment-to-moment (Fig. 1D, tau of 100 ms). All OU MFs 441 
had the same tau and were not correlated with one another. As with the naturalistic inputs, the model GCL 442 
spatiotemporally diversified OU processes Fig. 1D (explored more thoroughly below). The emergence of 443 
sparse spatiotemporal representation under the simplistic constraints of the model suggests that the 444 
cerebellum’s intrinsic circuitry is sufficient to produce spatiotemporal separation when given sufficiently 445 
time-varying inputs. Below, we refer to the transformation of information between GCL inputs and 446 
outputs as “GCL filtering”. 447 
 448 
GCL temporal basis is robust to noise 449 
By relying on coincident peaks in time-varying mossy fibers, this mechanism of spatiotemporal 450 
sparsening raised the question of whether such temporal basis sets were robust to noise. To address 451 
whether noise degrades spatiotemporal representation, we ran repeated simulations, adding Gaussian 452 
noise that changed from trial to trial to fixed OU functions, and compared the resultant GCL basis sets 453 
(Fig. 2). We modeled trial-over-trial noise variance by superimposing a Gaussian fluctuation such that the 454 
overall proportion of the total signal that was noise ranged from 25%-50%.  455 
 456 
GCL population activity was generally stable across noise levels (Fig. 2B). To quantify stability, we 457 
measured the shift in the time of peak rate for each GC over 100 trials at threshold of 0. 50% of granule 458 
cells shifted 10 ms or less in the 25% noise condition (Fig. 2C, left) and 50% shifted less than 30 ms 459 
when 50% of the signal was unstable noise (Fig. 2C, right). Thus, while the basis set structure is not 460 
perfectly resistant to noise, the primary temporally correlated OU signal dominates the population’s 461 
temporal structure. The effect of high noise on the stability of the temporal basis was dependent on 462 
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threshold: higher thresholds coupled with higher noise degraded temporal stability. At a threshold of 0, 463 
the mean time shift was 136 ms. While at a threshold of 1, the mean time shift was 305 ms.  464 
 465 
GCL improves time series learning accuracy   466 
If mossy fiber activity is naturally time-varying it raises the question of whether it, by itself, is 467 
intrinsically suited to support timeseries learning, obviating a role for the GCL (Markanday et al., 2022; 468 
Fig S1). To address this question, we tested whether GCL population activity assisted learning beyond 469 
the temporal representations inherent in the mossy fibers. We devised a task where P-cells learned to 470 
generate a specific time-varying signals (OU process with 10 ms autocorrelation time) using gradient 471 
descent (Equations 4-5, Methods). Inputs to P-cells were either MFs or GCL populations. Initially, P-cell 472 
output was distinct from the target function, but over repeated trials P-cell output converged towards the 473 
target function (Fig. 4A). We quantified the convergence of the P-cell output to the target function and 474 
compared performance between instances when MF activity was sent directly to P-cells (“MFs alone”) 475 
versus GCL activity was used as P-cell input. Finally, we examined performance of these learning 476 
simulations across different thresholds, expressed in terms of a z-score, such that a threshold of “zero” 477 
indicates the threshold is at the mean of MF input.  478 
 479 
The model achieved excellent learning with either MFs or GCL inputs. Notably, the GCL markedly 480 
enhanced the convergence to a target function at thresholds between –1 and 1 (Fig. 3A), achieving a 481 
minimized mean squared error (MSE) of roughly 0.005, outperforming learning using MFs alone (MSE 482 
0.02; normalized to a range of [0,1]). To establish an intuition into the practical difference of the range of 483 
MSEs achieved with GCL or MFs alone, we tasked the model with learning a timeseries which could be 484 
rendered as a recognizable image to human viewers (Fig 3B). This function had an identical range of 485 
target function values ([0,1], Fig. 3B). GCL inputs facilitated P-cell timeseries learning that recapitulated 486 
the recognizable image (Fig. 3B, bottom; MSE 0.002). By contrast P-cells that received MFs alone 487 
generated a timeseries that rendered an unrecognizable image, despite the seemingly excellent MSE of 488 
0.02. Thus, the small errors of MF-driven output accumulated along the timeseries to degrade 489 
performance, while GCL-driven P-cell output yielded an easily recognizable image (Fig. 3B top right vs 490 
three thresholds, bottom). Importantly, this was not a consequence of the large population expansion 491 
between MFs and GCs, as increasing the number of MFs alone did not improve performance to the levels 492 
observed in the model GCL (Fig. S2A-B). Nevertheless, a sufficiently large GCL population is required 493 
to improve learning (Fig. S2B).  494 
  495 
GCL model speeds time series learning 496 
Having found that the GCL improves the match between predicted output and target output over a range 497 
of thresholds, we next examined whether the GCL also increased the speed of convergence. We examined 498 
the MSE between the model output and the target function on each trial as training progresses (Fig. 4C, 499 
red circles) and found that output usually converged rapidly at first then more slowly in later stages of 500 
training (Fig. 4A). The reduction in MSE over training in our model was reasonably well fit by a double 501 
exponential (Fig. 4B, red curve), of the form 502 
 503 

� � � ሺ� ሻ ൌ � 1 � ሺି� 1 � ሻ ൅ � 2 � ሺି� 2 � ሻ ൅ �  
 504 
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where n is the trial number. We measured the convergence speed of a simulation by the rate constants k1 505 
and k2. In the vast majority cases, one of these rate constants was 5-50 times larger than the other; we 506 
denote the larger constant kfast and the other kslow. For most parameter values, kfast accounts for more than 507 
80% of learning.  508 
 509 
We next examined the influence of several key model parameters on convergence speed, such as 510 
threshold and gradient descent steps size. First, we looked at the effect of the GC threshold. Learning was 511 
fastest for GCL thresholds near a z-score of zero (Fig. 4C, red circles), the level that filters out half of the 512 
input received by a GC. Convergence in networks that lack a GCL (MFs directly innervating P-cells) was 513 
consistently slower (Fig. 4C, blue line) than networks with a GCL. Convergence was also sped up by 514 
increasing the size of the parameter jumps in synaptic weight space during gradient descent (the “step 515 
size”), but only to a limited degree (Fig. S3A). Indeed, at a GCL threshold of 0, convergence speed 516 
decreased as the step size increased beyond ~10-6 (au). We speculated that this trade-off was a 517 
consequence of a failure to converge in a subset of simulations. To test this, we looked at the fraction of 518 
simulations that converged towards a low MSE as a function of the update magnitude. We found that the 519 
fraction of simulations that converged (“fraction successful”) decreased with increasing step size (Fig. 520 
S3B); in simulations that did not converge, the MSE increased explosively and synaptic weights diverged. 521 
In such cases, we assume the large weight updates made it impossible to descend the MSE gradient; each 522 
network weight update drastically changed the cost function such that local MSE minima were overshot. 523 
When larger step sizes did permit convergence, progress was nevertheless slowed, likely because the 524 
relatively large learning rates led to inefficient progress towards the MSE minimum. 525 
 526 
Although larger step sizes eventually cause learning to slow and then fail entirely at a given GCL 527 
threshold, higher thresholds permitted larger step sizes before failures predominated (Fig. S3B). Since 528 
higher thresholds permit larger step sizes before convergence failure sets in, convergence speed might be 529 
maximized by jointly optimizing step size and GCL threshold. We tested this by systematically raising 530 
step sizes at each threshold until convergence success fell to 50%. We defined the “maximum 531 
convergence rate” for a given threshold as the maximum convergence rate (derived from fitting the MSE 532 
trajectory with a double exponential) yielding successful convergence at least 50% of the time. We found 533 
that the threshold giving the fastest convergence was indeed higher when step size was also optimized 534 
(Fig. S3B) than when step size was fixed (Fig. 4C). Thus, increased GCL thresholding can allow the 535 
network to trade learning accuracy for increased speed of learning.  536 
 537 
Recovering GCL input from GCL output 538 
Having established a framework for studying GCL processing of time varying inputs, we wanted to 539 
understand to what extent thresholding GCL activity led to the loss of information supplied by MF inputs, 540 
which potentially contains useful features for learning. In other words, would Purkinje neurons be 541 
deprived of behaviorally relevant mossy fiber information if these inputs are severely filtered by the 542 
GCL?  To assess this issue, we used a metric of information preservation called explained variance, 543 
(Achen 1982); however, in this special case, we use the term ‘variance retained’, because this metric 544 
represents the preservation of information about the input after being subjected to filtering in the GCL 545 
layer and we wanted to avoid confusing when describing linear regression results below. Let xt denote the 546 
MF input at time t. If the GCL activity preserves the information present in xt, then it should be possible 547 
to reconstruct the activity of MFs from GCL activity (see Methods for details on how this reconstruction 548 
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was performed). The variance retained is then the mean squared error between the actual MF input xt and 549 
the reconstructed input, normalized by the MF input variance: 550 
 551 𝑅ଶ ൌ 1 െ ∑௧ୀଵ் 〈ሺ𝑥௧ෝ െ 𝑥௧ሻଶ〉∑௧ୀଵ் 𝑉𝑎𝑟ሾ𝑥௧ሿ  

 552 
Our primary finding is that the GCL transmits nearly all of the information present in the MF inputs even 553 
at fairly high thresholds, but only if the GCL is sufficiently large relative to the MF population. The 554 
threshold, feedforward architecture, and relative balance of MF inputs and GC outputs all affect the 555 
quality of the reconstruction. Variance retained by the reconstruction layer decreased with the GC layer 556 
threshold, since it masked some subthreshold input values (Fig. 5B). Allowing more MF inputs per GC 557 
recovered some of this masked information, since some subthreshold values are revealed through 558 
summing with sufficiently suprathreshold values. However, these gains cease beyond a few MF inputs 559 
per GC, since the exponential growth of MF combinations rapidly exceeds the number that the GCs can 560 
represent (Marr 1969; Gilmer and Person 2017). 561 
 562 
To disentangle the information contained in the summed inputs, many different combinations of inputs 563 
must be represented to disambiguate the contributions of each MF input. Increasing the number of GCs 564 
generally increases the variance retained, since more combinations of MF inputs are represented, and 565 
reveal subthreshold input values (Fig. 5C). Interestingly, variance retained by the network varied non-566 
monotonically with the number of MF inputs (M) when the number of GCs (N) was fixed. This is because 567 
having too few MF inputs means there may not be a sufficient number of combinations so that 568 
subthreshold values can be revealed (by summing them with suprathreshold inputs) but having too many 569 
saturates the information load of the GC layer (Fig. 5D). Lastly, when fixing the number of MF inputs 570 
and GCs, there is an optimal number of MF inputs to each GC, which aligns with the anatomical 571 
convergence factor of 4 MF/GC (Fig. 5E), related to previous findings that suggest the best way to 572 
maximize dimensionality in the GC output layer is to provide sparse input from the mossy fibers (Litwin-573 
Kumar et al., 2017; Cayco-Gajic et al., 2017). Thus, there are two key features that shape the information 574 
transferred to the GCL from the MF inputs. First, the way in which MF inputs are combined to form the 575 
total input to each GC determines how much information about subthreshold inputs can be transferred 576 
through the nonlinearity. Second, the total number of GC outputs determines how many MF input 577 
combinations can be represented, so that, ultimately, the random sums of MFs can be disentangled by the 578 
downstream reconstruction layer. Together, information transfer requires a combined summation and 579 
downstream decorrelation process accomplished by the three-layer feedforward network.  580 
 581 
General statistical features of GCL population activity 582 
We were ultimately interested in which features of GCL signal processing account for learning. As a first 583 
step, we examined a variety of population metrics across threshold levels, which had previously been 584 
proposed to support perceptron learning. The first set of metrics related to pattern separation: (1) 585 
dimensionality (Dim), (2) the number of explanatory principal components (PCs), (3) spatiotemporal 586 
sparseness (STS), and (4) population variability (See methods for details). Most of these pattern 587 
separation metrics, (Dim, PCs, and STS) showed non-monotonic relationships with threshold and peaked 588 
at thresholds ranging between 0.5 and 1.5 (Fig. 6 A, B). Population variability, however, decreased with 589 
increasing thresholds (Fig. 6C). Intuitively, this relationship captures the effect of low thresholds allowing 590 
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GC activity to relay the mean input, with no pattern separation occurring. With increasing threshold, GC 591 
activity is driven by coincidence detection, leading to higher dimensional population output. At high 592 
thresholds, inputs rarely summate to threshold, leading to lost representation that drives a roll-off in 593 
pattern separation within the population. Notably, Dim, PCs, and STS peaked at higher thresholds than 594 
peak learning performance, which was best at threshold zero, thus none of these three pattern separation 595 
metrics alone map directly to learning performance. Population variability (i.e. GCL variance per unit) is 596 
thought to aid classification and separability of GCL output (Cayco-Gajic et al., 2017). This metric’s 597 
decrease with increasing threshold was likely due to the decrease in overall representation by each unit 598 
due to sparsening and diminishing the dynamic range of GC rates due to threshold subtraction (Fig. 2A 599 
top, Fig. 6C). 600 
 601 
The second set of metrics are related to sparseness: (1) temporal sparseness and (2) spatial sparseness. 602 
Temporal sparseness – defined by the exponential decay of GC autocovariance, where smaller values 603 
typify signals that change quickly with time–- decreased as a function of threshold because of sparsened 604 
representation at higher thresholds (Fig. 6D). Spatial sparseness – defined as the mean pairwise GC 605 
correlation – shared a drop-off after a threshold of 0, but increased again at high thresholds because only a 606 
few MF signals were retained at high threshold and thus were highly correlated (Fig. 6E). By 607 
experimental design, decorrelation was already maximized in OU inputs. Similar to the pattern separation 608 
metrics, these sparseness metrics did not show an obvious relationship to the U-shaped learning 609 
performance seen in Fig. 3A, bottom. 610 
 611 
Finally, we examined three metrics of lossiness defined to quantify (1) the fraction of the total epoch with 612 
no activity in any GC unit (e.g. with “temporal lossiness” of 0.1, 10% of the total epoch has no activity in 613 
any GCs) (2) the proportion of granule cells with any activity over the entire epoch (“population 614 
lossiness”); and (3) the mean fraction of the epoch in which each granule cell is active (“temporal cover”). 615 
Not surprisingly, each lossiness metric increased with high thresholds (Fig. 6F). However, despite 616 
diminishing activity in individual GCs with increasing threshold, (the blue curve Fig. 6F), each GC was 617 
resistant to becoming completely silent (green curve drop, Fig. 6F), owing to a few dominant inputs. 618 
 619 
Notably, none of these metrics alone obviously tracked the U-shaped learning performance (Fig. 3A). 620 
However, collectively, these descriptive statistics of model GCL population activity set the stage for 621 
analyzing how information preprocessing by the basic GCL architecture relates to learning time series, 622 
explored below. 623 
 624 
Improved learning with GCL transformations 625 
With the knowledge that thresholding drives changes both in learning time series (Fig. 3, 4) and in GC 626 
population metrics that are theorized to modulate learning (Fig. 5, 6), we next directly investigated the 627 
relationships of these metrics to learning performance. To test this, we used LASSO regression to identify 628 
variables driving learning performance, taken from the metrics described in Figures 5 and 6 (Fig. 7A, 629 
C).  We found that a three-term model using the most explanatory variables–- STS, the number of 630 
explanatory PCs and variance retained (Fig. 7B, C, D)–- accounted for 91% of learning variance. The 631 
three-term model performance is plotted against the observed MSE over a range of thresholds in Fig. 7D, 632 
showing strong similarity. 633 
 634 
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Although this model accounted for most learning, its performance was notably poorer at threshold ranges 635 
where the GCL-based learning was best. We reasoned that interactions between GCL statistical metrics 636 
might account for this deviation. To select potential metric interactions while constraining a regression 637 
model, we used Bayesian information criteria (BIC) stepwise regression to identify variables that 638 
accounted for learning (See Methods for normalization methods; Fig 7E). This model produced a better 639 
approximation of learning (Fig. 7F). We found that a handful of competing variables (i.e. pattern 640 
separation competing with retention of lossless representation) provided a small but crucial representation 641 
of learning, which offset the poor learning between thresholds of -1 to 1 in the purely linear model (Fig. 642 
7D vs Fig. 7F). While these interaction components were necessary to produce the best fitting model for 643 
learning, the interactions were not the dominant regressors, as indicated by their relatively small Beta 644 
values, and PCs and population variance remained top features explaining learning, similar to the linear 645 
model. 646 
 647 
These results were somewhat surprising given prior studies showing benefits of population sparseness or 648 
decorrelation to learning. We noted that with the GCL filter model we could not clamp specific 649 
population metrics to determine their contribution to learning, thus to interrogate this seeming disparity, 650 
we constructed fictive GCL population activity that had specific statistical features and used these as 651 
inputs to P-cells. Consistent with previous reports, decorrelation and temporal sparseness improved 652 
learning accuracy, with complete decorrelation and temporally sparse supporting the best performance 653 
(Fig S4; Cayco-Gaijic et al., 2018). Thus, on their own, population, temporal and idealized spatiotemporal 654 
sparseness do modulate learning when their contribution is independent. Nevertheless, these features did 655 
not emerge as features driving learning using GCL output from OU inputs to learn timeseries. This 656 
discrepancy raises the possibility that the pattern separation metrics that drive learning may be dependent 657 
on MF input statistics.  658 
 659 
GCL properties that enhance learning in naturalistic tasks 660 
Together, these models suggest that the GCL can reformat inputs in ways that support rapid and accurate 661 
timeseries learning. We next asked whether the GCL metrics that drive best learning change when inputs 662 
were inherently matched to outputs. This question is motivated by the topographical modules that 663 
characterize the real cerebellum, each with associated specialized afferents (Apps and Garwicz, 2005; De 664 
Zeeuw, 2020). Might these specialized afferents with specific statistical structure be especially suited to 665 
support P-cell tuning for specific behaviors?  666 
 667 
To examine whether statistical features that drive learning are sensitive to intrinsic input-output 668 
relationships, we tested whether model inputs with naturalistic, behaviorally correlated statistics, derived 669 
from electromyogram (EMG) signaling could support learning movement kinematics. In this assay, “MF 670 
inputs” were EMG signals from human subjects performing a point-to-point reaching task. We tested 671 
whether the model could learn associated limb kinematics from this input (Fig. 8A, B; Delis et al. 2018; 672 
Tseng et al. 2007; Miall and Wolpert 1996; Wolpert et al., 1998).  673 
 674 
Consistent with our previous observations, model P-cell output better learned kinematic target functions 675 
when EMG inputs were preprocessed by the model GCL rather than fed directly to P-cells (Fig. 8A). 676 
Moreover, thresholds that supported best learning were comparable to those using OU functions as inputs 677 
(Fig. 8A vs Fig. 3A) and the accuracy of the learned outputs strongly resembled the recorded kinematic 678 
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positions (Fig. 8B). We observed a slight negative shift in thresholds supporting best performance using 679 
EMG, suggesting that GCL population statistics that retain more of their inherent relationship to 680 
kinematics (i.e. that the EMG alone predicted kinematics well), facilitated by lower threshold, might be 681 
beneficial to learning kinematics. However, some EMG-kinematic pairings had stronger intrinsic 682 
relationships than others. We used this variability to assay whether the strength of the intrinsic 683 
relationship influenced which population metrics supported best learning. We first identified which 684 
population statistics drove learning using RIDGE regression, which preserves even small contributions of 685 
regressor variables to the model. We then looked at the slope of regressors that predicted learning as a 686 
function of the MSE of MFs alone. We found that when the P-cell MSE was already low with direct MF 687 
inputs, the information retention (Fig. 5) emerged as a key predictor of learning (i.e. GCL MSE, Fig. 8C, 688 
green). Conversely, when MF based learning was poor (high MSE) a pattern separation metric, number of 689 
explanatory PCs, became a more important driver of learning (Fig. 8C, orange). This observation is 690 
captured in the metric “Regression Coeff. Ratio” Fig. 8C, which quantifies the coefficient of the variance 691 
retained or explanatory PC regressor divided by the sum of all regressor coefficients computed in the 692 
RIDGE regression. In effect, this method shows the normalized size of their impact on the regression. 693 
Together this suggests that different population statistical features of GCL reformatting may serve 694 
learning under different conditions: When intrinsic relationships are strong, the GCL’s preservation of 695 
MF input variance (variance retained) is an important population statistical feature; when MF activity is 696 
more arbitrary relative to what the P-cell needs to encode, explanatory PCs (a pattern separation feature) 697 
are more valuable for learning. Thus, “pattern separation” by the GCL is not one universal transform that 698 
has broad utility. This observation raises the possibility that regional circuit specializations within the 699 
cerebellar cortex, such as density of unipolar brush cells (Dino et al. 2000; Guo et al., 2021), Golgi cells, 700 
or neuromodulators could bias GCL information reformatting to be more suitable for learning of different 701 
tasks. 702 
 703 
DISCUSSION 704 
Here we asked a simple question: how does the cerebellar granule layer support temporal learning? The 705 
question of the function of GCL architecture has captivated theorists for decades, leading to a hypothesis 706 
of cerebellar learning that posits that the GCL reformats information to best suit associative learning in 707 
Purkinje cells. Recent work has called many of these foundational ideas into question, however, including 708 
whether GCL activity is sparse; high dimensional; and what properties of ‘pattern separation’ best support 709 
learning (Wagner et al., 2017; Giovannucci et al., 2017; Knogler et al., 2017; Cayco-Gajic et al., 2017; 710 
Gilmer and Person 2017). To reconcile empirical observations with theory, we hypothesized that input 711 
statistics and task structures influence how the GCL supports learning. Here, we used naturalistic and 712 
artificial time-varying inputs to a model GCL and identified pattern separation features that supported 713 
learning time series, with an arbitrary but temporally linked input-output mapping, recapitulating 714 
important features of physiological cerebellar learning tasks (Buonomano and Mauk 1994, Mauk and 715 
Donnegan, 1997, Kennedy et al., 2014). Here we attempt to bridge these findings by examining 716 
naturalistic challenges faced by the real circuit. Several important observations stemmed from these 717 
simulations: (1) with naturalistic input statistics, the GCL produces temporal basis sets akin to those 718 
hypothesized to support learned timing with minimal assumptions; (2) this reformatting is highly 719 
beneficial to learning at intermediate thresholds; (3) maximal pattern separation does not support the best 720 
learning; (4) rather, tradeoffs between loss of information and reformatting favored best learning at 721 
intermediate network thresholds; and finally (5) different learning tasks are differentially supported by 722 

Downloaded from journals.physiology.org/journal/jn at Univ of Leeds (129.011.035.158) on November 28, 2022.



 

diverse GCL population statistical features. Together these findings provide insight into the granule cell 723 
layer as performing pattern separation of inputs that transform information valuable for gradient descent-724 
like learning. 725 
 726 
Emergence of spatiotemporal representation and contribution to learning 727 
A perennial question in cerebellar physiology is how the granule cell layer produces temporally varied 728 
outputs that could support learned timing (Mauk and Buonomano 2004). While cellular and synaptic 729 
properties have been shown to contribute (Chabrol et al., 2015; Duguid et al, 2012; Guo et al., 2021a; 730 
Crowley et al., 2009; Rudolph et al., 2015; Buonomano and Mauk 1994; Kanichay and Silver 2008; 731 
Simat et al., 2007; Mapelli et al., 2009; Rossi et al., 1996; Gall et al., 2005; Armano et al., 2000; Rizwan 732 
et al. 2016; Tabuchi et al., 2019; D’Angelo and De Zeeuw 2009), we observed that with naturalistic 733 
inputs, temporal basis set formation is a robust emergent property of the feedforward architecture of the 734 
cerebellum coupled with a threshold-linear input-output function of granule cells receiving multiple 735 
independent time-varying inputs (Fig. 1B-D). But is this reformatting beneficial to learning? We 736 
addressed this question by comparing learning of a complex time-series in model Purkinje cells receiving 737 
either mossy fibers alone or reformatted output from the GCL. We found that indeed the GCL 738 
outperformed MFs alone in all tasks (Figs. 3, 4, 7). Nevertheless, we wondered what features of the 739 
population activity accounted for this improved learning. While sparseness, decorrelation, dimensionality 740 
and lossless encoding have been put forward as preprocessing steps supporting learning, we found that 741 
none of these alone accounted for the goodness of model performance. Rather, disparate pattern 742 
separation metrics appear to strike a balance between maximizing sparseness without trespassing into 743 
lossy encoding space that severely, and necessarily, degrades learning of time-series. 744 
 745 
These observations are interesting in light of a long history of work on granule layer function. Marr, 746 
Albus, and others proposed that the granule cell layer performs pattern separation useful for classification 747 
tasks. In this framework, sparseness is the key driver of performance, and could account for the vast 748 
number of granule cells. Nevertheless, large-scale GCL recordings unexpectedly showed high levels of 749 
correlation and relatively non-sparse activity (Wagner et al., 2017; Giovannucci et al., 2017; Knogler et 750 
al., 2017).  Despite methodological caveats, alternate recording methods seem to support the general 751 
conclusion that sparseness is not as high as originally thought (Lanore et al. 2021; Kita et al., 2021; 752 
Gurgani and Silver 2021). Indeed, subsequent theoretical work showed that sparseness has deleterious 753 
properties (Cayco-Gajic et al., 2017; Billings et al., 2014), also observed in the present study, that may 754 
explain dense firing patterns seen in vivo. Here we found that the best learning occurred when individual 755 
granule cell activity occupied around half of the observed epoch (Fig. 6F, blue trace), achieved with 756 
intermediate thresholding levels. We also observed temporal organization that is consistent with the firing 757 
patterns observed in vivo. While these findings seem to suggest that sparseness is not the ‘goal’ of GCL 758 
processing, our findings and others (Litwin-Kumar et al., 2016; Cayco-Gajic et al., 2017) suggest that 759 
pattern separation broadly is a positive modulator of GCL support of learning processes. 760 
 761 
Previous work proposed that time-series prediction was possible with access to a diverse set of geometric 762 
functions represented in the GC population (Sanger et al., 2020). However, that study left open the 763 
question of how such a diverse collection of basis functions would emerge. The GCL model used here 764 
minimized free parameters by incorporating very few independent circuit elements, suggesting that a 765 
single transform is sufficient to produce a basis set which is universally able to learn arbitrary target 766 
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functions. We used a simple threshold-linear filter with a singular global threshold that relied on sparse-767 
sampling to produce spatiotemporally varied population outputs. This simple function worked to support 768 
learning at a broad range of inputs and thresholding values, ultimately allowing the Purkinje cells 769 
downstream to associate the spatiotemporally sparser inputs with feedback to learn arbitrary and complex 770 
target functions. The emergence of this basis set is remarkable given the very simple assumptions applied, 771 
but is also physiologically realistic, given the simple and well characterized anatomical properties of the 772 
MF divergence and convergence patterns onto GCs, which are among the simplest neurons in the brain 773 
(Jakab and Hamori, 1988; Palay and Chan-Palay, 1974; Palkovits et al., 1971). Although we suggest that 774 
the key regulator of thresholding in the system is the feedforward inhibition from Golgi cells, many 775 
factors may regulate the transformation between input and GC output in the network, allowing for 776 
multiple levels and degrees of control over the tuning of the filter or real mechanism that controls the 777 
outcomes of GCL transformations. Golgi cell dynamics may prove critical for enforcing the balance 778 
between pattern separation metrics and lossy encoding (Hull 2020) thus are critical players in mean 779 
thresholding found here to optimize learning. Additional mechanistic considerations may also play a role, 780 
including short-term synaptic plasticity (Chabrol et al. 2015) network recurrence (Gao et al. 2016; Houck 781 
and Person 2014; 2015; Judd et al., 2021), and UBCs (Dino et al. 2000), allowing for a more nuanced and 782 
dynamic regulatory system than the one shown here. 783 
 784 
Recapturing input information in the filtered GCL output 785 
Two schools of thought surround what information is relayed to Purkinje cells through GCs. Various 786 
models assume that Purkinje cells inherit virtually untransformed MF information capable of explaining 787 
kinematic tuning in P-cells (Markanaday et al. 2022; Herzfeld et al., 2020; Krauzlis and Lisberger, 1991). 788 
This view is in contrast to suggestions of Marr and Albus, where the GCL sparsens information to such a 789 
degree that Purkinje cells receive only a small remnant of the sensorimotor information present in mossy 790 
fiber signals. These divergent views have never been reconciled to our knowledge. We addressed this 791 
disconnect by determining the fraction of MF input variance recoverable in GCL output. Interestingly, the 792 
GCL population retains sufficient information to recover more than 90% the input variance despite 793 
filtering out 50% or more of the original signal (Fig. 5). This information recovery is achieved at the 794 
population level and thus requires sufficient numbers of granule cells so that the subset of signals that are 795 
subthreshold are also super-threshold in other subsets of GCs through probabilistic integration with other 796 
active inputs. While variance recovery is not a true measure of mutual information, it is indicative of the 797 
utility that the intersectional filtering performed by the GCL. The expansion of representations in the 798 
GCL population achieved by capturing the coincidence of features in the input population creates a 799 
flexible representation in the GCL output that has many beneficial properties, including the preservation 800 
of information through some degree of preserved mutual information between the GCL and its inputs. Yet 801 
despite this retention of input variance by the GCL, its transformations nevertheless greatly improve 802 
learning. 803 
 804 
Enhanced learning speed 805 
Our model not only improved learning accuracy, but also speed, compared to MFs alone (Fig. 4). Both 806 
learning speed and accuracy progressed in tandem: threshold parameter ranges that enhanced overall 807 
learning speed also minimized mean squared error, suggesting that speed and accuracy are enhanced by 808 
similar features in GCL output. Learning speed was well described by a double exponential function with 809 
a slow and fast component. This dual time course in the model with only one learning rule is interesting 810 
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in light of observations of behavioral adaptation that also follow dual time courses (Herzfeld et al., 2014; 811 
Smith et al., 2006). Some behavioral studies have postulated that these time courses suggest multiple 812 
underlying learning processes (Yang and Lisberger, 2014). Our model indicates that even with a single 813 
learning rule and site of plasticity, multiple time-courses can emerge, presumably because when error 814 
becomes low, update rates also slow down.   815 
 816 
Another observation stemming from simulations studying learning speed was that the behavior of the 817 
model varied as a function of the learning ‘step size’ parameter of the gradient descent method (Fig. S3). 818 
The step size–- ie. the typically small, scalar regulating change in the weights between GCs and P-cells 819 
following an error–- determined the likelihood of catastrophically poor learning: when the step size was 820 
too large, it led to extremely poor learning because the total output ‘explodes’ and fails to converge on a 821 
stable output. Nevertheless, the model tolerated large steps and faster learning under some conditions, 822 
since the threshold also influenced the likelihood of catastrophic learning. Generally, higher thresholds 823 
prevented large weight changes from exploding, suggesting that sparse outputs may have an additional 824 
role in speeding learning by supporting larger weight changes in Purkinje cells. Indeed, appreciable 825 
changes in simple spike rates occur on a trial-by-trial basis, gated by the theorized update signals that 826 
Purkinje cells receive, climbing fiber mediated complex spikes. These plastic changes in rate could reflect 827 
large weight updates associated with error. Moreover, graded complex spike amplitudes that alter the size 828 
of trial-over-trial simple spike rate changes suggest that update sizes are not fixed (Najafi et al., 2014; 829 
Herzfeld et al., 2020; Medina and Raymond 2018). Thus, although gradient descent is not wholly 830 
physiological, this finding predicts that the amplitude of synaptic weight changes following a complex 831 
spike might be set by tunable circuitry in the molecular layer to optimize learning speed relative to the 832 
statistics of the GCL output. 833 
 834 
Together, this study advances our understanding of how the GCL may diversify time-varying inputs and 835 
informs interpretation of empirical results. For instance, the timecourse of learning varies widely across 836 
tasks. Eyeblink conditioning paradigms require hundreds of trials to learn (Millenson 1997; Khilkevich et 837 
al., 2016; Lincoln et al., 1982), while saccade adaptation and visuomotor adaptation of reaches (Raymond 838 
and Lisberger; Martin et al. 1996), require just tens of trials (Tseng et al., 2007; Shadmehr and Mussa-839 
Ivaldi 1994; Ruttle et al., 2021; Calame et al., 2021). A prediction from our study is that the temporal 840 
diversity of the GCL basis set during a behavior influences learning speed. Time-invariant cues such as 841 
those seen in EBC would be difficult, if not impossible, for our model GCL to reformat and sparsen, as 842 
they are incompatible with thresholding-based filtering of input signals. Supportive of this view, recent 843 
work showed that EBC learning was faster if the animal is locomoting during training (Albergaria et al., 844 
2018). We hypothesize that naturalistic time-variant signals associated with ongoing movements entering 845 
the cerebellum support robust temporal pattern separation in the GCL, enhancing learning accuracy and 846 
speed, while time invariant associative signals used in typical classical conditioning paradigms result in 847 
an impoverished ‘basis’, making learning more difficult, despite other circuit elements that may 848 
contribute to the GCL basis formation.  849 
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Figure Legends 1172 
 1173 
Figure 1: Model architecture and effects of thresholding on GCL population activity  1174 
A. Diagram of algorithm implementation. Left shows Ornstein-Uhlenbeck processes (see Methods) as 1175 
proxies for mossy fiber (MFs, blue) inputs to granule cell units (GCs, red), with convergence and 1176 
divergence of MFs to GCs noted beneath MFs. GCs employ threshold-linear filtering shown beneath the 1177 
red parallel fibers. GC outputs are then transmitted to downstream Purkinje cells (P-cells). P-cells learn to 1178 
predict target functions by reweighting GC inputs. Differences between the prediction and true target are 1179 
transmitted as an ‘error’, which updates synaptic weights to P-cells. B. Emergence of temporal basis sets 1180 
in model GCLs using inputs derived from pontine neuron recordings. Top, Pontine recordings in mice 1181 
during pellet reaching task, aligned to reach onset at 0 ms. Bottom, Model GCL output using PN activity 1182 
as input C. Same as B, but using EMGs as MF inputs. Top, electromyogram (EMG) recordings from 1183 
human subject in point-to-point reaching task (EMG, top). Bottom, model GCL output using EMG as 1184 
input D. Same as B, but using OU functions as MF inputs. Bottom, model GCL output using OU 1185 
processes as inputs. The model GCL enhanced spatiotemporal representation for all three input types (B-1186 
D).  1187 
  1188 
 1189 
Figure 2: Effect of increased input noise on GCL peak activity timing 1190 
A. Example MF input modeled as an OU process without noise (left), and with (right). 1191 
B. Example of a GCL population with stable OU process as input (noiseless; left), and the population 1192 
with addition of noise (middle and right). The GC population is ordered by timing of peak rate in the 1193 
noiseless condition. C. Cumulative distribution of peak rate time shift between ‘no noise’ and 25% noise 1194 
(left) or 50% noise (right), with MFs in black and GCs in red. X-axis is bounded to capture ~85% of 1195 
population. CDF step length is 1 ms. 1196 
 1197 
 1198 
Figure 3: Enhanced time series learning using GCL mode.  1199 
A: Top: GCL output at different threshold levels. Bottom, relationship of threshold level to learning 1200 
accuracy (MSE) for P-cells fed MFs directly (blue) or the output of the GCL (orange; error, standard 1201 
deviation). B. Top left: P-cells were tasked with learning a complex timeseries that could be rendered as 1202 
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an image recognizable to humans, a cat with superimposed text. Top right: If P-cells were fed MF input 1203 
directly, their best learning output was not recognizable as a cat, despite seemingly low MSE of 0.02. 1204 
Bottom row: If P-cells were fed GCL output, they learned timeseries that rendered a matching image, 1205 
with MSEs dependent on threshold, but varying between 0.0078 and 0.0016. This figure provides an 1206 
intuitive sense of the practical difference between MSE of 0.02 and 0.0016, achieved with P-cells learning 1207 
using MFs directly or with the support of GCL preprocessing.  1208 
 1209 
 1210 
 1211 
Figure 4. Learning speed increases with GCL 1212 
A. Example of learned predictions after 1,5, and 50 trials of learning, with predictions in red and target 1213 
function in black. B. Exam4ple learning trajectory of MSE fit with a double exponential. Black circles: 1214 
MSE of network output on each trial. Red line: double exponential fit MSE during learning. Here, step 1215 
size was 10-6 and z-scored GCL threshold was 0. We use the exponents k from the exponential fit to 1216 
measure learning speed. C. Learning speed as a function of GCL threshold (red dots). Blue line: learning 1217 
speed in networks lacking GCL, i.e. mossy fibers directly innervate output Purkinje unit, gradient descent 1218 
step size was 10-6.  1219 
 1220 
Figure 5: Recovering inputs with an optimal linear readout  1221 
A. Network model schematic. Granule cell (GC, red, center) layer thresholds the sum of (4 here) 1222 
randomly chosen mossy fiber (MF, black, left) inputs, which are then fed into a reconstruction layer 1223 
which uses the optimal weighting from all N GCs to approximate each of the M inputs (compare blue 1224 
readouts to grey inputs). B.  Increasing the threshold of the GC layer (N=500 outputs) decreases the 1225 
explained variance (i.e. variance retained) of the best reconstruction layer (M=50), but the effect is 1226 
reduced with an intermediate number of MF inputs per GC. C. Variance retained increases with the ratio 1227 
of GCs per MF but gains from increasing the number of inputs to each GC are limited (max at 4 inputs). 1228 
Here there are M=50 MF Inputs at the threshold = 0. D. For a fixed number of GC outputs N, there is an 1229 
optimal number of MF inputs (M) for which the variance retained of the reconstruction layer is 1230 
maximized. E. i. For a fixed number of GC outputs N and MF inputs M=50, there is an optimal number 1231 
of inputs per G (around 4) for maximizing variance retained. ii. Same as i, but with each value normalized 1232 
to its maximum to show maximized values at inputs = 4. 1233 
 1234 
Figure 6: Statistical features of GCL output  A. GCL dimensionality (red) and MF dimensionality 1235 
(blue) as a function of threshold. Note peak near a threshold of 1 for the GCL. B. Two metrics of pattern 1236 
separation in GCL output–- STS (light orange) and PCs (dark orange)–- as a function of threshold. Note 1237 
peaks near 1.5 and 0.5, respectively. C. The sum of GCL variance produced by the model as a function of 1238 
threshold. Note monotonic decrease with threshold. D. Temporal sparseness as a function of thresholding. 1239 
Note monotonic decrease in GCL with thresholding. E. Mean pairwise correlation of the population 1240 
plotted as a function of threshold. Note trough near 1. F: Three forms of lossiness in GCL output as a 1241 
function of threshold. Each metric had differential sensitivity to thresholding but note that all decrease 1242 
with increasing threshold. Across metrics, function maxima and minima ranged widely and were not 1243 
obviously related to thresholds of optimized learning. 1244 
 1245 
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Figure 7. Relationship between GCL population statistics and MSE A.  LASSO regression was used 1246 
to identify GCL population metics that predicted learning performance. A shows the model selection as a 1247 
function of progression of the Lambda parameter (which is the penalty applied to each regressor). The 1248 
following potential regressors were used: dimensionality (Dim.), spatiotemporal sparseness (STS), 1249 
explanatory principal components of the GC population (PCs), population variability (Pop. Var.), spatial 1250 
sparseness (S. Sparse.), temporal sparseness (T. Sparse.), temporal lossiness (T. Loss.), population 1251 
lossiness (P. Loss), and input variance retained (Var. Ret; Figure 5). Arrow shows selection point of 1252 
LASSO regression MSE using “1SE” (1 standard error) method (see Methods, purple lines, black dot and 1253 
arrow indicating the selected model, with red arrow showing selection point in the parameter reduction 1254 
plot, red). B. Relationship between LASSO model (predicted relative MSE) against the observed relative 1255 
MSE (ratio of GC MSE to MF alone MSE) with fit line and variance explained by regression (R2 = 0.91) 1256 
C. Regression slopes of the selected LASSO model from A, showing that STS, PCs, and Input Variance 1257 
Retained are the selected regressors, with Var. Ret. being the largest contributing factor. All factors 1258 
normalized to a normal distribution for comparison. D. The output of the selected model and the observed 1259 
MSE plotted against threshold for a comparison of fits, demonstrating high accuracy in the 0-2 range, but 1260 
less accuracy in the -2-0 range. E-F, Similar to C-D except using Bayesian information criteria stepwise 1261 
regression model to select metrics that explain learning.   1262 
 1263 
Figure 8. Relationship of MF input to learned output influences how GCL supports 1264 
learning A. Top,  Schematic of model task, using recorded EMGs as an input to the model GCL to 1265 
predict kinematics. Bottom, MSE of model as a function of threshold when using EMG alone (MFs; blue) 1266 
or GCL (red) as input to model P-cell. At a range of thresholds, P-cells that receive GCL input outperform 1267 
P-cells receiving MFs alone. B. Example of learned kinematic position after training for MF Alone (blue 1268 
line) and GCL network (red) showing good metric fit by the GCL model. C. Plot showing the strength of 1269 
different GCL population statistical features driving learning that vary as a function of how well MFs 1270 
intrinsically support learned P-cell output (MF Alone MSE). When MFs are already excellent predictors, 1271 
information retention (variance retained) has a high regression slope (RIDGE regression method). When 1272 
MFs are poorer intrinsic predictors, the number of explanatory PCs (a pattern separation metric) emerges 1273 
as a stronger driver of learning performance. Goodness of fit (R2) was between 0.83-0.95 across all MF- 1274 
Alone MSEs used. 1275 
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