
This is a repository copy of Deep learning applied to automatic modulation classification at
28 GHz.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/193901/

Version: Accepted Version

Proceedings Paper:
Sun, Y. orcid.org/0000-0001-6129-4290 and Ball, E.A. orcid.org/0000-0002-6283-5949 
(2022) Deep learning applied to automatic modulation classification at 28 GHz. In: Arai, K.,
(ed.) Intelligent Systems and Applications: Proceedings of the 2022 Intelligent Systems 
Conference (IntelliSys) Volume 1. 2022 Intelligent Systems Conference (IntelliSys), 01-02 
Sep 2022, Amsterdam, The Netherlands. Lecture Notes in Networks and Systems, 1 
(LNNS 542). Springer International Publishing , pp. 403-414. ISBN 9783031160714 

https://doi.org/10.1007/978-3-031-16072-1_30

This version of the paper has been accepted for publication, after peer review (when 
applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of 
Record and does not reflect post-acceptance improvements, or any corrections. The 
Version of Record is available online at: http://dx.doi.org/10.1007/978-3-031-16072-1_30

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Deep Learning Applied to Automatic Modulation 

Classification at 28 GHz 

Yilin Sun1 and Edward A Ball2 

1 The University of Sheffield, Sheffield, S1 4ET, UK 
2 The University of Sheffield, Sheffield, S1 4ET, UK 

ysun57@sheffield.ac.uk 

Abstract. Automatic Modulation Classification (AMC) as a rapidly evolving 

technology, is employed in software defined radio structures, especially in 5G 

and 6G technology. Deep Learning (DL) can provide novel and efficient 

technology for modulation classification, especially for systems working in low 

Signal to Noise Ratio (SNR). In this article, we describe a dynamic system for 

the Millimeter wave (mmW) band, which is not reliant on received signal phase 

lock and frequency lock. It employs DL to classify the modulation types for 

different received SNR. In this model, a new method named Graphic 

Representation of Features (GRF) is proposed, which presents the statistical 

features as a spider graph for DL. The RF modulation is generating by a lab 

signal generator, sent through antennas and then captured by an RF signal 

analyser. In the results from the system with the GRF techniques we observe an 

overall classification accuracy of 56 % for 0 dB SNR and 67 % at 10 dB SNR, 

compared to a random guess accuracy of 25 %. The results of the system at 28 

GHz are also compared to our previous work at 2 GHz. 

Keywords: Automatic Modulation Classification, Deep Learning, Millimeter 

wave. 

1 Introduction 

Improvements to radio spectrum usage efficiency are becoming increasingly 

important, with the evolution of digital communication systems.  Dynamic Spectrum 

Access (DSA) is a critical technique for meeting this need, requiring spectrum sensing 

and signal classification. In this scenario, the modulation classification performs a 

significant role and can be widely used in a range of applications, including software 

defined radio system, and radar and military communications [1], [2]. There is a high 

demand for radio frequency (RF) bands. In the crowded spectrum situation, the 

Automatic Modulation Classification (AMC) [3] technology can respond to the 

requirements, optimising signal detection and subsequent demodulation when 

multiple complex / unknown signals are to be handled, or for cognitive radio primary-

user detection.  Radio spectrum is a valuable resource, AMC is method of identifying 

the users off the spectrum as well as unused spectrum [4]. 



This work concentrates on modulation classification provided by different methods 

in the deep learning area. Signals can appear like noises at very low Signal to Noise 

Ratio (SNR). The purpose of this work is to develop the accuracy of classification in 

the low SNR area with more efficient methods. With the improvement of Artificial 

Intelligence (AI) technology, many areas have achieved new progress by this novel 

area [5]. Classification of modulation types based on statistical properties of signals is 

common in classic statistical machine learning approaches [6]. From this, Deep 

Learning (DL) working as a subproject of machine learning, advanced to a new level 

by incorporating the essence of biological information processing systems [7]. In 

image classification, DL is employed as an efficient technique [8]. In our work, we 

develop a model using image classification from DL technology, utilising the Graphic 

Representation of Features (GRF) to represent the statistical features of the signals. 

The GRF method benefits from both statistical features and image classification. 

After presenting the modulated signals in GRF, they are tested by the pre-trained 

network with the existing advanced image classifiers. Transfer Learning (TL) [9] is 

introduced as an effective AI technology in this model. Several TL networks are 

compared in this work. For the GRF, spider graphs of the statistical features provide a 

new way to classify the signals. The model is utilised to detect the modulated signals 

from -10 dB SNR to 20 dB SNR in the 28 GHzmmW band. 

In the previous research, Maximum-likelihood decision theory is used as a critical 

method [10]. PSK and QAM signals are distinguished with accuracy of 90 % above 9 

dB SNR [11]. For the pattern recognition algorithms, the features of signals are 

involved in the models, where high order cumulants play a critical role in the AMC 

algorithm. After extracting the efficient features, a Support Vector Machines (SVM) 

[12] is applied in the recognition process. The accuracy can reach to 96 % at 10 dB 

SNR for 200 samples [13]. But the probability of correct classification is between 50 % 

to 70 % at around 0 dB SNR, suggesting a need for more improvement. Compared to 

the previous classifiers, the binary hierarchical polynomial classifiers are also 

proposed, with the probability of correct classification of 56 % at 0 dB SNR with 

1000 symbols [14]. Hence, there is still the challenge to optimise the AMC system, 

especially at low SNR. 

This work will introduce the new systems with DL technology which is proposed 

by utilising the GRF, which benefit from the statistical features and image 

classification with DL.  In this system, Convolutional Neural Network, GoogleNet 

[15], SqueezeNet [16] and Inception-v3 [17] are trialled and compared. We develop 

the recognition images by extracting the statistical features for the GRF and the 

constellation graphs are captured from the received signals directly. By using pre-

existing neural networks aimed at generic image classification, we leverage this 

existing technology but repurpose it for modulation classification and thereby also 

assess its suitability. 

There are five key contributions of this work. For our first contribution, we make 

the assessment of TL, using the pretrained neural network for the system. The good 

usage of the TL reduces the complexity of calculation and improves the accuracy of 

modulation classification. For our second contribution, we develop and assess the 

novel method named Graphic Representation of Features (GRF) to indicate the 

statistical features of modulation types, represented graphically and used as image 

classification data. This method takes the advantages of both statistical 



characterisation and image classification. As our third contribution, we compare the 

results of testing conducted and radiated data at 28 GHz in our system to find the 

possibility to improve the robust of wireless communications. Our fourth contribution 

is the overall assessment of generic DL image classifiers as applied to 

communications AMC usage. Our final contribution is to compare the results for our 

technique at 28 GHz with the detection accuracy for lower frequency carriers, in our 

previous work [18]. 

In the following parts, we will introduce the system model, classification method, 

and finally discuss results and performance. 

2 System Model and Problem Description 

2.1 RF Signal Description 

The received signal in baseband is defined with r(t) and it is given by (1). 

 𝑟(𝑡) = 𝑠(𝑡) + 𝑛(𝑡) (1) 

Here,	 𝑠(𝑡) is the original signal which transmits through the additive white 

Gaussian noise (AWGN) channel, and n(t) represents the noise applied to the signals. 

With the demand of features calculation and analysis, the raw data should be 

represented by convention, using in-phase and quadrature components (I/Q), (2). 

 𝑎[𝑖] = 𝑎![𝑖] + 𝑗 ∗ 𝑎"[𝑖] (2) 

Hence, the signals are composed of in-phase and quadrature components, which 

can represent the characters of their constellation diagrams. The constellations are 

captured and observed before the subsequent experiments. The statistical features are 

calculated from this data. Furthermore, the data captured by signal analyser is also 

read as I/Q data [19].  

The four kinds of modulated signals investigated and applied in this work are: 
BPSK, QPSK, 8PSK and QAM16. There are 5000 symbols utilised, sampled at the 

rate of 4 samples per symbol.  

In this work, signals are considered from -10 dB to 20 dB SNR. Note that the focus 

of previous works was on the classification above 10 dB SNR [20]. The SNR value 

less than 0 dB also should be tested to enhance the performance in discriminating 

between the four modulation types. We have developed the system from -10 dB to 20 

dB SNR to provide a comprehensive dataset. 
 

 

2.2 Modulation Constellations 

We now show the constellations graphs in this section to help display the 

characteristics. Although in this work, we are utilising the statistical features, some of 

the features also describe the characteristics of shape of the modulated signals. Fig.1 

shows the constellations of conducted data collected from the lab as examples of the 

four modulation types (BPSK, QPSK, 8PSK, QAM16) at 10 dB SNR at 28 GHz.  



 
Fig. 1. 28 GHz constellations of captured conducted data. 

 
Fig.1 shows the constellations diagrams of conducted data. At 10 dB SNR, the 

underlying constellation types are still identifiable and clear. However, at low SNR 

levels, it becomes hard to distinguish the characteristics. The statistical features are 

thus introduced to the AMC systems. 

 

2.3 Statistical Features for the Spider Graph representation 

The common statistical methods of machine learning are proposed in the previous 

research to classify digital modulations [21]. The features proposed in the literature 

for artificial intelligence technologies will also now be considered. The statistical 

models can obtain the results by capturing the statistical features from the four 

modulation types from -10dB to 20 dB SNR. The useful features in our earlier paper 

[18] and include the standard deviation of the signal instantaneous normalised 

amplitude,  𝜎## ; the maximum value of power spectral density (PSD), 𝛾$#% ; the 

cumulants of signals, 𝐶&', 𝐶(', 𝐶(), 𝐶(&, 𝐶*+, 𝐶,'; Kurtosis, K; Skewness, S; the ratio 



of peak-to-rms, PR; the ratio of peak-to-average of the signal, PA. Some of them also 

describe the characteristic of the signals.  

 𝐾 = 6 -[(#0-[#])
!]

-[(#0-[#])"]"
6	 (3) 

For example, Kurtosis is extracted by (3), which describes the steepness or flatness 

of the distribution of signals [22].  

 𝑆 = 6 -[(#0-[#])#]

-[(#0-[#])"]#/"
6  (4) 

Skewness is extracted by (4), which describes the position of the tapering side of 

the distribution of signals. PA and PR indicate the shape of different signals in detail. 

We test these statistical features with the collected data in the next section, to find the 

appropriate and necessary features to build the GRF system.  

3 Classification Method 

3.1 System structure 

In this work, the system employs DL with GRF. The statistical features need to be 

analysed and selected to work after collecting raw data. GRF is our new developed 

method to plot the statistical character graphically. In this method, we calculate the 

data from the dynamic receiving system without phase and frequency lock, to indicate 

the characteristics in a stable way. After generating the graphs with GRF, we use the 

pretrained network with existing advanced image classifiers. The classification 

system is represented Fig. 2. The statistical features of the received signals can be 

calculated and plotted in the spider graphs, which represents the graphical features. 

 

 
Fig. 2. DL system with GRF 



 

After input to the spider graphs, we can find the prediction of the modulation types. 

In this work, we use the conducted data as the training dataset. Conducted data and 

radiated data are then used for testing datasets. 

 

3.2 Graphical Representation of Features (GRF) 

Based on the features from our earlier work [18], all the features are calculated for the 

four modulation types. Fig. 3 shows all statistical features of the four modulated 

signals at 10 dB SNR at 28 GHz. The features are represented in one graph, some of 

the features are displayed in logarithmic form, such as 𝜎##, 𝑋&, 𝛾$#%, which is a clear 

way to visualise the magnitude data differences. According to Fig. 3, it is obvious that 

𝛽, 𝜎34, 𝜎5,	𝑣&', 𝑋, 𝑋&, and	𝐶&) cannot help to classify the modulations (BPSK, QPSK, 

8PSK and QAM16) – the difference of the values of these statistical features are 

insignificant. 
 

 
Fig. 3. Features of the 28 GHz conducted modulated signals at 10 dB SNR. 

 



        
Fig. 4. Spider Graphs of the 28 GHz conducted modulated signals at 10 dB SNR. 

 

Fig. 4 shows statistical features applied in the spider graph. Based on the previous 

analysis in Fig.3, the twelve features of the modulated signals are selected. The 

features are employed as the axes of the spider graph- each modulation type can then 

display the values in the graph. The spider graphs turn the statistical features into one 

representation and represent the collected statistical features in a graphic way. To 

label the value of the features in the same common graph required use of the log 

function for some of the features, where appropriate. As seen in Fig. 4, each 

modulated signal shows a different shape of representation. After collecting the 

graphs, all the graphical representations are used for Neural Network with image 

classification. 

 

3.3 Deep Learning Networks 

Deep Learning is an efficient way to improve the performance of AMC. In this 

section, four Convolutional Neural Network (CNN) models are introduced, a simple 

CNN developed from the Iris case [23] with multiple layers, the SqueezeNet model 

[16], the GoogleNet model and the Inception-v3 model [24]. The last three models are 

pretrained networks, which are also known as TL. We pre-process the signals and 

obtain the GRF to create the training dataset and testing dataset for CNN. 



As shown in Fig. 5, a basic example of CNN structure is built with convolutional 

layers and dense fully connected layers. The convolutional layers can extract the 

characters of the signals and generate the feature map. The features can then be 

learned by the sequential layers. Finally, the categorization results are displayed. 

 

 
Fig. 5. Example structure of a Neural Network. 

CNN. This model is designed as an extension of the Iris recognition case with fifteen 

layers in total. Following three convolutional layers are the batch normalisation layers 

and ReLu layers. Between the other three blocks, two max-pooling layers are added to 

down-sample the input data and limit the risk of overfitting. The filters of 

convolutional layers can extract the physical features of the images, such as the 

profile and grayscale. In this case, the convolutional layer is crucial in its ability to 

classify the images. The batch normalisation layers can normalise the input channel 

and the threshold can be calculated to the elements by the ReLu layers [25]. 

Transfer Learning Models. The SqueezeNet contains 68 layers, and the size of input 

image of the network is 227-by-227 pixels [16]. The GoogleNet includes 144 layers 

and is pretrained to classify the images into 1000 categories. The size of input image 

is 224-by-224 pixels [15]. The Inception-v3 is comprised of 315 layers and has been 

trained distinguish 1000 categories among millions of images [17]. The size of input 

image is 299-by-299 pixels. Before feeding to the models, images are required to be 

resized to satisfy the input criteria. To best suit our work, the final learning layers are 

modified, only producing 4 outputs for each modulation types. 70 % of the GRF 

images in our experiments are used as training, 20 % of images for the validation 

process and the remaining 10 % used for testing [26]. We set the system to rotate the 

images from -90 to 90 degree steps and rescale them randomly from 1 to 1.5, which 

can assist increase the quantity of training data and avoid overfitting [27]. 
 



4 Evaluated Performance 

This section presents the results from the different classification networks. All the 

detecting systems are based on the DL technology. The high order cumulants are 

employed for this system as the second classification process to be trialled. The 

Kurtosis, Skewness, PR, and PA can describe the shape of the signals. The system 

uses conducted data and radiated data collected by horn antenna. In this work, 

different DL structures are compared. We only use conductive data as training 

dataset, but both conducted data and radiated data are tested in classification. 
In Fig. 6, the results are shown from the four CNN models. The CNN developed 

using the Iris case performs worse than other traditional DL methods. This is likely 

due to the structures and coefficients of this CNN variant being potentially very 

sensitive and thus will significantly influence the classification system. 

 

 
Fig. 6. General accuracy of DL with GRF over different SNR levels at 28 GHz. 

 



 
Fig. 7. Accuracy of DL with GRF at 10 dB SNR. 

 

 

Fig. 7 shows two confusion matrices of the results at 10 dB SNR by using 

Inception-v3 network. In general, the random guess detection rate would be 25 % 

(since there are four possible modulation types). This model also provides accuracy 

slightly higher than random guess at -10 dB SNR, an SNR level well below what 

most communication system would use.  

 
Fig. 8. General accuracy of DL with GRF over different SNR levels at 2 GHz [18]. 

 

 

We also compare the detection accuracy for our technique as applied in [18] at 2 

GHz. In that scenario we obtained detection accuracy as in Fig. 8 for various SNR 

levels. From this, we can see that the detection accuracy using our system at 28 GHz 

is slightly worse (circa 10 % worse at -10 dB SNR, though this improves as SNR 



increases). We are investigating possible causes for this difference, which could be 

due to propagation effects in the lab and the different RF equipment used. 

 
 

5 Conclusion 

In this work, the AMC models based on DL, applied to modulation recognition in a 

dynamic receiving system without phase and frequency lock in mmW band at 28 GHz 

are reported. Firstly, we collect conducted and radiated data at 28 GHz and analyse 

the statistical features. After that, we provide an overview of the GRF method for 

feature representation. The system utilizes Inception-v3 to obtain the highest 

accuracy. We then provide a brief comparison between the results at 28 GHz and our 

earlier results [18] at a lower frequency of 2 GHz and discuss possible causes for 

differences in classification accuracy. Though the 28 GHz modulation classification 

performance is circa 10 % lower than with our 2 GHz system, it still is capable of 

good classification and is significantly better than a random guess probability. 
The results also give us stimulus to explore our classifier in higher mmW bands. 

Therefore, for our future work, we will continue to analyze mmW RF signals and 

improve applicability of the classifier system in the mmW area. 
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