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Abstract 
Purpose: To evaluate the application of machine learning methods, specifically Deep Neural Networks 

(DNN) models for intensive care (ICU) mortality prediction. The aim was to predict mortality within 96 

hours after admission to mirror the clinical situation of patient evaluation after an ICU trial, which consists 

of 24-48 hours of ICU treatment and then “re-triage”. The input variables were deliberately restricted to 

ABG values to maximise real-world practicability. 

Methods: We retrospectively evaluated septic patients in the multi-centre eICU dataset as well as single 

centre MIMIC-III dataset. Included were all patients alive after 48 hours with available data on ABG (n= 

3979 and n= 9655 ICU stays for the multi-centre and single centre respectively). The primary endpoint 

was 96-hour-mortality.  

Results: The model was developed using long short-term memory (LSTM), a type of DNN designed to learn 

temporal dependencies between variables. Input variables were all ABG values within the first 48 hours. 

The SOFA score (AUC of 0.72) was moderately predictive. Logistic regression showed good performance 

(AUC of 0.82). The best performance was achieved by the LSTM-based model with AUC of 0.88 in the 

multi-centre study and AUC of 0.85 in the single centre study. 

Conclusions: An LSTM-based model could help physicians with the “re-triage” and the decision to restrict 

treatment in patients with a poor prognosis.  

Keywords: critically ill; artificial intelligence; machine learning; deep learning; LSTM; ICU; risk 

stratification; intensive care unit; critical care; sepsis;  

Take-home message:  Machine learning based models could help physicians in the decision process 

evaluating therapy targets after an initial ICU-trial.
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Introduction 
Limited resources of intensive care units (ICUs), especially in terms of beds and personnel, require efficient 

management of resources and patients. This is particularly important when external stressors such as a 

pandemic with the outbreak of SARS-CoV-2 increase patient numbers and pressure on the triage system 

(1). In order to optimize the allocation of intensive care resources, risk stratification and prediction of 

outcomes must be as precise and rapid as possible (2).  

Machine learning is particularly suitable for predicting outcomes in intensive care settings because it 

integrates complex information from different data sources relatively easily. (3, 4). Several studies already 

proved the applicability of machine learning in the ICU setting; especially for sepsis detection machine 

learning based methods showed an earlier and precise detection of sepsis when compared to usual clinical 

scores like the SOFA score (5, 6).  

However, while machine learning can process complex and divergent information, the possibility of 

implementing an algorithm is reduced with the number of parameters taken into account (and thus 

necessary for the calculation). Therefore, with respect to the external validity of machine learning tools, 

it may be useful to voluntarily limit the number of parameters to common and common parameters. 

Arterial blood gas (ABG) tests, which are globally standardized on ICU and collected at a relatively high 

frequency, can be used for this purpose. 

Particularly in patients with sepsis - a multi-organ disease per se - multiple interlayers of information need 

to be interpreted (7). The physicians currently integrate these data pieces and puzzles in clinical scores, 

individual judgment based on data, the physical and established guidelines, and at times, plain clinical gut 

feeling. However, work on ICU wards is often organised in shifts, and experience and judgment might 

differ significantly between physicians. Therefore, more objective measures of patients and disease 

trajectories could improve outcomes and decision process. 

A particular challenge to clinicians is the decision when to restrict treatment (2, 8). Ideally, patients who 

do not benefit from intensive care should not be admitted to the ICU. However, this critical judgment is 

often impossible at admission when only limited data on the patient is available. Further, the angst of 

legal proceedings when limiting treatment is common among physicians. Therefore, in practice, many 

patients undergo an ICU-trial, even if not formally stated: patients in whom the benefit of intensive care 

is unclear are admitted to ICU and undergo unrestricted treatment for up to 48 hours (9). During that 

time, further information on concomitant diseases, pre-admission frailty, and responsiveness to 

treatment are judged. Then, in theory, a decision about additional intensive care or a treatment restriction 

is made by the physicians together with other health-care providers, the patient, and his family. However, 

given the vast amount of information generated by a patient’s ICU stay, this judgment is often tricky and 
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outcome prediction remains challenging. Consequently, machine learning methods that intrinsically 

integrate a large amount of data could play an important role in supporting clinical decision making.  

Typically, machine learning models integrate many data sources, such as biomarkers, ventilation settings, 

blood pressure and medications including catecholamines. However, availability of all this data differs 

significantly between ICUs, depending on how well they are equipped. Highly equipped ICUs might 

generate high quantities of data, however the application of machine learning models should not be 

limited to high-end ICUs only. As such, the aim of this study was to evaluate AI for mortality prediction 

based on a sweet-spot, combining the necessary amount of data while having broad applicability in ICUs 

in both secondary and tertiary settings. As ABG tests are widely available, this study aimed to evaluate 

the predictive capabilities of machine learning models based on the analysis of ABGs variables only. 

Specifically, we focused on sepsis, given the complex disease trajectory, which usually generates a broad 

array of data. Further, we aimed to mirror the clinical practice of an ICU-trial, where physicians need to 

judge the state of a patient after 48 hours. In this respect we develop a machine learning model based on 

Recurrent Neural Networks (RNN), specifically Long Short Term Memory (LSTM). We specifically chose 

LSTM, as this type of network is designed to capture temporal dependencies between variables (ABG 

values in our case) on longitudinal data. We evaluate our model based on the data of n=3979 and n= 9655 

ICU stays for the multi-centre and single centre respectively. Furthermore, we compare the performance 

of our model against baseline Logistic Regression, Baseline Lactate and SOFA Score. 

While, there have been several works on mortality prediction (10), this is the first multi-centre study to 

address mortality prediction across diversely equipped ICUs, by relying solely on routinely available ABG 

values. 

Methods 

Data sources 

We evaluate our method both on a multi centre dataset (eICU) as well as a single-centre dataset (MIMIC 

III). eICU dataset contains data associated with 200,859 admissions collected from 335 ICUs across 208 

hospitals in the US admitted between 2014 and 2015 (11), while MIMIC-III dataset contains data 

associated with 61,532 distinct hospital admissions for adult patients (aged 16 years or above) admitted 

between 2001 and 2012 (15). This study included all patients of both datasets diagnosed with sepsis based 

on the method established by Angus et al., in identifying patients using billing codes (12). 
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Ethics statement 

The analysis using the eICU Collaborative Research Database (eICU-CRD) is exempt from institutional 

review board approval due to the retrospective design, lack of direct patient intervention, and the security 

schema, for which the re-identification risk was certified as meeting safe harbor standards by an 

independent privacy expert (Privacert, Cambridge, MA) (Health Insurance Portability and Accountability 

Act Certification no. 1031219-2). The data in the Medical Information Mart for Intensive Care (MIMIC) has 

been previously de-identified, and the institutional review boards of the Massachusetts Institute of 

Technology (No. 0403000206) and Beth Israel Deaconess Medical Center (2001-P-001699/14) both 

approved the use of the database for research. This study was an analysis of publicly available, 

anonymised databases with pre-existing institutional review board (IRB) approval; thus, no further 

approval was required. 

Study subjects and lactate concentrations 

We retrospectively evaluated a sub-group of patients of eICU and MIMIC-III databases. Patients datasets 

were analysed for the first 48 hours after the admission. All cases of mortality that occurred after the 

initial 48 hours and up to 96 hours were labelled as “dead” and were included in the model validation. 

Furthermore, we included all patients alive after 48 hours that had complete ABG data (n=3853 patients, 

corresponding to 3979 ICU stays for the multi-centre study and n=8061 patients, corresponding to 9655 

ICU stays for the single centre study). The patient datasets were analysed separately, and the primary 

endpoint was ICU mortality between 48 to 96 hours after patient admission. 

In addition to septic patients, we also evaluated the performance of the model for septic shock patients. 

For this evaluation, we selected patients that had initial lactate greater than 2.0 mmol/L (and > 18 mg/dL 

respectively) and documented the use of vasopressors, resulting in 1044 and 417 patients for the multi-

centre and single-centre evaluation respectively. Based on this cohort, we selected a matching cohort 

(based on age and gender) of patients that were not under septic shock, resulting in 437 and 859 patients. 

Therefore, the overall dataset resulted in 1481 and 1276 patients with a mortality rate of 22.6% and 32.4% 

for both datasets respectively (for the multi-centre and single-centre analysis). 

Statistical Analysis 

Continuous variables are expressed as mean (± standard deviation) and compared using ANOVA. 

Categorical data are expressed as numbers (percentage). A chi-square test was applied to calculate 

differences between groups. Both univariable and multivariable logistic regression analysis to adjust for 

confounding factors for ICU mortality was done. As shown in Figure 1a and Figure 1b there were no strong 
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linear correlations between each variable and the target outcome for both multi-centre and single-centre 

patient dataset. 

 

Figure 1a Pearson correlation between each variable and target outcome (denoted with Mortality Flag) for the multi-

centre eICU dataset 
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Figure 1b Pearson correlation between each variable and target outcome (denoted with Mortality Flag) for the single-

centre MIMIC III dataset. Note, the correlation interval is from -0.3 to 1.0 as defined by the scale on the right. 

To assess the predictive performance of our model, we calculated a range of common performance 

metrics, including positive predictive value (PPV), negative predictive value (NPV), sensitivity versus 

specificity, the area under the ROC curve (AUC) as well as the precision-recall plot and the area under its 

curve (AUPRC), also called average precision (AP). We also include Mathews correlation coefficient (MCC), 

which represents a correlation between the observed and predicted binary classifications. MCC is used in 

machine learning to measure the quality of binary classifications producing values that range from -1 (total 

disagreement between prediction and observation) to +1 (a perfect prediction). 

Machine learning model 

The model predicts the likelihood that a patient will die in the next 48 hours based on the analysis of 

patient-specific variables, namely arterial blood gas (ABG) values. Even though additional variables were 

available in the dataset, we deliberately chose to include only ABG values as they are routinely measured, 

ensuring broad applicability of our method across diversely equipped ICUs. Only patients with features 

that were documented at least once were included, and the rest of the patients were excluded. The model 

was developed using Recurrent Neural Networks (RNN), a type of Deep Artificial Neural Network designed 

to learn temporal dependencies between variables. In particular, the long-short term memory (LSTM) 

network, a type of RNN designed to handle longitudinal time-series data was chosen (17). The input layer 

of the LSTM network is composed of 8 neurons that receive time-ordered sequence of values of patients’ 

ABG variables as shown in Figure 2. At each time step, the network computes its internal state st, based 

on the input vector xt of patient features. As time progresses, newly available data xt+1 are used to update 

the state of the network and generate the likelihood of mortality ot given the current patient’s state and 

their clinical history (past ABG values). As shown in Figure 2 recurrent neural network parameters U, V, 

and W are adjusted automatically as the model learns to map mortality outcome to longitudinal ABG 

values (model training phase).  
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Figure 2 Overview of data extraction, processing (A) and model development (B). Variables are extracted from the 

multi-centre eICU database and single-centre MIMIC III database and are processed separately. W, U, V represent 

neural network parameters (weight matrices for input, previous state and output respectively) 

 

 The neural network model is composed of a single hidden LSTM layer comprising 140 fully connected 

neurons, tanh activation function and Xavier normal weight initializer. The output layer is a sigmoid 

function used to classify each data sample in two outcomes. All the models are trained for 50 epochs with 

the batch size of 100 based on the binary cross-entropy loss function and Adam optimizer method with 

learning rate of 0.001. Furthermore, we used dropout of rate 0.4 to avoid model overfitting, such that our 

model can generalise its predictions also on data of future patients. Dropout is a regularisation method 

that discards a percentage of artificial neurons during the model derivation to force the network to learn 

a more robust internal representation.  

Finally, the performance of the models was evaluated using stratified three-fold cross-validation with 10 

times repetition. The data is randomly split into model derivation dataset (66.67%) and model validation 

dataset (33.33%) for each fold. To reduce possible bias and evaluate generalizability, we repeat three-fold 

cross-validation 10 times, where the prediction of each model is used to calculate the mean and standard 

deviation.  

The model derivation dataset was further divided into training and tuning parts, with 75% of the data used 

to optimise the weights of the neural network model (training). Neural network hyperparameters 

(including learning rate, depth of the neural network, and size of the hidden layers) were also optimised 



Machine learning predicts mortality in septic patients using only routinely available ABG variables 

9 

 

using 25% of the training data (tuning). It is worth noting that other variants of RNNs, including GRU and 

Bidirectional LSTM (18, 19), were also evaluated, however, there was no improvement in the prediction 

result. 

Results 

The multi-centre dataset contained 3979 ICU stays, while the single-centre dataset contained 9655 ICU 

stays, with complete ABG data (at least one measurement is available for each ABG variable during the 

first 48 hours of ICU stays) as shown in selection cohort in Figure 5.  

 

Data preparation consisted of several steps in which possible outliers and noisy measurements were 

removed from the datasets using valid intervals for each ABG variable based on clinical knowledge. 

Secondly, handling slightly different frequencies of recording of the variables in the databases were done 

by aligning and ordering in time all the measurements. Finally, missing values were handled using forward 

filling strategy, which uses the last and nearest valid measurements for imputation by forward 

propagating each available measurement. 

Figure 5 Cohort selection diagram for both MIMIC dataset and eICU dataset 
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From the admission to 48 hour time point, 340 patients died in the multi-centre evaluation, while 507 

patients died in the single centre evaluation, where their ABG values were not included in the model 

validation so as to mirror the clinical situation (the clinician only evaluates patients who are alive and still 

at the ICU). 

Of the included ICU stays, 492 deaths were recorded until time point 96 hours for the multi-centre 

evaluation, while 858 for the single-centre. Compared to survivors, non-survivors evidenced higher age, 

lactate, and creatinine levels at admission for both single-centre and multi-centre dataset. They were 

clinically sicker, mirrored by higher initial SOFA scores as shown in Table 1a, 1b and Table 2a, 2b in the 

Appendix A, for both the single-centre and multi-centre patient dataset respectively. 

Survival analysis results 

Overall mortality was 19.1% (n=759) and 19.3% (n=1866) for the multi-centre and single-centre 

respectively, while mortality up to 96 hours was 12.4% and 8.9%. The SOFA score over 48 hours (using the 

worst clinical values) was only moderately predictive (AUC of 0.72 and 0.76) (13). The initial lactate 

concentration was also moderately predictive (AUC of 0.80 and 0.70) for 96-hour-mortality. Logistic 

Regression showed good performance in the multi-centre evaluation with AUC of 0.82 (± 0.01), while its 

performance on the single-centre was an AUC of 0.81 (± 0.01). The LSTM-based model achieved the best 

performance in both studies with AUC of 0.88 (± 0.01) and 0.85 (± 0.01) with PPV of 0.60 (± 0.05) and 0.43 

(± 0.07); NPV of 0.96 (± 0.01) for both; and MCC of 0.59 (± 0.06) and 0.47 (± 0.04) for the multi-centre and 

single-centre respectively. A tabular summary of the results can be found in Table 3 and Table 4. Predictive 

performance comparison of each model for both the multi-centre and single-centre evaluation is shown 

in Figure 3a and Figure 3b respectively with both AUC as well as area under the precision-recall curves 

(AUPRC). Furthermore, we also show the results of partial Area Under the Curve (AUC) along with partial 

c-statistic, developed in to illustrate the robustness of our model in addressing imbalanced datasets, as 

shown in Table 5 and Table 6 (14). 
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Figure 3a Multi-centre Receiver Operating Characteristic Curves (left) and Precision-Recall Curves (right) of machine 

learning model (LSTM) compared to Logistic Regression (LR), SOFA scores and Lactate (at admission) in Predicting 

Patient Mortality. Grey bands indicate standard deviation. No Skill refers to baseline performance 

 

 

Figure 3b Single-centre Receiver Operating Characteristic Curves (left) and Precision-Recall Curves (right) of machine 

learning model (LSTM) compared to Logistic Regression (LR), SOFA scores and Lactate (at admission) in Predicting 

Patient Mortality. Grey bands indicate standard deviation. No Skill refers to baseline performance 

 

Table 3 Performance of the model in the multi-centre dataset (eICU) in both septic patients and patients in septic shock 

Sepsis AUC PPV NPV MCC 

Lactate 0.80 - - - 

Sofa 0.72 0.23 0.92 0.21 

LR 0.82 ± 0.01 0.48 ± 0.01 0.95 ± 0.01  0.48 ± 0.01  

LSTM 0.88 ± 0.01 0.60 ± 0.05 0.96 ± 0.01 0.59 ± 0.06 

 

Septic Shock AUC PPV NPV MCC 

LSTM 0.89 ± 0.03 0.72 ± 0.05 0.90 ± 0.03 0.63 ± 0.05 

 

Table 4 Performance of the model in the single centre dataset (MIMIC) in both septic patients and patients in septic shock 

 AUC PPV NPV MCC 
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Lactate 0.70 - - - 

Sofa 0.76 0.24 0.95 0.26 

LR 0.81 ± 0.01 0.35 ± 0.01 0.96 ± 0.01  0.40 ± 0.01 

LSTM 0.85 ± 0.01 0.43 ± 0.07 0.96 ± 0.01 0.47 ± 0.04 

 

Septic Shock AUC PPV NPV MCC 

LSTM 0.93 ± 0.01 0.74 ± 0.05 0.95 ± 0.02 0.70 ± 0.05 

 

Table 5 Partial AUC as well as Concordant Partial AUC for the multi-centre dataset 

FPR  Lactate Sofa LR LSTM LSTM 
Septic Shock 

[0.00 - 
0.33] 

pAUC 0.19 0.13 0.22 0.25 0.25 

pAUCc 0.44 0.33 0.48 0.54 0.55 

[0.33 - 
0.66] 

pAUC 0.29 0.27 0.28 0.30 0.31 

pAUCc 0.20 0.21 0.17 0.17 0.17 

[0.66 - 
1.00] 

pAUC 0.32 0.32 0.32 0.33 0.33 

pAUCc 0.16 0.18 0.17 0.17 0.17 

Whole 
[0.00 - 
1.00] 

sum 
(AUC) 

0.80 0.72 0.82 0.88 0.89 

 

Table 6 Partial AUC as well as Concordant Partial AUC for the single-centre dataset 

FPR  Lactate Sofa LR LSTM LSTM 
Septic Shock 

[0.00 - 
0.33] 

pAUC 0.15 0.21 0.21 0.23 0.28 

pAUCc 0.36 0.43 0.48 0.51 0.59 

[0.33 - pAUC 0.25 0.24 0.28 0.29 0.32 
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0.66] pAUCc 0.18 0.16 0.16 0.17 0.17 

[0.66 - 
1.00] 

pAUC 0.30 0.31 0.32 0.33 0.33 

pAUCc 0.16 0.17 0.17 0.17 0.17 

Whole 
[0.00 - 
1.00] 

sum 
(AUC) 

0.70 0.76 0.81 0.85 0.93 

 

Prediction results on septic shock patients 

In addition to septic patients, we also evaluated the performance of the model for septic shock patients 

as described in the Methods section. The mean performance of the model on these patients resulted in 

AUC of 0.89 (± 0.03) for the multi-centre study and AUC of 0.93 (± 0.01) for the single-centre study and as 

shown in Figure 4a and Figure 4b. Furthermore, other evaluation metrics also showed high performance 

with PPV of 0.72 (± 0.05), NPV of 0.90 (± 0.03) and MCC of 0.63 (± 0.05) for the multi-centre dataset; and 

PPV of 0.74 (± 0.05), NPV of 0.95 (± 0.02) and MCC of 0.70 (± 0.05) for the single-centre dataset. 

 

Figure 4a Multi-centre Receiver Operating Characteristic Curves (left) and Precision-Recall Curves (right) of machine 

learning model (LSTM) to predict mortality for patients in septic shock. Grey band indicates standard deviation. No 

Skill refers to baseline performance. 
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Figure 4b Single-centre Receiver Operating Characteristic Curves (left) and Precision-Recall Curves (right) of machine 

learning model (LSTM) to predict mortality for patients in septic shock. Grey band indicates standard deviation. No 

Skill refers to baseline performance
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Discussion 

In this multi-centre retrospective analysis of a large cohort of patients with sepsis, the LSTM-based model 

derived on ABG values within 48 hours after admission was highly predictive for mortality within the next 

48 hours. Of note, the model outperformed both lactate concentrations as well as the SOFA score. This 

comparison provides further evidence of the predictive power of our LSTM-based model bearing in mind 

that our model was derived using AGB values only, while SOFA considers the functioning of six major organ 

systems. The rationale of this study was to evaluate the accuracy of the LSTM model for ICU mortality 

prediction after 48 hours to mirror the clinical situation of patient evaluation after an ICU trial, which 

usually consists of 24-48 hours of ICU treatment and then “re-triage”. We hypothesised that machine 

learning models could help to identify patients with a very high likelihood of not surviving the ICU stay, in 

whom potentially palliative treatment could be more appropriate compared to further intensive care. To 

enable potential wide-spread use of such an algorithm, the input variables were deliberately restricted to 

ABG values only, which are widely available in ICUs around the world. 

On the one hand, the voluntary restriction to ABG is also associated with some disadvantages. For 

example, the integration of additional laboratory values such as renal, cardiac and inflammatory 

biomarkers could refine the granularity of the data and improve the predictivity of the model. 

Furthermore, this is a retrospective analysis of ABG values, which were primarily initially collected 

according to clinical criteria. Thus, it is very likely that ABG was determined at higher frequencies in sick 

patients or patients with volatile lactate concentrations. These are a priori limitations of our analysis. On 

the other hand, the frequency, granularity and distribution of ABG values reflect clinical reality. Since 

medicine is an art and AI can only be another new (and in our opinion promising) arrow in the clinicians' 

quiver, this unbiased collection of ABG values can also be interpreted as a strength, since ABG values 

should continue to be collected according to clinical viewpoints and not primarily with AI in mind. 

Based on our results, LSTM-based models could help ICU physicians in several ways. First, an algorithm 

predicting mortality at high accuracy, with low false-positive rates, could help physicians in the decision 

process for treatment limitation after an initial “ICU-trial” consisting of full-blown ICU treatment for 24 to 

48 hours. Considering this possible implantation of machine learning models in the ICU, the ethical 

challenges accompanied by these models for prognostication become evident (15). Although physicians 

will not - and must not – rely solely on machine learning models to predict outcomes in the critically ill, 

such a model may become part of a decision in a matter of life and death (15).  

It is necessary and important - for all the enthusiasm for the great potential that the implementation of 

AI holds for the improvement of clinical decision processes and outcomes - to emphasize that a clinical 
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decision - especially "about life and death" - can never be made on the basis of an AI-derived algorithm 

alone.  

Therefore, we consider our model primarily thesis-generating and a proof-of-concept that LSTM-based 

model can accurately predict mortality in critically ill patients even when evaluated across hundreds of 

diverse ICUs and hospitals. In this study, for example, age or gender were not included as a variable in the 

AI model, to avoid bias against older patients or a gender. However, after the prospective evaluation of a 

machine learning algorithm, the careful integration of further information could even increase its 

predictive capabilities.  

These considerations underscore the importance of another principle challenge with AI and risk 

prediction: depending on the specific AI methodology applied, humans know little to nothing about the 

algorithm’s composition and how it weighs the individual variables, even though this is an active area of 

research (16-19). This is a fundamental difference compared to models derived from multivariable logistic 

regression – even in complex models, the regression coefficients of each variable are readily available and 

understandable for humans (16). In that regard, the medical research community must carefully consider 

and evaluate the distinct methods available in machine learning: both supervised and unsupervised 

methods do have potential advantages but also disadvantages (17, 20). 

Sepsis is a multi-organ disease with many clinical faces (7). While the mortality in this dataset was 

relatively low, the high predictiveness of our model persisted in a sub-group analysis on patients suffering 

from septic shock. Mortality prediction using machine learning models based on ABG values might, 

therefore, be applicable in both patients with sepsis and full-blown septic shock. Further, this approach 

might apply to other ICU admission reasons, but these speculations are beyond the scope of this paper. 

As in other disease entities such as cardiogenic shock, further factors such as coronary status, reperfusion 

therapy, or mechanical support might influence outcomes we focused on septic patients for this study 

(21). 

Currently, physicians integrate clinical judgment, intensive care scores, biomarker concentrations such as 

lactate, as well as gut feeling to predict outcomes in complex diseases (22-25). In this analysis, our model 

outperformed established tools to predict risk in ICU patients, both SOFA score as well as lactate 

concentration at baseline. Whereas the outperformance of lactate comes at a little surprise as the model 

evaluated in this study integrates lactate concentrations, the superior predictability compared to SOFA, 

which consists of information about multiple organ systems as well as other clinical information, is 

noteworthy. Further, our model outperformed a multivariable logistic regression model based on the very 

same variables. This finding is in accordance with previous studies reporting superior outcomes of 

machine learning versus logistic regression (26-29). McWilliams et al. showed that a machine learning 
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algorithm outperformed logistic regression in assessing the readiness for the discharge of ICU patients 

(28). In the study of Meiring et al., logistic regression outperformed an ICU scoring tool, but deep learning 

derived algorithm yielding even higher predictiveness for ICU mortality (33). In another study in patients 

suffering from previous cardiac arrest, again, machine learning enhanced the predictiveness in 

comparison to established scoring tools (26). Pirracchio et al. integrated the variables necessary to 

compute the SAPS II score in a machine learning algorithm, which had a very high accuracy with an AUC 

of 0.94 (27). 

Still, compared to these previous studies, the algorithm in this study is based only on widely available ABG 

values, as compared to other variables unavailable in non-tertiary settings or cost-sensitive environments. 

This fact also deliberates our study from past studies, which showed an earlier detection of sepsis in 

machine learning based models. Those studies mainly considered vital parameters such as heart ratio, 

peripheral oxygen saturation an body temperature, whereas our algorithm only relied on arterial blood 

gas analysis values (29, 30). Future studies may show the potential benefit of combining both algorithms 

and enriching them with more given information on ICUs. Depsite the aBGA based algorithm evaluated in 

this study could, therefore, easily be trained in individual ICUs to mirror the particular local situation and 

help ICU physicians in distinct settings. 

Limitations 

First, this is a retrospective study lacking a randomisation process, prospective screening, and inclusion of 

patients and a control group, therefore this study can only be thesis-generating. Second, no specific 

protocol for the collection of ABG values (e.g., specific timespan and/or clinical situations when to 

document ABG) was applied, which could further dispose of the study to selection bias. On the other 

hand, this mirrors a real-world scenario, where – likely – ABG values are taken based on clinical needs and 

after careful consideration of the ICU staff. Third, we focused on patients admitted to ICU for sepsis: The 

diagnosis of sepsis has, therefore, to be established before this algorithm is applied. Furthermore, the 

retrospective definition and identification of septic patients is not an easy task. We have decided to use 

the method of Angus et al., which is however not uncontroversial. On the other hand, Johnson et al. 

compared several methods for identification of septic patients without detecting relevant differences. We 

therefore consider the method of Angus et al. a pragmatic and established approach (12, 31). Further, the 

results in patients not admitted to ICU might differ. Fourth, patients with missing values were excluded 

from this analysis, which could, again, lead to selection bias, however in clinical practice ABG values are 

readily available in patients with sepsis.  
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Conclusion 

In this study, we evaluated an LSTM-based model on sepsis patients admitted to ICU, where the model 

enhanced the capabilities of ICU mortality prediction after an ICU trial. The model was evaluated and 

validated in a multi-centre approach. Ethical considerations arise, but such models could help physicians 

with the “re-triage” and ultimately, the decision to restrict treatment in patients with a dismal prognosis.
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Appendix A 

  

Table 1     

  Survivors Non-survivors p-value 

Female sex n (%) 3939 (45) 393 (46)  

Age (years) 65.6 ± 16.1 70.1 ± 14.7 <0.01 

Weight (kg) 82.2 ± 26.3 80.4 ± 24.9  <0.01 

O2 Saturation (%) 95.9 ± 6.9 93.5 ± 10.7 <0.01 

PaCO2 (mmHg) 42.9 ± 13.8 42.8 ± 16.7 0.88 

PaO2 (mmHg) 157 ± 115.6 133.2 ± 105.1 <0.01 

pH 7.1 ± 0.6 7.0 ± 0.6 <0.01 

MAP (mmHg) 10.7 ± 4.1 11.4 ± 4.4 <0.01 

Heart Rate (bpm) 94.1 ± 21.4 100.0 ± 22.6 <0.01 

Respiratory Rate 

(bpm) 20.3 ± 7.2 22.5 ± 7.1 <0.01 

Body temperature 

(°C) 36.5 ± 2.7 36.1 ± 3.5 <0.01 

CVP (mmHg) 13.6 ± 22.3 15.8 ± 25.2 0.015 

Creatinine (g/dL) 1.7 ± 2.0 2.2 ± 1.6 <0.01 

Hemoglobin (g/dL) 10.3 ± 2.0 10.3 ± 2.2 0.7 

Lactate (mmol/L) 2.3 ± 1.8 4.4 ± 3.7 <0.01 

Base Excess -1.7 ± 5.9 -5.9 ± 7.8 <0.01 

GCS Total (points) 9.7 ± 4.4 9.3 ± 4.5   <0.01  

Glucose (mg/dL) 155.5 ± 76 155.7 ± 83.1 0.11 

Bicarbonate 

(mmol/L) 22.6 ± 5.7 19.6 ± 6.7 <0.01 

SOFA (points) 7.03 ± 3.6 11.3 ± 4.3 <0.01 

SAPS (points) 21.2 ± 4.9 26.7 ± 5.8 <0.01 

Ventilation n (%)  4161 (73) 425 (80) 0.05 

Vasopressor use n 

(%)  364 (6) 182 (34) 0.02 
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Table 1a Baseline demographics at admission of survivors versus non-survivors (survival between 48 and 96 hours) 

for the single-centre MIMIC-III patient population. 

 

 

Table 2     

  Survivors Non-survivors p-value 

Female sex n (%) 3939 (45) 393 (46)  

Age (years) 65.6 ± 16.1 70.1 ± 14.7 <0.01 

Weight (kg) 82.2 ± 26.3 80.4 ± 24.9 <0.01 

O2 Saturation (%) 96.7 ± 4.5 83.5 ± 23.0  <0.01 

PaCO2 (mmHg) 40.4 ± 9.9 42.0 ± 17.0 0.018 

PaO2 (mmHg) 109.9 ± 52.6 106.9 ± 66.8  <0.01 

pH 7.2 ± 0.5 7.2 ± 0.3 <0.01 

MAP (mmHg) 10.2 ± 4.7 14.2 ± 6.3 <0.01 

Heart Rate (bpm) 87.6 ± 17.4 72.5 ± 44.0 <0.01 

Respiratory Rate 

(bpm) 20.1 ± 6.2 17.6 ± 11.1 <0.01 

Body temperature 

(°C) 36.9 ± 5.7 36.8 ± 17.0 <0.01 

CVP (mmHg) 16.5 ± 35.5 26.1 ± 53.8 0.25 

Creatinine (g/dL) 1.7 ± 2.3 2.3 ± 1.5 <0.01 

Hemoglobin (g/dL) 10.0 ± 1.5 10.0 ± 2.0 0.42 

Lactate (mmol/L) 1.7 ± 1.2 6.0 ± 5.3 <0.01 

Base Excess -0.4 ± 4.6 -7.3 ± 8.5 <0.01 

GCS Total (points) 10.8 ± 3.7 6.6 ± 4.0 <0.01 

Glucose (mg/dL) 138.1 ± 49.2 156.8 ± 88.2 <0.01 

Bicarbonate (mmol/L) 23.5 ± 5.1 18.4 ± 6.8 <0.01 

SOFA (points) 7.03 ± 3.6 11.3 ± 4.3 <0.01 

SAPS (points) 21.2 ± 4.9 26.7 ± 5.8 <0.01 

Ventilation n (%) 4161 (73) 425 (80) 0.05 

Vasopressor use n 

(%) 364 (6) 182 (34) 0.02 
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Table 2a Baseline demographics at 48 hours of survivors versus non-survivors (survival between 48 and 96 hours) 

for the single-centre MIMIC-III patient population. 

 

Table 1     

  Survivors Non-survivors p-value 

Female sex n (%) 1699 (49) 248 (50)  

Age (years) 63.3 ± 15.4 67.8 ± 13.7 <0.01 

Weight (kg) 86.3 ± 30.1 82.4 ± 31.8 <0.01 

O2 Saturation (%) 95.7 ± 5.9 94.6 ± 7.3 <0.01 

PaCO2 (mmHg) 40.7 ± 14.1 37.8 ± 15.2 <0.01 

PaO2 (mmHg) 113 ± 76.7 125.7 ± 84.7 <0.01 

pH 7.3 ± 0.1 7.2 ± 0.2 <0.01 

     MAP (mmHg) 12.5 ± 14.3 12.5 ± 4.6 <0.01 

Heart Rate (bpm) 100.8 ± 22.4 102.4 ± 24.4 0.2 

Respiratory Rate 

(bpm) 23.2 ± 8.4 24.5 ± 7.8 <0.01 

Body temperature 

(°C) 35.5 ± 2.2 34.0 ± 2.2 <0.01 

CVP (mmHg) 14.6 ± 28.4 17.7 ± 40 <0.01 

Creatinine (g/dL) 2.01 ± 1.8 2.5 ± 1.7 <0.01 

Hemoglobin (g/dL) 10.5 ± 2.2 10.2 ± 2.4 <0.01 

Lactate (mmol/L) 2.5 ± 2.3 6.1 ± 4.4 <0.01 

Base Excess -3.4 ± 6.9 -10.5 ± 8.0 <0.01 

GCS Total (points) 11.6 ± 3.6 10.8 ± 4.3 <0.01  

Glucose (mg/dL) 157.1 ± 92 144.1 ± 89 <0.01 

Bicarbonate 

(mmol/L) 21.8 ± 6.5 17 ± 6.4 <0.01 

SOFA (points) 8.05 ± 3.9 11.2 ± 3.7 <0.01 

APACHE (points) 78.6 ± 26.6 110 ± 30 <0.01 

Ventilation n (%)  1530 (44) 292 (60) <0.01 

Vasopressor use n 

(%)  1558 (45) 349 (70) <0.01 
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Table 1b Baseline demographics at admission of survivors versus non-survivors (survival between 48 and 96 hours) 

for the multi-center eICU patient population. 

 

 

Table 2     

  Survivors Non-survivors p-value 

Female sex n (%) 1699 (49) 248 (50)  

Age (years) 63.3 ± 15.4 67.8 ± 13.7 <0.01 

Weight (kg) 86.3 ± 30.1 82.4 ± 31.8 <0.01 

O2 Saturation (%) 96.04 ± 5.0 85.3 ± 19.0  <0.01 

PaCO2 (mmHg) 38.8 ± 10.3 38.2 ± 14.3 0.3 

PaO2 (mmHg) 100 ± 50.5 108.5 ± 72.8  0.3 

pH 7.4 ± 0.1 7.2 ± 0.1 <0.01 

         MAP (mmHg) 11.8 ± 14.0 14.6 ± 5.5 <0.01 

Heart Rate (bpm) 90.5 ± 19 73.7 ± 43.7 <0.01 

Respiratory Rate 

(bpm) 21 ± 7.1 19.6 ± 10.6 0.4 

Body temperature 

(°C) 35.6 ± 7.3 33.4 ± 10.0 <0.01 

CVP (mmHg) 19.5 ± 42.8 38.3 ± 78.6 <0.01 

Creatinine (g/dL) 1.7 ± 1.5 2.5 ± 1.5 <0.01 

Hemoglobin (g/dL) 10.0 ± 1.8 9.6 ± 2.1 <0.01 

Lactate (mmol/L) 2.0 ± 1.8 7.9 ± 5.8 <0.01 

Base Excess -2.0 ± 5.8 -10.5 ± 8.2 <0.01 

GCS Total (points) 12.0 ± 3.3 7.5 ± 4.1 <0.01 

Glucose (mg/dL) 144.5 ± 59.3 146.6 ± 78.8 0.5 

Bicarbonate (mmol/L) 23.5 ± 5.1 16.4 ± 6.6 <0.01 

SOFA (points) 8.05 ± 3.9 11.2 ± 3.7 <0.01 

APACHE (points) 78.6 ± 26.6 110 ± 30 <0.01 

Ventilation n (%) 1530 (44) 292 (60) <0.01 

Vasopressor use n 

(%) 1558 (45) 349 (70) <0.01 
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Table 2b Baseline demographics at 48 hours of survivors versus non-survivors (survival between 48 and 96 hours)  

for the multi-center eICU patient population. 


