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In developing countries, data gaps are common and lead to uncertainties in land cover 

change analysis. This study demonstrates how to mitigate uncertainties in modeling 

land change in the Ci Kapundung upper water catchment area by comparing the 

outcomes of two simulation phases. A conventional cellular automata (CA)–Markov 

model was complemented with a multilayer perceptron (MLP) to project future land 

cover maps in the study area. The CA–Markov–MLP model results in high uncertainties 

in forested sites where a data gap is apparent in the input data (land cover maps and 

driver variables) and parameters. The results show that the model accuracy is improved 

from 47.90% in the first phase to 81.36% in the second phase. Both first and second 

phases integrate six demographic-economic and environmental drivers in the modeling, 

but the second phase also incorporates an updating and backdating analysis to revise the 

base-maps. This study suggests that uncertainties can be mitigated by linking such base-

map revision process with the updating and backdating analyses using remote sensing 

datasets retrieved at different times.  

Keywords: land cover change; cellular automata; CA–Markov; multilayer perceptron; 

uncertainty 

Introduction 

Land cover change is a dynamic process (van Vliet et al. 2016) that is influenced by 

endogenous and exogenous variables (Baker 1989). The alteration can be analyzed using 

models (Verburg et al. 2004), where results can be affected by uncertainties in input data and 

model parameters (Verburg et al. 2013, Brown et al. 2014). According to Refsgaard et al. 

(2007), uncertainty refers to the degree of confidence in the modeling outcomes, as model 

accuracy is highly dependent on the quality of the input data. Methods to assess model 
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uncertainties include, but are not limited to; expert elicitation, Monte Carlo analysis, scenario 

analysis, sensitivity analysis, and an uncertainty matrix (Refsgaard et al. 2007).  

Land modeling can use different approaches and assumptions. Brown et al. (2014) 

proposed six categories of land change modeling approaches: machine learning, statistical, 

cellular, agent-based, sector-based economic, spatially disaggregated economic, and hybrid 

approaches. Other notable models include Markov chains and dynamic system models (Dang 

and Kawasaki 2016). Cellular automata (CA) perform well in the simulations of ecological 

and biogeophysical phenomena. However, this model is not always suitable for simulating 

land changes when human decisions are integrated into the models (Parker et al. 2003). 

Markov modeling, on the other hand, is an approach to simulate land changes based on 

historical trends (Brown et al. 2014) that excludes the spatial arrangement in the modeling 

process (Ghosh et al. 2017). The transition probabilities over time are calculated (Brown et al. 

2014) and but are assumed to be stationary in most applications of the Markov chain (Baker 

1989).  

In 1995, Pijanowski first coupled artificial neural networks (ANNs) in machine 

learning with geographic information system (GIS) to simulate land-use alteration 

(Pijanowski et al. 2005). The multilayer perceptron (MLP) model is an example of one based 

on ANN (Gallant 1993). Machine learning algorithms generate nonlinear relationships 

between the patterns of land cover and explanatory variables (i.e., variables that cause the 

land cover change) in an iterative process (Pijanowski et al. 2002). In contrast to the linear 

regression model, machine learning does not require specific assumptions with mathematical 

equations to show the relationships between two patterns (Brown et al. 2014).  

Uncertainties in land change modeling lead to difficulties in predicting changes using 

traditional methods (Ghosh et al. 2017). The integration of different models was proposed to 



[Type here] 

 

simulate the complexity of land changes (Dang and Kawasaki, 2016). Hybrid modeling 

integrates different conceptual frameworks, theories, and empirical observations into a 

system. It offers an opportunity for modelers to select modeling procedures based on practical 

requirements (Brown et al. 2014).  

Meta-studies on twenty existing research projects that employed the integrated CA–

Markov–MLP model (2011-2020) were identified from the ISI Web of Science. Four of these 

studies were conducted in forested sites (Mirici et al. 2018, Nery et al. 2019, Yang et al. 

2019, Gaur et al. 2020), but only one of them addressed the uncertainties in its modeling 

(Nery et al. 2019). Mirici et al. (2018) and Yang et al. (2019) suggest that an MLP in a hybrid 

land change model cannot produce a conversion potential for all types of landscapes in their 

case study areas. Gaur et al. 2020 concluded that MLP–Markov outperformed other models, 

such as linear regression–Markov, linear regression–CA–Markov, and MLP–CA–Markov, 

when these were utilized to simulate land cover maps in eastern India, but this finding cannot 

necessarily be generalized to other case studies. Uncertainties in the CA–Markov–MLP model 

were identified in a study in Australia (Nery et al. 2019) using the approach proposed by 

Pontius and Petrova (2010). However, there is no further explanation of how uncertainties 

have been mitigated to improve model accuracy.  

This research aims to mitigate the uncertainties in the CA–Markov–MLP land change 

model using a case study based on a largely forested area within a tropical region. Such 

regions are challenging for land-change models, due to  limited high-quality remote sensing 

data because of constant cloud cover and insufficient  spatial data being available from local 

authorities. Thus the methodology presented in this research can be implemented in other 

studies with similar issues. Two main research questions are assessed in this paper: (1) What 

are the factors that led to uncertainties in the land change modeling of the study area? (2) How 

can the accuracy of the land change model be improved?  
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Case study 

The case study is located in the Ci Kapundung upper water catchment area (102.86 km2) in 

Bandung Basin, Indonesia (Figure 1). Six land cover types were distinguished during field 

surveys: developed areas, bare or cultivated land, mixed vegetation, conifers, broad-leaved 

vegetation, and water bodies.  

 

Figure 1. The location of the study area - Bandung Basin in Indonesia (left), and land use 

types from a natural color composite image via satellite imagery of the Ci Kapundung upper 

water catchment area in 2015 (right). (Sources: AIRBUS DS 2015, BIG, OpenStreetMap, 

municipality government of Bandung City, Bandung Regency, and West Bandung Regency, 

Esri, USGS, NOAA) 

Materials and methods 

This study compares the results from two phases of land change modeling to show how 

uncertainties in the modeling of the case study area are identified and mitigated (Figure 2). 

High-resolution satellite imagery (SPOT 6) was used in the first phase of the study (LCM 1). 

Due to limited access to the data, only the available SPOT images from 2013 and 2015 were 

used to simulate the land cover composition and distribution in 2017. Based on the model 

validation outcomes, the second phase (LCM 2) was performed using base maps, which were 

developed from satellite imagery retrieved over a longer period of time using updating and 

backdating methods.  

 

Figure 2. The two modeling phases employed for the case study area showing the workflow 

patterns 
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Land cover map development 

Remote sensing data 

SPOT images (6 m spatial resolution) were purchased from Airbus Defence and Space. 

Meanwhile, the Landsat imagery (30 m spatial resolution) was retrieved from the United 

States Geological Survey (USGS, www.usgs.gov/centers/eros) (Table 1). 

Table 1 Remote sensing data used in the study  

Auxiliary data 

Data retrieved from field surveys, a forest map from Perhutani (a state-owned forest 

enterprise in Indonesia), and a visual interpretation of a World Imagery base map in ArcGIS 

(e.g., WorldView-2 and WorldView-3 imagery with 0.5 m and 0.31 m resolutions, 

respectively) were also used to develop and to validate the land cover maps. Data from 

OpenStreetMap were used to accurately map street networks in the case study area.  

Image preprocessing and classification  

Image preprocessing was conducted by performing an object masking procedure for cloud, 

cloud shadows, and water bodies and corrections on the satellite images. An object-based 

image analysis (OBIA) was used to reduce the “salt-and-pepper” effect, which appears in a 

map produced by the traditional pixel-based classification (Weih and Riggan 2010). 

Maximum likelihood (ML) was selected as the classifier in the classification process because 

of its robustness in most image-processing software (Lu and Weng 2007).  

The updating and backdating approaches by Linke et al. (2009) were used to develop 

maps with multi-spatial resolutions using the SPOT and Landsat imageries in LCM 2 (Figure 

3). A series of assumptions was applied, including the use of 2015 map from SPOT imagery 

as a base map due to the least cloud coverage compared with the 2013 and 2017 SPOT images 
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(Table 1), and the premise that unbuilt areas in later years were not built in previous years 

(Toure et al. 2018). In this study, the 2013 and 2015 SPOT images were used to develop a 

land cover map in circa 2015 (c.2015). The circa 2017 (c.2017) map was generated based on 

the 2015 map (updating process).  

The information on the land cover in 2015 was also used to develop the circa 2000 

(c.2000) map using the backdating method (Figure 3). First, the undeveloped areas in 2015 

were assigned as unbuilt areas in c.2000. The remaining unbuilt area in c.2000 was defined 

based on the results of the normalized difference vegetation index (NDVI) analysis, which 

separate the non-vegetation classes (e.g., developed areas and bare land) from the vegetation 

class. Second, the OBIA was performed to identify two land cover types in the case study area 

(e.g., bare and cultivated lands and vegetation/woodland).  

The map accuracy was calculated using five hundred accuracy ground control points 

assigned and randomly distributed within each class (Figure 4), in which the number of points 

was proportional to its relative area. Map validation was conducted using the mentioned 

auxiliary data because it was not feasible to survey several sites in the case study areas due to 

the steep slopes and lack of access. The confusion matrices were computed in all maps to 

derive an overall accuracy and a Kappa index of agreement between the classified land cover 

types and ground reference data.  

 

Figure 3. Backdating and updating processes of land cover map development 

 

Figure 4 (a–b). Ground control points for the c.2015 and c.2017 land cover maps in LCM 2 
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Land change modeling 

Modeling structure 

In this study, a predictive land change simulation (Bӧrjeson et al. 2006) was conducted using 

the Land Change Modeler (LCM) module from Terrset. LCM applies an integrated CA and 

Markov model (CA–Markov) and an MLP neural network. Due to the small area, water 

bodies were excluded from the modeling. A constraint map was used in LCM to restrict future 

developments in forests and protected areas. The model was validated by comparing the 2017 

land cover maps developed from satellite imagery with the simulated maps in the same year. 

A comparison between the observed and simulated land cover in LCM 2  within two years 

(e.g., 2015–2017) is sufficient for model validation (Verburg et al. 2004). Confusion matrices 

were used to assess model accuracy.  

Environmental, demographic, and economic drivers  

Six driver variables were assessed and used in the land change modeling (Figure 5). The six 

variables were divided into two groups, following the driving force categorization from Geist 

and Lambin (2002) and based on the origin of drivers. The first group is the economic and 

demographic drivers, which consist of “likelihood to change” (i.e., the probability of land 

cover in particular cells that would change based on the historical transitions), “distance from 

disturbance”, and “population density”. The first and the second drivers, which can be 

associated with urbanization, is an economic factor, whereas population density is a 

demographic factor (Geist and Lambin 2002). The second group contains the environmental 

drivers, including “elevation,” “slopes,” and “distance from streams”. 

Maps with elevation and the percentages of slope data were created from the digital 

elevation model (DEM) of the Indonesian Geospatial Agency. The raster was resampled from 

8.34 m to 6 m to match the resolution of the land cover maps. River networks were generated 
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using the hydrology toolbox in ArcGIS 10.7.1 based on DEM. Maps showing the distance 

from disturbance were derived from the existing land cover map in 2013 and c.2000 for LCM 

1 and LCM 2, respectively, whereas the likelihood of land cover change was computed using 

all base maps. The spatial distribution of the population density in 2015 was retrieved from 

WorldPop (2014). The image shows the number of people per pixel (ppp) adjusted from the 

UN population division estimates. It has a resolution of 100 m, which was resampled to 6 m.  

 

Figure 5. Maps showing “drivers of change” in the study area: (a) “likelihood to change” 

(2013–2015); (b) “distance from disturbance” (2013); (c) “likelihood to change” (2000–

2015); (d) “distance from disturbance” (2000); (e) “population density” (2015); (f) 

“elevation”; (g) “slopes”; (h) “distance from streams” 

Identification of uncertainty elements  

In this study, uncertainty elements were identified in the land cover maps by referring to 

Foody (2002): sampling design, image processing, ground or reference data, spatial 

distribution error, and mixed pixels. Uncertainty factors in land change modeling were also 

conducted by assessing potential errors which affect the model accuracy.  

Results 

Results from the land cover map development  

Figures 6(a–c) show the results from the OBIA for the individual 2013, 2015, and 2017 land 

cover maps used in LCM 1 with overall accuracies of 78.64%, 87.40%, and 86.40%, 

respectively. The outcome from the NDVI analysis shows the occurrence of mixed pixels 

when it was overlaid with higher-resolution images due to the lower spatial resolution of 

Landsat. The mixed pixels can also be observed in cloud and cloud shadow masking 

processes which cause such pixels cannot be directly masked. The c.2015 and c.2017 maps 

for LCM 2 have overall accuracies of 87.42% and 81.00%, respectively (Figures 6d-f). No 
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accuracy assessment was conducted with the c.2000 land cover map because no ground 

reference data could be retrieved. 

 

Figure 6 (a–c) OBIA results for the individual land cover maps in 2013, 2015, and 2017; (d–f) 

OBIA results for land cover maps in c.2000, c.2015, and c.2017. 

Results from the land change modeling  

Transition probability matrices  

Table 2 shows the transition probability matrix (2013–2015) to simulate the 2017 land cover 

map in LCM 1. The transition probability matrix from 2000 to 2015 for projecting the land 

cover composition and distribution in 2017 in LCM 2 is presented in Table 3.  

Table 2 Transition probability matrix (2013–2015) to predict the 2017 map in LCM 1 

Table 3 Transition probability matrix (2000–2015) to predict the 2017 map in LCM 2 

Prediction and validation of 2017 land cover maps 

Several iterations of MLP were performed to generate transition potential maps using the 

combinations of driver variables in the two modeling phases (LCM 1 and LCM 2). The results 

indicate how specific drivers influence the model outputs (Table 4).   

Table 4 MLP and model accuracies 

 

 

The predicted 2017 maps with the environmental drivers in LCM 1 and demographic-

economic drivers in LCM 2 show the different compositions and distributions of the projected 

land cover (Figures 7 and 8). More developed areas are expected to occur in 2017 in LCM 1 

(23.10%) than in LCM 2 (18.09%). The newly developed areas are mostly located at the 

center of the watershed.  
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Figure 7 (a) Potential transition map in 2017; (b) projected 2017 map based on the status quo 

scenario (LCM 1) 

 

Figure 8 (a) Potential transition map in 2017; (b) projected 2017 map based on the status quo 

scenario (LCM 2) 

Factors leading to uncertainties in the land change modeling 

The effect of uncertainties in the land cover maps used in the model can be observed from the 

transition probability matrix (2013–2015) in LCM 1 (Table 2) and the validation results, 

which indicate the fluctuation of land cover change in the area. For example, the probability 

of bare lands and woodlands being converted to developed areas was 0.6181. At the same 

time, developed areas also changed to other classes (0.7669). The transition probability of 

each land cover in LCM 2 fluctuated less than the transition in LCM 1. However, there is a 

probability that an error still occurred in LCM 2, as indicated in the matrix in Table 3. The 

images of the driver variables used in the MLP were retrieved from various sources, such as 

the Indonesian Geospatial Agency and WorldPop, and were developed with uncertainties 

embedded in every step of the process. The parameters used in the model (e.g. the 

combinations of drivers) also arguably affected the model accuracy (Table 4).  

Discussion 

This study demonstrates the value of applying both backdating and updating approaches 

(Linke et al. 2009) to mitigate data gaps found in satellite imagery for image classification. 

This approach was applied only to areas where land change was located, thus improving the 

efficiency during analysis (Toure et al. 2018). LCM 2 was conducted over a more extended 

period (2000–2015) than in LCM 1 to respond to the high fluctuations of land cover 

transitions within 2013–2015, including the alteration of forest types (Table 2), which resulted 

in a low model accuracy for LCM 1 (less than 53%). Nevertheless, an error might still occur 
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from the different numbers of pixels in the c.2000 and c.2015 maps and the map projection 

process in Terrset.  

Another essential factor affecting the modeling outcomes is the selection of the drivers 

included in the MLP process. Different sets of drivers created distinct, unique transition 

potential maps, which in turn generate land cover maps with different accuracies (Table 4). 

The model accuracy can be improved from 47.90% in LCM 1 to 81.36% in LCM 2 with all 

six drivers being employed. It is suggested that modeling with base maps with relatively high 

accuracies in LCM 1 does not automatically produce outputs with high modeling accuracy. A 

similar tendency was shown in the research conducted by Zubair and Ji (2015) to assess the 

accuracy of LCM in Kansas, USA (1992–2003). The base maps were developed using the ML 

and MLP classifiers, with the highest accuracy achieved when using ML on the 2003 map 

(93.60%). However, the model with base maps using the ML classifier had a lower accuracy 

(74.80%) than when using the MLP classifier (79.20%). Although this research suggests that 

different classifiers influence model accuracy, it also demonstrates that uncertainty occurs 

even when the two sets of base maps were developed using only a single classifier (ML). 

Thus, an analysis of the transition potential for each land cover type is a crucial step in 

identifying uncertainties in modeling. The importance of mitigating the uncertainties is also 

evident when the outcomes from land change modeling are used as input data for other 

models, e.g. hydrological modeling (Rani et al. 2019). 

Conclusions 

This study aims to mitigate uncertainties in the CA–Markov–MLP land change modeling of 

the Ci Kapundung upper water catchment area. The results show that the sources of 

uncertainties originate from the input data and model parameters. Modeling using highly 

accurate base maps from individual remote sensing data could potentially generate outputs 
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with low accuracy. Therefore, it is necessary to reduce the differences found in maps by 

integrating the development process with both updating and backdating analyses. This 

research fills the gap in the study of mitigating uncertainty in CA–Markov–MLP modeling in 

those locations largely covered by forest. This research provides a framework for other 

similar studies for modeling land change in the upland area of a tropical region. Another issue 

is the limited spatial data usually found in developing countries. Only six drivers were 

included in the modeling, and this drawback has become the key limitation of this study. 

Further research could integrate a socioeconomic perspective into the analysis to include a 

broader perspective of drivers influencing land change, thus improving model accuracy 

(Overmars and Verburg 2005).  
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