
This is a repository copy of On the Power Consumption of Serverless Functions: An
Evaluation of OpenFaaS.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/193714/

Version: Accepted Version

Proceedings Paper:
Alhindi, A, Djemame, K orcid.org/0000-0001-5811-5263 and Banaie Heravan, F (2023) On
the Power Consumption of Serverless Functions: An Evaluation of OpenFaaS. In: 2022
IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC). 2022
IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC), 06-09
Dec 2022, Vancouver, Washington, USA. IEEE , pp. 366-371. ISBN 978-1-6654-6087-3

https://doi.org/10.1109/UCC56403.2022.00064

© 2022 Crown. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

On the Power Consumption of Serverless Functions:

An Evaluation of OpenFaaS

Abdulaziz Alhindi

School of Computing, University of Leeds, UK

Qassim University, KSA

sc20aaia@leeds.ac.uk

Karim Djemame, Fatemeh Banaie Heravan

School of Computing, University of Leeds, UK

{K.Djemame, F.BanaieHeravan}@leeds.ac.uk

Abstract— The rapid growth in cloud-based technologies

has introduced the need for very large data centres to meet the

increasing demand for cloud services. One of the main

challenges in managing these data centres is the sharp increase

of power consumption. Research has therefore tackled the issue

of power/energy efficiency in cloud data centres. Serverless

computing is a cloud computing execution model that gives

software developers the option to deploy their code without the

need to configure servers, operating systems or runtime

libraries, thus allowing them to invest less effort and capital in

infrastructure management. This paper investigates whether

serverless computing has the ability to support power

efficiency. To this aim, a number of experiments are conducted

to compare the power consumption of a serverless platform,

OpenFaaS, against Docker containers with the consideration of

applications and benchmarks. The experimental results show

that OpenFaaS is more power efficient than Docker when the

processor and memory are under stress.

Keywords—Serverless, Power Efficiency, OpenFaaS,

Docker, Container, Power Consumption.

I. INTRODUCTION

The wide adoption of cloud services and cloud-based
technologies like containers and microservices in the IT
world has encouraged the emergence of the new execution
model, serverless computing or FaaS (Function as a Service).
This model exploits container-based virtualization in order to
provide environments that enable software developers to
deploy their applications and is an ideal solution to build and
optimize any Internet of Things (IoT) operations with zero
infrastructure and maintenance costs and little-to-no
operating expense [1]. The high level of abstraction in
serverless platforms is a key feature, which means that the
applications are decomposed into fine-grained functions and
then deployed and executed with zero control from the
developers [2]. Furthermore, in contrast to the rest of cloud
services, serverless functions are executed only when they
are called, which eliminates the cost of allocating resources
[1]. Therefore, serverless computing is viewed as a
promising solution to increasing the efficient use of cloud
resources and consumption of power, as well as reducing the
cost of using cloud services, compared to Virtual Machines
(VM) and containers.

The fast development of cloud services has led to the
rapid growth in building large data centres. The spending on
data centres increased by 35% to reach 41.8 billion dollars in
the first quarter of 2021, compared to roughly 30 billion
dollars in the same quarter of 2020 [3]. One of the main
challenges these large data centres need to tackle is the
increasing amount of power consumed by the infrastructure.
In 2016, data centres in the United States consumed more
than 90 billion kilowatt-hour (KWh) of electricity. Likewise,

power consumption of data centres around the world
amounted to about 416 terawatt-hour (TWh) in 2015, or
roughly 3% of all electricity generated on the planet [4,22].
This power consumption is expected to sharply increase to
more than 3300 TWh in 2025, compared to 2010 when this
figure was close to 189 TWh [5].

The IT equipment, which refers to the equipment used to
process, route, store or manage data (compute, storage,
network resources) account for 50% of the power consumed
in one data centre where servers may consume 40% of the IT
equipment’s share [6]. Therefore, improving the power
consumption of the cloud services running on such
infrastructures can lead to a significant reduction in the
power consumed by data centres.

The primary purpose of this paper is to evaluate the
efficiency of the power consumption of one of the well-
known serverless platforms, OpenFaaS [24]. The
examination is based on the comparison of OpenFaaS and
Docker containers power consumption with the consideration
of two applications that stress either the Central Processing
Unit (CPU) or the Random Access Memory (RAM). The
comparison is conducted on two different architectures : 1)
the two tested platforms, OpenFaaS and Docker, run as
stand-alone platforms. 2) the two tested platforms are
deployed on Kubernetes. The main difference between the
two architectures is that Kubernetes allows OpenFaaS
functions and Docker containers auto-scaling, which lets us
examine the power efficiency of OpenFaaS in such setting.

The contributions of this paper are:

1. the identification of a relevant benchmark for
evaluating the power consumption of OpenFaaS
as a common serverless platform;

2. a quantitative analysis of the power consumption
of OpenFaaS considering a defined benchmark;

3. a set of recommendations for effective adoption
of the serverless computing for energy efficiency.

II. RELATED WORK

There have been a few research papers studying the
power efficiency of serverless computing, as this field of
research is still new and serverless technology is rapidly
changing. The work by Xuechao Jia and Laiping Zhao
proposes a solution called RAFE [7]. This solution presents a
new mechanism for allocating the resources required by
serverless functions in order to minimize power
consumption. The study shows that this solution can reduce
the power consumption of serverless functions by a
noticeable per cent, 21.2%. They found that serverless
platforms currently do not take power consumption as an

effective factor in making the decision of resource allocation.
A new term named power fungibility is therefore introduced
which means it is possible to reduce the power consumption
of serverless functions without affecting the required latency.
This study confirms that serverless functions always go
through three stages in their life cycle: startup, runtime, and
idle. So, if allocating resources in each one of these stages is
based on power-aware decisions, power consumption of
serverless functions could be reduced.

To achieve their goal, the authors investigated the power
consumption of one of the common serverless platforms,
OpenFaaS, and they choose Kubernetes as the platform for
managing and orchestrating the functions’ containers. They
concluded that the power consumed in the first stage, startup,
is mainly by a number of operations for getting the functions
ready to run such as loading the containers’ images and the
required libraries. The second stage, runtime, is divided into
two parts: the power consumed by the platform, OpenFaaS,
and the power consumed by the running functions. In this
stage, the results demonstrate that the components of
OpenFaaS consume a tiny amount of power compared with
the functions. Also, the authors confirmed that the largest
amount of the energy consumed by the functions was during
the second stage. The final stage, idle, when the functions are
alive and waiting for a request to execute, was found to
consume much less power compared to the other two stages.

This paper focuses on analysing the power consumption
during the second stage of OpenFaaS functions.

The measurement of power consumption can be obtained
by using several methods. One of these methods is to use
hardware devices known as Wattmeters, which is the method
used in [8] to measure the power consumption of VMs.
However, this method is not applicable in cloud systems due
to their shared infrastructure [9]. On the other hand, there are
several tools developed for measuring power consumption
such as PowerTop [12] and Powerstat [10]. Powerstat is
open-source software designed for measuring power
consumption by using the Advanced Configuration and
Power Interface (ACPI) to read the amount of power
consumed from the machine’s battery [10]. This tool was
used in [11] to measure the power consumption of a laptop
running Linux OS. Similarly, PowerTop is an open-source
software measuring power consumption by either reading the
battery information, or using a mathematical model to
estimate the power consumed by each process [12]. This tool
is the chosen one in [9] for measuring the power
consumption of running processes on Linux OS. In this
paper, we chose Powerstat to measure power consumption in
our experiments as it completely depends on the readings
taken from the machine’s battery, which makes the accuracy
of the measured power consumption close to the accuracy of
Wattmeters. Moreover, this tool is simple to use and its
results are more readable compared with PowerTop.

III. OPENFAAS ARCHITECTURE

OpenFaaS is an open-source serverless framework under
an independent project managed and hosted by the company
OpenFaaS Ltd. Each function deployed on this platform is
created and managed as a immutable container. This platform
consists of several basic components such as a gateway,
auto-scaling system, and invocation tools, see Fig. 1.
OpenFaaS can be deployed on Kubernetes or on a bare-metal
environment by using faasd which is an alternative platform
enabling OpenFaaS to manage functions without Kubernetes.

Fig. 1. OpenFaaS Architecture

Faasd uses Containerd [27] to containerize functions while
Docker is the container runtime used with Kubernetes [24].

Faasd is developed and maintained by the OpenFaaS
project and it is designed to run on a single machine
equipped with modest hardware. However, this platform
cannot scale functions and the maximum number of each
function’s replicas is one [24]. The main purpose of creating
faasd is similar to the purpose of creating the “Standalone”
version of OpenWhisk [24,25].

Although OpenFaaS functions on Kubernetes share the
same structure with the other side in the comparison, Docker,
the difference comes from the sophisticated way that
OpenFaaS follows in orchestrating functions’ containers. On
the other hand, Docker containers on Kubernetes are scaled
and managed by the load balancer component of Kubernetes.

IV. EXPERIMENTAL DESIGN

The goal of the experiment is to measure the power
consumption of OpenFaaS and Docker containers during the
execution of two chosen applications. The collected power
measurements will be used to evaluate the efficiency in
consuming power of the two tested platforms.

A. System Architecture

The architecture of the experiment consists of three
components and the whole experiment was conducted on a
single computer, as shown in Fig. 2.

1) The Tested Platforms: are OpenFaaS and Docker,

each one of which is installed inside a different VM. The

two benchmarking applications, see section IV.B, are also

deployed on each platform. The tested platforms were run

inside VMs to provide the flexibility for supporting various

scenarios in a similar environment to cloud systems.

VirtualBox [13] is the hypervisor used in the experiment.

2) The Power Measurement Tool: Powerstat was run

outside the VMs to measure the power consumed by the

physical machine hosting the VMs as it needs access to the

kernel of the main Operating System (OS).

3) The Workload Tool: Jmeter [14] was run outside the

VMs in order to generate workload for the tested platforms

in the form of HTTP requests.

Fig. 2. The experiment's components

B. The Benchmarking Applications

Power consumption is usually caused by using different
resources such as CPU, memory, storage and networks. In a
computer system, the CPU is considered to be the first
consumer of power and is followed by the memory [15]. The
CPU and the memory are therefore the most important
resources to be evaluated in terms of performance in the
context of applications execution [16]. Consequently, they
are also important resources to consider when measuring
power consumption.

In the experiment, two different benchmarking
applications, written in Python, are chosen to stress the CPU
and RAM. Both of these applications act as a simple web
server to process the workload generated as HTTP requests
by Jmeter.

1) Matrices Multiplication: This benchmarking

application consists of the multiplication of two square

matrices with a size of 5000. The application is used to

stress the memory more than any other hardware component

[16]. There are two versions of this benchmark that were

written to run as an OpenFaaS function and a Docker

container, the source code of which can be found in [23]

under the names “Matrices-Function-Benchmark.zip” and

“Matrices-Docker-Benchmark.py”.

2) Prime Numbers Generation: This benchmarking

application is designed to generate a list of prime numbers

with a size of 1500, which, in turn, stresses the CPU more

than other resources. This application is extensively used in

the literature to evaluate the performance of the CPU; the

code is just a simple loop searching for prime numbers [17].

There are two versions of this benchmark that were written

to run as an OpenFaaS function and a Docker container, the

source code of which can be found in [23] under the names

“PrimeNumbers-Function-Benchmark.zip” and

“PrimeNumbers-Docker-Benchmark.py”.

C. Scenarios

There are four scenarios in the experiment, each one of
which begins with a waiting time of 120 seconds that is
required by Powerstat to let the physical machine settle
down. Powerstat will then start measuring the power
consumed by the physical machine while Jmeter generates
workload onto one of the tested platforms, which lasts for
240 seconds. This period of time is defined as testing time.
During this time, Jmeter generates intensive workload by
performing three load tests to ensure more accurate results,
with 10 seconds of waiting before starting each one. A Bash
script is used to automate the experiments, e.g. running
Powerstat and Jmeter tools, parameters setting and collection
of results. The source code of this script can be found in [23]
under the name of “powerstat-jmeter.bash”.

The four scenarios, shown in Fig. 3, are described next:

1) Docker containers: The goal of this scenario is to

measure the power consumption of a Docker container

running one of the two benchmarking applications, so each

one of these applications is run inside a different container.

This scenario was conducted on a different VM.

2) OpenFaaS with faasd: In this scenario, the power

consumption of OpenFaaS running as a stand-alone platform

is measured while it is under a given load. OpenFaaS with

faasd was installed in a different VM with two OpenFaaS

Fig. 3. The four scenarios

functions created to run the two benchmarking applications,

each function running one application.

3) OpenFaaS on Kubernetes: This scenario aims to

measure the power consumed by OpenFaaS deployed on

Kubernetes instead. OpenFaaS was installed on Kubernetes

in a different VM with two OpenFaaS functions created for

the two benchmarking applications.

4) Docker containers on Kubernetes: In this scenario,

two Docker containers were deployed on Kubernetes with

the auto-scaling feature in a different VM. Enabling this

feature aims to make this scenario comparable with the

previous one because OpenFaaS with faasd does not scale

the deployed functions but OpenFaaS on Kubernetes does.

Two Kubernetes components are essential for this feature

and were installed on the VM of this scenario. The first one

is Kubernetes Metrics Server that provides the resources

usage of containers, such as the CPU usage, to the controller

HorizontalpodAutoscaler [18]. The second one is the load

balancer which is a Kubernetes service, named

LoadBalancer, whose task is to balance the coming

workload between the pods of the targeted application [19].

The LoadBalancer implementation MetalLB was used in the

experiment as it offers network load balancing on

Kubernetes clusters running on bare-metal environments

[20]. The two YAML files for deploying the two

benchmarking applications in this scenario can be found in

[23] under the names of “new-Matrices-Benchmark-

Kubernetes.yaml” and “new-PrimeNumbers-Benchmark-

Kubernetes.yaml”.

D. Workload

Jmeter generates workload using a user-defined plan that
contains the following parameters: number of threads (users)
that is set to 5, ramp-Up period that is set to 0, and loop
count which is set to 40. The values of these parameters were
chosen based on the limitations of the physical machine’s
hardware, as increasing these values will cause the tested
platforms to run out of the memory. Moreover, each HTTP
request contains an HTTP parameter defining the size of
either the matrices or the list of the prime numbers. In terms
of the workload sent to the matrices multiplication
application, the value of the HTTP parameter is 5000, while
it is 1500 in case of the prime numbers generation
application.

E. Evaluation Metrics

The following metrics are considered for measuring
power consumption:

1) Power Consumption (P): refers to the average
power consumption of the physical machine during testing
time. This metric is calculated as:

P=

∑
1

T

Watte

T

T refers to the length of testing time which is 240

seconds, while Watte refers to the Watt value taken in every

second sampling during testing time.

2) Idle Power (I): refers to the average power
consumption of the physical machine while the VM of the
tested platform is idle.

I=

∑
1

T

Watt i

T

T is equivalent to the length of testing time, 240 seconds,
because this metric is for showing the VM’s idle power

before starting the load tests. Watti refers to the Watt value

taken in every second sampling while the VM is idle.

3) Estimated Power Consumption (EP): refers to the
average power consumption of the tested platform.

EP=P−I

This metric could show the average of the actual power
consumed by the tested platform.

4) Execution time (E): means the period of time a
tested platform spent on completing all three load tests
without considering the idle time. This metric is obtained by
monitoring the CPU to measure the time the CPU spends in
processing the incoming requests during the load tests.

5) Energy (N): refers to the estimated energy
consumed by a tested platform.

N=∑
1

T

Watte−Watt i

T refers to the length of testing time, 240 seconds.

F. Implementation

The experiment was conducted on a laptop with the
following hardware specifications: the CPU is AMD Ryzen 7
5800h with 8 cores and base clock 3.2GHz, the memory is 16
GB, the main OS is Ubuntu 22.04 LTS, and the storage is
512 GB SSD.

At the beginning of the implementation of each scenario,
the VM’s idle power is recorded. The results of the
implementation of each scenario were then collected and
saved as three CSV files containing: 1) the idle power of the
scenario’s VM, 2) the power consumption while the
workload generated by Jmeter was sent to the matrices
multiplication application, and 3) the power consumption
while the Jmeter workload was sent to the prime numbers
generation application. The results of the experiments are
analysed and discussed next.

V. RESULTS AND DISCUSSION

A. Idle Power

In terms of idle power, the physical machine consumed
on average 14.5 Watts before running any VM. The idle

power of the VMs in the four scenarios are: 17.8, 20.2, 20.5,
and 22.8 Watts respectively, as shown in Fig. 4.

B. Measurement Results

The final results, shown in Fig. 5, demonstrate that
OpenFaaS with faasd is 12% more efficient in consuming
power than Docker containers when running the
benchmarking application that puts intensive loads on the
RAM. However, running the same benchmarking
application, Docker containers are 17% more efficient when
both of the tested platforms are deployed on Kubernetes with
the auto-scaling feature.

The OpenFaaS functions were scaled up to 5 replicas
and then down to 1 replica twice during the testing time,
while the Docker containers were scaled up to 5 replicas and
never scaled down until the end of the testing time. As
Jmeter performed three load tests, Fig. 5 shows the average
of execution time for each load test.

On the other hand, OpenFaaS is significantly more
efficient in consuming power when the benchmarking
application puts high loads on the CPU. As stand-alone
platform, OpenFaaS with faasd is 58% more efficient in
consuming power than Docker when running this
application. Moreover, when both of the tested platforms
were deployed on Kubernetes, OpenFaaS was 27% more
efficient even though the OpenFaaS functions were scaled up
to 5 replicas and then scaled down to 1 replica during the
testing time while the Docker containers were scaled up to 5
replicas and kept this number until the end of the experiment.

C. Findings

Fig. 6a shows that stand-alone OpenFaaS consumed less
power and far less time than the Docker container to
complete all the three load tests of the multiplying matrices
application that stresses the RAM. On the other hand, Fig. 6b
shows that Docker containers on Kubernetes consumed less
power and less time to complete the three load tests of this
benchmarking application, but there are other factors that
need attention. The OpenFaaS functions were scaled up and
down twice during completion of the load tests, while the
container’s replicas were kept alive until the end of the
execution time. Moreover, Fig. 6b shows that Docker
containers spent a longer time on the first load test compared
with the next two tests because increasing the replicas of the
Docker container from 1 to 5 took place in this period of
time. In contrast, the periods of time spent by OpenFaaS on
Kubernetes to complete the three load tests seem close to
each other in their lengths. Therefore, it can be concluded
that OpenFaaS was more efficient in using resources and
faster in scaling than Docker containers, which could
increase the efficiency in consuming power in cloud systems
where a big number of user applications run on one server.

In terms of the other benchmarking application that
stresses the CPU, Fig. 7a demonstrates that OpenFaaS was
remarkably more efficient in consuming power, 58%, and
63% faster during completing the three load tests. In
addition, it is clear from Fig. 7b that OpenFaaS on
Kubernetes was more efficient in consuming power and
faster in completing the three load tests, with percentages
reaching 27 and 37 respectively. Also, this figure shows that
the first load test of Docker containers needed notably a
longer time than the next ones because, during this test, the
container’s replicas were scaled up from 1 to 5 and then these
five replicas were kept alive during the rest of execution time.
In contrast, scaling the OpenFaaS function up to 5 and down
to 1 replica did not leave a clear trend for OpenFaaS in Fig

7b. This suggests that that OpenFaaS functions are clearly
more lightweight and more power efficient in scaling.

Fig. 4. Idle power for the physical and virtual machines

Fig. 5. The results of both tested platforms with the relates statistics

(a) Power consumption of stand-alone OpenFaaS and Docker containers

(b) Power consumption of OpenFaaS and Docker containers on Kubernetes

Fig. 6. Power consumption of the multiplying matrices application

(a) Power consumption of stand-alone OpenFaaS and Docker containers

(b) Power consumption of OpenFaaS and Docker containers on Kubernetes

Fig. 7. Power consumption of the generating prime numbers application

D. Recommendations

The results of this study confirm that OpenFaaS can be
more efficient in power consumption when it is run as a
stand-alone platform, compared to Docker containers. This
superiority of OpenFaaS can be seen clearly when the main
task of the OpenFaaS functions does not cause heavy loads
on the memory. On the other hand, on Kubernetes, Docker
containers showed better figures in power consumption when
the executed code induces massive loads on the memory,
compared with OpenFaaS. However, on Kubernetes,
OpenFaaS could be a much better option if the main task of
the functions uses the CPU significantly more than the
memory.

When an application deployed on Kubernetes is expected
to receive heavy workloads and needs to be scaled up and
down repeatedly, OpenFaaS functions are expected to
consume less power than Docker containers. Likewise,
OpenFaaS could be a far better option in environments where
better resource utilization leads to a decrease in power
consumption as the results confirm that OpenFaaS functions
are more effective in using resources than Docker containers.

VI. CONCLUSION AND FUTURE WORK

To sum up, this paper evaluates the power efficiency of
one of the serverless platforms, OpenFaaS, by comparing its
power consumption with that of Docker containers. To
achieve this goal, two benchmarks are developed to generate
intensive loads on the CPU and RAM. The power consumed
by these two platforms while executing the two
benchmarking applications was measured using Powerstat.
The final results of this experiment showed that OpenFaaS
was more efficient in power consumption when it was run as
stand-alone. However, when OpenFaaS and Docker
containers were deployed on Kubernetes, OpenFaaS was
more efficient in consuming power when intensive
workloads target the CPU. On the other hand, Docker
containers consumed less power than what OpenFaaS did
when the memory was targeted by heavy workloads.

Future work aims at realizing the concept of modular
Software Defined Networking (SDN) based on serverless
functions with the goal to implement a novel platform to
reduce the energy consumption of applications deployment
and operation on the Internet [21,26].

VII. ACKNOWLEDGMENTS

The authors would like to thank the European Next
Generation Internet Program for Open INTErnet Renovation
(NGI-Pointer 2) for supporting this work under contract
871528 (EDGENESS Project).

REFERENCES

[1] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Communications of the ACM, vol. 62, no. 12,
pp. 44–54, 2019.

[2] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N.
Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter,
“Serverless Computing: Current Trends and open problems,”
Research Advances in Cloud Computing, pp. 1–20, 2017.

[3] “Global Cloud Services Market Q1 2021,” Canalys Newsroom.
[Online]. Available: https://www.canalys.com/newsroom/global-
cloud-market-Q121. [Accessed: 16-Sep-2022].

[4] D. R. Danilak, “Council post: Why energy is a big and rapidly
growing problem for data centres,” Forbes, 15-Dec-2017. [Online].
Available:
https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-
energy-is-a-big-and-rapidly-growing-problem-for-data-centres6-Sep-
2022].

[5] A. Anders. "Total Consumer Power Consumption Forecast,”
Presentation at the Nordic Digital Business Summit, Helsinki,
Finland, 2017.

[6] H. Cheng, B. Liu, W. Lin, Z. Ma, K. Li, and C.-H. Hsu, “A survey of
energy-saving technologies in cloud data centres,” The Journal of
Supercomputing, vol. 77, no. 11, pp. 13385–13420, 2021.

[7] X. Jia and L. Zhao, “RAEF: Energy-efficient resource allocation
through energy fungibility in serverless,” 2021 IEEE 27th
International Conference on Parallel and Distributed Systems
(ICPADS), 2021.

[8] Q. Chen, P. Grosso, K. van Veldt, C. de Laat, R. Hofman, and H. Bal,
“Profiling energy consumption of VMS for green cloud computing,”
2011 IEEE Ninth International Conference on Dependable,
Autonomic and Secure Computing, 2011.

[9] I. M. Murwantara and B. Bordbar, “A simplified method of
measurement of energy consumption in cloud and virtualized
environment,” 2014 IEEE Fourth International Conference on Big
Data and Cloud Computing, 2014.

[10] ColinIanKing, “Powerstat,” GitHub. [Online]. Available:
https://github.com/ColinIanKing/powerstat. [Accessed: 16-Sep-2022].

[11] M. A. Abou-Of, A. H. Taha, and A. A. Sedky, “Trade-off between
low power and energy efficiency in benchmarking,” 2016 7th
International Conference on Information and Communication
Systems (ICICS), 2016.

[12] fenrus75, “Linux PowerTOP Tool,” GitHub. [Online]. Available:
https://github.com/fenrus75/powertop. [Accessed: 16-Sep-2022].

[13] “Virtualbox,” Oracle VM VirtualBox. [Online]. Available:
https://www.virtualbox.org/. [Accessed: 16-Sep-2022].

[14] “Apache JMeter.” [Online]. Available: https://jmeter.apache.org/.
[Accessed: 16-Sep-2022].

[15] X. Zhang, Z. Shen, B. Xia, Z. Liu, and Y. Li, “Estimating power
consumption of containers and virtual machines in data centres,” 2020
IEEE International Conference on Cluster Computing (CLUSTER),
2020.

[16] K. Djemame, M. Parker, and D. Datsev, “Open-source serverless
architectures: An evaluation of apache OpenWhisk,” 2020
IEEE/ACM 13th International Conference on Utility and Cloud
Computing (UCC), 2020.

[17] A. Pereira Ferreira and R. Sinnott, “A performance evaluation of
containers running on managed Kubernetes Services,” 2019 IEEE
International Conference on Cloud Computing Technology and
Science (CloudCom), 2019.

[18] “Horizontal pod autoscaling,” Kubernetes, 10-Jun-2022. [Online].
Available: https://kubernetes.io/docs/tasks/run-application/horizontal-
pod-autoscale/. [Accessed: 16-Sep-2022].

[19] “Kubernetes load balancer,” Kubernetes, 23-Mar-2021. [Online].
Available: https://kubernetes.io/docs/tasks/access-application-
cluster/create-external-load-balancer/. [Accessed: 16-Sep-2022].

[20] “Metallb,” MetalLB, bare metal load-balancer for Kubernetes.
[Online]. Available: https://metallb.org/. [Accessed: 16-Sep-2022].

[21] K. Djemame, “Energy efficiency in edge environments: A serverless
computing approach,” Economics of Grids, Clouds, Systems, and
Services, pp. 181–184, 2021.

[22] “How liking something on Facebook can damage the planet,” The
Independent, 23-Jan-2016. [Online]. Available:
https://www.independent.co.uk/climate-change/news/global-warming-
data-centres-to-consume-three-times-as-much-energy-in-next-decade-
experts-warn-a6830086.html. [Accessed: 20-Oct-2022].

[23] Aalhindi, “AALHINDI/MSPROJECT2022-a.alhindi,” GitHub.
[Online]. Available: https://github.com/aalhindi/MsProject2022-
a.alhindi. [Accessed: 21-Oct-2022].

[24] O. F. S. Authors, “Introduction,” OpenFaaS. [Online]. Available:
https://docs.openfaas.com/. [Accessed: 26-Oct-2022].

[25] Documentation. [Online]. Available:
https://openwhisk.apache.org/documentation.html. [Accessed: 26-
Oct-2022].

[26] F. Banaie Heravan and K. Djemame, “A Serverless Computing
Platform for Software Defined Networks,” Economics of Grids,
Clouds, Systems, and Services (GECON’2022), 2022.

[27] “Containerd,” containerd. [Online]. Available: https://containerd.io/.
[Accessed: 31-Oct-2022].

	I. Introduction
	II. Related Work
	III. OpenFaaS Architecture
	IV. Experimental Design
	A. System Architecture
	1) The Tested Platforms: are OpenFaaS and Docker, each one of which is installed inside a different VM. The two benchmarking applications, see section IV.B, are also deployed on each platform. The tested platforms were run inside VMs to provide the flexibility for supporting various scenarios in a similar environment to cloud systems. VirtualBox [13] is the hypervisor used in the experiment.
	2) The Power Measurement Tool: Powerstat was run outside the VMs to measure the power consumed by the physical machine hosting the VMs as it needs access to the kernel of the main Operating System (OS).
	3) The Workload Tool: Jmeter [14] was run outside the VMs in order to generate workload for the tested platforms in the form of HTTP requests.

	B. The Benchmarking Applications
	1) Matrices Multiplication: This benchmarking application consists of the multiplication of two square matrices with a size of 5000. The application is used to stress the memory more than any other hardware component [16]. There are two versions of this benchmark that were written to run as an OpenFaaS function and a Docker container, the source code of which can be found in [23] under the names “Matrices-Function-Benchmark.zip” and “Matrices-Docker-Benchmark.py”.
	2) Prime Numbers Generation: This benchmarking application is designed to generate a list of prime numbers with a size of 1500, which, in turn, stresses the CPU more than other resources. This application is extensively used in the literature to evaluate the performance of the CPU; the code is just a simple loop searching for prime numbers [17]. There are two versions of this benchmark that were written to run as an OpenFaaS function and a Docker container, the source code of which can be found in [23] under the names “PrimeNumbers-Function-Benchmark.zip” and “PrimeNumbers-Docker-Benchmark.py”.

	C. Scenarios
	1) Docker containers: The goal of this scenario is to measure the power consumption of a Docker container running one of the two benchmarking applications, so each one of these applications is run inside a different container. This scenario was conducted on a different VM.
	2) OpenFaaS with faasd: In this scenario, the power consumption of OpenFaaS running as a stand-alone platform is measured while it is under a given load. OpenFaaS with faasd was installed in a different VM with two OpenFaaS
	functions created to run the two benchmarking applications, each function running one application.
	3) OpenFaaS on Kubernetes: This scenario aims to measure the power consumed by OpenFaaS deployed on Kubernetes instead. OpenFaaS was installed on Kubernetes in a different VM with two OpenFaaS functions created for the two benchmarking applications.
	4) Docker containers on Kubernetes: In this scenario, two Docker containers were deployed on Kubernetes with the auto-scaling feature in a different VM. Enabling this feature aims to make this scenario comparable with the previous one because OpenFaaS with faasd does not scale the deployed functions but OpenFaaS on Kubernetes does. Two Kubernetes components are essential for this feature and were installed on the VM of this scenario. The first one is Kubernetes Metrics Server that provides the resources usage of containers, such as the CPU usage, to the controller HorizontalpodAutoscaler [18]. The second one is the load balancer which is a Kubernetes service, named LoadBalancer, whose task is to balance the coming workload between the pods of the targeted application [19]. The LoadBalancer implementation MetalLB was used in the experiment as it offers network load balancing on Kubernetes clusters running on bare-metal environments [20]. The two YAML files for deploying the two benchmarking applications in this scenario can be found in [23] under the names of “new-Matrices-Benchmark-Kubernetes.yaml” and “new-PrimeNumbers-Benchmark-Kubernetes.yaml”.

	D. Workload
	E. Evaluation Metrics
	1) Power Consumption (P): refers to the average power consumption of the physical machine during testing time. This metric is calculated as:
	2) Idle Power (I): refers to the average power consumption of the physical machine while the VM of the tested platform is idle.
	3) Estimated Power Consumption (EP): refers to the average power consumption of the tested platform.
	4) Execution time (E): means the period of time a tested platform spent on completing all three load tests without considering the idle time. This metric is obtained by monitoring the CPU to measure the time the CPU spends in processing the incoming requests during the load tests.
	5) Energy (N): refers to the estimated energy consumed by a tested platform.

	F. Implementation

	V. Results and Discussion
	A. Idle Power
	B. Measurement Results
	C. Findings
	D. Recommendations
	The results of this study confirm that OpenFaaS can be more efficient in power consumption when it is run as a stand-alone platform, compared to Docker containers. This superiority of OpenFaaS can be seen clearly when the main task of the OpenFaaS functions does not cause heavy loads on the memory. On the other hand, on Kubernetes, Docker containers showed better figures in power consumption when the executed code induces massive loads on the memory, compared with OpenFaaS. However, on Kubernetes, OpenFaaS could be a much better option if the main task of the functions uses the CPU significantly more than the memory.
	When an application deployed on Kubernetes is expected to receive heavy workloads and needs to be scaled up and down repeatedly, OpenFaaS functions are expected to consume less power than Docker containers. Likewise, OpenFaaS could be a far better option in environments where better resource utilization leads to a decrease in power consumption as the results confirm that OpenFaaS functions are more effective in using resources than Docker containers.

	VI. Conclusion and Future Work
	VII. Acknowledgments
	References

