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Abstract— The rapid  growth in  cloud-based  technologies

has introduced the need for very large data centres to meet the

increasing  demand  for  cloud  services.  One  of  the  main

challenges in managing these data centres is the sharp increase

of power consumption. Research has therefore tackled the issue

of  power/energy  efficiency  in  cloud  data  centres.  Serverless

computing  is  a  cloud  computing  execution  model  that  gives

software developers the option to deploy their code without the

need  to  configure  servers,  operating  systems  or  runtime

libraries, thus allowing them to invest less effort and capital in

infrastructure  management.  This  paper  investigates  whether

serverless  computing  has  the  ability  to  support  power

efficiency. To this aim, a number of experiments are conducted

to compare the power consumption of  a serverless platform,

OpenFaaS, against Docker containers with the consideration of

applications and benchmarks. The experimental results show

that OpenFaaS is more power efficient than Docker when the

processor and memory are under stress.

Keywords—Serverless,  Power  Efficiency,  OpenFaaS,

Docker, Container, Power Consumption.

I. INTRODUCTION

The  wide  adoption  of  cloud  services  and  cloud-based
technologies  like  containers  and  microservices  in  the  IT
world has encouraged the emergence of the new execution
model, serverless computing or FaaS (Function as a Service).
This model exploits container-based virtualization in order to
provide  environments  that  enable  software  developers  to
deploy their applications and is an ideal solution to build and
optimize any Internet of Things (IoT) operations with zero
infrastructure  and  maintenance  costs  and  little-to-no
operating  expense  [1].  The  high  level  of  abstraction  in
serverless platforms is a key feature, which means that the
applications are decomposed into fine-grained functions and
then  deployed  and  executed  with  zero  control  from  the
developers [2]. Furthermore, in contrast to the rest of cloud
services,  serverless  functions are executed only when they
are called, which eliminates the cost of allocating resources
[1].  Therefore,  serverless  computing  is  viewed  as  a
promising solution to increasing the efficient  use of  cloud
resources and consumption of power, as well as reducing the
cost of using cloud services, compared to Virtual Machines
(VM) and containers. 

The fast  development  of  cloud services  has  led to  the
rapid growth in building large data centres. The spending on
data centres increased by 35% to reach 41.8 billion dollars in
the  first  quarter  of  2021,  compared  to  roughly  30  billion
dollars  in  the same quarter  of  2020 [3].  One of  the  main
challenges  these  large  data  centres  need  to  tackle  is  the
increasing amount of power consumed by the infrastructure.
In 2016, data centres in the United States consumed more
than 90 billion kilowatt-hour (KWh) of electricity. Likewise,

power  consumption  of  data  centres  around  the  world
amounted  to  about  416  terawatt-hour  (TWh)  in  2015,  or
roughly 3% of all electricity generated on the planet [4,22].
This power consumption is expected to sharply increase to
more than  3300 TWh in 2025, compared to 2010 when this
figure was close to 189 TWh [5]. 

The IT equipment, which refers to the equipment used to
process,  route,  store  or  manage  data  (compute,  storage,
network resources) account for 50% of the power consumed
in one data centre where servers may consume 40% of the IT
equipment’s  share  [6].  Therefore,  improving  the  power
consumption  of  the  cloud  services  running  on  such
infrastructures  can  lead  to  a  significant  reduction  in  the
power consumed by data centres. 

The  primary  purpose  of  this  paper  is  to  evaluate  the
efficiency  of  the  power  consumption  of  one  of  the  well-
known  serverless  platforms,  OpenFaaS  [24].  The
examination is based on the comparison of OpenFaaS and
Docker containers power consumption with the consideration
of two applications that stress either the Central Processing
Unit  (CPU) or  the  Random Access  Memory (RAM).  The
comparison is conducted on two different architectures :  1)
the  two  tested  platforms,  OpenFaaS  and  Docker,  run  as
stand-alone  platforms.  2) the  two  tested  platforms  are
deployed on Kubernetes.  The main difference between the
two  architectures  is  that  Kubernetes  allows  OpenFaaS
functions and Docker containers auto-scaling, which lets us
examine the power efficiency of OpenFaaS in such setting.

The contributions of this paper are:

1. the  identification  of  a  relevant  benchmark  for
evaluating the power consumption of OpenFaaS
as a common serverless platform;

2. a quantitative analysis of the power consumption
of OpenFaaS considering a defined benchmark;

3. a set of recommendations for effective adoption
of the serverless computing for energy efficiency.

II. RELATED WORK

There  have  been  a  few  research  papers  studying  the
power  efficiency  of  serverless  computing,  as  this  field  of
research  is  still  new  and  serverless  technology  is  rapidly
changing.  The  work  by  Xuechao  Jia  and  Laiping  Zhao
proposes a solution called RAFE [7]. This solution presents a
new  mechanism  for  allocating  the  resources  required  by
serverless  functions  in  order  to  minimize  power
consumption. The study shows that this solution can reduce
the  power  consumption  of  serverless  functions  by  a
noticeable  per  cent,  21.2%.  They  found  that  serverless
platforms  currently  do  not  take  power  consumption  as  an



effective factor in making the decision of resource allocation.
A new term named power fungibility is therefore introduced
which means it is possible to reduce the power consumption
of serverless functions without affecting the required latency.
This  study  confirms  that  serverless  functions  always  go
through three stages in their life cycle: startup, runtime, and
idle. So, if allocating resources in each one of these stages is
based  on  power-aware  decisions,  power  consumption  of
serverless functions could be reduced.

To achieve their goal, the authors investigated the power
consumption  of  one  of  the  common  serverless  platforms,
OpenFaaS, and they choose Kubernetes as the platform for
managing and orchestrating the functions’ containers. They
concluded that the power consumed in the first stage, startup,
is mainly by a number of operations for getting the functions
ready to run such as loading the containers’ images and the
required libraries. The second stage, runtime, is divided into
two parts: the power consumed by the platform, OpenFaaS,
and the power consumed by the running functions. In this
stage,  the  results  demonstrate  that  the  components  of
OpenFaaS consume a tiny amount of power compared with
the functions.  Also,  the  authors  confirmed that  the  largest
amount of the energy consumed by the functions was during
the second stage. The final stage, idle, when the functions are
alive  and  waiting  for  a  request  to  execute,  was  found  to
consume much less power compared to the other two stages. 

This paper focuses on analysing the power consumption
during the second stage of OpenFaaS functions.

The measurement of power consumption can be obtained
by using several  methods. One of these methods is to use
hardware devices known as Wattmeters, which is the method
used  in  [8]  to  measure  the  power  consumption  of  VMs.
However, this method is not applicable in cloud systems due
to their shared infrastructure [9]. On the other hand, there are
several  tools  developed for  measuring  power  consumption
such  as  PowerTop  [12]  and  Powerstat  [10].  Powerstat  is
open-source  software  designed  for  measuring  power
consumption  by  using  the  Advanced  Configuration  and
Power  Interface  (ACPI)  to  read  the  amount  of  power
consumed from the  machine’s  battery  [10].  This  tool  was
used in [11] to measure the power consumption of a laptop
running  Linux OS. Similarly, PowerTop is an open-source
software measuring power consumption by either reading the
battery  information,  or  using  a  mathematical  model  to
estimate the power consumed by each process [12]. This tool
is  the  chosen  one  in  [9]  for  measuring  the  power
consumption  of  running  processes  on  Linux  OS.  In  this
paper, we chose Powerstat to measure power consumption in
our experiments  as  it  completely depends  on the readings
taken from the machine’s battery, which makes the accuracy
of the measured power consumption close to the accuracy of
Wattmeters.  Moreover,  this  tool  is  simple  to  use  and  its
results are more readable compared with PowerTop.

III. OPENFAAS ARCHITECTURE

OpenFaaS is an open-source serverless framework under
an independent project managed and hosted by the company
OpenFaaS Ltd. Each function deployed on this platform is
created and managed as a immutable container. This platform
consists  of  several  basic  components  such  as  a  gateway,
auto-scaling  system,  and  invocation  tools,  see  Fig.  1.
OpenFaaS can be deployed on Kubernetes or on a bare-metal
environment by using faasd which is an alternative platform
enabling OpenFaaS to manage functions without Kubernetes.

Fig. 1. OpenFaaS Architecture

Faasd uses  Containerd [27] to containerize functions while
Docker is the container runtime used with Kubernetes [24].

Faasd  is  developed  and  maintained  by  the  OpenFaaS
project  and  it  is  designed  to  run  on  a  single  machine
equipped  with  modest  hardware.  However,  this  platform
cannot  scale  functions and  the  maximum number  of  each
function’s replicas is one [24]. The main purpose of creating
faasd is similar to the purpose of creating the “Standalone”
version of OpenWhisk [24,25].

Although OpenFaaS functions on Kubernetes  share the
same structure with the other side in the comparison, Docker,
the  difference  comes  from  the  sophisticated  way   that
OpenFaaS follows in orchestrating functions’ containers. On
the other hand, Docker containers on Kubernetes are scaled
and managed by the load balancer component of Kubernetes.

IV. EXPERIMENTAL DESIGN

The  goal  of  the  experiment  is  to  measure  the  power
consumption of OpenFaaS and Docker containers during the
execution of two chosen applications. The collected power
measurements  will  be  used  to  evaluate  the  efficiency  in
consuming power of the two tested platforms.

A. System Architecture

The  architecture  of  the  experiment  consists  of  three
components and the whole experiment was conducted on a
single computer, as shown in Fig. 2.

1) The  Tested  Platforms:  are  OpenFaaS  and  Docker,

each one of which is installed inside a different VM. The

two benchmarking applications, see section IV.B, are also

deployed on each platform. The tested platforms were run

inside VMs to provide the flexibility for supporting various

scenarios  in  a  similar  environment  to  cloud  systems.

VirtualBox [13] is the hypervisor used in the experiment.

2) The  Power  Measurement  Tool:  Powerstat  was  run

outside  the  VMs to  measure  the  power  consumed by the

physical machine hosting the VMs as it needs access to the

kernel of the main Operating System (OS).

3) The Workload Tool: Jmeter [14] was run outside the 

VMs in order to generate workload for the tested platforms 

in the form of HTTP requests.

Fig. 2. The experiment's components



B. The Benchmarking Applications

Power consumption is usually caused by using different
resources such as CPU, memory, storage and networks. In a
computer  system,  the  CPU  is  considered  to  be  the  first
consumer of power and is followed by the memory [15]. The
CPU  and  the  memory  are  therefore  the  most  important
resources  to  be  evaluated  in  terms  of  performance  in  the
context  of  applications  execution  [16].  Consequently,  they
are  also  important  resources  to  consider  when  measuring
power consumption. 

In  the  experiment,  two  different  benchmarking
applications, written in Python, are chosen to stress the CPU
and RAM. Both of these applications act  as a simple web
server to process the workload generated as HTTP requests
by Jmeter.

1) Matrices  Multiplication:  This  benchmarking

application  consists  of  the  multiplication  of  two  square

matrices  with  a  size  of  5000.  The  application  is  used  to

stress the memory more than any other hardware component

[16].  There are two versions of this benchmark  that  were

written  to  run  as  an  OpenFaaS  function  and  a  Docker

container,  the source code of which can be found in [23]

under  the  names  “Matrices-Function-Benchmark.zip”  and

“Matrices-Docker-Benchmark.py”.

2) Prime  Numbers  Generation:  This  benchmarking

application is designed to generate a list of prime numbers

with a size of 1500, which, in turn, stresses the CPU more

than other resources. This application is extensively used in

the literature to evaluate the performance of the CPU; the

code is just a simple loop searching for prime numbers [17].

There are two versions of this benchmark that were written

to run as an OpenFaaS function and a Docker container, the

source code of which can be found in [23] under the names

“PrimeNumbers-Function-Benchmark.zip”  and

“PrimeNumbers-Docker-Benchmark.py”.

C. Scenarios

There are four scenarios in the experiment, each one of
which  begins  with  a  waiting  time  of  120 seconds  that  is
required  by  Powerstat  to  let  the  physical  machine  settle
down.  Powerstat  will  then  start  measuring  the  power
consumed by the physical  machine while Jmeter  generates
workload onto one of the tested platforms, which lasts for
240 seconds. This period of time is defined as  testing time.
During  this  time,  Jmeter  generates  intensive  workload  by
performing three load tests to ensure more accurate results,
with 10 seconds of waiting before starting each one. A Bash
script  is  used  to   automate  the  experiments,  e.g.  running
Powerstat and Jmeter tools, parameters setting and collection
of results. The source code of this script can be found in [23]
under the name of “powerstat-jmeter.bash”.

The four scenarios, shown in Fig. 3, are described next:

1) Docker containers:  The goal of this scenario is to

measure  the  power  consumption  of  a  Docker  container

running one of the two benchmarking applications, so each

one of these applications is run inside a different container.

This scenario was conducted on a different VM. 

2) OpenFaaS with faasd: In this scenario, the power

consumption of OpenFaaS running as a stand-alone platform

is measured while it is under a given load. OpenFaaS with

faasd was installed in a different VM with two OpenFaaS 

Fig. 3. The four scenarios

functions created to run the two benchmarking applications,

each function running one application.

3) OpenFaaS  on  Kubernetes: This  scenario  aims  to

measure  the  power  consumed  by  OpenFaaS  deployed  on

Kubernetes instead. OpenFaaS was installed on Kubernetes

in a different VM with two OpenFaaS functions created for

the two benchmarking applications.

4) Docker containers on Kubernetes: In this scenario,

two Docker containers were deployed on Kubernetes  with

the  auto-scaling feature  in a different  VM. Enabling this

feature  aims  to  make  this  scenario  comparable  with  the

previous one because OpenFaaS with  faasd does not scale

the deployed functions but OpenFaaS on Kubernetes does.

Two Kubernetes  components are  essential  for  this  feature

and were installed on the VM of this scenario. The first one

is  Kubernetes  Metrics  Server that  provides  the  resources

usage of containers, such as the CPU usage, to the controller

HorizontalpodAutoscaler [18].  The second one is the load

balancer  which  is  a  Kubernetes  service,  named

LoadBalancer,  whose  task  is  to  balance  the  coming

workload between the pods of the targeted application [19].

The LoadBalancer implementation MetalLB was used in the

experiment  as  it  offers  network  load  balancing  on

Kubernetes  clusters  running  on  bare-metal  environments

[20].  The  two  YAML  files  for  deploying  the  two

benchmarking applications in this scenario can be found in

[23]  under  the  names  of  “new-Matrices-Benchmark-

Kubernetes.yaml”  and  “new-PrimeNumbers-Benchmark-

Kubernetes.yaml”.

D. Workload 

Jmeter generates workload using a user-defined plan that
contains the following parameters: number of threads (users)
that is set to 5, ramp-Up period  that is set to 0, and  loop
count which is set to 40. The values of these parameters were
chosen  based on the limitations of the physical  machine’s
hardware,  as  increasing  these  values  will  cause  the  tested
platforms to run out of the memory. Moreover, each HTTP
request  contains  an  HTTP parameter  defining  the  size  of
either the matrices or the list of the prime numbers. In terms
of  the  workload  sent  to  the  matrices  multiplication
application, the value of the HTTP parameter is 5000, while
it  is  1500  in  case  of  the  prime  numbers  generation
application.

E. Evaluation Metrics

The  following  metrics  are  considered  for  measuring
power consumption:



1) Power  Consumption  (P): refers  to  the  average
power consumption of the physical machine during  testing
time. This metric is calculated as:

P=

∑
1

T

Watte

T

T  refers  to  the  length  of  testing  time which  is  240

seconds, while Watte refers to the Watt value taken in every

second sampling during testing time.

2) Idle  Power  (I):  refers  to  the  average  power
consumption of the physical machine while the VM of the
tested platform is idle.

I=

∑
1

T

Watt i

T

T is equivalent to the length of testing time, 240 seconds,
because  this  metric  is  for  showing  the  VM’s  idle  power

before starting the load tests. Watti refers to the Watt value

taken in every second sampling while the VM is idle.

3) Estimated Power Consumption (EP): refers to the
average power consumption of the tested platform. 

EP=P−I

This metric could show the average of the actual power
consumed by the tested platform.

4) Execution  time  (E):  means  the  period  of  time  a
tested  platform  spent  on  completing  all  three  load  tests
without considering the idle time. This metric is obtained by
monitoring the CPU to measure the time the CPU spends in
processing the incoming requests during the load tests.

5) Energy  (N):  refers  to  the  estimated  energy
consumed by a tested platform. 

N=∑
1

T

Watte−Watt i

T refers to the length of testing time, 240 seconds.

F. Implementation

The  experiment  was  conducted  on  a  laptop  with  the
following hardware specifications: the CPU is AMD Ryzen 7
5800h with 8 cores and base clock 3.2GHz, the memory is 16
GB, the main OS is Ubuntu 22.04 LTS, and the storage is
512 GB SSD.

At the beginning of the implementation of each scenario,
the  VM’s  idle  power  is  recorded.  The  results  of  the
implementation  of  each  scenario  were  then  collected  and
saved as three CSV files containing: 1) the idle power of the
scenario’s  VM,  2) the  power  consumption  while  the
workload  generated  by  Jmeter  was  sent  to  the  matrices
multiplication  application,  and  3) the  power  consumption
while the Jmeter workload was sent to the prime numbers
generation  application.  The  results  of  the  experiments  are
analysed and discussed next. 

V. RESULTS AND DISCUSSION 

A. Idle Power 

In terms of idle power, the physical machine consumed
on  average  14.5  Watts  before  running  any  VM. The  idle

power of the VMs in the four scenarios are: 17.8, 20.2, 20.5,
and 22.8 Watts respectively, as shown in Fig. 4.  

B. Measurement Results

The  final  results,  shown  in  Fig.  5,  demonstrate  that
OpenFaaS with  faasd is 12% more efficient in consuming
power  than  Docker  containers  when  running  the
benchmarking  application  that  puts  intensive  loads  on  the
RAM.  However,  running  the  same  benchmarking
application, Docker containers are 17% more efficient when
both of the tested platforms are deployed on Kubernetes with
the auto-scaling feature. 

The OpenFaaS functions  were  scaled  up  to  5  replicas
and then down to 1 replica twice during the  testing time,
while the Docker containers were scaled up to 5 replicas and
never  scaled  down  until  the  end  of  the  testing  time.  As
Jmeter performed three load tests, Fig. 5 shows the average
of execution time for each load test.

On  the  other  hand,  OpenFaaS  is  significantly  more
efficient  in  consuming  power  when  the  benchmarking
application  puts  high  loads  on  the  CPU.  As  stand-alone
platform,  OpenFaaS  with  faasd is  58%  more  efficient  in
consuming  power  than  Docker  when  running  this
application.  Moreover,  when  both  of  the  tested  platforms
were  deployed  on  Kubernetes,  OpenFaaS  was  27% more
efficient even though the OpenFaaS functions were scaled up
to 5 replicas and then scaled down to 1 replica during the
testing time while the Docker containers were scaled up to 5
replicas and kept this number until the end of the experiment.

C. Findings

Fig. 6a shows that stand-alone OpenFaaS consumed less
power  and  far  less  time  than  the  Docker  container  to
complete all the three load tests of the multiplying matrices
application that stresses the RAM. On the other hand, Fig. 6b
shows that Docker containers on Kubernetes consumed less
power and less time to complete the three load tests of this
benchmarking  application,  but  there  are  other  factors  that
need attention. The OpenFaaS functions were scaled up and
down twice during completion of the load tests,  while the
container’s  replicas  were  kept  alive  until  the  end  of  the
execution  time.  Moreover,  Fig.  6b  shows  that  Docker
containers spent a longer time on the first load test compared
with the next two tests because increasing the replicas of the
Docker container  from 1 to 5 took place in this period of
time. In contrast, the periods of time spent by OpenFaaS on
Kubernetes  to  complete  the three  load tests seem close to
each other  in their lengths. Therefore,  it  can be concluded
that  OpenFaaS  was  more  efficient  in  using  resources  and
faster  in  scaling  than  Docker  containers,  which  could
increase the efficiency in consuming power in cloud systems
where a big number of user applications run on one server.

In  terms  of  the  other  benchmarking  application  that
stresses the CPU, Fig. 7a demonstrates that OpenFaaS was
remarkably  more  efficient  in  consuming power,  58%, and
63%  faster  during  completing  the  three  load  tests.  In
addition,  it  is  clear  from  Fig.  7b  that  OpenFaaS  on
Kubernetes  was  more  efficient  in  consuming  power  and
faster  in  completing the  three  load tests,  with percentages
reaching 27 and 37 respectively. Also, this figure shows that
the  first  load  test  of  Docker  containers  needed  notably  a
longer time than the next ones because, during this test, the
container’s replicas were scaled up from 1 to 5 and then these
five replicas were kept alive during the rest of execution time.
In contrast, scaling the OpenFaaS function up to 5 and down
to 1 replica did not leave a clear trend for OpenFaaS in Fig



7b. This suggests that that  OpenFaaS functions are clearly
more lightweight and more power efficient in scaling.

Fig. 4. Idle power for the physical and virtual machines

Fig. 5. The results of both tested platforms with the relates statistics 

(a)  Power consumption of stand-alone OpenFaaS and Docker containers

(b) Power consumption of OpenFaaS and Docker containers on Kubernetes

Fig. 6. Power consumption of the multiplying matrices application 

(a) Power consumption of stand-alone OpenFaaS and Docker containers

(b) Power consumption of OpenFaaS and Docker containers on Kubernetes

Fig. 7. Power consumption of the generating prime numbers application

D. Recommendations

The results of this study confirm that OpenFaaS can be
more  efficient  in  power  consumption  when  it  is  run  as  a
stand-alone platform, compared to Docker containers.  This
superiority of OpenFaaS can be seen clearly when the main
task of the OpenFaaS functions does not cause heavy loads
on the memory. On the other hand, on Kubernetes, Docker
containers showed better figures in power consumption when
the executed  code  induces  massive  loads  on  the  memory,
compared  with  OpenFaaS.  However,  on  Kubernetes,
OpenFaaS could be a much better option if the main task of
the  functions  uses  the  CPU  significantly  more  than  the
memory.

When an application deployed on Kubernetes is expected
to receive heavy workloads and needs to be scaled up and
down  repeatedly,  OpenFaaS  functions  are  expected  to
consume  less  power  than  Docker  containers.  Likewise,
OpenFaaS could be a far better option in environments where
better  resource  utilization  leads  to  a  decrease  in  power
consumption as the results confirm that OpenFaaS functions
are more effective in using resources than Docker containers.

VI. CONCLUSION AND FUTURE WORK 

To sum up, this paper evaluates the power efficiency of
one of the serverless platforms, OpenFaaS, by comparing its
power  consumption  with  that  of  Docker  containers.  To
achieve this goal, two benchmarks are developed to generate
intensive loads on the CPU and RAM. The power consumed
by  these  two  platforms  while  executing  the  two
benchmarking  applications  was  measured  using  Powerstat.
The final results of this experiment showed that OpenFaaS
was more efficient in power consumption when it was run as
stand-alone.  However,  when  OpenFaaS  and  Docker
containers  were  deployed  on  Kubernetes,  OpenFaaS  was
more  efficient  in  consuming  power  when  intensive
workloads  target  the  CPU.  On  the  other  hand,  Docker
containers  consumed less  power  than  what  OpenFaaS  did
when the memory was targeted by heavy workloads. 

Future  work  aims  at  realizing  the  concept  of  modular
Software  Defined  Networking  (SDN)  based  on  serverless
functions with the  goal  to  implement  a  novel  platform to
reduce the energy consumption of applications deployment
and operation on the Internet [21,26].
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