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Abstract: The existing research on deep learning for radar signal intra–pulse modulation classification

is mainly based on supervised leaning techniques, which performance mainly relies on a large number

of labeled samples. To overcome this limitation, a self–supervised leaning framework, contrastive

learning (CL), combined with the convolutional neural network (CNN) and focal loss function is

proposed, called CL—-CNN. A two–stage training strategy is adopted by CL–CNN. In the first stage,

the model is pretrained using abundant unlabeled time–frequency images, and data augmentation is

used to introduce positive–pair and negative–pair samples for self–supervised learning. In the second

stage, the pretrained model is fine–tuned for classification, which only uses a small number of labeled

time–frequency images. The simulation results demonstrate that CL–CNN outperforms the other

deep models and traditional methods in scenarios with Gaussian noise and impulsive noise–affected

signals, respectively. In addition, the proposed CL–CNN also shows good generalization ability,

i.e., the model pretrained with Gaussian noise–affected samples also performs well on impulsive

noise–affected samples.

Keywords: intra–pulse modulation classification; contrastive learning; convolutional neural network;

focal loss function

1. Introduction

Radar intra–pulse signal modulation classification is an important area in modern
electronic warfare (EW) and plays a crucial role in electronic support measure (ESM)
systems [1–3]. In the modern battlefield, the quality of the intercepted radar intra–pulse
signals is usually poor, and its quantity is low, causing great difficulties to the following
classification task [1].

There are mainly two categories of approaches for radar intra–pulse signal modulation
classification: the traditional feature extraction–based approaches and the recent deep
learning–based ones. For the first category, the algorithms usually extract some useful fea-
tures from the signal before classification [4–9]. The feature extraction methods employed
in these algorithms include time–frequency transform using short–time Fourier transform
(STFT) in [4], Choi–Williams’ time–frequency distribution in [9], power feature extraction
using Rihaczek distribution (RD) and Hough transform (HT) in [5], integrated quadratic
phase function (IQPF) and fractional Fourier transform (FrFT) in [6], time–frequency trans-
form using Wigner Ville distribution (WVD) and FrFT in [7], and optimal classification
atom and improved double–chains quantum genetic algorithm (IDCQGA) in [8]. Although
these algorithms perform well in some high signal–to–noise ratio (SNR) situations, they
have common shortcomings. Firstly, their computation complexity is usually high, which
causes a slow response from the system; secondly, the classification success rate is usually
low with lower SNRs; thirdly, the identification thresholds of these algorithms are usually
too sensitive to the signal parameters. These shortcomings greatly limit the practical usage
of this category of algorithms.
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With the fast development of deep learning techniques [10–12], a new category of
algorithms is applied to the radar intra–pulse signal modulation classification problem.
Based on different domains of the signals worked on, they can be roughly divided into raw
signal–based algorithms [13–15] and time–frequency transformation–based ones [16–20].

For the first class, the signal sequences are directly used as the input of the deep models,
such as the network composed of convolutional neural network (CNN), long short–term
memory (LSTM) network and fully connected network (FCN) in [13]; CNN with attention
mechanism model in [14], etc. For the second class, time–frequency images are utilized
as the input; for example, the model based on a convolutional autoencoder (CDAE) and
CNN was proposed in [16], CNN architecture (CNN–Xia) composed of 11 layers was used
in [18], and the deep residual network with attention mechanism was proposed in [19].
Generally, the classification performance of the time–frequency image–based algorithms is
better than that of the raw signal–based ones. However, the classification speed of the raw
signal–based one is usually higher. Compared with the traditional feature extraction–based
approaches, the deep learning–based solutions can overcome almost all the shortcomings of
the traditional ones; however, they require a large number of well–labeled training samples.
If only a small number of labeled data samples are available, the performance of these
algorithms will degrade or even fail to work completely.

Few–shot learning (FSL) is proposed to solve the samples lacking a problem, which
greatly relieves the burden of collecting large–scale supervised data [21]. One of the
most popular FSL methods is transfer learning [22], which has been widely used in many
fields, such as image classification [23] and text classification [24]. Some radar intra–pulse
signal modulation classification algorithms based on transfer learning have also been
proposed [25–28]. It has been found that the time–frequency image–based algorithms
provide higher classification accuracy than the raw signal–based ones. In fact, the limitation
of transfer learning is that a large number of labeled samples are still needed for training,
although the source signals can be different from the target signals.

On the other hand, contrastive learning (CL) has also been proposed to solve the small
samples problem. CL requires a large number of unlabeled samples for pretraining and a
small number of labeled ones for fine–tuning, and its performance has been demonstrated
in image classification [29–31]. Although CL has been used in communication signal
modulation classification [32], its performance has not been studied in the context of radar
intra–pulse modulation classification yet.

In this paper, a CL–based CNN with focal loss function (CL–CNN) model is proposed
for radar intra–pulse modulation classification, which retains the core idea of CL and im-
proves the classification accuracy with self–supervised pretraining. One common scenario
in radar intra–pulse modulation classification is that the labeled samples for training are
affected by white Gaussian noise, while tested samples may be affected by other types
of noise. The impulsive noise may be the one having the most adverse effect on radar
signals. In order to show that the CL–based model has good generalization property for
different noise scenarios, in the simulation parts, the training samples are all embedded
with white Gaussian noise. The simulation results show that the proposed model has better
performance on classification accuracy compared with the other four deep models, i.e.,
AAMC–DCNN, CNN–Xia, ResNet (residual network) and SCRNN (Sequential Convo-
lutional Recurrent Neural Network) and two traditional methods, i.e., KNN (K–Nearest
Neighbor) and SVM (Support Vector Machine).

The paper is organized as follows. In Section 2, some related works are introduced
briefly. The signal preprocessing step is presented in Section 3. In Section 4, the CL–CNN
model is provided, including an overview and detailed construction of the proposed model.
The simulation results are presented in Section 5, where the proposed model is compared
with the other deep models and traditional methods, the impact of various settings for the
proposed model are studied, and the generalization ability is also evaluated. Conclusions
are drawn in Section 6.
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2. Deep Learning–Related Works

2.1. Self–Supervised Learning

Self–supervised learning (SSL) is a subset of unsupervised learning, which overcomes
the limitation of manually labeling samples in deep learning [33,34]. In SSL, a pretext task
is constructed at first, which is a predesigned task solved by the SSL–based network. The
SSL–based network mines the features from a large number of unlabeled samples, and
it is pretrained efficiently without involving manual labels, which alleviates the cost of
collecting and annotating large–scale datasets [35,36]. After pretraining, the parameters
of the SSL–based network are fine–tuned using a small number of labeled samples for
downstream tasks [29].

2.2. Contrastive Learning

CL is a representative framework in the field of SSL, and it is used as the pretraining
step in deep learning. In CL, positive and negative sample pairs are generated by some data
augmentation methods, such as image rotation, image coloration, etc. [34,37]. The original
sample is called the anchor sample, and the positive pairs are formed with anchor samples
and their augmented versions. The negative pairs are formed with different anchor samples
and the augmented versions. During training, the similarity between positive samples
is strengthened, and the distance between negative samples is enlarged. The similarity
should satisfy the following formulation:

score
(

f (x), f
(

x+
))

≫ score
(

f (x), f
(

x−
))

(1)

where score(·, ·) is a function that measures the similarity of two samples, f (·) is the
encoding function,x is an anchor sample and x+ and x− are the positive and negative
samples of x, respectively.

Contrastive learning tries to assign a larger value to a positive sample pair and a
smaller value to a negative sample pair. Then, the feature of x will be more similar to the
feature of x+ and more dissimilar to the feature of x−.

2.3. Focal Loss Function

Many existing deep models ignore the difficult imbalance of different sample cat-
egories, which may degrade their performance. Online hard example mining (OHEM)
has been proposed to deal with the difficult imbalance issue [38]. However, it puts more
weight on the misclassified samples and ignores the easy–to–classify samples. To solve
this problem, the focal loss function is proposed, and it allows the model to focus more on
difficult samples by reducing the weights of easy–to–classify samples during the training
process [39]. Nowadays, the focal loss function has been widely used in many fields, such
as text detection [40] and medical image processing [41].

3. Signal Model and Data Preprocessing

3.1. Signal Model

In a real electromagnetic environment, the signal x(k) is usually disturbed by additive
white Gaussian noise (AWGN). After time domain sampling, x(k) can be written as follows:

x(k) = Aejφ(k) + n(k) (2)

where k is the sampling index, A is the amplitude of the signal, φ(k) is the instantaneous
phase, which mainly represents the intra–pulse modulation information, and n(k) is noise.

Some radar signal examples with different φ(k) are given in Table 1, including
frequency–modulated signals (LFM); phase–modulated signals (BPSK); polytime codes
(T1 and T2) and polyphase codes (Frank, P1, P2, P3 and P4). In the table, fc represents the
carrier frequency; µ the modulation frequency for LFM; θ the initial phase for BPSK; n, m
and T are the phase state number, the number of segments and the coding duration of the
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T1 and T2 codes, respectively, M and Nc represents the number of frequency steps of Frank,
P1 and P2, and the pulse compression ratio of the P3 and P4 codes, respectively.

Table 1. The instantaneous phase representation of nine types of radar signals.

Modulation Type Parameter φ(k)

LFM
fc

µ
2π

(

fck ± µ
2 k2

)

BPSK
fc

θ
2π fck + θ, θ ∈ {0, π}

T1
m
T
n

2π fck + mod
{

2π
n INT

[

(mk − jT)
jn
T

]

, 2π
}

, j = 1, 2, . . . , k − 1

T2
m
T
n

2π fck + mod
{

2π
n INT

[

(mk − jT)
(

2j−m+1
T

)

n
2

]

, 2π
}

, j = 1, 2, . . . , k − 1

Frank M 2π fck + 2π(i − 1)(j − 1)/M, i = 1, 2, . . . , M, j = 1, 2, . . . , M

P1 M 2π fck − π[M − (2j − 1)][(j − 1)M + (i − 1)]/M, i = 1, 2, . . . , M, j = 1, 2, . . . , M

P2 M 2π fck − π[2i − 1 − M][2j − 1 − M]/2M, i = 1, 2, . . . , M, j = 1, 2, . . . , M

P3 Nc 2π fck + π(i − 1)2/Nc, i = 1, 2, . . . , Nc

P4 Nc 2π fck + π(i − 1)2/Nc − π(i − 1), i = 1, 2, . . . , Nc

3.2. Impulsive Noise Model

In the real environment, there is impulse noise in addition to white Gaussian noise.
Impulse noise consists of irregular pulses or noise spikes with a short duration and large
amplitude, which is mainly caused by system defects [42,43]. The Bernoulli–Gaussian noise
model is one of the most widely used in describing impulse noise, which is adopted here.
Normally, when radar signals are affected by impulse noise, the additive white Gaussian
noise also exists. As a result, the impulsive noise model can be written as:

u(k) = b(k)g1(k) + g2(k) (3)

where b(k) is a Bernoulli process with a probability of occurrence as p, g1(k) and g2(k)
are the independent and zero mean with variances σ2

1 and σ2
2 , separately, and they satisfy

σ2
1 ≫ σ2

2 .
The probability distribution functions of b(k) and gi(k), i = 1, 2 are fb(y) and fgi

(y),
respectively, which can be written as

fb(y) = py(1 − p)1−y, y ∈ {0, 1}

fgi
(y) = 1√

2πσi
exp

(

− y2

2σ2
i

)

, y ∈ (+∞,−∞)
(4)

where y is the variable in functions fb(y) and fgi
(y).

3.3. Data Preprocessing

As contrastive learning usually requires image data as its input, a preprocessing of
converting radar signal sequences into images is needed. There are several ways of trans-
forming the data, and in this paper, we transform the signal into time–frequency images.

In the time–frequency analysis, the Choi–Williams distribution (CWD) has a relatively
stable characterization for local characteristics of the signals, the continuous form of which
can be expressed as [1]

C(w, t) =
t

∞
f (η, τ)ej2πη(s−t)x(s, τ)ejwτdηdsdτ

x(s, τ) = x(s + τ/2)x∗(s − τ/2)
(5)
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where C(w, t) is the time–frequency distribution function; w and t refer to the coordinates
of frequency and time; (·)* is a conjugate operation; f (η, τ) is a kernel function, which

satisfies f (η, τ) = e(πητ)2/2δ, and s, τ, η and δ are the time, time delay, frequency shift and
controllable factor to suppress cross–terms, respectively.

In order to improve the classification performance, feature enhancement algorithms
are usually used in radar intra–pulse signal modulation classification [16,44,45]. However,
these algorithms incur additional computational complexity and a certain degree of infor-
mation loss. Therefore, the CWD feature is directly used as the initial feature without any
other feature enhancement processing in this paper.

4. CL–CNN Model

4.1. Overview of the CL–CNN Model

The CL–based model needs a deep network to extract the features of images, and as
CNN is widely used in image classification for its excellent feature extraction performance,
it is employed in our CL–based network. The newly constructed network is called CL–CNN,
and its architecture is shown in Figure 1. There are mainly three parts in the pretraining
stage, which are the stochastic data augmentation module, the encoder and the projection
head. In the fine–tuning stage, the projection head is discarded, and the classification head
is added after the encoder.

Data

Augmentation

Large unlabeled dataset

Small labeled dataset

Encoder

Encoder
Projection 

Head

Minimize 

Contrastive

Loss

Classification 

Head

Pre-training

Weight Transfer

2 Fine-tuning

2-D Wiener 

filtering

–

–
– –

–
–

–

–

–
–

– –

– 


= =
ˆˆ  ̂ ̂

Figure 1. Architecture of the CL–CNN model.

These parts play different roles in radar signal modulation classification. In the pre-
training stage, the stochastic data augmentation module is mainly used for producing
positive sample pairs and negative sample pairs, the encoder extracts representative fea-
tures from data examples, the projection head maps representations to the space where
the contrastive loss is applied and the classification head makes the final decision for
modulation classification in the fine–tuning stage.

The training process of CL–CNN includes two steps, pretraining and fine–tuning,
as shown in Figure 1. In the pretraining step, the encoder and the projection head are
pretrained with unlabeled augmented data to map the original time–frequency images into
low–dimensional representations. The aim is to minimize the contrastive loss and make
the features of the anchor data more similar to that of the positive data and more dissimilar
to that of the negative ones.

In the fine–tuning step, the weight of the encoder is saved, and a classification head
is built after it. The encoder and classification head are together trained with labeled
data. The latent representation obtained from the last step has already learned the intrinsic
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information from the unlabeled data examples, so only a small number of labeled data is
needed to fine–tune the model.

4.2. De–Noising Algorithm

A time–frequency analysis can reduce noise to some extent, but some noise still
remains, especially at low SNRs. Denoising algorithms can be used to further reduce
the noise in the time–frequency images. Two–dimensional Wiener filtering is one of the
effective denoising algorithms that can adjust the effect of the filter according to the local
variance of the image. A detailed introduction to 2D Wiener filtering is given below, and
more details can be found in [46].

Consider a 1D gray–scaled image of a × b pixels with value matrix Ha×b, and the
value of each pixel is denoted as H(i, j), i = 1, 2, . . . , a, j = 1, 2, . . . , b. The size of a filter
neighborhood is â × b̂, and the mean µ̂ and variance σ̂2 of each pixel of the neighborhood
can be calculated by the following equations:

µ̂ = 1
âb̂

∑
i,j∈β̂

H(i, j)

σ̂2 = 1
âb̂

∑
i,j∈β̂

H2(i, j)− µ̂2

Ĥ(i, j) = µ̂ +
σ̂2+σ2

N
σ̂2 [H(i, j)− µ̂]

(6)

where Ĥ(i, j) is the filtered pixel of H(i, j) and σ2
N the variance of the noise.

4.3. Data Augmentation

In this paper, the data augmentation part is implemented by random resized crop,
horizontal flip and Gaussian noise. These data augmentation methods increase the diversity
of the positive and negative sample pairs. In detail, ‘random resized crop’ randomly crops
an area on the original image and then resizes it into a given size, and ‘horizontal flip’ flips
the image horizontally. These two data augmentation methods enhance the generalization
ability of the model. ‘Gaussian noise’ adds zero mean Gaussian noise to the original image,
which distorts the high–frequency features and enhances the learning ability of the neural
network.

Suppose the batch size of the input data is N; after data augmentation, each input
sample xk in this batch forms a positive pair (x̂2k−1, x̂2k), and all remaining 2(N − 1)
samples in this batch are used to form negative pairs.

4.4. Encoder

The encoder is a deep network used for feature extraction. The network cannot be
too deep, as the gradient disappearance problem will appear, and the parameters of the
previous layer cannot be trained effectively. The residual network (ResNet) is composed of
some residual blocks, and it can alleviate the training difficulty by shortcut connections. The
output of ResNet can be obtained by summing the output and input of multiple cascaded
convolutional layers [47]. There is a Rectified Linear Unit (ReLU) nonlinear activation
function after each residual block. The structure of the residual block is shown in Figure 2.
It can be seen that the residual block mainly contains two 3 × 3 convolution layers (Conv),
two batch normalization layers (BN) and three nonlinear activation function layers. For
the input x̂i, suppose hi is the final output of the residual block, and it is the sum of the
forward neural network H(x̂i) and x̂i, i.e., hi = H(x̂i) + x̂i.
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Figure 2. Structure of the residual block.

4.5. Projection Head

The projection head is composed of two fully connected layers, which maps the output
of the encoder to a low–dimensional feature space and helps identify the invariant features
of each input. The processing steps are listed as follows.

(1) Calculate the output of the projection head for each input hi.

zi = W2(σ(W1(hi))) (7)

where i = 1, 2, . . . , 2N, N is the batch size, W1 and W2 are the weights of the two fully
connected layers and σ(·) is the ReLU nonlinear activation function.

(2) Calculate the cosine similarity for each output of the projection head.

sim
(

zi, zj

)

=
zT

i zj

‖zi‖
∥

∥zj

∥

∥

(8)

where ‖·‖ is the l2 norm, and (·)T is the conjugate transposition operation.

(3) Calculate the average normalized temperature–scaled cross–entropy loss.

L = 1
2N

N

∑
k=1

[L(2k − 1, 2k) + L(2k, 2k − 1)]

L(i, j) = − log
exp(sim(zi ,zj)/ξ)

2N
∑

k=1
I[k 6=i] exp(sim(zi ,zk)/ξ)

(9)

where ξ is the adjustable temperature parameter, and I[k 6=i] ∈ {0, 1} is an indicator function.
The value of the indicator is 0 if and only if k = i; otherwise, it is 1.

(4) Update the parameters of the encoder and projection head to minimize the loss L.

4.6. Classification Head and Focal Loss Function

In the classification stage, as the parameters of the encoder have been pretrained and
the projection head has been discarded, two fully connected layers are included to make
the final decision on the modulation type.

In general, the cross–entropy loss function is widely used in the classification stage.
However, the cross–entropy loss treats all the samples equally and does not differentiate
the complicated samples and simple ones. Therefore, the classification performance may
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degrade due to the difficulty imbalance problem. The cross–entropy loss function can be
written as

CE(p) = − log(p) (10)

where p ∈ [0, 1] is the model’s estimated probability for the ground–truth class.
Compared with the cross–entropy loss function CE(p), the focal loss function can be

seen as the cross–entropy loss function with an extra adjustable parameter, which can be
written as

FL(p) = −(1 − p)γ log(p) (11)

where γ is an adjustable hyperparameter.
Normally, the probability p is small for difficult samples, which is p → 0 and

(1 − p)γ → 1 ; as a result, the focal loss does not change significantly. On the contrary, the
probability p of simple samples is large, so the contribution of this probability to the total
loss is small. Employment of the focal loss in the classification head solves most of the
difficulty imbalance problems and further improves the classification performance.

5. Simulations and Analyses

In this section, the classification performance of the CL–CNN model is compared with
three deep models and two traditional methods, which are AAMC–DCNN, CNN–Xia,
ResNet, SVM and KNN. The benchmark datasets are introduced, and the implementation
details are introduced briefly. Then, the parameter settings of the CL–CNN model are
studied, and the classification results are presented. All the simulation results are obtained
by 50 trials.

5.1. Datasets

Simulations are conducted using two datasets, which contain nine types of radar
intra–pulse signals shown in Table 1 and are contaminated by Gaussian white noise and
impulsive noise, separately. The parameter settings of the signals are listed in Table 2, where
U(·) denotes the uniform random distribution of data in a fixed interval; {·} represents
a random parameter set and fs, fc, B, Ns, Lc, Ncc, Ng, M and ρ represent the sampling
frequency, carrier frequency, bandwidth, number of samples, length of barker, number of
carrier cycles in a single–phase symbol, number of segments, number of frequency steps
and number of subcodes in a code, respectively.

Table 2. The parameter settings of nine types of radar intra–pulse signals.

Modulation Type Parameter Ranges

– fs 200 MHz

LFM
fc

B
Ns

U(3 fs/20, fs/5)
U( fs/20, fs/10)

U(500, 1000)

BPSK
Lc

fc

Ncc

{7, 11, 13}
U(3 fs/20, fs/5)
{20, 21, 22, 23}

T1, T2
fc

Ng

N

U(3 fs/20, fs/5)
{4, 5, 6}

U(500, 1000)

Frank, P1
fc

Ncc

M

U(3 fs/20, fs/5)
{4, 5.6}

{5, 6, 7, 8}
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Table 2. Cont.

Modulation Type Parameter Ranges

P2
fc

Ncc

M

U(3 fs/20, fs/5)
{4, 5, 6}
{6, 8}

P3, P4
fc

Ncc

ρ

U(3 fs/20, fs/5)
{4, 5.6}

{36, 49, 64}

The time–frequency images of four types of signals, i.e., LFM, two PSK and Frank,
under white Gaussian noise and impulsive noise are shown in Figure 3, respectively. There
are clear differences between the signal images under different types of noise.



( )

–

   

(a) (b)  (c) 

   

(d) (e) (f)  

  

(g) (h) 

–

– –
– – –

–

–

Figure 3. The time–frequency images: (a) LFM signal under Gaussian noise, (b) BPSK signal under

Gaussian noise, (c) Frank signal under Gaussian noise, (d) LFM signal under impulsive noise,

(e) BPSK signal under impulsive noise, (f) Frank signal under impulsive noise, (g) filtered image of

LFM signal under Gaussian noise and (h) filtered image of LFM signal under impulsive noise.

5.2. Comparisons with Deep Models and Traditional Methods

Three types of deep models and two types of traditional methods are compared with
the CL–CNN model for radar intra–pulse signal modulation classification. Furthermore,
the CL–CNN–CE model using the cross–entropy loss function is also considered as one
comparison model, which is different from the CL–CNN model using the focal loss function.
For all the deep models, the softmax activation function is used in the last layer, and the
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Adam optimizer and cross–entropy loss function are applied in the deep models. The
details of the deep models and traditional methods are listed in Table 3.

Table 3. The details of the deep models and traditional methods.

Model Input Cross–Entropy Loss Focal Loss Transfer Learning Contrastive Learning

CL–CNN Time–frequency images No Yes No Yes
CL–CNN–CE Time–frequency images Yes No No Yes

AAMC–
DCNN

Time–frequency images Yes No Yes No

CNN–Xia Time–frequency images Yes No No No
ResNet Time–frequency images Yes No No No
SCRNN Signal sequences Yes No No No

SVM Signal sequences - - - -
KNN Signal sequences - - - -

The AAMC–DCNN model is similar to DenseNet, but it has a dense–connection
mechanism [28]. A two–stage training strategy is adopted for the model. In the first
stage, the model is pretrained on the widely used ImageNet dataset. In the second stage,
the pretrained model is fine–tuned for classification using the time–frequency images of
our datasets.

The CNN–Xia model contains several convolution layers, maxpooling layers and fully
connected layers [18]. There is a maxpooling layer after each convolution layer. Two fully
connected layers and a dropout layer are added after the convolutional layers.

The ResNet model is a well–known deep convolutional neural network. The shortcut
connections in the model can alleviate training difficulties in deeper networks without intro-
ducing either extra parameters or computational complexity. Many successful applications
have been made using this model in modulation classification [48–50].

The SCRNN (Sequential Convolutional Recurrent Neural Network) model combines
the speed and lightness of the CNN and temporal sensitivity of RNN [51]. It can be divided
into three parts: the first part contains two convolutional layers with 128 filters and ReLU
activation functions, the second part is two 128–unit LSTM layers with ReLU activation
functions and the last part is a dense layer.

The SVM [52] maps the input data into a high–dimensional feature space, where a
linear decision surface is constructed. Different types of classes are located on different
sides of the decision surface.

The KNN (K–Nearest Neighbor) follows the nearest decision rule and assigns an
unclassified sample point to the nearest classified set [53].

5.3. Implementation Details

For the first dataset, 5000 samples of each type of signals are produced for pretraining,
while 85 and 1500 samples of each type of signals are produced for the fine–tuning and test,
respectively. All of them are affected by Gaussian white noise. For the second dataset, 85
and 1500 samples of each type affected by impulse noise are produced to fine–tune and test
the generalization ability of contrastive learning, respectively. The implementation details
for the models and methods are shown in Table 4.
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Table 4. The implementation details of the deep models and traditional methods.

Model Pretraining Fine–Tuning Direct Training

CL–CNN Dataset1: 5000 samples for each class Dataset 1: 15–85 samples for each class
Dataset 2: 15–85 samples for each class

No
AAMC–DCNN ImageNet

CNN–Xia
No No

Dataset 1: 15–85 samples for each class
Dataset 2: 15–85 samples for each classResNet

SCRNN No No

Dataset 1: 15–85 samples for each classSVM
- -

KNN

All of the models and methods are tested with 1500 samples for each class.

The Adam optimizer with a learning rate of 0.001 is utilized. All the trainings and
predictions are implemented in Pytorch.

5.4. Parameter Analyses

As the classification accuracy varies with the parameter settings, it is necessary to find
the optimal parameters for the CL–CNN model. The impact of the parameter settings of
the CL–CNN model is investigated below, including the adjustable parameter γ, the batch
size N and the number of CNN layers.

Figure 4 shows how the adjustable parameter γ affects the classification accuracy.
The value of γ represents how much attention the model pays to difficult samples. A
large γ leads to a poor classification performance, which means that the model focuses too
much on those samples. On the other hand, a small γ also leads to a poor performance,
which implies that the difficulty imbalance problem cannot be solved effectively, which
degrades the performance of the model. It can be seen that the model with γ = 0.1 gives
the best performance, and the difficulty imbalance problem can be solved to some extent
by adjusting this parameter.

–

–

–
– 







 =

 

− 

– −

Figure 4. Classification performance of the CL−CNN model with different γ (the sample size per

class is 55).

The results by different batch sizes N are shown in Table 5, which indicates that the
classification performance with batch size 32 is the best. Normally, a larger batch size will
bring a better classification performance, but the performance will degrade when the batch
size exceeds the threshold value [54].
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Table 5. Classification performance of the CL–CNN model at different batch sizes with −5 dB SNR

and the sample size of each class being 55.

Batch Size 8 16 32 64 128

Accuracy(%) 78.48 79.70 82.09 78.71 76.19

The simulation results for different numbers of layers are shown in Table 6, which
indicates that the classification performance of 34 layers is the best, with a running time of
7.72 s. Normally, a larger number of layers will increase the generalization ability and bring
a better classification performance, but the performance will degrade due to the overfitting
problem when the number of layers is too large.

Table 6. Results of the CL–CNN model with a different number of layers with −5 dB SNR and the

sample size for each class being 55.

Layer Number 18 34 50 101

Accuracy(%) 79.32 82.09 75.96 72.54
Time cost * (s) 6.67 7.72 9.52 13.42

* The running time of the whole test samples.

5.5. Performance Comparisons

The classification results are presented in this subsection, including CL–CNN and
CL–CNN–CE, four deep models and two traditional methods. In addition, CL–CNN–WP
is also considered in the comparison, which has the same structure as CL–CNN– CE and
is directly fine–tuned without pretraining. All the deep models and traditional methods
are configured in their best performance. The first simulation tests the effect of denoising,
the second to fifth simulations test the feature extraction ability of contrastive learning, the
sixth and seventh simulations test the generalization ability and the last one is the statistical
analysis. For all simulations, 1500 samples of each signal type are used for the test, and
15–85 samples of each signal type are used for fine–tuning.

In the first simulation, the performances of CL–CNN using filtered and unfiltered
images as input are shown in Table 7. The sample size for each class is set as 55. It can be
seen that the method using filtered images achieves 3% to 4% more classification accuracy
improvement than the one using unfiltered images at low SNRs. The comparison results
indicate that the denoising algorithm is effective in reducing the effect of noise.

Table 7. Classification performance of CL–CNN using filtered and unfiltered time–frequency images

based on the first dataset.

Input
SNR(dB)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

Filtered images 53.11 59.85 63.70 69.97 75.95 82.09 86.12 88.31 93.05 93.72 94.02
Unfiltered images 48.97 54.83 60.04 66.19 70.81 77.39 82.18 85.53 90.13 91.20 93.42

In the second simulation, the performances of CL–CNN, CL–CNN–CE and CL–CNN–WP
are compared, and the results are shown in Table 8. It can be seen that CL–CNN achieves
1% to 2% classification rate improvement compared with CL–CNN–CE, which implies that
the focal loss function effectively solves the difficult imbalance problem to further improve
the classification performance. The performance of CL–CNN–WP is the worst, especially in
the case of insufficient samples. It indicates that the pretraining greatly improves both the
feature extraction ability and classification performance with a limited number of samples.
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Table 8. Classification performance of the CL–CNN, CL–CNN–CE and CL–CNN–WP models at

−5 dB SNR.

Model
Sample Size for Each Class

15 25 35 45 55 65 75 85

CL–CNN 63.61 72.57 76.64 79.09 82.09 83.69 84.74 87.47
CL–CNN–CE 62.24 69.49 75.11 77.62 80.27 81.22 82.54 86.14
CL–CNN–WP 52.41 62.74 63.39 64.50 68.66 73.73 78.69 83.73

In the third simulation, the performance of CL–CNN with different sample sizes for
each class and SNR is presented, and the results are shown in Table 9. The sample size
for each type of signal increases from 15 to 85 with an interval of 10. It can be concluded
that the proposed model exhibits good performance in a different number of samples, and
the classification accuracy improves as the number of samples increases or SNR increases.
When the SNR and sample size for each class are equal to or greater than −1 dB and 55,
separately, the classification accuracy is more than 90%.

Table 9. Classification performance of the CL–CNN model in varying sample sizes for each class

and SNR.

Size

SNR −10
dB

−9 dB −8 dB −7 dB −6 dB −5 dB −4 dB −3 dB −2 dB −1 dB 0 dB

15 37.73 42.57 47.63 52.21 56.58 63.61 67.43 70.82 76.13 83.63 85.36
25 37.94 45.67 50.77 54.38 60.41 72.57 74.19 75.91 78.69 85.71 86.92
35 42.54 46.15 54.81 57.80 68.60 76.64 76.63 80.72 83.55 87.35 87.47
45 46.78 48.91 57.46 62.36 71.92 79.09 81.49 82.37 85.92 90.63 91.19
55 53.11 59.85 63.70 69.97 75.95 82.09 86.12 88.31 93.05 93.72 94.02
65 53.62 60.46 63.30 70.44 76.43 83.69 86.68 88.56 93.22 93.30 93.44
75 53.23 60.74 63.69 71.39 76.87 84.74 86.84 88.48 93.19 93.66 93.94
85 57.03 64.86 68.92 74.78 82.51 87.47 90.95 90.42 93.57 94.56 94.79

In the fourth simulation, the classification results of the deep models and traditional
methods with the sample size per class 15 are shown in Table 10. It can be seen that
CL–CNN achieves much better classification accuracy than the other deep models and
traditional methods, which indicates that CL improves the feature extraction ability of the
proposed model. As the deep models, CNN–Xia, AAMC–DCNN and ResNet are based
on time–frequency images, while SCRNN, SVM and KNN are based on signal sequences,
the classification performances of the first three models are clearly better than those of the
other three. As the architecture of AAMC–DCNN is complex and the number of samples
is very small, the overfitting problem may cause degradation to its performance, and as
a result, CNN–Xia performs better with a simple structure. The signal sequence–based
solutions show poor performances due to low discriminating inputs; while, among them,
the performance of SVM is better than that of KNN.

In the fifth simulation, the models with the sample sizes per class 55 are tested, and the
results are shown in Table 11. Although the sample size per class increases compared with
that in the fourth simulation, CL–CNN still performs the best. It outperforms CNN–Xia
and ResNet by nearly 4% for the whole SNR range. The performance of AAMC–DCNN
has some improvement, which is comparable to CL–CNN with the SNR equal to or greater
than 0 dB. The performance of SCRNN does not improve obviously when the sample size
per class increases, as it may still suffer from the overfitting problem. The performance of
KNN is better than that of SVM with an increased sample size for each class.
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Table 10. Classification performances of the deep models, and the traditional methods with the

sample size for each class being 15 based on the first dataset.

Model
SNR (dB)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

CL–CNN 37.73 42.57 47.63 52.21 56.58 63.61 67.43 70.82 76.13 83.63 85.36
AAMC–DCNN 30.29 32.03 34.74 37.90 41.54 43.59 47.30 50.89 58.64 69.34 75.06

CNN–Xia 34.35 37.21 43.12 47.43 51.46 57.25 61.19 62.52 70.59 75.67 81.61
ResNet 33.94 35.27 37.80 42.47 48.90 52.50 54.96 57.25 65.26 70.80 76.94
SCRNN 12.73 13.53 13.06 14.10 16.02 15.19 17.11 17.15 18.61 20.08 20.01

SVM 13.61 14.51 14.37 16.89 17.70 17.39 18.53 18.16 19.21 20.80 21.45
KNN 13.05 12.91 13.83 14.76 14.94 16.17 16.62 17.27 17.14 17.32 17.33

Table 11. Classification performances of the deep models and the traditional methods, with the

sample size for each class being 55 based on the first dataset.

Model
SNR(dB)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

CL–CNN 53.11 59.85 63.70 69.97 75.95 82.09 86.12 88.31 93.05 93.72 94.02
AAMC–DCNN 47.89 53.17 59.91 64.48 68.21 73.22 79.21 83.54 90.35 91.23 92.37

CNN–Xia 49.16 55.06 60.49 65.22 69.33 75.30 78.96 83.90 90.93 91.45 91.63
ResNet 50.07 56.26 61.11 65.91 70.25 77.36 81.59 84.63 91.59 93.42 93.96
SCRNN 14.81 13.73 16.51 17.23 18.04 19.33 19.03 22.30 23.94 26.86 29.36

SVM 16.52 17.05 19.10 21.25 21.83 23.45 24.95 25.98 26.84 29.62 29.13
KNN 14.71 15.54 17.21 20.52 22.63 24.4 26.32 27.62 29.65 33.37 33.05

The confusion matrix is an important visual tool to compare the predicted results,
which is provided in the sixth simulation. Confusion matrices of CL–CNN at various SNRs
are presented in Figure 5, where each column represents the predicted modulation class,
and each row represents the real modulation class, and the numerical value on each grid
denotes the classification probability of the corresponding modulation class. It can be seen
that the diagonals become sharper with an increasing SNR, which illustrates that a higher
SNR brings a better classification accuracy. However, confusion between Frank and P3
exists when the SNR is equal to or is lower than −5 dB, as it is difficult to distinguish their
modulation features at low SNRs.

− − − − − − − − − −
–
–
–

–

−

  

(a) (b) (c) 

–

–
– –

–
–

– –
–

Figure 5. Confusion matrices of the CL–CNN model at different SNRs: (a) SNR -10dB, (b) SNR-5dB,

(c) SNR 0dB.

5.6. Generalization Ability Test

In the following two simulations, the Gaussian noise–affected signals are used in
the first pretraining stage, and the impulsive noise–affected signals are utilized in the
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fine–tuning stage. As SCRNN, SVM and KNN use the signal sequence as the input, their
performance is very poor in the impulsive noise scenario, so they are not included in the
comparison. The classification results are presented in Tables 12 and 13 with the sample
size for each class set as 15 and 55, separately. It can be seen that the proposed CL–CNN
has the best performance in Tables 12 and 13. Generally, the performance of CL–CNN using
impulsive noise–affected signals in the fine–tuning stage does not degrade much compared
with that using Gaussian noise, which indicates that the proposed CL–CNN has a good
generalization ability.

Table 12. Generalization ability test with the sample size for each class being 15.

Model
SNR (dB)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

CL–CNN 36.84 41.82 47.30 51.55 55.85 62.71 66.67 70.18 75.80 83.19 84.90
AAMC–DCNN 29.65 31.63 34.15 37.38 40.96 43.13 46.73 50.22 58.28 68.78 74.51

CNN–Xia 33.71 36.71 42.60 46.92 51.08 56.82 60.67 62.01 70.35 75.20 81.12
ResNet 33.47 34.73 37.22 41.83 48.29 52.03 54.33 56.73 64.69 70.31 76.52

Table 13. Generalization ability test with the sample size for each class being 55.

Model
SNR(dB)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

CL–CNN 52.49 59.27 63.19 69.39 75.59 81.51 85.76 87.89 92.44 93.29 93.59
AAMC–DCNN 47.32 52.78 59.32 64.18 67.71 72.68 78.74 83.02 89.87 90.75 91.65

CNN–Xia 48.78 54.44 60.08 64.80 68.78 73.64 78.52 80.40 90.53 90.91 91.43
ResNet 49.53 55.72 60.79 65.49 69.72 76.80 81.09 84.29 91.06 92.89 93.52

5.7. Statistical Analysis with McNemar’s Test

McNemar’s test is employed to evaluate the statistical significance between the CL–
CNN model and some other deep models, i.e., AAMC–DCNN, CNN–Xia and ResNet.
McNemar’s test can be written as

z =
s12 − s21√
s12 + s21

(12)

where s12 is defined as the number of samples misclassified by model 1 but classified
successfully by model 2, while the definition of s21 is in contrast. A greater value of |z|
means that two models have significant differences in performance.

Let CL–CNN be model 1 and AAMC–DCNN, CNN–Xia and ResNet be model 2,
respectively. The values of |z| for different models are listed in Table 14. It can be
seen that the performance of the CL–CNN model is statistically different from those of
comparison models.

Table 14. The values of |z| with −5 dB SNR and the sample size for each class being 55.

AAMC–DCNN CNN–Xia Resnet

|z| 24.36 21.09 15.80

6. Conclusions

In this paper, a new deep learning–based model called CL–CNN was developed and
applied to the radar intra–pulse modulation classification problem successfully. The impact
of different parameter settings on its performance was examined to find the best configu-
ration. Simulations were conducted using two datasets. As demonstrated by the results,
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the proposed model outperformed the other four deep models (AAMC–DCNN, CNN–Xia,
ResNet and SCRNN) and two traditional methods (KNN and SVM) in terms of classifi-
cation accuracy. From the simulation results, it can also be found that CL alleviates the
overfitting problem encountered in few–shot learning and improves the feature extraction
ability of the proposed model. Furthermore, the proposed model has a good generalization
ability facing different noise types. Possible future work can focus on investigating more
effective CL–based frameworks for radar intra–pulse modulation classification, which may
further improve its performance.
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