
1. Introduction
Eikonal tomography was proposed to directly obtain the phase velocity of surface waves from interpolated phase 
traveltime surfaces (Lin et al., 2009) and is often applied to ambient noise surface wave data. In ambient noise 
eikonal tomography, each station is considered as a “source” and the traveltime surface can be estimated between 
this source and other stations whose recordings have been cross-correlated with those of the main source. Eikonal 
tomography constrains the phase velocity by locally evaluating the eikonal equation. The eikonal equation is a 
first-order nonlinear partial differential equation (PDE) that represents a high frequency approximation to the 
wave equation (Shearer, 2019). The eikonal equation directly relates wave velocity and propagation directions 
to the spatial gradients of a traveltime surface (Lin & Ritzwoller, 2011). Following Lin et al. (2009), a series of 
new applications in eikonal tomography soon followed (i.e., De Ridder, 2011; De Ridder et al., 2015; Gouédard 
et al., 2012; Qiu et al., 2019).

In contrast to traditional surface wave tomography, eikonal tomography automatically accounts for ray bending 
and thereby provides a more accurate representation of wave propagation (Lin et al., 2009). However, classical 
eikonal tomography uses a generic interpolation algorithm to reconstruct the traveltime surfaces between stations 
in order to evaluate the eikonal equation that yields the velocity. This approach effectively biases the velocity 
depending on the particular algorithm used for interpolation. Linear interpolation enforces a homogeneous veloc-
ity between stations, whereas bicubic spline interpolation smoothens the traveltime surfaces reducing the resolu-
tion. One way to solve this problem is to introduce known physical constraints, similar to the introduction of the 
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wave equation as PDE constraint in seismic waveform fitting (De Ridder & Maddison, 2018; Shaiban et al., 2022; 
Van Leeuwen & Herrmann, 2013, 2015). Here we argue that a physics based interpolation is easily achieved 
using neural networks (NNs) by formulating the surface wave tomography problem in a physics-informed neural 
network (PINN) framework.

Over the past decade, deep learning has been used as an efficient tool in many domains, such as image recog-
nition (Krizhevsky et al., 2012), natural language processing (LeCun et al., 2015) and object detection (Pathak 
et  al.,  2018). In seismology, deep learning also found many applications to improve seismic data processing 
and imaging (i.e., Lim, 2005; Liu et al., 2018; Zhang et al., 2014). Recently, an advanced deep learning frame-
work, called PINN, was proposed to solve PDEs, which imposes deep neural networks (DNNs) as universal 
function approximators (Raissi et al., 2019). In contrast to classic DNNs, PINNs are better placed to combine 
data science and theory-based models. They leverage the mathematical descriptions of the physical process as 
constraints to the data driven deep learning approaches and determine the physical parameters during the training 
process. PINNs have successfully been included in other machine learning approaches, like transfer learning and 
meta-learning (Chakraborty,  2021; Psaros et  al.,  2021), probabilistic PINNs (Grigo & Koutsourelakis,  2019; 
L. Yang et al., 2021) and error analysis (Jiao et al., 2021; Mishra & Molinaro, 2020). This idea is highly bene-
ficial to seismic tomography for avoiding the iterative process required by the nonlinearity and can directly 
extract the predicted parameters (e.g., velocity) for the model. The PINN framework has already shown great 
potential in solving the seismic forward problem (Moseley et al., 2020; Smith et al., 2020; Song et al., 2021; 
Waheed, Haghighat, et al., 2021) and seismic inverse problem (Song & Alkhalifah, 2021). Waheed, Alkhalifah, 
et al. (2021) suggested a PINN framework for exploration scale seismic tomography based on a factored eikonal 
equation, supported with synthetic examples.

Here we present a PINN-based algorithm for eikonal tomography and show the application in regional scale. The 
PINN framework is realized in SciAnn—a high-level deep learning library for physics-informed deep learning 
(Haghighat & Juanes, 2021). We use the eikonal equation to define the loss function, which is used to describe the 
difference between predicted and true value, and train this NN to obtain the solution of the inversion by minimiz-
ing the loss function. In contrast to traditional eikonal tomography, this approach utilizes DNNs to optimize the 
field data and extract the traveltime and velocity during the optimization process. We will first formulate PINN 
eikonal tomography (pinnET) and then present the results of a field data trial using data from ChinArray II in the 
NE Tibetan plateau, see Figure 2a.

2. Physics-Informed Deep Learning for Eikonal Tomography
A classical NN is defined as a mathematical operation (a general function) that generates an output value given 
several input values. Training data is used to optimize the parameters of the NN such that the error between 
predicted output and true output (in the training data) is minimized (here using an L2 loss function):

 (𝜃𝜃𝜏𝜏 ) =

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠∑

𝑗𝑗

𝑁𝑁𝑠𝑠𝑠𝑠𝑟𝑟∑

𝑖𝑖

|𝑁𝑁𝜏𝜏 (𝜃𝜃𝜏𝜏 ; 𝐱𝐱𝑠𝑠;𝑖𝑖, 𝐱𝐱𝑠𝑠;𝑗𝑗) − 𝜏𝜏𝑖𝑖,𝑗𝑗|2, (1)

where i and j are the index of receivers and sources respectively, θτ are the hyperparameters of the traveltime NN 
Nτ, Nsrc represents the number of sources, Nrcv represents the number of receivers, 𝐴𝐴 𝐱𝐱𝑟𝑟;𝑖𝑖 = (𝑥𝑥𝑟𝑟, 𝑦𝑦𝑟𝑟)𝑖𝑖 and 𝐴𝐴 𝐱𝐱𝑠𝑠;𝑗𝑗 = (𝑥𝑥𝑠𝑠, 𝑦𝑦𝑠𝑠)𝑗𝑗 
are the receiver and source locations of the spatial coordinates x, τi,j represents the traveltime surfaces of seismic 
waves. 𝐴𝐴  is the loss function.

Representing traveltimes by NNs does not guarantee that their output conforms to the physics of wave propa-
gation. We add a physics constraint to the NN (forming a PINN). In contrast to classical NNs, PINNs ensure 
interpretability in NNs by combining data sets and physical constraints (Figure 1). In this study, we choose the 
eikonal equation as the governing physical law. The eikonal equation directly relates the local phase velocity to 
the local spatial gradients of the traveltime surface. In the high frequency approximation, the eikonal equation can 
be expressed in first order-hyperbolic form (e.g., Wielandt, 1993):

|∇𝜏𝜏(𝐱𝐱)|2 ≈ 1

𝑐𝑐2(𝐱𝐱)
, (2)
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where ∇ is the Laplace operator. The traveltime is expressed as a continuous scalar function τ(x), and c(x) repre-
sents the local phase velocity on the surface of the Earth, at location x = (x, y). In our study, both the traveltimes 
and the phase velocity are expressed as outputs of a NN, thus the physical constraint can be written as:

��(��,��) = |∇�� |
2 − 1

�2
�
, (3)

where Nτ = Nτ(θτ; xr, xs) is the traveltime at xr from a source at xs, and Nc = Nc(θc; xr) is the phase velocity at xr, 
representing the traveltime surfaces τ(xr, xs) and velocities c(xr). θτ and θc are hyperparameters of traveltime and 
velocity NNs, respectively. Combining Equations 1 and 3, we define the PINN loss function:

(�� , ��) =
����
∑

�

����
∑

�

[

|�� (�� ; ��;�, ��;�) − ��,�|2 + ��|��(�� (�� ; ��;�, ��;�) , ��(�� ; ��;�))|2
]

, (4)

where ϵe is a parameter that describes the relative weight of the eikonal constraint. Both terms of the loss func-
tion are evaluated at collocated points, coinciding with the observations locations of the traveltime data. If ϵe is 
chosen too large, the first estimate for the velocity in the eikonal equation constraint will completely control the 
outcome of the optimization. In that regime, the velocity NN will not be updated, and the velocity captured in 
the outputs of the traveltime NN will not deviate from the first estimate for the velocity. Alternatively, if ϵe is too 
small, the  observed data will dominate this process and the results are evaluated without actually enforcing the 
physics constraint. So ϵe was chosen to be in between these two regimes, which we ascertained through tests was 
a rather narrow range. SciAnn (Haghighat & Juanes, 2021) allows to specify physics constraints symbolically and 
handles them through automatic differentiation in the optimisation.

Here the training process is the only step needed to learn the correct physics. The training process aims to obtain 
the hyperparameters 𝐴𝐴 �̂�𝜃𝜏𝜏 and 𝐴𝐴 �̂�𝜃𝑐𝑐 by minimizing the loss function:

arg min
�� ,��

{(�� , ��)} → �̂� , �̂� . (5)

In order to train a PINN, we would need the true velocity model of the Earth. The principle concept of pinnET is 
to update the velocity in the eikonal equation (physics) constraint, while training a NN that fits the observations.

We follow a training procedure that starts with individually pre-training the traveltime and velocity NNs using a 
starting velocity model, followed by iterated training in which the traveltime and velocity NNs may be updated 

Figure 1. Workflow and PINN framework for traveltime eikonal tomography, where co and τ0: initial phase velocity and traveltime; Nc and Nτ: neural networks of 
velocity and traveltime; τ: observed traveltime; 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐴 : predicted phase velocity and traveltime from PINN eikonal tomography (pinnET); 𝐴𝐴 𝐴𝐴𝐴 : average phase velocity 
from all sources. In the PINN algorithm, the loss function L consists of two parts: the neural networks composed of Nc and Nτ used to minimize the misfit of the 
traveltime data providing the approximate solution and the physical constraint utilizing the approximate solution and adding the residual of physical equation. This 
physical constraint contains the eikonal equation and appropriate boundary conditions.
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simultaneously or sequentially (individually retraining the velocity NN), see Figure 1. The starting velocity c0, 
for pre-training Nc, is calculated by dividing the sum of distances between all station pairs by the sum of observed 
traveltimes. The initial traveltimes τ0, for pre-training Nτ, are calculated by dividing each distance between station 
pair by the initial velocity c0. The traveltime NN is pre-trained using a loss function as in Equation  1, with 
τi,j = τ0;i,j for pre-training, and the velocity NN is pre-trained using:

(��) =
�����
∑

�

[

|��(�� ; ��) − ��|2, (6)

with ci = c0;i for pre-training, where Ngrid is the number of grid points. The pre-training process provides good 
initial weights for the NNs and results in a stable convergence during the process of iterated training. Simulta-
neous training aims to minimize the loss function in Equation 4. After this process, the velocity can be extracted 
in two different ways. The first method is by evaluating the velocity directly from the trained NNs, denoted 𝐴𝐴 𝐴𝐴𝐴 :

�̂(�) = ��
(

�̂� ; �
)

, (7)

where 𝐴𝐴 𝐴𝐴𝐴 is the trained velocities. The second method is by evaluating the traveltime NN on a fine regular grid 
using finite differences, yielding 𝐴𝐴 𝐴𝐴𝐴 :

𝑐𝑐(𝐱𝐱) =
1

𝑁𝑁𝑠𝑠𝑠𝑠𝑐𝑐

𝑁𝑁𝑠𝑠𝑠𝑠𝑐𝑐∑

𝑗𝑗

1

|||∇𝑁𝑁𝜏𝜏

(
�̂�𝜃𝜏𝜏 ; 𝐱𝐱, 𝐱𝐱𝑠𝑠;𝑗𝑗

)|||
, (8)

Figure 2. (a) Overview of the station network in Tibet used in data example. Black lines indicate main faults, blue triangles indicate stations of the network and black 
stars indicate the selected source stations for the velocity determination. (b) An example of Z-Z component cross-correlations for station pairs at station 51511 (red 
triangle in (a)), the V-shaped arrivals are Rayleigh waves.
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where 𝐴𝐴 𝐴𝐴𝐴 is the average velocity surfaces from all predicted traveltime surfaces, Nτ indicates the trained traveltime 
surfaces 𝐴𝐴 𝐴𝐴𝐴 . In fact we employ a trimmed geometric mean (discarding the 10 percentile outliers at both extremes) 
and compute its corresponding standard deviation. The second method is relevant for sequential updates during 
which the velocity NN is updated explicitly by minimizing the loss function in Equation 6. We perform 2 outer 
iterations (with one sequential updating) to update the estimate for the velocity, and find that this strategy accel-
erates the overall convergence rate (see Supporting Information Figure S1). Another advantage of using travel-
time surfaces to predict the velocity is that it works robustly (parameter tuning is less tenuous) and comes with a 
measure of uncertainty (Figure 4c).

3. PINNs Eikonal Tomography on Northeastern (NE) Tibetan Plateau
To demonstrate the suitability of our algorithm we apply it to a sample data set of 25 s period Rayleigh wave trav-
eltimes collected from station of the ChinArray II network located on the NE Tibetan Plateau (Figure 2a). This 
data set allows us to compare the pinnET approach with other eikonal tomography solutions, traditional surface 
wave tomography and ambient noise surface wave tomography results. The station distribution of the network is 
also well suited for our approach and the tectonic history of the region shows a variety of structures which allow 
us to test the resolution capabilities of our pinnET approach.

Since the collision of the Indian and Eurasian continents (∼60 Ma), the Tibetan Plateau was elevated due to 
the N-S shortening of the crust (Yin & Harrison, 2000). The physical processes that controlled the deformation 
and the mechanisms of crustal shortening remain subject for debate (i.e., Avouac & Tapponnier, 1993; Clark & 
Royden, 2000; England & Molnar, 1997; Guo & Chen, 2017; Hao et al., 2021; Tapponnier et al., 2001; Y. Yang 
et  al.,  2012). The ChinArray II data set has also been used to derive two-station Rayleigh wave tomography 
(Li et al., 2017), joint receiver functions and Rayleigh wave tomography (X. Wang et al., 2017), beamforming 
Rayleigh wave tomography (K. Wang et al., 2020) and Rayleigh wave eikonal tomography (Hao et al., 2021) 
allowing us to compare our results with more established methods. The traveltime data at each source station 
are obtained based on the seismic ambient noise cross-correlations between all station pairs and arrival time 
picking. Here we choose Rayleigh wave data at 25 s period as a proof-of-concept data set to reveal phase velocity 
structure beneath NE Tibetan Plateau. In contrast to standard ambient noise or eikonal tomography we restrict 
the number of sources used in our approach to 10 sources recorded at all 676 stations of the network compared to 
all source-receiver combinations common in other methods. We randomly choose 10 sources to provide a good 
coverage of the model space. The training points are selected as the cross-correlated traveltime between those and 
other stations but we removed the points 1 km around the sources to avoid singularity around them. The physics 
constraint is only enforced at the spatial locations of all the training traveltime data.

Our PINNs algorithm for traveltime eikonal tomography comprises two parts: the traveltime NN that is used to 
approximate the traveltime 𝐴𝐴 𝑡𝑡𝑠𝑠𝑖𝑖 and the velocity NN which aims to extract the velocity 𝐴𝐴 𝐴𝐴𝐴(𝐱𝐱) . There are 10 hidden 
layers in both NN, but for the traveltime NN, each layer contains 20 neurons while only 5 neurons in each layer 
of velocity NNs. The size and numbers of layers in the NN where tuned to be able to represent all 10 traveltime 
surfaces with sufficient accuracy as not to reduce uncertainty in the final velocity. The “arctan” function is used 
as the activation function for the hidden layers. The optimizer is defined as the “adam” optimizer (Kingma & 
Ba, 2014), which is computationally efficient and widely used in deep learning. We divide all samples into a 
batch size of 676 and train the networks for 2,000 epochs. The learning rate for all samples is 0.0002. These 
hyperparameters were all chosen based on systematic synthetic tests.

We use checkerboard tests to evaluate the resolution of our results (Figure 3). The synthetic velocity model has a 
background velocity of 3.45 km/s on 8 × 8 anomalies. The magnitudes of the velocity perturbations are 2% and 
these anomalies have a maximum radius of 75 km distributed in the latitude and longitude direction, respectively. 
The distance between alternating low and high velocity anomalies is therefore 150 km (Figure 3a). We choose the 
same number and distribution of 676 stations with 10 sources (Figure 2a) for the checkerboard resolution tests 
as in the recorded data. Gaussian noise with a mean of 0.1 s and a standard deviation of 0.01 has been added to 
the traveltime data to simulate noise in the observed data. Figure 3b shows the recovered velocity structure by 
PINNs eikonal tomography. Most anomalies can be well recovered when the ray coverage is sufficient. Less well 
sampled structure at the edge of station networks is still acceptably resolved. We observe some lateral smearing 
especially in SW-NE direction in the north of the network which could be related to the choice of the source 
distribution. The checkerboard tests show that our phase velocity results are reliable with these parameters at 25 s.
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We apply our pinnET approach to recorded ambient noise data from the Tibetan Plateau (Figure 2a). The conver-
gence rate of the different training processes is shown by the loss curves in Figure  S1 in Supporting Infor-
mation. Using 10 sources to all stations and averaging the velocities from the solution for different sources 
(Equation 8), we resolve the phase velocity structure (Figure 4a) beneath NE Tibetan Plateau. Comparing with 
solutions derived from other Rayleigh wave tomography approaches, we find very good agreement. We show a 
direct comparison with the results at 25 s by ambient noise eikonal tomography. The phase velocities we find in 
the region are within ±0.1 km/s of other methods. We find good agreement with the lower velocities beneath the 
Songpang-Ganzi block, Qilian and Western Qinling Orogen. At the southeastern and northwestern edges of the 
network we find lower velocities beneath the Sichuan Basin and the Central Asian Orogenic Belt. This could be 
because bicubic spline interpolation (used in conventional eikonal tomography) flattens the interpolated travel-
time surfaces near the edges of the data coverage. Boundaries of all features are in good agreement with other 
studies (Zhong et al., 2017; K. Wang et al., 2020). Figure 4c shows the Rayleigh wave local phase velocity uncer-
tainty. The uncertainty of most area across the map is less than 0.02 km/s. Large uncertainties occur in a small 
part of the southeastern Ordos Block, the western Songpan-Ganzi Block and the eastern Sichuan basin, these are 
most likely due to data coverage in the random selection of 10 sources.

The observed difference between the phase velocity maps resulting from conventional eikonal tomography result 
and pinnET could be considered significant (in some areas in the order of 100 m/s). The resolution of pinnET 
(in general) depends on the observation station spacing, the trade off between the measurement errors in the data 
and the number of traveltime sets (source instances) used, and on the hyperparameters of the NN, and parameters 
controlling the training process. The method is certainly memory efficient because compressing the traveltimes 
as outputs to a NN is a concept akin to compressed sensing. We use much less data to achieve the similar imaging 
with a benefit of including the physics constraint while reconstructing the traveltime surfaces.

We restricted ourselves to an inversion at 25 s period. Data at other periods can be inverted using pinnET in the 
same way leading to wide spectrum phase velocity maps that can be inverted from surface wave tomography 
using traditional approaches or neural networks.

Figure 3. (a) Input synthetic velocity model of checkerboard resolution test for pinnET; (b) Retrieved Rayleigh wave phase 
velocity at periods of 25 s.
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4. Conclusions
We present a novel method for traveltime eikonal tomography using PINNs and apply it to recorded field data. 
The method leverages neural networks as universal function approximators and utilizes the estimated medium 
properties in the eikonal equation which are treated as underlying physical laws. Reconstruction inversions 
based on NN function approximators are memory efficient. The hyperparameters of the NNs should be carefully 
selected to ensure the appropriate resolution of pinnET, for example, through a checkerboard test. The final algo-
rithm is an eikonal tomography that uses physics consistent interpolation while reconstructing (interpolating) the 
traveltimes. The reconstruction inversion mitigates errors in the original traveltime measurements and the number 
of traveltime sets used in the training can be significantly reduced.

We applied the PINNs eikonal tomography on seismic data recorded by ChinArray II installed over the NE 
Tibetan Plateau. We extracted Rayleigh wave phase velocities at 25 s and associated uncertainties using only 10 
sources. The results compares well to the velocity structure obtained by the conventional eikonal tomography 
using all 676 sources of the seismic networks.

Data Availability Statement
The traveltime data sets used in this study and the Rayleigh wave phase velocity models can be downloaded at 
https://doi.org/10.5281/zenodo.7223219.
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