
This is a repository copy of Group Activity Selection with Few Agent Types.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/193656/

Version: Accepted Version

Article:

Ganian, R, Ordyniak, S orcid.org/0000-0003-1935-651X and Rahul, CS (2023) Group
Activity Selection with Few Agent Types. Algorithmica, 85. pp. 1111-1155. ISSN 0178-
4617

https://doi.org/10.1007/s00453-022-01058-z

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part
of Springer Nature 2022. This is an author produced version of an article published in
Algorithmica. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Noname manuscript No.
(will be inserted by the editor)

Group Activity Selection with Few Agent Types

Robert Ganian · Sebastian Ordyniak · *Rahul

C. S.

Received: date / Accepted: date

Abstract In this paper we establish the complexity map for the GROUP ACTIV-

ITY SELECTION PROBLEM (GASP), along with two of its prominent variants called

sGASP and gGASP, focusing on the case when the number of types of agents is the

parameter. In all these problems, one is given a set of agents (each with their own

preferences) and a set of activities, and the aim is to assign agents to activities in a

way which satisfies certain global as well as preference-based conditions.

Our positive results, consisting of one fixed-parameter algorithm and one XP al-

gorithm, rely on a combination of novel Subset Sum machinery (which may be of

general interest) and identifying certain compression steps that allow us to focus on

solutions with a simpler, well-defined structure (in particular, they are “acyclic”).

These algorithms are complemented by matching lower bounds, which among oth-

ers close a gap to a recently obtained tractability result of Gupta, Roy, Saurabh and

Zehavi (2017). In this direction, the techniques used to establish W[1]-hardness of

sGASP are of particular interest: as an intermediate step, we use Sidon sequences to

show the W[1]-hardness of a highly restricted variant of multi-dimensional Subset

Sum, which may find applications in other settings as well.

A shortened and preliminary version of this paper has been published in the proceedings of the 27th Annual

European Symposium on Algorithms (ESA 2019).

Robert Ganian

TU Wien

Vienna, Austria

E-mail: rganian@gmail.com

Sebastian Ordyniak

University of Leeds

Leeds, UK

E-mail: sordyniak@gmail.com

Rahul C.S.

IIT Goa

Goa, India

*E-mail: rahulcsbn@gmail.com

2 Robert Ganian et al.

1 Introduction

In this paper we consider the GROUP ACTIVITY SELECTION PROBLEM (GASP) to-

gether with its two most prominent variants, the SIMPLE GROUP ACTIVITY SELEC-

TION PROBLEM (SGASP), and the GROUP ACTIVITY SELECTION PROBLEM WITH

GRAPH STRUCTURE (gGASP) [7,20]. Since their introduction, these problems have

received considerable attention, notably in venues dedicated to multi-agent systems

and game theory [4–6,21,16,17]. In GASP one is given a set of agents, a set of ac-

tivities, and a set of preferences for each agent in the form of a complete transitive

relation (also called the preference list1) over the set of pairs consisting of an activity

a and a number s, expressing the willingness of the agent to participate in the activity

a if it has s participants. The aim is to find a “good” assignment from agents to activi-

ties subject to certain rationality and stability conditions. Specifically, an assignment

is individually rational if agents that are assigned to an activity prefer this outcome

over not being assigned to any activity, and an assignment is (Nash) stable if every

agent prefers its current assignment over moving to any other activity (given no one

else changes their current assignment). In this way GASP—which asks whether an

individually rational and stable assignment exists—captures a wide range of real-life

situations such as event organization and work delegation.

SGASP is a simplified variant of GASP where the preferences of agents are ex-

pressed in terms of approval sets containing (activity, size) pairs instead of preference

lists. In essence SGASP is GASP where each preference list has only two equivalence

classes: the class of the approved (activity, size) pairs (which contains all pairs that

are preferred over not being assigned to any activity), and the class of disapproved

(activity, size) pairs (all possible remaining pairs). On the other hand, gGASP is a gen-

eralization of GASP where one is additionally given an undirected graph (network)

on the set of all agents that can be employed to model for instance acquaintanceship

or physical distance between agents. Crucially, in gGASP one only considers assign-

ments for which the subnetwork induced by all agents assigned to some activity is

connected. Note that if the network forms a complete graph, then gGASP is equivalent

to the underlying GASP instance.

Related Work. SGASP, GASP, and gGASP, are known to be NP-complete even in

very restricted settings [7,16,17,19,20]. It is therefore natural to study these prob-

lems through the lens of parameterized complexity [3,9]. Apart from parameterizing

by the number of agents assigned to any activity in a solution [21], the perhaps most

prominent parameterizations thus far have been the number of activities, the number

of agents, and in the case of gGASP structural parameterizations tied to the structure

of the network such as treewidth [7,10,16,19,20]. Consequently, the parameterized

complexity of all three variants of GASP w.r.t. the number of activities and/or the

number of agents is now almost completely understood.

Indeed, computing a stable assignment for a given instance of GASP is known to

be W[1]-hard and contained in XP parameterized by either the number of activities [7,

17,19] or the number of agents [17,19] and known to be fixed-parameter tractable

parameterized by both parameters [17,19]. Even though it has never been explicitly

1 To avoid any confusion, we stress that in line with previous work our model allows for ties.

Group Activity Selection with Few Agent Types 3

stated, the same results also hold for gGASP when parameterizing by the number of

agents as well as when using both parameters. This is because both the XP algorithm

for the number of agents as well as the fixed-parameter algorithm for both parameters

essentially brute-force over every possible assignment and are hence also able to find

a solution for gGASP. Moreover, the fact that gGASP generalizes GASP implies that

the W[1]-hardness result for the number of agents also carries over to gGASP. On

the other hand, if we consider the number of activities as a parameter then gGASP

turns out to be harder than GASP: Gupta et al. ([16]) showed that gGASP is NP-

complete even when restricted to instances with a single activity. The hardness of

gGASP has inspired a series of tractability results [16,20] obtained by employing

additional restrictions on the structure of the network. One prominent result in this

direction has been recently obtained by Gupta et al. ([16]), showing that gGASP is

fixed-parameter tractable parameterized by the number of activities if the network

has constant treewidth. For SGASP, it was recently shown that the problem is also

W[1]-hard when parameterized by the number of activities [10], and hence the only

small gap left was the complexity of this problem parameterized by the number of

agents.

Already with the introduction of GASP [7] the authors argued that instead of

putting restrictions on the total number of agents, which can be very large in general,

it might be much more useful to consider the number of distinct types of agents

(where two agents have the same type if they have the same preferences). It is easy

to imagine a setting with large groups of agents that share the same preferences (for

instance due to inherent limitations of how preferences are collected). In contrast to

the related parameter number of activity types, where it is known that SGASP remains

NP-complete even for a constant number of activity types [7], the complexity of the

problems parameterized by the number of agent types (with or without restricting the

number of activities) has remained wide open thus far.

An overview of these results on group activity selection problems will later also

be summarized (together with our results) in Table 1.

Our Results. In this paper we obtain a complete classification of the complexity

of GASP and its variants SGASP and gGASP when parameterized by the number of

agent types (t) alone, and also when parameterized by t plus the number of activities

(a). In particular, for each of the considered problems and parameterizations, we

determine whether the problem is in FPT, or W[1]-hard and in XP, or paraNP-hard.

One distinguishing feature of our lower- and upper-bound results is that they make

heavy use of novel Subset-Sum machinery. Below, we provide a high-level summary

of the individual results presented in the paper.

Result 1. SGASP is fixed-parameter tractable when parameterized by t+ a.

This is the only fixed-parameter tractability result presented in the paper, and is

essentially tight: it was recently shown that SGASP is W[1]-hard when parameterized

by a alone [10], and the W[1]-hardness of the problem when parameterized by t is

obtained in this paper. Our first step towards obtaining the desired fixed-parameter

algorithm for SGASP is to show that every YES-instance has a solution which is

acyclic—in particular, a solution with no cycles formed by interactions between ac-

4 Robert Ganian et al.

tivities and agent types (captured in terms of the incidence graph2 G of an assign-

ment). This is proved via the identification of certain compression steps which can be

applied on a solution in order to remove cycles.

Once we show that it suffices to focus on acyclic solutions, we branch over all

acyclic incidence graphs (i.e., all acyclic edge sets of G); for each such edge set, we

can reduce the problem of determining whether there exists an assignment realizing

this edge set to a variant of SUBSET SUM embedded in a tree structure. The last

missing piece is then to show that this problem, which we call TREE SUBSET SUM,

is polynomial-time tractable; this is done via dynamic programming, where each step

boils down to solving a simplified variant of SUBSET SUM.

Result 2. SGASP is W[1]-hard when parameterized by t.

Our second result complements Result 1. As a crucial intermediate step towards

Result 2, we obtain the W[1]-hardness of a variant of SUBSET SUM with three distinct

“ingredients”:

1. Partitioning: items are partitioned into sets, and precisely one item must be se-

lected from each set,

2. Multidimensionality: each item is a d-dimensional vector (d being the parame-

ter) where the aim is to hit the target value for each component, and

3. Simplicity: each vector contains precisely one non-zero component.

We call this problem SIMPLE MULTIDIMENSIONAL PARTITIONED SUBSET SUM

(SMPSS). Note that SMPSS is closely related to MULTIDIMENSIONAL SUBSET

SUM (MSS), which (as one would expect) merely enhances SUBSET SUM via Ingre-

dient 2. MSS has recently been used to establish W[1]-hardness for parameterizations

of EDGE DISJOINT PATHS [14] and BOUNDED DEGREE VERTEX DELETION [13].

However, Ingredient 1 and especially Ingredient 3 are critical requirements for our

reduction to work, and establishing the W[1]-hardness of SMPSS was the main chal-

lenge on the way towards the desired lower-bound result for SGASP. Since MSS has

already been successfully used to obtain lower-bound results and SMPSS is a much

more powerful tool in this regard, we believe that SMPSS will find applications in

establishing lower bounds for other problems in the future.

Result 3. GASP is in XP when parameterized by t.

This is the only XP result required for our complexity map, as it implies XP algo-

rithms for SGASP parameterized by t and for GASP parameterized by t+ a (this will

become more evident in Table 1 later). We note that the techniques used to obtain

Result 3 are disjoint from those used for Result 1; in particular, our first step is to

reduce GASP parameterized by t to solving “XP-many” instances of SGASP parame-

terized by t. This is achieved by showing that once we know a “least preferred alter-

native” for every agent type that is active in an assignment, then the GASP instance

becomes significantly easier—and, in particular, can be reduced to a (slightly modi-

fied version of) SGASP. It is interesting to note that the result provides a significant

conceptual improvement over the known brute force algorithm for GASP parameter-

ized by the number of agents which enumerates all possible assignments of agents to

2 A formal definition is provided at the beginning of Section 4.

Group Activity Selection with Few Agent Types 5

activities [18, Theorem 3] (see also [17]): instead of guessing an assignment for all

agents, one merely needs to guess a least preferred alternative for every agent type.

The second part of our journey towards Result 3 focuses on obtaining an XP

algorithm for SGASP parameterized by t. This algorithm has two components. Ini-

tially, we show that in this setting one can reduce SGASP to the problem of finding

an assignment which is individually rational (i.e., without the stability condition) and

satisfies some additional minor properties. To find such an assignment, we once again

make use of SUBSET SUM: in particular, we develop an XP algorithm for the MPSS

problem (i.e., SUBSET SUM enhanced by ingredients 1 and 2) and apply a final re-

duction from finding an individually rational assignment to MPSS.

Result 4. GASP is W[1]-hard when parameterized by t+ a.

Result 5. gGASP is W[1]-hard when parameterized by t+ a and the vertex cover

number [12] of the network.

The final two results are hardness reductions which represent the last pieces of

the presented complexity map. Both are obtained via reductions from PARTITIONED

CLIQUE (also called MULTICOLORED CLIQUE in the literature [3]), and both reduc-

tions essentially use k +
(

k
2

)

activities whose sizes encode the vertices and edges

forming a k-clique (i.e., a clique of size k). The main challenge lies in the design

of (a bounded number of) agent types whose preference lists ensure that the chosen

vertices are indeed endpoints of the chosen edges. The reduction for gGASP then be-

comes even more involved, as it can only employ a limited number of connections

between the agents in order to ensure that vertex cover of the network is bounded (in

this sense, it may be seen as an extension of the reductiion used for Result 4).

We note that Result 5 also closes an open gap left by Gupta, Roy, Saurabh and

Zehavi [16], who showed that gGASP is fixed-parameter tractable parameterized by

the number of activities if the network has constant treewidth and left it open whether

their result can be improved to a more efficient fixed-parameter algorithm parame-

terized by the number of activities and treewidth. In this sense, our hardness result

represents a substantial shift of the boundaries of (in)tractability: in addition to the

setting of Gupta et al., it also rules out the use of agent types as a parameter and

replaces treewidth by the more restrictive vertex cover number.

An overview of our five main results in the context of related work is provided in

Table 1. Note that these results provide an almost complete picture of the complex-

ity of Group Activity Selection problems w.r.t. any combination of the parameters

number of agents, number of activities, and number of agent types. There is only one

piece missing, namely, the parameterized complexity of SGASP parameterized by the

number of agents, which we resolve via a fairly direct fixed-parameter algorithm that

reduces the problem to an instance of matching.

Result 6. SGASP is fixed-parameter tractable parameterized by the number of

agents.

Organization of the Paper. After introducing the required preliminaries in Section 2,

we present all of our Subset Sum machinery in the dedicated Section 3. Each subse-

quent Section i ≤ 9 then focuses on obtaining Result i− 3.

6 Robert Ganian et al.

Parameterization Lower Bound Upper Bound

SGASP

n

1FPT0

GASP aW[1]a XP

gGASP W[1] aXPa

SGASP

a
bW[1]b XP

GASP W[1] aXPa

gGASP cparaNPc

SGASP

n+ a FPTdGASP

gGASP

SGASP

t

2W[1]2 XP

GASP W[1] 3XP3

gGASP cparaNPc

SGASP

t+ a

1FPT1

GASP 4W[1]4 XP

gGASP cparaNPc

gGASP t+ a+ vc (or t+ a+ tw) 5W[1]5 XPc

Table 1 Lower and upper bounds for SGASP, GASP, and gGASP parameterized by the number of agents

(n), the number of agent types (t), and the number of activities (a). In the case of gGASP, also the pa-

rameters vertex cover number (vc) and treewidth (tw) of the network are considered. Entries in bold are

shown in this paper, and the numbers 1 to 5 in the upper index are used to identify results 1 to 5. The result

marked with 0 is provided in the concluding remarks.

References: a is [19], b is [10], c is [16], d is folklore.

2 Preliminaries

For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 = [i] ∪ {0}. We denote by N the

set of natural numbers, by N0 the set N∪{0}. For a set S and an integer k, we denote

by Sk and 2S the set of all k dimensional vectors over S and the set of all subsets of

S, respectively. For a vector p̄ of integers, we use p̄[i] to denote the value of the i-th
coordinate.

We refer to the handbook by Diestel ([8]) for standard graph terminology. The

vertex cover number of a graph G is the size of a minimum vertex cover of G, i.e.,

the minimum size of a vertex set X such that every edge has at least one endpoint

in X .

2.1 Parameterized Complexity

In parameterized algorithmics [9,3,22] the run-time of an algorithm is studied with

respect to a parameter k ∈ N0 and input size n. The basic idea is to find a parameter

that describes the structure of the instance such that the combinatorial explosion can

be confined to this parameter. In this respect, the most favourable complexity class is

FPT (fixed-parameter tractable) which contains all problems that can be decided by

Group Activity Selection with Few Agent Types 7

an algorithm running in time f(k) · nO(1), where f is a computable function. Algo-

rithms with this running time are called fixed-parameter algorithms. A less favourable

outcome is an XP algorithm, which is an algorithm running in time O(nf(k)); prob-

lems admitting such algorithms belong to the class XP.

To obtain our lower bounds, we will need the notion of a parameterized reduction.

Formally, a parameterized problem is a subset of Σ∗ × N0, where Σ is the input

alphabet. Let L1 ⊆ Σ∗1 × N0 and L2 ⊆ Σ∗2 × N0 be parameterized problems. A

parameterized reduction (or FPT-reduction) from L1 to L2 is a mapping P : Σ∗1 ×
N0 → Σ∗2 × N0 such that

(i) (x, k) ∈ L1 iff P (x, k) ∈ L2,

(ii) the mapping can be computed by an FPT-algorithm w.r.t. parameter k, and

(iii) there is a computable function g such that k′ ≤ g(k), where (x′, k′) = P (x, k).

Finally, we introduce the complexity class used to describe our lower bounds.

The class W[1] captures parameterized intractability and contains all problems that

are FPT-reducible to INDEPENDENT SET (parameterized by solution size).

2.2 Group Activity Selection

The task in the GROUP ACTIVITY SELECTION PROBLEM (GASP) is to compute a

stable assignment π from a given set N of agents to a set A of activities, where each

agent participates in at most one activity in A. The assignment π is (Nash) stable if

and only if it is individually rational and no agent has an NS-deviation to any other

activity (both of these stability rules are defined in the next paragraph). We use a

dummy activity a∅ to capture all those agents that do not participate in any activity in

A and denote by A∗ the set A ∪ {a∅}. Thus, an assignment π is a mapping from N
to A∗, and for an activity a ∈ A we use π−1(a) to denote the set of agents assigned

to a by π; we set |π−1(a∅)| = 1 if there is at least one agent assigned to a∅ and 0
otherwise.

The set X of alternatives is defined as X = (A× [|N |])∪{(a∅, 1)}. Each agent is

associated with its own preferences defined on the set X . In the case of the standard

GASP problem, an instance I is of the form (N,A, (�n)n∈N) where each agent n
is associated with a complete transitive preference relation (list) �n over the set X .

An assignment π is individually rational if for every agent n ∈ N it holds that if

π(n) = a and a 6= a∅, then (a, |π−1(a)|) �n (a∅, 1) (i.e., n weakly prefers staying

in a over moving to a∅). An agent n where π(n) = a is defined to have an NS-

deviation to a different activity a′ in A if (a′, |π−1(a′)| + 1) ≻n (a, |π−1(a)|) (i.e.,

n prefers moving to an activity a′ over staying in a). The task in GASP is to compute

a stable assignment.

gGASP is defined analogously to GASP, however where one is additionally given

a set L of links L ⊆ {{n, n′} | n, n′ ∈ N ∧ n 6= n′ } between the agents on the

input; specifically, L can be viewed as a set of undirected edges and (N,L) as a

simple undirected graph. In gGASP, the task is to find an assignment π which is not

only stable but also connected; formally, for every a ∈ A the set of agents π−1(a)

8 Robert Ganian et al.

induces a connected subgraph of (N,L). Moreover, an agent n ∈ N only has an NS-

deviation to some activity a 6= π(n) if (in addition to the conditions for NS-deviations

defined above) n has an edge to at least one agent in π−1(a).

In SGASP, an instance I is of the form (N,A, (Pn)n∈N), where each agent has

an approval set Pn ⊆ X \ {(a∅, 1)} of preferences (instead of an ordered preference

list). We denote by Pn(a) the set { i | (a, i) ∈ Pn } for an activity a ∈ A, i.e.,

Pn(a) is the set of approved sizes for activity a from the viewpoint of agent n. An

assignment π : N → A∗ is said to be individually rational if every agent n ∈ N
satisfied the following: if π(n) = a and a 6= a∅, then |π−1(a)| ∈ Pn(a). Further, an

agent n ∈ N where π(n) = a∅, is said to have an NS-deviation to an activity a in A
if (|π−1(a)|+ 1) ∈ Pn(a).

We now introduce the notions and definitions required for our main parameter of

interest, the “number of agent types”. We say that two agents n and n′ in N have

the same agent type if they have the same preferences. To be specific, Pn = Pn′ for

SGASP and �n=�n′ for GASP and gGASP. In the case of SGASP and GASP n and n′

are indistinguishable, while in gGASP n and n′ can still have different links to other

agents. For a subset N ′ ⊆ N , we denote by T (N ′) the set of agent types occurring in

N ′. Note that this notation requires that the instance is clear from the context. If this

is not the case then we denote by T (I) the set T (N) if N is the set of agents for the

instance I of SGASP, GASP, or gGASP.

For every agent type t ∈ T (I), we denote by Nt the subset of N containing

all agents of type t; observe that {Nt | t ∈ T (I) } forms a partition of N . For an

agent type t ∈ T (I) we denote by Pt (SGASP) or �t (GASP) the preference list

assigned to all agents of type t and we use Pt(a) (for an activity a ∈ A) to denote

Pt restricted to activity a, i.e., Pt(a) is equal to Pn(a) for any agent n of type t.
For an assignment π : N → A∗, t ∈ T (I), and a ∈ A we denote by πt,a the

set {n | n ∈ Nt ∧ π(n) = a }, i.e., πt,a is the set of agents of type t assigned to

activity a by the assignment π. Moreover, we denote by πt the set
⋃

a∈A πt,a, i.e.,

πt is the set of all agents of type t that are assigned by π to some activity in A.

Further, we denote by π(t) the set of all activities that have at least one agent of

type t participating in it. We say that π is a perfect assignment for some agent type

t ∈ T (I) if π(n) 6= a∅ for every n ∈ Nt. We denote by PE(I, π) the subset of

T (I) consisting of all agent types that are perfectly assigned by π, and say that π is a

perfect assignment if PE(I, π) = T (I). To avoid any confusion, we remark that these

definitions apply to all considered variants of group activity selection.

One notion that will appear throughout the paper is that of compatibility: for a

subset Q ⊆ T (I), we say that π is compatible with Q if PE(I, π) = Q. We con-

clude this section with a technical lemma which provides a preprocessing procedure

that will be used as a basic tool for obtaining our algorithmic results. In particular,

Lemma 1 allows us to reduce the problem of computing a stable assignment for an

SGASP instance compatible with Q to the problem of finding an individually rational

assignment.

Lemma 1 Let I = (N,A, (Pn)n∈N) be an instance of SGASP and Q ⊆ T (I). Then

in time O(|N |2|A|) one can compute an instance γ(I,Q) = (N,A, (P ′n)n∈N) and

A 6=∅(I,Q) ⊆ A with the following property: for every assignment π : N → A∗ that

Group Activity Selection with Few Agent Types 9

is compatible with Q, it holds that π is stable for I if and only if π is individually

rational for γ(I,Q) and π−1(a) 6= ∅ for every a ∈ A 6=∅(I,Q).

Proof Let π : N → A∗ be an assignment that is compatible with Q. Then there

is an agent of type t ∈ T (N) assigned to a∅ if and only if t /∈ Q. Recall that an

assignment is stable if and only if it is individually rational and does not have an

NS-deviation, where for SGASP an NS-deviation occurs when an agent not currently

assigned to any activity can join some other activity and the resulting size is in that

agent’s preference list. Hence π is stable for I if and only if (1) π is individually

rational and furthermore (2) it holds that for every agent type t ∈ T (N) \ Q and

every activity a ∈ A, |π−1(a)| + 1 /∈ Pt(a). This naturally leads us to a certain set

of “forbidden” sizes for activities, and we will obtain the desired instance γ(I,Q)
by simply removing all tuples from all preference lists that would allow activities

to reach a forbidden size. Formally, we obtain the desired instance γ(I,Q) from I
removing all tuples (a, i) from every preference list Pt, where t ∈ T (N) such that

there is an agent type t′ ∈ T (N) \Q with i+ 1 ∈ Pt′(a). This construction prevents

the occurrence of all forbidden sizes of activities except for forbidding activities of

size 0; that is where we use the set A 6=∅(I,Q). Formally, the set A6=∅(I,Q) consists

of all activities a such that there is an agent type t ∈ T (N) \ Q with 1 ∈ Pt(a). It

is now straightforward to verify that γ(I,Q) and A6=∅(I,Q) satisfy the claim of the

lemma.

Finally the running time of O(|N |2|A|) for the algorithm can be achieved as fol-

lows. In a preprocessing step we first classify all agents into agent types and compute

for every activity a ∈ A the set of all forbidden numbers, i.e., the set of all numbers i
such that there is an agent type t ∈ T (N) \Q with (a, i+ 1) ∈ Pt′(a). For every ac-

tivity a, we store the resulting set of numbers in such a way that determining whether

a number i is contained in the set for activity a can be achieved in constant time; this

can for instance be achieved by storing the set for each activity a as a Boolean array

with |N | entries, whose i-th entry is TRUE if and only if i is contained in the set of

numbers for a. This preprocessing step takes time at most O(|N |2|A|) and after it is

completed we can use the computed sets to test for every agent type t ∈ T (N), every

activity a ∈ A, and every i ∈ Pt(a), whether there is an agent type t′ ∈ T (N) \ Q
such that (a, i + 1) ∈ Pt′(a) in constant time. If so we remove i from Pt(a), other-

wise we continue. This shows that γ(I,Q) can be computed in O(|N |2 · |A|) time.

The computation of A 6=∅ only requires to check for every activity a ∈ A whether 1
is contained in the set of forbidden numbers for a; if so a is contained in A6=∅ and

otherwise it is not. After preprocessing, this can be achieved in time O(|A|). ⊓⊔

3 Subset Sum Machinery

In this section we introduce the subset sum machinery required for our algorithms

and lower bound results. In particular, we introduce three variants of SUBSET SUM,

obtain algorithms for two of them, and provide a W[1]-hardness result for the third.

We note that it may be helpful to read the following three subsections in the context

of the individual sections where they are used: in particular, Subsection 3.1 is used

10 Robert Ganian et al.

to obtain Result 1 (Section 4), Subsection 3.2 is used as a preprocedure for Result 3

(Section 6) and Subsection 3.3 (which is by far the most difficult of the three) is a

crucial step in the reduction used for Result 2 (Section 5).

3.1 Tree Subset Sum

Here we introduce a useful generalization of SUBSET SUM, for which we obtain

polynomial-time tractability under the assumption that the input is encoded in unary.

Intuitively, our problem asks us to assign values to edges while meeting a simple

criterion on the values of edges incident to each vertex.

TREE SUBSET SUM (TSS)

Input: A vertex-labeled undirected tree T with labeling function

λ : V (T) → 2N0 .

Question: Is there an assignment α : E(T) → N0 such that for every

v ∈ V (T) it holds that
∑

e∈E(T)∧v∈e α(e) ∈ λ(v).

Let us briefly comment on the relationship of TSS with SUBSET SUM. Recall that

given a set S ⊆ N0 and a number t ∈ N0, the SUBSET SUM problem asks whether

there is a subset S′ of S such that
∑

s∈S′ s = t. One can easily construct a simple

instance (G, λ) of TSS that is equivalent to a given instance (S, t) of SUBSET SUM

as follows. G consists of a star having one leaf ls for every s ∈ S with λ(ls) = {0, s}
and λ(c) = {t} for the center vertex c of the star. Given this simple reduction from

SUBSET SUM to TSS it becomes clear that TSS is much more general than SUB-

SET SUM. In particular, instead of a star TSS allows for the use of an arbitrary tree

structure and moreover one can use arbitrary subsets of natural numbers to specify

the constrains on the vertices. The above reduction in combination with the fact that

SUBSET SUM is weakly NP-hard implies that TSS is also weakly NP-hard.

In the remainder of this section we will show that TSS (like SUBSET SUM) can

be solved in polynomial-time if the input is given in unary.

Let I = (T, λ) be an instance of TSS. We denote by max(I) the value of the

maximum number occurring in any vertex label. The main idea behind our algorithm

for TSS is to apply leaf-to-root dynamic programming. In order to execute our dy-

namic programming procedure, we will need to solve a special case of TSS which

we call PARTITIONED SUBSET SUM; this is the problem that will later arise when

computing the dynamic programming tables for TSS.

PARTITIONED SUBSET SUM

Input: A target set R ⊆ N0 and ℓ source sets S1, . . . , Sℓ ⊆ N0.

Task: Compute the set S ⊆ N0 such that for each s ∈ S, there

are s1, . . . , sℓ, where si ∈ Si for every i with 1 ≤ i ≤ ℓ,
satisfying (

∑

1≤i≤ℓ si) + s ∈ R.

For an instance I = (R,S1, . . . , Sℓ) of PARTITIONED SUBSET SUM, we denote by

max(I) the value of the maximum number occurring in R.

Group Activity Selection with Few Agent Types 11

Lemma 2 An instance I = (R,S1, . . . , Sℓ) of PARTITIONED SUBSET SUM can be

solved in time O(ℓ ·max(I)2).

Proof Here we also use a dynamic programming approach similar to the approach

used for the well-known SUBSET SUM problem [15]. Let I = (R,S1, . . . , Sℓ) be an

instance of PARTITIONED SUBSET SUM.

We first apply a minor modification to the instance which will allow us to provide

a cleaner presentation of the algorithm. Namely, let P0, P1, . . . , Pℓ be sets of integers

defined as follows: P0 = R, and for every i ∈ [ℓ], we set Pi = {−s | s ∈ Si }.

Then the solution S for I is exactly the set of all numbers n ∈ N0 for which there

are p0, . . . , pℓ with pi ∈ Pi for every i with 0 ≤ i ≤ ℓ such that
∑

0≤i≤ℓ pi = n, and

observe that we may assume w.l.o.g. that n ≤ (maxr∈R r) ≤ |I|.
In order to compute the solution S for I (employing the above characterization

for S), we compute a table D having one binary entry D[i, n] for every i and n with

0 ≤ i ≤ ℓ and 0 ≤ n ≤ max(I) such that D[i, n] = 1 if and only if there are

p0, . . . , pi with
∑

0≤j≤i pj = n. Note that the solution S for I can be obtained from

the table D as the set of all numbers n such that D[ℓ, n] = 1. It hence remains to

show how D can be computed.

We compute D[i, n] via dynamic programming using the following recurrence

relation. We start by setting D[0, n] = 1 for every n with 0 ≤ n ≤ max(I) if and only

if n ∈ P0. Moreover, for every i with 1 ≤ i ≤ ℓ and every n with 0 ≤ n ≤ max(I),
we set D[i, n] = 1 if and only if there is an n′ with n ≤ n′ ≤ max(I) and a p ∈ Pi

such that n′ + p = n and D[i− 1, n′] = 1.

The running time of the algorithm is O(ℓ · max(I)2) since we require O(ℓ ·
max(I)) to initialize the table D and each of the ℓ recursive steps requires time

O(max(I)2). The correctness of the algorithm follows from the correctness of each

inductive step. To observe the correctness of each inductive step, assume that we

have correctly computed all entries of D[i − 1, n] for all n ≤ |I|, and notice that

for each n ≤ |I| the following holds: D[i, n] = 1 if and only if there is an n′ with

n ≤ n′ ≤ max(I) and a p ∈ Pi such that n′ + p = n and D[i− 1, n′] = 1. ⊓⊔

With Lemma 2 in hand, we can proceed to a pseudo-polynomial-time algorithm

for TSS.

Lemma 3 An instance I = (T, λ) of TSS can be solved in time O(|V (T)|2 ·
max(I)2).

Proof As mentioned earlier, the main idea behind our algorithm for TSS is to use

a dynamic programming algorithm working from the leaves to an arbitrarily chosen

root r of the tree T . Informally, the algorithm computes a set of numbers for each

non-root vertex v of T representing the set of all assignments of the edge from v
to its parent that can be extended to a valid assignment of all edges in the subtree

of T rooted at v. Once this set has been computed for all children of the root we

can construct a simple PARTITIONED SUBSET SUM instance (given below) to decide

whether I has a solution.

More formally, for a vertex v of T we denote by Tv the subtree of T rooted at v
and by T ∗v the subtree of T consisting of Tv plus the edge between v and its parent in

12 Robert Ganian et al.

T ; for the root r of T it holds that T ∗v = Tv . For every non-root vertex v with parent

p we will compute a set R(v) of numbers. Informally, R(v) contains all numbers n
such that the assignment setting {p, v} to n can be extended to an assignment for all

the edges in T ∗v satisfying all constrains given by the vertices in Tv . More formally,

n ∈ R(v) if and only if there is an assignment α : E(T ∗v) → N0 with α({p, v}) = n
such that for every v ∈ V (Tv) it holds that

∑

e∈E(T∗
v)∧v∈e α(e) ∈ λ(v).

As stated above we will compute the sets R(v) via a bottom-up dynamic pro-

gramming algorithm starting at the leaves of T and computing R(v) for every inner

node v of T using solely the computed sets R(c) of each child c of v in T . Note that

having computed R(c) for every child c of the root r of T we can decide whether

I has a solution as follows. Let c1, . . . , cℓ be the children of r in T ; then I has a

solution if and only if the solution set for the instance (λ(r), R(c1), . . . , R(cℓ)) of

PARTITIONED SUBSET SUM contains 0.

The remaining step is to show how to compute R(v) for the leaves and inner

nodes of T . If v is a leaf then R(v) is simply equal to λ(v). Moreover, if v is an

inner node with children c1, . . . , cℓ, then R(v) is equal to the solution set for the

instance (λ(v), R(c1), . . . , R(cℓ)) of PARTITIONED SUBSET SUM. This completes

the description of the algorithm.

The running time of the algorithm is at most O(|V (T)|2 · max(I)2) since the

time required at a leaf q of T is at most O(1) and the time required at any none-

leaf node t of T with children t1, . . . , tℓ is at most the time required to solve the

instance (λ(t), R(t1), . . . , R(tℓ)) of PARTITIONED SUBSET SUM, which is at most

O(|V (T)| ·max(λ(v))2) due to Lemma 2.

For correctness, it suffices to verify that our computation of the set R(v) is correct

for each non-root vertex v of T ; indeed, once that is done, it is easily observed that I
has a solution if and only if the solution set for the instance (λ(r), R(c1), . . . , R(cℓ))
of PARTITIONED SUBSET SUM contains 0. The correctness of the computation of

R(v) if v is a leaf is trivial, while for non-leaf vertices the correctness follows from

the correctness of Lemma 2. ⊓⊔

3.2 Multidimensional Partitioned Subset Sum

Our second generalization of SUBSET SUM is a multi-dimensional variant of the

problem that allows to separate the input set of numbers into several groups, and

restricts the solution to take at most 1 vector from each group. For technical reasons,

we will only search for solutions over non-negative integers up to a given bound r.

MULTIDIMENSIONAL PARTITIONED SUBSET SUM (MPSS)

Input: d ∈ N, r ∈ N0, and a family P = {P1, . . . , Pl} of sets of

vectors over Nd
0.

Task: Compute the set of all vectors t̄ ∈ {0, . . . , r}d such that

there are p̄1, . . . , p̄l with p̄i ∈ Pi for every i with 1 ≤ i ≤ l
such that

∑

1≤i≤l p̄i = t̄.

It is easy to see that SUBSET SUM is a special case of MPSS: given an instance

of SUBSET SUM, we can create an equivalent instance of MPSS by setting r to a

Group Activity Selection with Few Agent Types 13

sufficiently large number and simply making each group Pi contain two vectors: the

all-zero vector and the vector that is equal to the i-th number of the SUBSET SUM

instance in all entries.

Lemma 4 An instance I = (d, r,P) of MPSS can be solved in time O(|P| · rd).

Proof We use a dynamic programming procedure similar to the approach used for the

well-known SUBSET SUM problem [15]. Let I = (d, r,P) with P = {P1, . . . , Pl}
be an instance of MPSS.

We solve I by computing a table D having one binary entry D[i, t̄] for every i and

t̄ with 0 ≤ i ≤ l and t̄ ∈ [r]d0 such that D[i, t̄] = 1 if and only if there are p̄1, . . . , p̄i
with p̄j ∈ Pj for every j with 1 ≤ j ≤ i such that

∑

1≤j≤i p̄j = t̄. Note that the

solution for I can be obtained from the table D as the set of all vectors t̄ ∈ [r]d0 such

that D[l, t̄] = 1. It hence remains to show how to compute the table D.

We compute D[i, t̄] via dynamic programming using the following recurrence

relation. We start by setting D[1, t̄] = 1 for every t̄ ∈ [r]d0 if and only if t̄ ∈ P1.

Moreover, for every i with 1 ≤ i ≤ l and every t̄ ∈ [r]d0, we set D[i, t̄] = 1 if and

only if there is a p̄j ∈ Pj with p̄j ≤ t̄ such that D[i− 1, t̄− p̄j] = 1.

The running time of the algorithm is O(|P| · rd) since we require O(|P| · rd)
to initialize the table D and each of the |P| recursive steps requires time O(rd).
Correctness then follows from the correctness of the recurrence relation provided in

the previous paragraph. ⊓⊔

3.3 Simple Multidimensional Partitioned Subset Sum

In this section, we are interested in a much more restrictive version of MPSS, where

all vectors (apart from the target vector) are only allowed to have at most one non-

zero component, and where the task is merely to determine whether the output of

MPSS contains a specific vector. Surprisingly, we show that the W[1]-hardness of

the previously studied MULTIDIMENSIONAL SUBSET SUM problem [13,14] carries

over to this more restrictive variant using an intricate and involved reduction.

To formalize, we say that a set P of vectors in N
d
0 is simple if each vector in P

has exactly one non-zero component and the values of the non-zero components for

any two distinct vectors in P are distinct.

SIMPLE MULTIDIMENSIONAL PARTITIONED SUBSET SUM (SMPSS)

Input: d ∈ N, t̄ ∈ N
d
0, and a family P = {P1, . . . Pl} of simple sets of

vectors in N
d
0.

Parameter: d.

Question: Are there vectors p̄1, . . . , p̄l with p̄i ∈ Pi for every i with 1 ≤
i ≤ l such that

∑

1≤i≤l p̄i = t̄.

Theorem 5 SMPSS is strongly W[1]-hard.

Proof We will employ a parameterized reduction from the PARTITIONED CLIQUE

problem, which is well-known to be W[1]-complete [23].

14 Robert Ganian et al.

PARTITIONED CLIQUE

Input: An integer k, a k-partite graph G = (V,E) with partition

{V1, . . . , Vk} of V into sets of equal size.

Parameter: k
Question: Does G have a k-clique, i.e., a set C ⊆ V of k vertices such that

∀u, v ∈ C, with u 6= v there is an edge {u, v} ∈ E?

We denote by Ei,j the set of edges of G that have one endpoint in Vi and one

endpoint in Vj and we assume w.l.o.g. that |Vi = {vi1, . . . , v
i
n}| = n and |Ei,j | = m

for every i and j with 1 ≤ i < j ≤ k (see, e.g., [3, Theorem 13.7]) for a justification

for these assumptions).

Given an instance (G, k) of PARTITIONED CLIQUE with partition V1, . . . , Vk,

we construct an equivalent instance I = (d, t̄,P) of SMPSS in polynomial time,

where d = k(k − 1) +
(

k
2

)

and |P| =
(

k
2

)

+ nk(2k − 3). We will also make use

of the following notation. For i and j with 1 ≤ i ≤ k and 1 ≤ j < k, we denote

by indJ(i, j) the j-th smallest number in [k] \ {i} and we denote by indMin(i) and

indMax(i) the numbers indJ(i, 1) and indJ(i, k − 1), respectively.

We assign to every vertex v of G a unique number S(v) from a Sidon sequence

S of length |V (G)| [11]. A Sidon sequence is a sequence of natural numbers such

that the sum of each pair of numbers is unique; it can be shown that it is possible to

construct such sequences whose maximum value is bounded by a polynomial in its

length [1,11].

To simplify the description of I , we will introduce names and notions to iden-

tify both components of vectors and sets in P . Every vector in I has the following

components:

– For every i and j with 1 ≤ i, j ≤ k and i 6= j, the vertex component ciV (j). We

set t̄[ciV (j)] to:

– n6 + n4 if j = indMin(i),
– (n− 1)n8+n6+n4+

∑n

ℓ=1(ℓ+ ℓn2) if j > indMin(i) and j < indMax(i),
and

– (n− 1)n8 + n6 +
∑n

ℓ=1 ℓ, otherwise.

– For every i and j with 1 ≤ i < j ≤ k, the edge component cE(i, j) with

t̄[cE(i, j)] =
∑

v∈Vi∪Vj
S(v).

Note that the total number of components d is equal to k(k − 1) +
(

k
2

)

and that

for every i with 1 ≤ i ≤ k, there are k − 1 vertex components, i.e., the components

ciV (indJ(i, 1)), . . . , ciV (indJ(i, k − 1)), which intuitively have the following tasks.

The first component, i.e., the component ciV (indJ(i, 1)) identifies a vertex v ∈ Vi

that should be part of a k-clique in G. Moreover, every component ciV (indJ(i, j))
(including the first component), is also responsible for: (1) Signalling the choice of

the chosen vertex v ∈ Vi to the next component, i.e., the component ciV (indJ(i, j +
1)) and (2) Signalling the choice of the vertex v ∈ Vi to the component cE(i, j) that

will then verify that there is an edge between the vertex chosen for Vi and the vertex

chosen for Vj . This interplay between the components will be achieved through the

sets of vectors in P that will be defined and explained next.

P consists of the following sets, which are illustrated in Table 2 and 3:

Group Activity Selection with Few Agent Types 15

P 1

EV (2, ℓ) P 1

V (2, ℓ) P 1

EV (3, ℓ) P 1

V (3, ℓ) P 1

EV (4, ℓ) t̄

c1V (2) n6 + ℓ n4 − ℓ n6 + n4

c1V (3) n8 + ℓ n6 + ℓ n4 + ℓn2 Z + n4

+ℓn2 +
∑n

ℓ=1
(ℓn2)

c1V (4) n8 + ℓ n6 + ℓ Z

cE(1, 2) S(v1
ℓ
)

∑
v∈V1∪V2

S(v)

cE(1, 3) S(v1
ℓ
)

∑
v∈V1∪V3

S(v)

cE(1, 4) S(v1
ℓ
)

∑
v∈V1∪V4

S(v)

Table 2 An illustration of the vectors contained in the sets P 1

EV (2, ℓ), . . . , P 1

EV (4, ℓ) and the sets

P 1

V (2, ℓ), P 1

V (3, ℓ). For example the column for the set P 1

EV (2, ℓ) shows that the set contains two vec-

tors, one whose only non-zero component c1V (2) has the value n6 + ℓ and a second one whose only

non-zero component cE(1, 2) and has the value S(v1
ℓ
). The last column provides the value for the target

vector for the component given by the rows. Finally, the value Z is equal to (n− 1)n8 +n6 +
∑n

l=1
(ℓ).

P i
EV (j, ℓ) P

j
EV

(i, ℓ) PE(i, j) t̄

ciV (j) n6 + ℓ

c
j
V
(i) n6 + ℓ

cE(i, j) S(vi
ℓ
) S(vj

ℓ
) {S(v) + S(u) | {v, u} ∈ Ei,j }

∑
v∈Vi∪Vj

S(v)

Table 3 An illustration of the vectors contained in the sets P i
EV (j, ℓ), P j

EV
(i, ℓ), and PE(i, j) and their

interplay with the components ciV (j), cj
V
(i), and cV (i, j). For the conventions used in the table please

refer to Table 2. Additionally, note that the column for PE(i, j) indicates that the set contains one vector

for every edge {v, u} ∈ Ei,j , whose only non-zero component cE(i, j) has the value S(v) + S(u).

– For every i, j′, and ℓ with 1 ≤ i ≤ k, 1 ≤ j′ ≤ k − 2, and 1 ≤ ℓ ≤ n, the

vertex set P i
V (j, ℓ), where j = indJ(i, j′), containing two vectors v̄+i,j,ℓ and v̄−i,j,ℓ

defined as follows:

– if j′ = 1, then v̄+i,j,ℓ[c
i
V (j)] = n4 − ℓ and v̄−i,j,ℓ[c

i
V (indJ(i, j′ + 1))] = n8 +

ℓ+ ℓn2 or

– if 1 < j′ < k − 2, then v̄+i,j,ℓ[c
i
V (j)] = n4 + ℓn2 and v̄−i,j,ℓ[c

i
V (indJ(i, j′ +

1))] = n8 + ℓ+ ℓn2 or

– if j′ = k − 2, then v̄+i,j,ℓ[c
i
V (j)] = n4 + ℓn2 and v̄−i,j,ℓ[c

i
V (indJ(i, j′ + 1))] =

n8 + ℓ.
We denote by P i

V (j), P
i
V+(j), and P i

V−(j) the sets
⋃n

ℓ=1(P
i
V (j, ℓ)), P

i
V (j) ∩

{ v̄+i,j,ℓ | 1 ≤ ℓ ≤ n }, and P i
V (j) \ P

i
V+(j), respectively.

– For every i, j, and ℓ with 1 ≤ i, j ≤ k, i 6= j, and 1 ≤ ℓ ≤ n, the vertex

incidence set P i
EV (j, ℓ), which contains the two vectors ā+i,j,ℓ and ā−i,j,ℓ such that

ā+i,j,ℓ[c
i
V (j)] = n6 + ℓ and ā−i,j,ℓ[cE(i, j)] = S(viℓ).

We denote by P i
EV (j), P i

EV+(j), and P i
EV−(j) the sets

⋃n

ℓ=1(P
i
EV (j, ℓ)),

P i
V (j) ∩ { ā+i,j,ℓ | 1 ≤ ℓ ≤ n }, and P i

EV (j) \ P
i
EV+(j), respectively.

– For every i, j with 1 ≤ i < j ≤ k, the edge set PE(i, j), which for every

e = {v, u} ∈ Ei,j contains the vector ē such that ē[cE(i, j)] = S(v) + S(u);
note that PE(i, j) is indeed a simple set, because S is a Sidon sequence.

Note that altogether there are nk(k− 2)+
(

k
2

)

+nk(k− 1) =
(

k
2

)

+nk(2k− 3) sets

in P .

16 Robert Ganian et al.

Informally, the two vectors v̄+i,j,ℓ and v̄−i,j,ℓ in P i
V (j, ℓ) represent the choice of

whether or not the vertex viℓ should be included in a k-clique for G, i.e., if a solution

for I chooses v+i,j,ℓ then viℓ should be part of a k-clique and otherwise not. The com-

ponent ciV (j), more specifically the value for t̄[ciV (j)], now ensures that a solution

can choose at most one such vector in P i
V+(j). For instance, if j = indMin(i), then

t̄[ciV (j)] = n6 + n4, v̄+i,j,ℓ[c
i
V (j)] = n4 − ℓ, and ā+i,j,ℓ[c

i
V (j)] = n6 + ℓ for every ℓ

with 1 ≤ ℓ ≤ n and therefore at most one vector v̄+i,j,ℓ in P i
V+(j) and at most one

vector ā+i,j,ℓ in P i
EV+(j) can be choosen and those vectors must agree on ℓ. This also

means that all but one of the vectors v̄−i,j,1, . . . , v̄
−
i,j,n need to be chosen by a solution

for I and this in turn signals the choice of the vertex for Vi to the next component, i.e.,

either the component ciV (j+1) if j+1 6= i or the component ciV (j+2) if j+1 = i.
This is ensure by the value of the target vector for the next component and the care-

fully chosen values for the vectors v̄−i,j,1, . . . , v̄
−
i,j,n which are non-zero at the next

component. Note that we only need k − 2 sets P i
V (j) for every i, because we need

to copy the vertex choice for Vi to only k − 1 components. A similar idea underlies

the two vectors ā+i,j,ℓ and ā−i,j,ℓ in P i
EV (j, ℓ), i.e., again the component ciV (j) ensures

that ā+i,j,ℓ can be chosen for only one of the sets P i
EV (j, 1), . . . , P

i
EV (j, n) and ā−i,j,ℓ

must be chosen for all the remaining ones. Note that the component ciV (j) now also

ensures that the choice made for the sets in P i
V (j) is the same as the choice made for

the sets in P i
EV (j). Moreover, the choice made for the sets in P i

EV (j) is now propa-

gated to the component cE(i, j) (instead of the next vertex component). Finally, the

vectors in the set PE(i, j) represent the choice of the edge used in a k-clique between

Vi and Vj and the component cE(i, j) ensures that only an edge, whose endpoints are

the two vertices signalled by the sets P i
EV (j) and P j

EV (i) can be chosen. We are now

ready to give a formal proof for the equivalence between the two instances.

This completes the construction of I . It is straightforward to verify that all sets in

P are simple, I can be constructed in polynomial-time, and all the component values

of all vectors are bounded by a polynomial in n. It hence only remains to show that

(G, k) has a solution if and only if so does I .

Towards showing the forward direction, let v1ℓ1 , . . . , v
k
ℓk

with be the vertices of a

k-clique of G and for every i and j with 1 ≤ i < j ≤ k, let ei,j be the edge between

viℓi and vjℓj in G. We obtain a solution S ⊆
⋃

P∈P P for I with
∑

s̄∈S s̄ = t̄ and

|S ∩ P | = 1 for every P ∈ P by choosing the following vectors:

– For every i and j with 1 ≤ i, j ≤ k and j 6= i, we choose the vector ā+i,j,ℓi from

the set P i
EV (j, ℓ) as well as the vector ā−i,j,ℓ for every ℓ 6= ℓ1.

– For every i and j with 1 ≤ i, j ≤ k and j /∈ {i, indMax(i)}, we choose the vector

v̄+i,j,ℓi from the set P i
V (j, ℓ) as well as the vector v̄−i,j,ℓ for every ℓ 6= ℓi.

– For every i and j with 1 ≤ i < j ≤ k, we choose the vector ēi,j from the set

PE(i, j).

Here and in the following we denote by v+i,jℓ, v
−
i,jℓ, a

+
i,jℓ, a

−
i,jℓ, e the value of the

unique non-zero component of the vector v̄+i,jℓ, v̄
−
i,jℓ, ā

+
i,jℓ, ā

−
i,jℓ, and ē respectively.

Towards showing that S is indeed a solution for I , let x̄ =
∑

s̄∈S s̄ and note that:

– For every i and j with 1 ≤ i, j ≤ k and i 6= j, it holds that:

Group Activity Selection with Few Agent Types 17

– if j = indMin(i), then:

x̄[ciV (j)] = v+i,j,ℓi + a+i,j,ℓi = n6 + ℓi + n4 − ℓi = t̄[ciV (j)],

– if indMin(i) < j < indMin(i), let j′ = j − 1 if j − 1 6= i and let j′ = j − 2
otherwise, then:

x̄[ciV (j)] = (
∑

ℓ 6=ℓi

v−i,j′,ℓ) + (v+i,j,ℓi) + (a+i,j,ℓi)

= ((n− 1)n8 +
∑

ℓ 6=ℓi

ℓ+ ℓn2) + (n4 + ℓin
2) + (n6 + ℓi)

= t̄[ciV (j)],

– otherwise (with j′ as above):

x̄[ciV (j)] = (
∑

ℓ 6=ℓi

v−i,j′,ℓ) + (a+i,j,ℓi)

= ((n− 1)n8 +
∑

ℓ 6=ℓi

ℓ) + (n6 + ℓi)

= t̄[ciV (j)].

– For every i and j with 1 ≤ i < j ≤ k, we obtain:

x̄[cE(i, j)] = (
∑

ℓ 6=ℓi

a−i,j,ℓ) + (
∑

ℓ 6=ℓj

a−j,i,ℓ) + (ei,j)

= (
∑

ℓ 6=ℓi

S(viℓ)) + (
∑

ℓ 6=ℓj

S(vjℓ)) + (S(viℓi) + S(vjℓj))

= t̄[cE(i, j)].

Therefore, S constitutes a solution for I .

Towards showing the reverse direction, let S ⊆
⋃

P∈P P be a solution for I , i.e.,
∑

s̄∈S s̄ = t̄ and |S ∩ P | = 1 for every P ∈ P . We show the reverse direction using

the following series of claims.

(C1) For every i and j with 1 ≤ i, j ≤ k and i 6= j, it holds that |S ∩ P i
EV+(j)| = 1

and |S ∩ P i
EV−(j)| = n− 1. In the following let v̄iEV (j) be the unique vector in

S ∩ P i
EV+(j).

(C2) For every i and j′ with 1 ≤ i ≤ k and 1 ≤ j′ ≤ k−2, it holds that |S∩P i
V+(j)| =

1 and |S ∩ P i
V−(j)| = n − 1, where j = indJ(i, j′). In the following let v̄iV (j)

be the unique vector in S ∩ P i
V+(j).

18 Robert Ganian et al.

(C3) For every i, j and j′ with 1 ≤ i, j, j′ ≤ k, j 6= i, j′ 6= i, and j′ 6= j, it holds

that v̄iEV (j)[c
i
V (j)] = v̄iEV (j

′)[ciV (j
′)]; see (C1) for the definition of the vector

v̄iEV (j). In particular, for i as above, there exists a unique value ℓi such that

v̄iEV (j)[c
i
V (j)] = n6 + ℓi for every j as above.

(C4) For every i and j with 1 ≤ i < j ≤ k, G contains an edge between viℓi and vjℓj .

(C5) The vertices v1ℓ1 , . . . , v
k
ℓk

induce a clique in G.

Towards showing (C1) consider the component ciV (j). Note that t̄[ciV (j)] contains

the term n6 and moreover the only vectors of I having a non-zero component at

ciV (j) (apart from the vectors in P i
EV+(j)) are the vectors in P i

V−(j
′) (only if j >

indMin(i)), where j′ = j − 1 if j − 1 6= i and j′ = j − 2 otherwise, and the vectors

in P i
V+(j

′) (only if j < indMax(i)). The former all have values larger than n8 ≥ n6

and the sum of all values of the latter is at most
∑n

ℓ=1 n
4 + ℓn2 ≤ 2n5 < n6. Hence

the only vectors that can contribute the term n6 are the vectors in P i
EV+(j) and since

n6 appears exactly once in t̄[ciV (j)], (C1) follows. Recall that we denote by v̄iEV (j)
the unique vector in S ∩ P i

EV+(j).
Towards showing (C2) consider the component ciV (j). Note that t̄[ciV (j)] contains

the term n4 and moreover the only vectors of I having a non-zero component at

ciV (j) (apart from the vectors in P i
E+(j)) are the vectors in P i

V−(j
′) (only if j >

indMin(i)), where j′ = j−1 if j−1 6= i and j′ = j−2 otherwise, and the vectors in

P i
EV−(j). The former and the latter have values larger than n8 and n6, respectively.

Hence the only vectors that can contribute the term n4 are the vectors in P i
V+(j) and

since n4 appears exactly once in t̄[ciV (j)], (C2) follows. Recall that we denote by

v̄iV (j) the unique vector in S ∩ P i
V+(j).

Towards showing (C3), we show that v̄iEV (j)[c
i
V (j)] = v̄iEV (j

′)[ciV (j
′)], where

j = indJ(i, r) and j′ = indJ(i, r + 1) for every r with 1 ≤ r < k. Since we can

assume that w.l.o.g. k > 3, we only need to distinguish the following three cases:

(A) r = 1 and r + 1 < k − 1,

(B) r > 1 and r + 1 < k − 1,

(C) r > 1 and r + 1 = k − 1.

For the case (A), consider the component ciV (j). Note that due to (C1) and (C2),

the vectors v̄iEV (j) and v̄iV (j) are the only vectors in S, for which the component

ciV (j) is non-zero; refer to (C1) and (C2) for a definition of these vectors. Hence,

v̄iEV (j)[c
i
V (j)] + v̄iV (j)[c

i
V (j)] = t̄[ciV (j)] = n6 + n4, which is only possible if

v̄iEV (j) = ā+i,j,ℓ1 and v̄iV (j) = v̄+i,j,ℓ1 for some ℓ1 with 1 ≤ ℓ1 ≤ n. Now consider

the component ciV (j
′). Because of (C2), we obtain that

∑

s∈S∩P i
V −(j) s[c

i
V (j)] =

(
∑n

ℓ=1 n
8 + ℓ + ℓn2) − (n8 + ℓ1 + ℓ1n

2). Moreover, because of (C1) and (C2),

we obtain that (
∑n

ℓ=1 n
8 + ℓ + ℓn2) − (n8 + ℓ1 + ℓ1n

2) + v̄iEV (j
′) + v̄iV (j

′) =
t̄[ciV (j

′)], which is only possible if v̄iEV (j
′) = ā+i,j′,ℓ1 and v̄iV (j

′) = v̄+i,j′,ℓ1 . Hence

v̄iEV (j)[c
i
V (j)] = v̄iEV (j

′)[ciV (j
′)], as required. The proof for the cases (B) and (C)

is analogous.

Towards showing (C4) consider the component cE(i, j). Note that the set

P i
EV (j), P

j
EV (i), and PE(i, j) are the only sets in P containing vectors that are non-

zero at cE(i, j). Moreover, because of (C1) it holds that
∑

s̄∈S∩P i
EV

(j) s̄[cE(i, j)] =

Group Activity Selection with Few Agent Types 19

(
∑n

ℓ=1 S(v
i
ℓ)) − S(viℓi) and similarly

∑

s̄∈S∩P j

EV
(i) s̄[cE(i, j)] = (

∑n

ℓ=1 S(v
j
ℓ)) −

S(vjℓj). Since t̄[cE(i, j)] =
∑

v∈Vi∪Vj
S(v), we obtain that the unique vector ē ∈

S ∩ PE(i, j) must satisfy ē[cE(i, j)] = S(viℓi) + S(vjℓj), which due the properties of

Sidon sequences is only possible if e is an edge between viℓi and vjℓj in G. Finally,

(C5) follows immediately from (C3) and (C4). ⊓⊔

4 Result 1: Fixed-Parameter Tractability of SGASP

In this section we will establish that SGASP is FPT when parameterized by the num-

ber of agent types and the number of activities by proving Theorem 6.

Theorem 6 SGASP can be solved in time O(2|T (N)|·(1+|A|) · ((|N |+ |A|)|N |)2).

Let I = (N,A, (Pn)n∈N) be a SGASP instance and let π : N → A∗ be an

assignment of agents to activities. We denote by GI(π) the incidence graph between

T (N) and A, which is defined as follows. GI(π) has vertices T (N)∪A and contains

an edge between an agent type t ∈ T (N) and an activity a ∈ A if πt,a 6= ∅. We say

that π is acyclic if GI(π) is acyclic.

Our first aim towards the proof of Theorem 6 is to show that if I has a stable as-

signment, then it also has an acyclic stable assignment (Lemma 9). We will then show

in Lemma 11 that finding a stable assignment whose incidence graph is equal to some

given acyclic pattern graph can be achieved in polynomial-time via a reduction to the

TSS problem defined and solved in Subsection 3.1. Since the number of (acyclic)

pattern graphs is bounded in our parameters, we can subsequently solve SGASP by

enumerating all acyclic pattern graphs and checking for each of them whether there

is an acyclic solution matching the selected pattern.

A crucial notion towards showing that it is sufficient to consider only acyclic

solutions is the notion of (strict) compression. We say that an assignment τ is a com-

pression of π if it satisfies the following conditions:

(C1) for every t ∈ T (N) it holds that |πt| = |τt|,
(C2) for every a ∈ A it holds that |π−1(a)| = |τ−1(a)|, and

(C3) for every a ∈ A it holds that the set of agent types which τ assigns to a is a subset

of the agent types π assigns to a.

Moreover, if τ additionally satisfies:

(C4) |E(GI(τ))| < |E(GI(π))|,

we say that τ is a strict compression of π.

Intuitively, an assignment τ is a compression of π if it maintains all the properties

required to preserve stability and compatibility with a given subset Q ⊆ T (N). We

note that condition (C3) can be formalized as T (τ−1(a)) ⊆ T (π−1(a)). Observe

that if τ is a strict compression then there is at least one activity a ∈ A such that

T (τ−1(a)) ⊂ T (π−1(a)). The following lemma shows that every assignment that is

not acyclic admits a strict compression (and how it may be computed).

20 Robert Ganian et al.

t1

t2

t3

a1

a2

a3

−1

+1

−1

+1

−1

+1

Fig. 1 Illustration of the modification (M) in the proof of Lemma 7 for a cycle of length six. A label of

+1 on an edge {t, a} of GI(π) means that |κt,a| is by one larger than |πt,a|. Similarly, a label of −1 on

an edge {t, a} of GI(π) means that |κt,a| is by one smaller than |πt,a|.

Lemma 7 If π is not acyclic, then there exists an assignment τ that strictly com-

presses π.

Proof Let C = (t1, a1, . . . , tl, al, t1) be a cycle of GI(π). Consider the following

modification (M) of our instance: reassign one (arbitrary) agent in πt1,a1
to al, and for

every i with 1 < i ≤ l reassign one (arbitrary) agent in πti,ai
to ai−1. An illustration

of (M) is also provided in Figure 1.

First, we show that the assignment κ obtained from π after applying modification

(M) satisfies (C1)–(C3). Towards showing (C1), observe that |πt| = |κt| for any

t ∈ T (N) \ {t1, . . . , tl}. Moreover, for every i with 1 < i ≤ l, we have:

|κti | =
∑

a∈A

|κti,a|

=
(

∑

a∈(A\{ai,ai−1})

|κti,a|) + |κti,ai
|+ |κti,ai−1

|
)

=
(

∑

a∈(A\{ai,ai−1})

|πti,a|) + (|πti,ai
| − 1) + (|πti,ai−1

|+ 1
)

=
∑

a∈A

|πti,a| = |πti |

Group Activity Selection with Few Agent Types 21

and for i = 1 we have:

|κt1 | =
∑

a∈A

|κt1,a|

=
(

∑

a∈(A\{a1,al})

|κti,a)|+ |κt1,a1
|+ |κt1,al

|
)

=
(

∑

a∈(A\{a1,al})

|πt1,a|
)

+ (|πt1,a1
| − 1) + (|πt1,al

|+ 1)

=
∑

a∈A

|πt1,a| = |πt1 |

Towards showing (C2) note that |π−1(a)| = |κ−1(a)| for every a ∈ A \ {a1, . . . , al}
and moreover for every i with 1 ≤ i < l we obtain:

|κ−1(ai)| =
∑

t∈T (N)

|κt,ai
|

=
(

∑

t∈(T (N)\{ti,ti+1})

|κt,ai
)|+ |κti,ai

|+ |κti+1,ai
|

= (
∑

t∈(T (N)\{ti,ti+1})

|πt,ai
)|+ (|πti,ai

| − 1) + (|πti+1,ai
|+ 1)

=
∑

t∈T (N)

|πt,ai
| = |π−1(ai)|

and for i = l we have:

|κ−1(al)| =
∑

t∈T (N)

|κt,al
|

= (
∑

t∈(T (N)\{tl,t1})

|κt,al
)|+ |κtl,al

|+ |κt1,al
|

= (
∑

t∈(T (N)\{tl,t1})

|πt,al
)|+ (|πtl,al

| − 1) + (|πt1,al
|+ 1)

=
∑

t∈T (N)

|πt,al
| = |π−1(al)|

Because |κt,a| and |πt,a| can only differ if |πt,a| 6= 0, i.e., |κt,a| will never be

non-equal to zero if |πt,a| = 0, we obtain that |κ| satisfies also condition (C3).

Having settled that (M) does not violate (C1)–(C3), we observe that if GI(κ) still

contains the cycle C, we can apply modification (M) again to κ and the obtained

assignment still satisfies conditions (C1)–(C3). Hence we can repeatedly apply mod-

ification (M) as long as the cycle C is not destroyed in the resulting assignment.

Namely let m = min{πt1,a1
, . . . , πtl,al

}, let i be an index with m = πti,ai
, and let τ

be the assignment obtained after m applications of modification (M) to π. Note that

m applications of modification (M) are possible since the cycle C remains preserved

up to the m − 1-th modification of (M). Furthermore, since |τti,ai
| = 0, we obtain

that τ satisfies (C4). ⊓⊔

22 Robert Ganian et al.

The following lemma shows that any assignment can be compressed into an

acyclic assignment.

Lemma 8 Let π : N → A∗ be an assignment for I . Then there exists an acyclic

assignment π′ that compresses π.

Proof The lemma follows via an exhaustive application of Lemma 7. Namely, we

start by checking whether π is acyclic. If yes, then π itself is the acyclic assign-

ment that compresses π. If not, then we apply Lemma 7 to π and obtain the as-

signment π′ that strictly compresses π. If π′ is acyclic, we are done; otherwise, we

repeat the above procedure with π′ instead of π. Because at every step |E(GI(π))| <
|E(GI(π

′))| and GI(π) has at most |T (N)| · |A| edges, this process concludes after

at most |T (N)| · |A| steps and results in an acyclic assignment that compresses π. ⊓⊔

The following lemma provides the first cornerstone for our algorithm by showing

that it is sufficient to consider only acyclic solutions (and, in particular, shows how

an acyclic solution can be constructed from an arbitrary solution). Intuitively, it is

a consequence of Lemma 8 along with the observation that compression preserves

stability and individual rationality.

Lemma 9 If I has a stable assignment, then I has an acyclic stable assignment.

Proof Let π be a stable assignment for I . Because of Lemma 8, there is an acyclic

assignment π′ that compresses π. We claim that π′ is also a stable assignment. Con-

ditions (C2) and (C3) together with the fact that π is individually rational imply

that also π′ is individually rational. Moreover, it follows from Condition (C1) that

PE(I, π) = PE(I, π′), which together with Condition (C2) and the stability of π im-

plies the stability of π′. ⊓⊔

Our next step is the introduction of terminology related to the pattern graphs

mentioned at the beginning of this section. Let G be a bipartite graph with bi-partition

{T (N), A}. We say that G models an assignment π : N → A∗ if GI(π) = G; in this

sense every such bipartite graph can be seen as a pattern (or model) for assignments.

For a subset Q ⊆ T (N) we say that G is compatible with Q if every vertex in Q and

every vertex in A6=∅(I,Q) (recall the definition of A 6=∅(I,Q) given in Lemma 1) has

at least one neighbour in G; note that if G is compatible with Q then any assignment

π modelled by G satisfies π−1(a) 6= ∅ for every a ∈ A 6=∅(I,Q). Intuitively, the graph

G captures information about which types of agents are mapped to which activities

(without specifying numbers), while Q captures information about which agent types

are perfectly (i.e., “completely”) assigned.

Let Q ⊆ T (N) and let G be a bipartite graph with bi-partition {T (N), A} that

is compatible with Q. The following simple lemma shows that, modulo compati-

bility requirements, finding a stable assignment for I can be reduced to finding an

individually rational assignment for γ(I,Q) (recall the definition of γ(I,Q) given in

Lemma 1).

Lemma 10 Let Q ⊆ T (N) and let G be a bipartite graph with bi-partition

{T (N), A} that is compatible with Q. Then for every assignment π : N → A∗

modelled by G and compatible with Q, it holds that π is stable for I if and only if π
is individually rational for γ(I,Q).

Group Activity Selection with Few Agent Types 23

Proof Since π is compatible with Q, it follows from Lemma 1 that π is stable for

I if and only if π is individually rational for γ(I,Q) and π−1(a) 6= ∅ for every

a ∈ A6=∅(I,Q). Consider an arbitrary a ∈ A6=∅(I,Q). Because G is compatible with

Q it holds that every a has at least one neighbour in G and since π is modelled by G,

we obtain that π−1(a) 6= ∅, as required. ⊓⊔

The next, final lemma forms (together with Lemma 9) the core component of our

proof of Theorem 6.

Lemma 11 Let Q ⊆ T (N) and let G be an acyclic bipartite graph with bi-

partition {T (N), A} that is compatible with Q. Then one can decide in time

O((|N | + |A|)2|N |2) whether I has a stable assignment which is modelled by G
and compatible with Q.

Proof By Lemma 10, I has a stable assignment that is modelled by G and compatible

with Q if and only if γ(I,Q) has an individually rational assignment that is modelled

by G and compatible with Q. To determine whether γ(I,Q) has an individually ra-

tional assignment that is compatible with Q and modelled by G, we will employ a

reduction to the TSS problem, which can be solved in polynomial-time by Lemma 3.

The reduction proceeds as follows. We will construct an instance I ′ = (T, λ)
of TSS that is a YES-instance if and only if γ(I,Q) = (N,A, (P ′n)n∈N) has an

individually rational assignment that is compatible with Q and modelled by G. We

set T to be the graph G and let λ be defined for every v ∈ V (G) as follows:

– if v ∈ Q, then λ(v) = {|Nv|},

– if v ∈ T (N) \Q, then λ(v) = {0, . . . , |Nv| − 1},

– otherwise, i.e., if v ∈ A, then λ(v) =
⋂

t∈T (N)∧{v,t}∈E(G) P
′
t (v).

Note that the reduction can be achieved in time O(|E(G)||N |), assuming that the

sets P ′t (a) for every t ∈ T (N) and a ∈ A are given in terms of a data struc-

ture that allows to test containment in constant time; such a data structure could

for instance be a Boolean array with |N | entries, whose i-th entry is TRUE if

and only if i is contained in P ′t (a). Because the time to construct γ(I,Q) and

A6=∅(I,Q) is at most O((|N | · |A|)|N |) (Lemma 1) and the time to solve I ′ is at

most O(|V (T)|2 · |N |2) = O(|V (G)|2 · |N |2) = O
(

(|N |+ |A|)2|N |2
)

(Lemma 3),

we obtain O
(

(|N |+ |A|)2|N |2
)

as the total running time of the algorithm.

It remains to show that I ′ is a YES-instance if and only if I has an individually

rational assignment that is compatible with Q and modelled by G. Towards show-

ing the forward direction let α : E(T) → N0 be a solution for I ′. We claim that

the assignment π : N → A∗ that for every edge e = {t, a} of G (with t ∈ T and

a ∈ A) assigns exactly α({t, a}) agents of type t to activity a and assigns all re-

maining agents (if any) to a∅ is an individually rational assignment for γ(I,Q) that

is compatible with Q and modelled by G. First observe that for every t ∈ T (N) and

every a ∈ A it holds that πt,a = α({t, a}) if {t, a} ∈ E(T) and πt,a = 0 otherwise.

Hence GI(π) = G = T which implies that π is modelled by G. We show next that π
is also compatible with Q, i.e., π satisfies:

(P1) for every t ∈ Q, it holds that
∑

a∈A |πt,a| = |Nt|,

24 Robert Ganian et al.

(P2) for every t ∈ T (N) \Q, it holds that
∑

a∈A |πt,a| < |Nt|,

Towards showing (P1) first note that because G is compatible with Q, it holds that

every t ∈ Q is adjacent to at least one edge in G and thus also in T . Moreover,

because α is a solution for I ′, we obtain that
∑

e={t,a}∈E(T) α(e) ∈ λ(t) = {|Nt|}.

Since
∑

e={t,a}∈E(T) α(e) =
∑

a∈A |πt,a|, we obtain (P1).

Towards showing (P2) let t ∈ T (N)\Q. If t is isolated in T then
∑

a∈A |πt,a| = 0
but Nt 6= ∅ and hence

∑

a∈A |πt,a| < |Nt|, as required. If on the other hand t is not

isolated in T then because α is a solution for I ′, we obtain that
∑

e={t,a}∈E(T) α(e) ∈

λ(t) = {0, . . . , |Nt|−1}. Since
∑

e={t,a}∈E(T) α(e) =
∑

a∈A |πt,a|, we obtain (P2).

Finally it remains to show that π is individually rational for γ(I,Q), i.e., for every

a ∈ A and t ∈ T (N), it holds that if πt,a 6= ∅ then |π−1(a)| ∈ P ′t (a). Let a ∈ A.

If a has no neighbour in T then πt,a = 0 for every t ∈ T (N) and the claim holds.

Hence let t1, . . . , tl be the neighbours of a in T . Then because α is a solution for I ′,
we obtain:

|π−1(a)| =
∑

1≤i≤l

|πti,a|

=
∑

1≤i≤l

α({ti, a})

∈ λ(a) =
⋂

1≤i≤l

P ′ti(a)

Hence for every 1 ≤ i ≤ l it holds that |π−1(a)| ∈ P ′ti(a), as required.

Towards showing the reverse direction let π be an individually rational assign-

ment for γ(I,Q) that is compatible with Q and modelled by G. We claim that the

assignment α : E(G) → N0 with α({t, a}) = πt,a for every {t, a} ∈ E(T) is a

solution for I ′. Observe that because π is modelled by G, we have that |πt,a| 6= 0 if

and only if {t, a} ∈ E(G). Hence |πt| =
∑

a∈A |πt,a| =
∑

{t,a}∈E(T) α(t, a) for

every t ∈ T (i) and |π−1(a)| =
∑

t∈T (N) |πt,a| =
∑

{t,a}∈E(T) α({t, a}). Since

π is compatible with Q we obtain that πt = |Nt| for every t ∈ Q and hence

α(t) = |Nt| ∈ λ(t). Moreover for every t ∈ T (N) \ Q it holds that πt < |Nt|
and hence α(t) ∈ λ(t). Because π is an individually rational assignment, it holds

that |π−1(a)| ∈
⋂

t∈T (π−1(a)) P
′
t (a) and thus

∑

{t,a}∈E(T) α({t, a}) ∈ λ(a), as re-

quired. ⊓⊔

We are now ready to establish Theorem 6.

Proof (Proof of Theorem 6) Let I = (N,A, (Pn)n∈N) be the given instance of

SGASP. It follows from Lemma 9 that it suffices to decide whether I has an acyclic

stable assignment. Observe that every acyclic stable assignment π is compatible with

PE(I, π) and the acyclic bipartite graph GI(π). Hence there is an acyclic stable as-

signment π if and only if there is a set Q ⊆ T (N) and an acyclic bipartite graph G
with bi-partition {T (N), A} compatible with Q such that there is a stable assignment

for I modelled by G and compatible with Q.

Consequently, we can determine the existence of a stable assignment for I by

first branching over every Q ⊆ T (N), then over every acyclic bipartite graph G

Group Activity Selection with Few Agent Types 25

with bi-partition {T (N), A} compatible with Q, and checking whether I has a stable

assignment that is compatible with Q and modelled by G. Since there are 2|T (N)|

many subsets Q of T (N) and at most 2|T (N)|·|A| (acyclic) bipartite graphs G, and we

can determine whether I has a stable assignment compatible with Q and modelled

by G in time O
(

(|N |+ |A|)2|N |2
)

(see Lemma 11), it follows that the total running

time of the algorithm is at most O
(

2|T (N)|(1+|A|)(|N |+ |A|)2|N |2
)

. ⊓⊔

5 Result 2: Lower Bound for SGASP

In this subsection we complement Theorem 6 by showing that if we drop the number

of activities in the parameterization, then SGASP becomes W[1]-hard. We achieve

this via a parameterized reduction from SMPSS that we have shown to be strongly

W[1]-hard in Theorem 5.

Theorem 12 SGASP is W[1]-hard parameterized by the number of agent types.

Proof Let (d, t̄,S) with S = (S1, . . . , Sm) be an instance of SMPSS. Because

SMPSS is strongly W[1]-hard, we can assume that all numbers of the instance

(d, t̄,S), i.e., the values of all components of the vectors in {t̄} ∪
⋃

R∈S R, are en-

coded in unary. We will also assume that all non-zero components of the vectors

{t̄} ∪
⋃

R∈S R are at least 3 (this can for instance be achieved by multiplying ev-

ery vector in {t̄} ∪
⋃

R∈S R with the number 3). We will now construct the instance

I = (N,A, (Pn)n∈N) of SGASP in polynomial time with |T (I)| = d + 3 such

that (d, t̄,S) has a solution if and only if so does I . The instance I has one agent

type ti for every 1 ≤ i ≤ d that comes with t̄[i] agents as well as three additional

agent types tP , t16=∅, and t26=∅ having one agent each. The last three agent types will

be employed to ensure that every agent type ti must be perfectly assigned and every

activity apart from a∅ is assigned at least one agent. Moreover, I has one activity

aℓ for every ℓ with 1 ≤ ℓ ≤ m as well as one activity aP , which will be used

in conjunction with the agent type tP to ensure that all agent types ti must be per-

fectly assigned. The approval set for the agent type ti w.r.t. an activity aℓ is given by

Pti(aℓ) = { v̄[i] | v̄ ∈ Sℓ ∧ v̄[i] 6= 0 }. Note that because all sets in S are simple, it

holds that Pti(aℓ) ∩ Ptj (aℓ) = ∅ for every i, j, and ℓ with 1 ≤ i, j ≤ d, j 6= i, and

1 ≤ ℓ ≤ m and hence every such activity aℓ is populated by agents of at most one

type in any individually rational assignment for I . Finally, we set Pti(aP) = {2} for

every i with 1 ≤ i ≤ d, PtP (aP) = {1, 3}, Pt1
6=∅
(a) = {1} and Pt2

6=∅
(a) = {2} for

every activity a ∈ A\{aP }. Note that indeed |T (I)| = d+3 and I can be constructed

in polynomial-time (recall that we assumed that all numbers of (d, t̄,S) are encoded

in unary). It remains to show that (d, t̄,S) has a solution if and only if so does I .

Towards showing the forward direction, let p̄1, . . . , p̄m with p̄ℓ ∈ Sℓ and
∑m

ℓ=1 p̄ℓ = t̄ be a solution for (d, t̄,S). Let π : N → A∗ be the assignment de-

fined as follows:

– For every agent type ti and every vector p̄ℓ such that p̄ℓ[i] 6= 0, π assigns exactly

p̄ℓ[i] agents of type ti to activity aj .

– π(nP) = {aP }, where nP is the unique agent of type tP ,

26 Robert Ganian et al.

– π(n1
6=∅) = π(n2

6=∅) = a∅, where n1
6=∅ and n2

6=∅ are the unique agents having type

t16=∅ and t26=∅, respectively.

We claim that π is a stable assignment for I , which we will show using the following

sequence of observations:

(O1) Due to the construction of π, we obtain that |πti,aℓ
| = p̄ℓ[i] for every i and j with

1 ≤ i ≤ d and 1 ≤ ℓ ≤ m.

(O2) Because of (O1) and the fact that
∑m

ℓ=1 p̄ℓ = t̄, we obtain that |πti | = t̄[i] for

every i with 1 ≤ i ≤ d. Since furthermore I has exactly t̄[i] agents of type ti, we

obtain that the agents of type ti are perfectly assigned by π.

(O3) Because every set in S is simple, it also holds that π−1(aℓ) consists of exactly

p̄ℓ[i] agents of type i, where i is the unique non-zero component of p̄ℓ.
(O4) Since π−1(aP) = {nP } the assignment π is stable for the agent nP .

(O5) Since π(n1
6=∅) = π(n2

6=∅) = a∅ and |π−1(a)| ≥ 2 for every activity a ∈ A \ {aP }

(because of (O3)), it holds that the assignment π is stable for the agents n1
6=∅ and

n2
6=∅.

(O6) Consider an agent n of type ti. Because of (O2), we have that π(n) 6= a∅. Hence

π(n) = aℓ for some ℓ with 1 ≤ ℓ ≤ m and since |π−1(aℓ)| = p̄ℓ[i] (because

of (O3)), we have that |π−1(aℓ)| ∈ Pn(aℓ), which implies that π is a stable

assignment for n.

Consequently, π is a stable assignment for I .

Towards showing the reverse direction, let π : N → A∗ be a stable assignment

for I . We start by showing that π satisfies the following two properties:

(P1) for every i with 1 ≤ i ≤ d, all agents of type ti are assigned to some activity in

A \ {aP },

(P2) for every activity a ∈ A \ {aP }, it holds that π−1(a) 6= ∅ and moreover

T (π−1(a)) ⊆ {t1, . . . , td} and |T (π−1(a))| = 1.

We will show (P1) and (P2) using the following series of claims that hold for any

stable assignment π : N → A for I:

(C1) π(n2
6=∅) = a∅ for the unique agent n2

6=∅ of type t26=∅,

(C2) π(n1
6=∅) = a∅ for the unique agent n1

6=∅ of type t16=∅,

(C3) π(nP) = aP for the unique agent nP of type tP ,

(C4) π−1(aP) = {nP },

Towards showing (C1), assume for the contrary that π(n2
6=∅) = a for some a ∈ A.

Then a ∈ A \ {aP } and |π−1(a)| = 2. However, this is not possible since n2
6=∅ is the

only agent in I that approves size 2 for any activity in A \ {aP }.

Towards showing (C2), assume for the contrary that π(n1
6=∅) = a for some a ∈ A.

Then a ∈ A \ {aP } and |π−1(a)| = 1. Moreover, because of (C1), we have that

π(n2
6=∅) = a∅ and hence n2

6=∅ would prefer a over his current assignment, contradict-

ing the stability of π.

Towards showing (C3), assume for the contrary that π(nP) 6= aP . Then π(nP) =
a∅. Moreover, due to the approval set of nP , it must hold that π−1(aP) 6= ∅. Since

Pt(aP) ∈ {∅, {2}} for every agent type in T (I) \ {tP }, it follows that |π−1(aP)| =

Group Activity Selection with Few Agent Types 27

2. However, this contradicts the stability of π, since nP would prefer aP over his

current assignment. (C4) is a direct consequence of (C3) since PnP
(aP) = {1, 3}

and moreover nP is the only agent with 3 ∈ PnP
(aP).

We are now ready to show (P1) and (P2). Towards showing (P1) assume for a

contradiction that there is an agent n whose type is in {t1, . . . , td} such that π(n) ∈
{a∅, aP }. Because of (C4), we obtain that π(n) = a∅. Moreover, since 2 ∈ Pn(aP)
and |π−1(aP)| = 1 (because of (C4)), it follows that n would prefer aP over his

current assignment, which contradicts the stability of π.

Towards showing (P2) assume for a contradiction that there is an activity a ∈ A\
{aP } with π−1(a) = ∅. Consider the agent n1

6=∅, i.e., the only agent of type t16=∅, then

because of (C2), we have π(n1
6=∅) = a∅. Moreover, since 1 ∈ Pn1

6=∅
(a) for every a ∈

A\{aP }, the agent n1
6=∅ would prefer a over his current assignment, which contradicts

the stability of π. Hence π−1(a) 6= ∅ for every a ∈ A \ {aP }. Furthermore, since the

agent types in {t1, . . . , td, t
1
6=∅, t

2
6=∅} are the only types that approve of an activity in

A \ {aP } and it follows from (C1) and (C2) that neither n1
6=∅ nor n2

6=∅ are assigned to

an activity in A\{aP }, we obtain that T (π−1(a)) ⊆ {t1, . . . , td}. It remains to show

that |T (π−1(aℓ))| = 1 for every 1 ≤ ℓ ≤ m. Assume for a contradiction that there

are two distinct agent types t and t′ in {t1, . . . , td} with t, t′ ∈ T (π−1(aℓ)). Since π
is individually rational, we obtain that |π−1(aℓ)| ∈ Pt(aℓ) and |π−1(aℓ)| ∈ Pt′(aℓ).
Hence the set Sℓ in S contains two vectors that share the same value at their non-zero

component, which contradicts our assumption that Sℓ is a simple set. This concludes

the proof for (P1) and (P2) and we are now ready to complete the proof of the reverse

direction.

Consider an activity aℓ for some 1 ≤ ℓ ≤ m. Because of (P2), we obtain that

all agents in π−1(aℓ) have the same type say ti. Because π is stable it holds that

|π−1(aℓ)| ∈ Pti(aℓ) and hence there is a vector, say p̄ℓ, in Sℓ with p̄ℓ[i] = |π−1(aℓ)|.
We claim that the vectors p̄1, . . . , p̄m chosen in this way form a solution for (d, t̄,S).
Consider a component i with 1 ≤ i ≤ d, then because of (P1), we obtain that
∑m

j=1 p̄j [i] is equal to the number of agents of type ti, which in turn is equal to

t̄[i] by the construction of I . Hence
∑m

j=1 p̄j = t̄ and p̄1, . . . , p̄m is a solution for

(d, t̄,S). ⊓⊔

6 Result 3: XP Algorithms for SGASP and GASP

In this section, we present our XP algorithm for GASP parameterized by the num-

ber of agent types. In order to obtain this result, we observe that the stability of an

assignment for GASP can be decided by only considering the stability of agents that

are assigned to a “minimal alternative” w.r.t. their type. We then show that once one

guesses (i.e., branches over) a minimal alternative for every agent type, the problem

of finding a stable assignment for GASP that is compatible with this guess can be

reduced to the problem of finding a perfect and individually rational assignment for a

certain instance of SGASP, where one additionally requires that certain activities are

assigned to at least one agent. Our first task will hence be to obtain an XP algorithm

which can find such a perfect and individually rational assignment for SGASP.

28 Robert Ganian et al.

6.1 An XP Algorithm for SGASP

The aim of this section is twofold. First of all, we obtain Lemma 13, which allows us

to find certain individually rational assignments in SGASP instances and forms a core

part of our XP algorithm for GASP.

Lemma 13 Let I = (N,A, (Pn)n∈N) be an instance of SGASP, Q ⊆ T (N), and

A6=∅ ⊆ A. Then one can decide in time O(|A| · (|N |)|T (N)|) whether I has an indi-

vidually rational assignment π that is compatible with Q such that π−1(a) 6= ∅ for

every a ∈ A 6=∅.

Proof Let k = |T (N)| and r = maxt∈T (N) |Nt|. We construct an instance I ′ =
(k,S, t̄) of MPSS such that the solution to I ′ contains a specific vector if and only

if I = (N,A, (Pn)n∈N) has an individually rational assignment π : N → A∗ that is

compatible with Q and π−1(a) 6= ∅ for every a ∈ A 6=∅. Let T (N) = {t1, . . . , tk}.

The set S contains one set Sa for every activity a ∈ A, defined as follows. For every

number p ∈
⋃

t∈T (N) Pt(a) the set Sa contains the set of all vectors p̄ ∈ [r]k0 such

that (
∑k

i=1 p̄[i]) = p and p̄[i] = 0 for every i with 1 ≤ i ≤ k such that p /∈ Pti(a).
Moreover, if a /∈ A 6=∅, then the set Sa additionally contains the all-zero vector 0̄.

This completes the construction of I ′.
We claim that I has an individually rational assignment π : N → A∗ that is

compatible with Q and π−1(a) 6= ∅ for every a ∈ A6=∅ if and only if the solution

T for I ′ contains a vector t̄ with t̄[i] = |Nti | for every ti ∈ Q and t̄[i] < |Nti |
otherwise (i.e. for every ti ∈ T (N) \Q). Note that establishing this claim completes

the proof of the lemma since I ′ can be constructed in time O(|A|rk) and solved in

time O(|A| · rk) by Lemma 4.

Towards showing the forward direction, let π : N → A∗ be an individually

rational assignment for I that is compatible with Q and π−1(a) 6= ∅ for every a ∈
A6=∅. For every a ∈ A let p̄a be the vector with p̄a[i] = |πti,a| for every i with

1 ≤ i ≤ k. Note that if p̄a 6= 0̄ then p̄a ∈ Sa for every a ∈ A because π is

individually rational. On the other hand, if p̄a = 0̄ then a /∈ A6=∅ and so we also

obtain p̄a ∈ Sa. Hence the vector t̄ =
∑

a∈A p̄a is in the solution for I ′ and moreover

t̄[i] =
∑

a∈A p̄a[i] =
∑

a∈A |πti,a| = |πti | for every i with 1 ≤ i ≤ k. Finally,

because π is compatible with Q, we obtain that t̄[i] = |πti | = |Nti | for every i with

ti ∈ Q and also t̄[i] = |πti | < |Nti | for every i with ti ∈ T (N) \Q, as required.

Towards showing the reverse direction, assume that the solution T for I ′ contains

a vector t̄ with t̄[i] = |Nti | for every ti ∈ Q and t̄[i] < |Nti | otherwise (i.e., for

every ti ∈ T (N) \ Q) and for every a ∈ A let p̄a be the vector in Sa such that
∑

a∈A p̄a = t̄. We claim that the assignment π : N → A∗ that for every 1 ≤ i ≤ k
and every a ∈ A assigns exactly p̄a[i] agents of type ti to activity a and all remaining

agents to activity a∅ is an individually rational assignment for I that is compatible

with Q and π−1(a) 6= ∅ for every a ∈ A6=∅. First observe that for every i with

1 ≤ i ≤ k, it holds that |πti | =
∑

a∈A |πti,a| =
∑

a∈A p̄a[i] = t̄[i]. Note also that

because t̄[i] ≤ |Nti |, i.e., there is a sufficient number of agents for every agent type,

we know that it is possible to assign the agents according to π. Since in addition it

holds that t̄[i] = |Nti | if ti ∈ Q and t̄[i] < |Nti | if ti 6∈ Q, it follows that π is

Group Activity Selection with Few Agent Types 29

compatible with Q. Moreover, because 0̄ /∈ Sa for every a ∈ A6=∅, it also holds

that |π−1(a)| =
∑

1≤i≤k |πti,a| =
∑

1≤i≤k p̄a[i] 6= 0 for every such a. It remains to

show that π is individually rational for I . By the definition of π it holds that whenever

π assigns an agent of type ti to some activity a ∈ A, then p̄a[i] 6= 0. Moreover, by

the construction of I ′ it holds that if p̄a[i] 6= 0 then (
∑k

i=1 p̄a[i]) ∈ Pti(a). Hence

because |π−1(a)| = |pa|, we obtain that |π−1(a)| ∈ Pti(a). ⊓⊔

As a secondary result, we can already obtain an XP algorithm for SGASP param-

eterized by the number of agent types. This may also be of interest, as the obtained

running time is strictly better than that of the algorithm obtained for the more general

GASP. The last thing we need for this result is the following corollary, obtained as a

direct consequence of Lemma 1 and Lemma 13.

Corollary 14 Let I = (N,A, (Pn)n∈N) be an instance of SGASP and Q ⊆ T (N).
Then one can decide in time O(|N |2 · |A|+ |A| · (|N |)|T (N)|) whether I has a stable

assignment compatible with Q.

We can now prove the following.

Theorem 15 An instance I = (N,A, (Pn)n∈N) of SGASP can be solved in time

|A| · |N |O(|T (N)|).

Proof Let I = (N,A, (Pn)n∈N) be the given instance of SGASP. The algorithm

loops through every Q ⊆ T (N) and in each branch checks whether I has a stable

assignment that is compatible with Q. Note that due to Corollary 14 this can be

achieved in time O(|N |2 · |A|+ |A| · (|N |)|T (N)|) for every Q ⊆ T (N). Since there

are 2|T (N)| subsets of T (N), we obtain O(2|T (N)|(|N |2 · |A|+ |A| · (|N |)|T (N)|)) =
|A| · |N |O(|T (N)|) as the total running time of the algorithm. ⊓⊔

6.2 An XP algorithm for GASP

Our aim here is to use Lemma 13 to obtain an XP algorithm for GASP. To simplify

the presentation, we start by showing how a simple modification of GASP instances

allows us to only consider perfect assignments and to express individual rationality in

terms of NS-deviations. Namely, we say that a GASP instance I = (N,A, (�n)n∈N)
is nice if A contains a special activity aφ such that (aφ, i) �n (a∅, 1) �n (aφ, i)
for every n ∈ N and every integer i with 1 ≤ i ≤ |N |. Clearly, one can transform

an arbitrary GASP instance into a nice GASP instance in linear-time by adding the

special activity aφ to A and every preference list. Moreover, it is easy to see that the

nice instance obtained in this way is equivalent to the originial instance with respect to

stability, since any agent assigned to aφ could instead be assigned to a∅ and because

aφ does not induce any new NS-deviations. More importantly, it also holds that a nice

instance has a perfect stable assignment if and only if it has a stable assignment and

that an assignment for a nice instance is stable if and only if no agent has an NS-

deviation. The following observation and lemma summarizes the above-mentioned

properties of nice instances.

30 Robert Ganian et al.

Observation 16 Let I = (N,A, (�n)n∈N) be a GASP instance. Then, in time

O(|N |), we can construct a nice GASP instance I⋆ such that I has a stable assign-

ment if and only if I⋆ has a perfect stable assignment.

Lemma 17 Let I = (N,A, (�n)n∈N) be a nice GASP instance. Then, an assign-

ment π : N → A∗ is stable if and only if no agent has an NS-deviation.

Proof The forward direction is trivial because no agent has an NS-deviation in a

stable assignment. Towards showing the backward direction, let φ : N → A∗ be

an assignment for I such that no agent has an NS-deviation. Then, π is individually

rational because if not there would be an agent n ∈ N assigned to an activity a ∈ A
such that (a∅, 1) ≻n (a, |π−1(a)|). However, this would imply that n has an NS-

deviation to the activity aφ, contradicting our assumption that no agent in I has an

NS-deviation. ⊓⊔

We are now ready to introduce the notion of minimal alternative, which plays a crucial

role in our algorithm. Let I = (N,A, (�n)n∈N) be a nice GASP instance, let π :
N → A∗ be a perfect assignment and let t ∈ T (I) be an agent type. We say that

an alternative (a, |π−1(a)|) is active for t if a ∈ π(t) (recall that π(t) is the set

of all activities being assigned at least one agent of type t). Moreover, we say that

an active alternative (a, |π−1(a)|) is a minimal alternative for t if (a′, |π−1(a′)|) �t

(a, |π−1(a)|) for all active alternatives (a′, |π−1(a′)|) for t. We say that a is a minimal

activity for t if (a, |π−1(a)|) is a minimal alternative. The following lemma now

provides our first key insight, by showing that a non-stable perfect assignment for I
is always accompanied by an NS-deviation of an agent in a minimal activity or of an

agent to a minimal activity.

Lemma 18 Let I = (N,A, (�n)n∈N) be a nice GASP instance, let π : N → A be

a perfect assignment and for every agent type t ∈ T (I) let at be a minimal activity

for t. Then, π is stable if and only if for each t ∈ T (I):

(P1) no agent of type t assigned to at has an NS-deviation, and

(P2) no agent of type t has an NS-deviation to at.

Proof It follows from Lemma 17 that π is stable if and only if no agent has an NS-

deviation. Therefore, it remains to show that no agent has an NS-deviation if and

only if π satisfies (P1) and (P2). The forward direction is trivial. Towards showing

the reverse direction, suppose for a contradiction that there is an agent n ∈ N of

type t that has an NS-deviation to some activity a ∈ A. Because of (P2), it holds that

a 6= at. But then every agent n′ of type t participating in at also has an NS-deviation

to a, and since at must be active by definition, this contradicts assumption (P1). ⊓⊔

Recall that X = (A × [|N |]) is the set of all alternatives of a GASP instance I .

The following theorem now employs the above lemma to construct an instance I ′ of

SGASP together with a subset A6=∅ of activities such that for every function fmin :
T (I) → X (representing every guess of minimal alternatives in an assignment), it

holds that a nice GASP instance I has a stable assignment such that fmin(t) is a

minimal alternative w.r.t. t for every t ∈ T (I) if and only if I ′ has a perfect and

Group Activity Selection with Few Agent Types 31

individually rational assignment π such that π−1(a) 6= ∅ for every a ∈ A6=∅. For

brevity, we will say that an assignment π is compatible with fmin if and only if fmin(t)
is a minimal alternative w.r.t. t for every t ∈ T (I).

Theorem 19 Let I = (N,A, (�n)n∈N) be a nice instance of GASP and let fmin :
T (N) → X \ {(a∅, 1)}, which informally represents a guess of a minimal alterna-

tive for every agent type. Then one can in time O(|N |2|A|) construct an instance

I ′ = (N,A, (Pn)n∈N) of SGASP together with a subset A6=∅ of activities such that

|T (I ′)| ≤ 2|T (I)| and I has a perfect stable assignment compatible with fmin(t) if

and only if I ′ has a perfect individually rational assignment π with π−1(a) 6= ∅ for

every a ∈ A6=∅.

Proof Let I = (N,A, (�n)n∈N) be a nice instance of GASP and let fmin : T (N) →
X \ {(a∅, 1)}. We define the preferences (Pn)n∈N for I ′ as follows. Let t ∈ T (I),
let (at, it) = fmin(t) and let nt ∈ Nt be an arbitrary agent of type t. Then, we set

Pnt
= {(at, it)}. This will ensure that every perfect assignment π for I ′ must have

the property π(nt) = at and (at, |π
−1(at)|) = (at, it).

Moreover, for every other agent n of type t, i.e., n ∈ Nt \ {nt}, we define

the preferences Pn as follows. Let Xt be the set of all alternatives that agent type

t prefers at least as much as the minimal alternative fmin(t), i.e., Xt = { (a, i) ∈
X | (a, i) �t fmin(t) }. Informally, starting from Xt we now remove all alterna-

tives that are not allowed to be active by Lemma 18. Namely, let R be the set of

all alternatives that would lead to an agent assigned to a minimal activity having an

NS-deviation, i.e., R =
⋃

t∈T (N)({ (a, i) ∈ X | (a, i + 1) ≻t fmin(t) }). Note that

because of Lemma 18 (P1), we know that no alternative in R can be activated by

any perfect stable assignment for I . Let Rt be the set of alternatives in Xt such that

if an agent of type t would be assigned to the corresponding activity he would have

an NS-deviation to at (in any perfect assignment for I compatible with fmin), i.e.,

Rt = { (a, i) ∈ Xt | (at, it + 1) ≻t (a, i) }. Note that because of Lemma 18 (P2),

it follows that no agent of type t can be assigned to an activity corresponding to such

an alternative in any perfect stable assignment for I compatible with fmin. Finally,

we set Pn = Xt \ (R∪Rt). Informally, because of Lemma 18, Pn is the set of alter-

natives that an agent of type t is allowed to participate in with respect to any perfect

stable assignment for I compatible with fmin.

The set A 6=∅ contains all activities a ∈ A for which there is an agent type t
such that (a, 1) ≻t fmin(t), i.e., all activities that must be non-empty for any stable

assignment π for I compatible with fmin.

This completes the construction of I ′ and A 6=∅. Clearly, the construction can

be achieved in time O(|N |2|A|) and moreover |T (I ′)| ≤ 2|T (I)|. It remains to

show that for every choice of fmin, I has a perfect stable assignment π compati-

ble with fmin(t) if and only if I ′ has a perfect individually rational assignment π
with π−1(a) 6= ∅ for every a ∈ A6=∅.

Towards showing the forward direction, let π be a perfect stable assignment for

I compatible with fmin(t). Note that, without loss of generality, we can assume that

π(nt) = at, where (at, it) = fmin(t) for every t ∈ T (I), since otherwise we can

switch the assignment for nt with some agent that is assigned to at, which exists

because π is compatible with fmin. We claim that π1 : N → A such that for every

32 Robert Ganian et al.

n ∈ N , π1(n) = π(n), is a perfect individually rational assignment for I ′ such that

π−11 (a) 6= ∅ for every a ∈ A6=∅. The assignment π1 is obviously perfect for I ′,
because π is perfect for I .

Towards showing that π1 is individually rational, let n ∈ N be any agent of type

t. If n = nt, then π1(n) = π(n) = at (using our assumption that π(nt) = at). More-

over, because π is compatible with fmin, we obtain that |π−1(at)| = |π−11 (at)| = it
and therefore (π1(n), π

−1
1 (π1(n))) = (at, it) ∈ Pn = {(at, it)}, as required. If

on the other hand n 6= nt, then because π is a perfect assignment compatible with

fmin, we obtain that (π(n), |π−1(π(n))|) ∈ Xt. Moreover, using Lemma 18 and

the fact that π is stable, we obtain that (π(n), |π−1(π(n))|) /∈ R ∪ Rt. Therefore,

(π1(n), |π
−1
1 (π1(n))|) = (π(n), |π−1(π(n))|) ∈ Pn = Xt \ (R ∪Rt), as required.

To complete the argument for the forward direction, it remains to show that

π−11 (a) 6= ∅ for every a ∈ A 6=∅. Assume for a contradiction that there is an activity

a ∈ A6=∅ such that π−11 (a) = ∅. Note that then also π−1(a) = ∅ and because of the

definition of A6=∅ it follows that there is an agent type t such that (a, 1) ≻t fmin(t).
But this contradicts the stability of π since now each agent assigned to the minimal

activity at (which must have received at least one agent) has an NS-deviation to a
in I .

Towards showing the reverse direction, let π1 be a perfect individually rational

assignment for I ′ such that π−11 (a) 6= ∅ for every a ∈ A6=∅. We claim that the as-

signment π with π(n) = π1(n) is a perfect stable assignment for I that is compatible

with fmin. Clearly, π is perfect because so is π1. We show next that π is compati-

ble with fmin. Let t be an arbitrary agent type and consider the special agent nt with

Pnt
= {(at, it)}. Then, because π1 is perfect and individually rational, we obtain that

π(nt) = π1(nt) = at and |π−1(at)| = |π−11 (at)| = it. Therefore, the alternative

(at, it) is active for t in π. Moreover, because Pn ⊆ Xt = { (a, i) ∈ X | (a, i) �t

fmin(t) } for every agent n of type t, we obtain from the individual rationality of

π1 that π assigns all agents of type t to alternatives (a, i) with (a, i) �t fmin(t).
Therefore, π is compatible with fmin.

Towards showing that π is also stable, assume for a contradiction that this is not

the case. Then, because of Lemma 18 either (P1) or (P2) does not hold. In the former

case, there is an agent n of type t assigned to at having an NS-deviation to some

activity a ∈ A\{at}. But then, (a, |π−1(a)|) ∈ R, which implies that (a, |π−1(a)|) /∈
Pn′ for any agent n′ ∈ N . If additionally |π−1(a)| 6= 0, this contradicts the individual

rationality of π1 for any agent in π−1(a). Moreover, if |π−1(a)| = 0, then a ∈ A6=∅
contradicting our assumption that π−11 (a′) 6= ∅ for every a′ ∈ A 6=∅.

In the latter case (corresponding to (P2)), there is an agent n of type t that has an

NS-deviation to at. However, then (at, it + 1) ∈ Rt and therefore (at, it + 1) /∈ Pt,

which contradicts the indivual rationality of π1. ⊓⊔

We can now proceed to the main result of this section.

Theorem 20 An instance I = (N,A, (�n)n∈N) of GASP can be solved in time

(|A| · |N |)O(|T (I)|).

Proof Let I⋆ be the nice GASP instance obtained from I in time O(|N |) using Ob-

servation 16, which has a perfect stable assignment if and only if I has a stable as-

signment. The algorithm now enumerates all of the at most ((|A| + 1) · |N |)|T (I)|

Group Activity Selection with Few Agent Types 33

possible functions fmin and for each such function fmin the algorithm uses Theo-

rem 19 to construct the instance I ′ = (N,A, (Pn)n∈N) of SGASP from I⋆ with

|T (I ′)| ≤ 2|T (I)| together with the set A6=∅ of activities in time O(|N |2(|A| + 1)).
It then uses Lemma 13 to decide whether I ′ has a perfect individually rational assign-

ment π1 such that π−11 (a) 6= ∅ for every a ∈ A6=∅ in time O((|A|+1)(|N |)|T (I′)|) =

O((|A| + 1)(|N |2|T (I)|). If this is true for at least one of the functions fmin, the al-

gorithm returns that I has a stable assignment, and correctly returns no otherwise.

The total running time of the algorithm is hence O((|A| + 1)|T (I)| · |N |2|T (I)|) =
(|A| · |N |)O(|T (I)|). ⊓⊔

7 Result 4: Lower Bound for GASP

This section presents our hardness result for GASP. In particular, we show that GASP

is unlikely to be fixed-parameter tractable parameterized by both the number of ac-

tivities and the number of agent types.

Theorem 21 GASP is W[1]-hard parameterized by the number of activities and the

number of agent types.

Proof We will employ a parameterized reduction from the PARTITIONED CLIQUE

problem, which is well-known to be W[1]-complete [23].

PARTITIONED CLIQUE

Input: An integer k, a k-partite graph G = (V,E) with partition

{V1, . . . , Vk} of V into sets of equal size.

Parameter: k
Question: Does G have a k-clique, i.e., a set C ⊆ V of k vertices such that

∀u, v ∈ C, with u 6= v there is an edge {u, v} ∈ E?

We denote by Ei,j the set of edges of G that have one endpoint in Vi and one

endpoint in Vj and we assume w.l.o.g. that |Vi| = n and |Ei,j | = m for every i
and j with 1 ≤ i < j ≤ k (see, e.g., [3, Theorem 13.7] for a justification of these

assumptions).

Given an instance (G, k) of PARTITIONED CLIQUE with partition V1, . . . , Vk, we

construct an equivalent instance I = (N,A, (�n)n∈N) of GASP in polynomial time

with
(

k
2

)

+ k activities and 2k + 1 agent types.

The instance I has the following activities:

– For every i with 1 ≤ i ≤ k the activity ai, whose size in a stable assignment for

I will be used to identify the vertex in Vi chosen to be part of a k-clique in G.

– For every i and j with 1 ≤ i < j ≤ k the activity ai,j , whose size in a stable

assignment for I will be used to identify the edge in Ei,j chosen to be part of a

k-clique in G.

For every i and j with 1 ≤ i < j ≤ k let αi be a bijection from Vi to the set

{3, 5, . . . , 2(n − 1) + 1, 2n + 1} and similarly let αi,j be a bijection from Ei,j to

the set {1, 3, . . . , 2m− 1}. The main ideas behind the reduction are as follows. First

34 Robert Ganian et al.

the reduction ensures that for every stable assignment π : N → A∗ for I the size

s = |π−1(ai)| of activity ai uniquely identifies a vertex in Vi, i.e., the vertex α−1i (s),
and the size s = |π−1(ai,j)| of activity ai,j uniquely identifies an edge in Ei,j , i.e.,

the edge α−1i,j (s). Employing a set of “special agents” and their associated preference

lists, the reduction will then ensure that the vertices identified by the sizes of the ac-

tivities a1, . . . , ak are endpoints of all the edges identified by the sizes of the activities

a1,2, a1,3, . . . , ak−1,k, which implies that these vertices form a k-clique in G.

For a pair i, j of numbers, we denote by o(i, j), the (ordered) pair i, j if i ≤ j
and the (ordered) pair j, i otherwise. We will now partition the set of alternatives into

certain equivalence classes, which will help us present the preference lists constructed

in the reduction. Namely, we define the following equivalence classes:

– For x ∈ {1, 2} we define the set Cx
A = { (ai, x) | 1 ≤ i ≤ k },

– For every i with 1 ≤ i ≤ k, we define the following sets:

– CV (i) = { (ai, αi(v)) | v ∈ Vi },

– C+1
V (i) = { (ai, αi(v) + 1) | v ∈ Vi },

– For every i and j with 1 ≤ i < j ≤ k, we define the set CE(i, j) =
{ (ai,j , αi,j(e)) | e ∈ Ei,j },

– For every i and v ∈ Vi, we define the set CI(i, v) = { (ai, αi(v)) } ∪
{ (ao(i,j), αo(i,j)(e) + 1) | 1 ≤ j ≤ k ∧ j 6= i ∧ e ∈ Ei,j ∧ v ∈ e }, i.e.,

CI(i, v) contains the tuple (ai, α(v)) and all tuples (ao(i,j), αo(i,j)(e) + 1) such

that j 6= i and the edge e ∈ Eo(i,j) is incident to v.

We let CV =
⋃k

i=1 CV (i) and CE =
⋃

1≤i<j≤k CE(i, j).
We are now ready to define the required preference lists. When defining a prefer-

ence list we will only list the equivalence classes that are more or equally preferred to

the alternative (a∅, 1) and assume that all remaining alternatives, i.e., all alternatives

that are not listed, are less preferred than (a∅, 1)
3.

– The validity preference list, denoted by PVAL, defined as CV ∪CE > C2
A > C1

A >
(a∅, 1). Informally, PVAL is crucial in ensuring that |π−1(ai)| ∈ {αi(v) | v ∈ Vi }
and |π−1(ai,j)| ∈ {αi,j(e) | e ∈ Ei,j } for every stable assignment π for I and

every i and j with 1 ≤ i < j ≤ k.

– For every i with 1 ≤ i ≤ k, let v1, . . . , vu be the unique ordering of the vertices

in Vi in ascending order w.r.t. αi. We define the following two preference lists for

every i with 1 ≤ i ≤ k:

– The forward-vertex preference list, denoted by P→V (i), defined as C+1
V (i) >

CI(i, vu) > CI(i, vu−1) > · · · > CI(i, v1) > (a∅, 1). Informally, P→V (i)
is crucial to ensure that for every j with 1 ≤ j ≤ k and j 6= i the edge e
with αo(i,j)(e) = |π−1(ao(i,j))| is not adjacent with any vertex v′ ∈ Vi such

that αi(v
′) > αi(v) for the vertex v (v ∈ e) with αi(v) = |π−1(ai)|. This

intuition will be made precise in Claim 1.

– The backward-vertex preference list, denoted by P←V (i), is defined as

C+1
V (i) > CI(i, v1) > CI(i, v2) > · · · > CI(i, vu) > (a∅, 1). Informally,

P←V (i) is crucial to ensure that for every j with 1 ≤ j ≤ k and j 6= i the edge

e with αo(i,j)(e) = |π−1(ao(i,j))| is not adjacent with any vertex v′ ∈ Vi such

3 Preference lists of this form are sometimes called Ballester encodings [2]

Group Activity Selection with Few Agent Types 35

that αi(v
′) < αi(v) for the vertex v (v ∈ e) with αi(v) = |π−1(ai)|. This

intuition will be made precise in Claim 1.

Informally, P→V (i) and P←V (i) together ensure that for every j with 1 ≤ j ≤ k
and j 6= i, the edge e with αo(i,j)(e) = |π−1(ao(i,j))| is adjacent with the vertex

v with αi(v) = |π−1(ai)|. This intuition will be made precise in Claim 1

We are now ready to define the set N of agents:

– for every i with 1 ≤ i ≤ k:

– one agent n→i with preference list P→V (i) and

– one agent n←i with preference list P←V (i).

– a set NV of
(

k
2

)

(2m− 1) + k(2n+ 1) + 1 agents with preference list PVAL.

This completes the construction of the instance I . Clearly the given reduction can be

achieved in polynomial-time. Moreover, since I has exactly
(

k
2

)

+ k activities and

exactly 2k + 1 distinct types of preference lists, both parameters are bounded by a

function of k, as required. It remains to show that G has a k-clique if and only if I
has a stable assignment.

Towards showing the forward direction let C = {v1, . . . , vk} be a k-clique of G
such that vi ∈ Vi for every i with 1 ≤ i ≤ k and for every i and j with 1 ≤ i < j ≤ k
let ei,j be the edge between vi and vj in G. We claim that the assignment π : N → A∗

defined in the following is a stable assignment for I . We set:

– π(n→i) = π(n←i) = ai and

– for every i and j with 1 ≤ i < j ≤ k, π assigns exactly αi,j(ei,j) agents from

NV to activity ai,j ,

– for every i with 1 ≤ i ≤ k, π assigns exactly αi(vi) − 2 agents from NV to

activity ai,
– all remaining agents (which are only in NV) are assigned to a∅.

Note that |π−1(ai,j)| = αi,j(ei,j) i and j with 1 ≤ i < j ≤ k and |π−1(ai)| =
αi(vi)− 2 + 2 = αi(vi) for every i with 1 ≤ i ≤ k.

Towards showing that the assignment π is stable, we consider any agent n and

distinguish the following cases:

– if n is one of n→i or n←i for some i with 1 ≤ i ≤ k, then π is stable w.r.t. to n
because for every j with 1 ≤ j ≤ k and j 6= i, the edge eo(i,j) is incident with vi.

– if n ∈ NV , we consider the following cases:

– (π(n) = ai) In this case the assignment is stable w.r.t. n because the tuple

(ai, |π
−1(ai)|) = (ai, αi(vi)) is in the most preferred equivalence class of

PVAL.

– (π(n) = ai,j) In this case the assignment is stable w.r.t. n because the tuple

(ai,j , |π
−1(ai,j)|) = (ai,j , αi,j(ei,j)) is in the most preferred equivalence

class of PVAL.

– (π(n) = a∅) In this case the assignment is stable w.r.t. n because the tu-

ples (ai, |π
−1(ai)| + 1) = (ai, αi(vi) + 1) and (ai,j , |π

−1(ai,j)| + 1) =
(ai,j , αi,j(ei,j) + 1) are less preferred than the tuple (a∅, 1) in the preference

list PVAL for n (for every i and j with 1 ≤ i < j ≤ k).

36 Robert Ganian et al.

Towards showing the backward direction, we start by formalizing the intuition

given above about the preference lists P←V (i) and P→V (i).

Claim 1 Let i be an integer with 1 ≤ i ≤ k and let π be a stable assignment for I
satisfying:

(A1) |π−1(ai)| ∈ {αi(v) | v ∈ Vi } and

(A2) for every j with 1 ≤ j ≤ k and j 6= i it holds that |π−1(ao(i,j))| ∈
{αo(i,j)(e) | e ∈ Eo(i,j) }.

Then the following holds for π:

(C1) π(n→i) = π(n←i) = ai.
(C2) For every j with 1 ≤ j ≤ k and j 6= i, the unique edge eo(i,j) ∈ Eo(i,j) with

αo(i,j)(e) = |π−1(ao(i,j))| is incident with the unique vertex v ∈ Vi such that

α(v) = |π−1(ao(i,j))|.

In order to establish the claim, assume that both assumption (A1) and assumption

(A2) holds, and recall that i and v are defined in the claim statement. Towards

showing (C1) assume for a contradiction that this is not the case, i.e., one of the

agents n→i or n←i , in the following denoted by n is not assigned to ai. Because

(ai, α(v) + 1) ∈ C+1
V (i) and C+1

V (i) only contains alternatives for activity ai, the

agent n would prefer to change from his current activity to activity ai contradicting

our assumption that π is stable.

Towards showing (C2) assume for a contradiction that this is not the case and

let j be an index witnessing this, i.e., v /∈ eo(i,j). Let v′ be the vertex in Vi that

is incident with eo(i,j). We distinguish two analogous cases (note that v′ 6= v): (1)

α(v′) > α(v) and (2) α(v′) < α(v). In the former case π would not be stable because

the agent n→i would prefer to join activity ai,j over his current activity ai; this is

because α(v′) > α(v) and hence the equivalence class CI(i, v
′), which contains

the tuple (ao(i,j), αo(i,j)(e) + 1), is more preferred in P→V (i) than the equivalence

class CI(i, v), which contains the tuple (ai, αi(v)). The proof for the latter case is

analogous, using the agent n←i instead of the agent n→i .

Note that once we show that the assumptions (A1) and (A2) hold for

every i with 1 ≤ i ≤ k, property (C2) will ensure that the vertices

α−1(|π−1(a1)|), . . . , α
−1(|π−1(ak)|) form a k-clique in G. Indeed:

Claim 2 For every stable assignment π : N → A∗ for I , it holds that:

(A0) π(u) = a∅ for at least one agent u ∈ NV .

(A1) |π−1(ai)| ∈ {αi(v) | v ∈ Vi } for every i with 1 ≤ i ≤ k.

(A2) |π−1(ai,j)| ∈ {αi,j(e) | e ∈ Ei,j } for every i and j with 1 ≤ i < j ≤ k.

Towards showing (A0), assume for a contradiction that this is not the case, i.e., all
(

k
2

)

(2m−1)+k(2n+1)+1 agents in NV are assigned to one of the
(

k
2

)

+k activities

in A. Then there either exists an activity ai,j such that more than 2m − 1 agents in

NV are assigned to ai,j by π or there exists an activity ai such that more than 2n+1
agents in NV are assigned to ai by π. In the former case let u ∈ NV be an agent

with π(u) = ai,j . Then the assignment is not stable because n would prefer being

Group Activity Selection with Few Agent Types 37

assigned to a∅ over its current assignment to ai,j . The latter case is analogous. This

completes the proof for (A0).

Because of (A0) there is at least one agent u ∈ NV such that π(u) = a∅. Hence

because of the preference list PVAL for n, we obtain that |π−1(ai)| /∈ {0, 1, 2} ∪
{αi(v)− 1 | v ∈ Vi }, since otherwise n would prefer activity ai over a∅. It follows

that either |π−1(ai)| ∈ {αi(v) | v ∈ Vi } or |π−1(ai)| > max{αi(v) | v ∈ Vi } =
2n+1. In the former case (A1) holds, so assume that the latter case applies. Since we

can assume w.l.o.g. that 2n + 1 > 2k (and there are only 2k agents in N \NV), we

obtain that there is at least one agent u ∈ NV such that π(u) = ai. But then because

of the preference list PVAL of n, n would prefer activity a∅ over ai, contradicting our

assumption that π is a stable assignment. The completes the proof of (A1). The proof

of (A2) is analogous to the proof of (A1). ⊓⊔

8 Result 5: Lower Bound for gGASP

From our previous result in conjunction with the equivalence between GASP and

gGASP on complete networks, we can immediately conclude that gGASP is also

W[1]-hard parameterized by the number of agent types and the number of activities.

However, here we strengthen this result by providing a modified reduction which

establishes the W[1]-hardness of the problem even when one additionally parameter-

izes by the vertex cover number of the network. As noted in the introduction, this also

implies the W[1]-hardness of the problem when parameterized by the treewidth of the

network, a question raised in previous work [16]; in fact, the presented lower-bound

result not only shows the (conditional) fixed-parameter intractability of the problem

with a more restrictive graph parameter, but also when additionally parameterizing

by the number of agent types.

Theorem 22 gGASP is W[1]-hard parameterized by the number of activities, the

number of agent types, and the vertex cover number of the network.

Proof The proof is via a parameterized reduction from PARTITIONED CLIQUE, i.e.,

given an instance (G, k) of PARTITIONED CLIQUE with partition V1, . . . , Vk, we

construct an equivalent instance I = (N,A, (�n)n∈N , L) of gGASP in polynomial

time with
(

k
2

)

+ k activities,
(

k
2

)

+ 3k agent types, and whose network (N,L) has

vertex cover number at most
(

k
2

)

+ 2k.

The main ideas behind the reduction are quite similar to the reduction used in the

proof of Theorem 21. The main differences is that to ensure that the network (N,L)
has a small vertex cover number, it is necessary to split the set NV of agents used in

the previous reduction, into sets Ni and Ni,j for every i and j with 1 ≤ i < j ≤ k
such that the agents in a set Ni can only be assigned to activity ai (or a∅) and the

agents in a set Ni,j can only be assigned to activity ai,j (or a∅). This way the agents

n→i and n←i only need to be connected to agents in Ni and Ni,j (for any j 6= i) but

not with all agents in NV .

Let I ′ be the instance of GASP as defined in the proof of Theorem 21. Since

the instance I is defined quite similar to the instance I ′, we will refer to I ′ for the

construction of I . In particular, I has the same set of activities as I ′, i.e., I has one

38 Robert Ganian et al.

activity ai for every i with 1 ≤ i ≤ k and one activity ai,j for every i and j with

1 ≤ i < j ≤ k. For every i and j with 1 ≤ i < j ≤ k let αi be a bijection from Vi

to the set {3, 5, . . . , 2(n − 1) + 1, 2n + 1} and similarly let αi,j be a bijection from

Ei,j to the set {3, 5, . . . , 2m+ 1}. Note that αi and αi,j are defined almost the same

as in the proof of Theorem 21, the only difference being the definition of the image

αi,j , which is now {3, 5, . . . , 2m+ 1} instead of {1, 3, . . . , 2m− 1}.

For the definition of the preference lists, we will mainly use the equivalence

classes defined in the proof of Theorem 21, i.e., the classes CV (i), C
+1
V , CE(i, j),

and CI(i, v). Apart from those we will also need a slightly modified version of the

equivalence class C+1
V (i), which we denote by C+1,2

V (i) and set to {(ai, 2)}∪C
+1
V (i).

We are now ready to define the preference lists required by the reduction.

– For every i with 1 ≤ i ≤ k, let v1, . . . , vu be the unique ordering of the vertices

in Vi in ascending order w.r.t. αi. We define the following two preference lists for

every i with 1 ≤ i ≤ k:

– The vertex-validity preference list, denoted by PV
VAL(i), defined as CV (i) >

(ai, 2) > (ai, 1) > (a∅, 1).
– The forward-vertex preference list, denoted by P→V (i), defined as C+1,2

V (i) >
CI(i, vu) > CI(i, vu−1) > · · · > CI(i, v1) > (a∅, 1).

– The backward-vertex preference list, denoted by P←V (i), defined as

C+1,2
V (i) > CI(i, v1) > CI(i, v2) > · · · > CI(i, vu) > (a∅, 1).

– For every i and j with 1 ≤ i < j ≤ k the edge-validity preference list, denoted

by PE
VAL(i, j), and defined as CE(i, j) > (ai,j , 2) > (ai,j , 1) > (a∅, 1).

We are now ready to define the set N of agents:

– for every i with 1 ≤ i ≤ k:

– one agent n→i with preference list P→V (i),
– one agent n←i with preference list P←V (i), and

– a set Ni of 2n+ 3 agents with preference list PV
VAL(i).

– for every i and j with 1 ≤ i < j ≤ k, a set Ni,j of 2m+3 agents with preference

list PE
VAL(i, j). In the following let ni,j be one of the agents in Ni,j .

Finally, the links L between the agents are given by:

– for every i with 1 ≤ i ≤ k:

– a link between n→i and n←i ,

– for every n ∈ Ni a link between n→i and n,

– for every j with 1 ≤ j ≤ k and j 6= i a link between n→i and no(i,j),

– for every i, j with 1 ≤ i < j ≤ k and every n ∈ Ni,j \ {ni,j} a link between ni,j

and n.

An illustration of the network (N,L) as defined above is given in Figure 2.

This completes the construction of the instance I . Observe that the set {n→i | 1 ≤
i ≤ k } ∪ {ni,j | 1 ≤ i < j ≤ k } is a vertex cover of the network (N,L) of size

at most
(

k
2

)

+ k, and hence the network has vertex cover number at most
(

k
2

)

+ k.

Clearly the given reduction can be achieved in polynomial-time. Moreover, since I
has exactly

(

k
2

)

+ k activities, exactly
(

k
2

)

+ 3k distinct types of preference lists, and

the vertex cover number of the network (N,L) is at most
(

k
2

)

+2k, all parameters are

Group Activity Selection with Few Agent Types 39

n→
1

N1 n←
1

n1,2

N1,2

n→
2

N2 n←
2

n1,3

N1,3

n→
3

N3 n←
3

n2,3

N2,3

Fig. 2 An illustration of the network (N,L) obtained in the reduction of Theorem 22 for the case that

k = 3.

bounded by a function of k, as required. It remains to show that G has a k-clique if

and only if I has a stable assignment.

Towards showing the forward direction let C = {v1, . . . , vk} be a k-clique of G
such that vi ∈ Vi for every i with 1 ≤ i ≤ k and for every i and j with 1 ≤ i < j ≤ k
let ei,j be the edge between vi and vj in G. We claim that the assignment π : N → A∗

defined in the following is a stable assignment for I . We set:

– π(n→i) = π(n←i) = ai,
– for every i with 1 ≤ i ≤ k, π assigns exactly αi(vi)−2 agents from Ni to activity

ai,
– for every i and j with 1 ≤ i < j ≤ k, π(ni,j) = ai,j , and

– for every i and j with 1 ≤ i < j ≤ k, π assigns exactly αi,j(ei,j) − 1 agents

from Ni,j to activity ai,j ,

– all remaining agents are assigned to a∅.

Note that for every i and j with 1 ≤ i < j ≤ k the agents assigned to activities ai
and ai,j are connected (see Figure 2 for an illustration of why this is the case) and

moreover |π−1(ai,j)| = αi,j(ei,j) and |π−1(ai)| = αi(vi). Let n be an agent, we

consider the following cases:

– if n is one of n→i or n←i for some i with 1 ≤ i ≤ k, then the assignment π is

stable w.r.t. to n because for every j with 1 ≤ j ≤ k and j 6= i, the edge eo(i,j) is

incident to vi in G and hence the tuples (ai, αi(vi)) and (ao(i,j), αo(i,j)(eo(i,j))+
1) are in the same equivalence class of P→V and P←V .

– if n ∈ Ni and π(u) = ai, then the assignment π is stable w.r.t. n because the

tuple (ai, αi(vi)) is in the most preferred equivalence class of PV
VAL(i).

40 Robert Ganian et al.

– if n ∈ Ni and π(u) = a∅, then the assignment π is stable w.r.t. n because (a∅, 1)
is preferred to (ai, αi(vi) + 1) as well as to any tuple with any other activity in

PV
VAL(i).

– if n ∈ Ni,j and π(n) = ai,j , then the assignment π is stable w.r.t. n because the

the tuple (ai,j , αi,j(ei,j)) is in the most preferred equivalence class of PE
VAL(i, j).

– if n ∈ Ni,j and π(n) = a∅, then the assignment π is stable w.r.t. n because (a∅, 1)
is preferred to (ai,j , αi,j(ei,j) + 1) as well as to any tuple with any other activity

in PE
VAL(i, j).

The reverse direction follows immediately from the following claim.

Claim 3 For every stable assignment π : N → A∗ for I , it holds that:

(C1) for every i with 1 ≤ i ≤ k, there is an agent n ∈ Ni such that π(n) = (a∅, 1),
(C2) for every i and j with 1 ≤ i < j ≤ k, there is an agent n ∈ Ni,j such that

π(n) = (a∅, 1),
(C3) |π−1(ai)| ∈ {αi(v) | v ∈ Vi } for every i with 1 ≤ i ≤ k,

(C4) π(n→i) = π(n←i) = ai for every i with 1 ≤ i ≤ k,

(C5) |π−1(ai,j)| ∈ {αi,j(e) | e ∈ Ei,j } for every i and j with 1 ≤ i < j ≤ k,

(C6) π(ni,j) = ai,j for every i and j with 1 ≤ i < j ≤ k,

(C7) α−1i (|π−1(ai)|) ∈ α−1
o(i,j)(|π

−1(ao(i,j))|) for every i and j with 1 ≤ i, j ≤ k and

i 6= j.

Towards showing (C1) suppose for a contradiction that this is not the case. Then

because all agents in Ni must either be assigned to ai or a∅ by π, we obtain that all

2n+ 3 agents in Ni must be assigned to ai. However such an assignment would not

be stable because any tuple (ai, x) with x ≥ 2n + 3 is less preferred than (a∅, 1) in

every preference list.

The proof of (C2) is very similar to the proof of (C1). Namely, suppose for a

contradiction that this is not the case. Then all 2m+3 agents in Ni,j must be assigned

to ai,j , however such an assignment would not be stable because any tuple (ai,j , x)
with x ≥ 2m+ 3 is less preferred than (a∅, 1) in every preference list.

Towards showing (C3) we first show that |π−1(ai)| > 1. Because of (C1) there

is an agent n ∈ Ni with π(n) = a∅. Hence |π−1(ai)| 6= 0 since otherwise the agent

n would prefer to switch to ai. Now suppose for a contradiction that |π−1(ai)| = 1.

Because the agents in Ni are the only agents that prefer the tuple (ai, 1) over (a∅, 1),
it holds that π−1(ai) ⊆ Ni. But since the tuple (ai, 2) is a tuple that is in the highest

equivalence class C+1,2
V (i) of the preference list P→i for n→i and n→i is linked with

every vertex in Ni, the agent n→i would prefer to switch to ai, contradicting our as-

sumption that π is stable. Consequently |π−1(ai)| > 1 and we show next that π−1(ai)
contains n→i . Observe that the agents in {n←i , n→i }∪Ni are the only agents in N that

can be assigned to ai; all other agents prefer the tuple (a∅, 1) over any tuple involving

the activity ai. Since |π−1(ai)| > 1 the set π−1(ai) can only be connected if it con-

tains n→i . Hence we have |π−1(ai)| > 1 and n→i ∈ π−1(ai). Because of (C1) there is

an agent n ∈ Ni with π(n) = a∅. Since n is linked with n→i and prefers ai over a∅,
whenever |π−1(ai)| ∈ {0, 1} ∪ {αi(v) − 1 | v ∈ Vi } = {0, 1, 2, 4, 6, . . . , 2n},

we obtain that either |π−1(ai)| ∈ {αi(v) | v ∈ Vi } = {3, 5, . . . , 2n + 1} or

|π−1(ai)| > 2n + 1. In the former case (C3) holds, so assume that the latter case

Group Activity Selection with Few Agent Types 41

applies. Since the agents in {n←i , n→i } ∪ Ni are the only agents in N that can be

assigned to ai and we can assume w.l.o.g. that 2n+ 1 > 2, we obtain that there is at

least one agent u ∈ Ni such that π(u) = ai. But then because of the preference list

PV (i) of n, n would prefer activity a∅ over ai, contradicting our assumption that π
is a stable assignment. The completes the proof of (C3).

Towards showing (C5) first observe that the agents in {n←i , n→i | 1 ≤ i ≤
k}∪Ni,j are the only agents in N that can be assigned to ai,j ; all other agents prefer

the tuple (a∅, 1) over any tuple involving the activity ai,j . Moreover because of (C4),

we obtain that only the agents in Ni,j can actually be assigned to ai,j . Moreover

because all agents in Ni,j must either be assigned to ai,j or to a∅ and due to (C2) there

is always an agent n′ ∈ Ni,j with π(n′) = a∅, and since the set Ni,j is connected by

L, we obtain that there is always an agent n ∈ Ni,j with π(n) = a∅ that is linked to

an agent in π−1(ai,j). Hence it follows from the preference list PE(i, j) of the agents

in Ni,j that |π−1(ai,j)| /∈ {0, 1}∪{αi,j(e)−1 | e ∈ Ei,j }, since otherwise the agent

n would prefer to switch to ai,j . Hence either |π−1(ai,j)| ∈ {αi,j(e) | e ∈ Ei,j } =
{3, 5, . . . , 2m+1} or |π−1(ai,j)| > 2m+1. In the former case (C5) holds, so assume

that the latter case applies. Then there is an agent n ∈ Ni,j with π(n) = ai,j , but

since |π−1(ai,j)| > 2m+1 the agent would prefer to be assigned to a∅, contradicting

our assumption that the assignment π is stable. This completes the proof of (C5).

(C6) can be obtained as follows. Because of (C4), we have that |π−1(ai,j)| ≥
3. Since (as observed already in the proof of (C5)) only the agents in Ni,j can be

assigned to activity ai,j , we obtain that π(ni,j) = ai,j since otherwise π−1(ai,j)
would not be connected.

Towards showing (C7) assume for a contradiction that there are i and j with

1 ≤ i, j ≤ k and i 6= j such that v /∈ e, where v = α−1i (|π−1(ai)|) and

e = αo(i,j)(|π
−1(ao(i,j))|). Observe first that because of (C3) and (C4) v and e are

properly defined and moreover v ∈ Vi and e ∈ Ei,j . Let v′ be the endpoint of e
in Vi, which because v /∈ e is not equal to v. We distinguish two analogous cases:

(1) αi(v
′) < αi(v) and (2) αi(v

′) > αi(v). In the former case consider the agent

n←i . Because of (C4) and (C6), it holds that π(n←i) = ai and π(ni,j) = ao(i,j),
which implies that n←i is linked with an agent, namely the agent ni,j assigned to

ao(i,j) by π. Together with the facts that the equivalence class CI(i, v
′) contains the

tuple (ao(i,j), α(e)), the equivalence class CI(i, v) contains the tuple (ai, α(v)), and

CE(i, v
′) is preferred over CE(i, v) in the preference list for n←i , we obtain that the

agent n←i prefers the activity ao(i,j) over its current activity ai, contradicting the sta-

bility of π. The proof for the latter case is analogous using the agent n→i instead of

the agent n←i . This completes the proof for (C7). ⊓⊔

9 Result 6: SGASP Parameterized by the Number of Agents

As mentioned at the end of the Introduction, the parameterized complexity of SGASP

when the number of agents is taken as the parameter is the last question that remains

open for the considered problems and parameterizations. We settle this question by

providing a fixed-parameter algorithm.

42 Robert Ganian et al.

Theorem 23 SGASP can be solved in time O(|N ||N | ·
√

|N ∪A|·|N ||A|), and hence

is fixed-parameter tractable parameterized by the number of agents.

Proof Let I = (N,A, (Pi)i∈N) be a SGASP instance with n = |N |. The main idea

behind the algorithm is to guess (i.e., branch over) the set M∅ of agents that are

assigned to a∅ as well as a partition M of the remaining agents, i.e., the agents in

N \M∅, and then check whether there is a stable assignment π for I such that:

(P1) π−1(a∅) = M∅ and

(P2) {π−1(a) | a ∈ A } \ {∅} = M, i.e., M corresponds to the grouping of agents

into activities by π.

Since there are at most nn possibilities for M∅ and M and those can be enumerated in

time O(nn), it remains to show how to decide whether there is a stable assignent for

I satisfying (P1) and (P2) for any given M∅ and M. Towards showing this, we first

consider the implications for a stable assignment resulting from assigning the agents

in M∅ to a∅. Namely, let P ′n for every n ∈ N be the approval set obtained from

Pn after removing every alternative (a, i) (where a is an activity and i and integer)

such that i 6= 0 and there is an agent n∅ ∈ M∅ with (a, i + 1) ∈ Pn∅
. Moreover,

let A6=∅ be the set of all activities that cannot be left empty if the agents in M∅ are

assigned to a∅, i.e., the set of all activities such that there is an agent n∅ ∈ M∅
with (a, 1) ∈ Pn∅

. Now consider a set M ∈ M, and observe that the set AM of

activities that the agents in M can be assigned to in any stable assignment satisfying

(P1) and (P2) is given by: AM = { a | |M | ∈
⋂

n∈M Pn(a)
′ }. Let B be the bipartite

graph having M on one side and A on the other side and having an edge between

a vertex M ∈ M and a vertex a ∈ A if a ∈ AM . We claim that I has a stable

assignment satisfying (P1) and (P2) if and only if B has a matching that saturates

M∪ A6=∅. Since deciding the existence of such a matching can be achieved in time

O(
√

|V (B)||E(B)|) = O(
√

|N ∪A|n|A|) (see e.g. [14, Lemma 4]), establishing

this claim is the last component required for the proof of the theorem.

Towards showing the forward direction, let π be a stable assignment for I sat-

isfying (P1) and (P2). Then O = { {a, π−1(a)} | a ∈ A } is a matching in B that

saturates M∪A 6=∅. Note that O saturates M due to (P2), moreover, O saturates A6=∅
since otherwise there would be an activity a ∈ A6=∅ with π−1(a) = ∅, which due to

the definition of A6=∅ and (P1) implies there is an agent n with π(n) = a∅ such that

1 ∈ Pn(a), contradicting our assumption that π is stable.

Towards showing the reverse direction, let O be a matching in B that saturates

M ∪ A 6=∅. Then the assignment π mapping all agents in M (for every M ∈ M)

to its partner in O and all other agents to a∅ clearly already satisfies (P1) and (P2).

It remains to show that it is also stable. Note that π is individually rational because

of the construction of B. Moreover, assume for a contradiction that there is an agent

n ∈ N∅ with π(n) = a∅ and an activity a ∈ A such that (a, |π−1(a)| + 1) ∈ Pn.

If |π−1(a)| = 0, then a ∈ A6=∅ and hence |π−1(a)| > 0 (because O saturates A 6=∅),
a contradiction. If on the other hand |π−1(a)| 6= 0, then {M,a} ∈ O (for some

M ∈ M), but (a, |π−1(a)|) /∈ P ′n and hence {M,a} /∈ E(B), also a contradiction.

⊓⊔

Group Activity Selection with Few Agent Types 43

10 Conclusion

We obtained a comprehensive picture of the parameterized complexity of Group Ac-

tivity Selection problems parameterized by the number of agent types, both with and

without the number of activities as an additional parameter. Our positive results sug-

gest that using the number of agent types is a highly appealing parameter for GASP

and its variants; indeed, this parameter will often be much smaller than the number

of agents due to the way preference lists are collected or estimated (as also argued in

initial work on GASP [7]). For instance, in the large-scale event management setting

of GASP (or SGASP), one would expect that preference lists for event participants are

collected via simple questionnaires—and so the number of agent types would remain

fairly small regardless of the size of the event.

We believe that the techniques used to obtain the presented results, and espe-

cially the Subset Sum tools developed to this end, are of broad interest to the al-

gorithms community. For instance, MULTIDIMENSIONAL SUBSET SUM (MSS) has

been used as a starting point for W[1]-hardness reductions in at least two different

settings over the past year [13,14], but the simple and partitioned variant of the prob-

lem (i.e., SMPSS) is much more restrictive and hence forms a strictly better starting

point for any such reductions in the future. This is also reflected in our proof of the

W[1]-hardness of SMPSS, which is significantly more involved than the analogous

result for MSS. Likewise, we expect that the developed algorithms for TREE SUBSET

SUM and MULTIDIMENSIONAL PARTITIONED SUBSET SUM may find applications

as subroutines for (parameterized and/or classical) algorithms in various settings.

For future work, we believe that it would be interesting to see how the complex-

ity map changes if one were to consider the number of activity types instead of the

number of activities in our parameterizations.

Acknowledgements Rahul C. S. acknowledges support by project TOTAL funded by the European Re-

search Council (ERC) under the European Unions Horizon 2020 research and innovation programme

(grant agreement No 677651). Robert Ganian acknowledges support from the Austrian Science Fund

(FWF, projects Y1329 and P31336). Sebastian Ordyniak acknowledges support from the Engineering and

Physical Sciences Research Council (EPSRC, project EP/V00252X/1).

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Martin Aigner and Günter M. Ziegler. Proofs from the Book (3. ed.). Springer, 2004.

2. Coralio Ballester. Np-completeness in hedonic games. Games and Economic Behavior, 49(1):1–30,

2004.

3. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,

Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

4. Andreas Darmann. Group activity selection from ordinal preferences. In Algorithmic Decision Theory

- 4th International Conference, ADT 2015, volume 9346 of Lecture Notes in Computer Science, pages

35–51. Springer, 2015.

44 Robert Ganian et al.

5. Andreas Darmann, Janosch Döcker, Britta Dorn, Jérôme Lang, and Sebastian Schneckenburger. On

simplified group activity selection. In Algorithmic Decision Theory - 5th International Conference,

ADT 2017, volume 10576 of Lecture Notes in Computer Science, pages 255–269. Springer, 2017.

6. Andreas Darmann, Edith Elkind, Sascha Kurz, Jérôme Lang, Joachim Schauer, and Gerhard Woeg-

inger. Group activity selection problem with approval preferences. International J. of Game Theory,

pages 1–30, 2017.

7. Andreas Darmann, Edith Elkind, Sascha Kurz, Jérôme Lang, Joachim Schauer, and Gerhard J. Woeg-

inger. Group activity selection problem. In Internet and Network Economics - 8th International

Workshop, WINE 2012, volume 7695 of Lecture Notes in Computer Science, pages 156–169. Springer,

2012.

8. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer,

2012.

9. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in

Computer Science. Springer Verlag, 2013.

10. Eduard Eiben, Robert Ganian, and Sebastian Ordyniak. A structural approach to activity selection.

In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI

2018, pages 203–209. ijcai.org, 2018.

11. Paul Erdős and Paul Turán. On a problem of Sidon in additive number theory, and on some related

problems. Journal of the London Mathematical Society, 1(4):212–215, 1941.

12. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket Saurabh.

Graph layout problems parameterized by vertex cover. In Algorithms and Computation, 19th Interna-

tional Symposium, ISAAC 2008, pages 294–305, 2008.

13. Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On structural parameterizations of the

bounded-degree vertex deletion problem. Algorithmica, 83(1):297–336, 2021.

14. Robert Ganian, Sebastian Ordyniak, and M. S. Ramanujan. On structural parameterizations of the

edge disjoint paths problem. Algorithmica, 83(6):1605–1637, 2021.

15. Michael R. Garey and David R. Johnson. Computers and Intractability. W. H. Freeman and Company,

New York, San Francisco, 1979.

16. Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi. Group activity selection on graphs:

Parameterized analysis. In Algorithmic Game Theory - 10th International Symposium, SAGT 2017,

volume 10504 of Lecture Notes in Computer Science, pages 106–118. Springer, 2017.

17. Ayumi Igarashi, Robert Bredereck, and Edith Elkind. On parameterized complexity of group activity

selection problems on social networks. In Proceedings of the 16th Conference on Autonomous Agents

and MultiAgent Systems, AAMAS 2017, pages 1575–1577. International Foundation for Autonomous

Agents and Multiagent Systems, 2017.

18. Ayumi Igarashi, Robert Bredereck, and Edith Elkind. On parameterized complexity of group activity

selection problems on social networks. CoRR, abs/1703.01121, 2017.

19. Ayumi Igarashi, Robert Bredereck, Dominik Peters, and Edith Elkind. Group activity selection on

social networks. CoRR, abs/1712.02712, 2017.

20. Ayumi Igarashi, Dominik Peters, and Edith Elkind. Group activity selection on social networks. In

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pages 565–571. AAAI

Press, 2017.

21. Hooyeon Lee and Virginia Vassilevska Williams. Parameterized complexity of group activity selec-

tion. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS

2017, pages 353–361. ACM, 2017.

22. Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics

and its Applications. Oxford University Press, Oxford, 2006.

23. Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common superse-

quence and longest common subsequence problems. J. of Computer and System Sciences, 67(4):757–

771, 2003.

