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The existing testing theories for CSP cater for verification of interaction patterns (traces) and deadlocks, but not time. We address here

refinement and testing based on a dialect of CSP, called tock-CSP, which can capture discrete time properties. This version of CSP has

been of widespread interest for decades; recently, it has been given a denotational semantics, and model checking has become possible

using a well established tool. Here, we first equip tock-CSP with a novel semantics for testing, which distinguishes input and output

events: the standard models of (tock-)CSP do not differentiate them, but for testing this is essential. We then present a new testing

theory for timewise refinement, based on novel definitions of test and test execution. Finally, we reconcile refinement and testing by

relating timed ioco testing and refinement in tock-CSP with inputs and outputs. With these results, this paper provides, for the first

time, a systematic theory that allows both timed testing and timed refinement to be expressed. An important practical consequence is

that this ensures that the notion of correctness used by developers guarantees that tests pass when applied to a correct system and, in

addition, faults identified during testing correspond to development mistakes.

CCS Concepts: · Software and its engineering→ Formal methods; Software testing and debugging; · Computing method-

ologies→ Concurrent computing methodologies.
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1 INTRODUCTION

CSP [43] is a well-established process algebra in use for more than thirty years. Extensive studies of its denotational,

algebraic, and operational semantics, and of the formal correspondence between the various semantic definitions, and

the availability of powerful model checkers have ensured interest in academia and industry [25, 47]. Model-based

testing using CSP has also been studied in several semantic and technological settings [12, 14, 15, 29, 37, 44].

The focus of this paper is the black-box testing of a system under test (SUT) against a specification P written in a

timed version of CSP, namely tock-CSP. Since testing is black-box, we can only check whether it conforms to P by

interacting with the SUT and making observations. In testing, the observations made are sequences that include inputs,
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2 JAMES BAXTER, ANA CAVALCANTI, MACIEJ GAZDA, and ROBERT M. HIERONS

outputs, the passing of time, and refusals: they are timed refusal traces. It is therefore necessary to define a timed refusal

trace semantics for tock-CSP that appropriately deals with the differences between inputs and outputs. One of our

novel contributions here is such a (compositional) semantics for testing, along with proofs that the semantics satisfies

the healthiness conditions of the existing tock-CSP semantics [3].

To reason about test effectiveness, we make the assumption normally made in model-based testing that the SUT

behaves like an unknown model Q that can be expressed using the same formalism as the specification. Another

contribution here is a testing theory based on this assumption that justifies our novel testing approach. In this theory,

testing involves comparing two tock-CSP processes: a specification P and the unknown process Q that represents the

SUT. Comparisons are made by applying test cases to the SUT and checking that the observations made are allowed.

Although there has been work on testing from CSP models [12, 14, 15, 29, 37, 44], we are not aware of any work

on testing using timed CSP models. A first issue is how time should be represented in models, with early works on

CSP considering a continuous-time paradigm and the Timed CSP notation [21, 41, 46]. Work on tools for verification,

however, has been based on tock-CSP [42], which uses a special event tock to encode the passage of discrete time. With

tock-CSP we can use existing tools for reasoning, and can specify deadlines via timestops, that is, by refusing tock, as

well as timeouts and time budgets. Use of tock-CSP is widespread, covering verification of robotics simulations [18],

security properties [22], distributed adaptive systems [26], design of I/O controllers [30], and railway systems [27].

In all these areas of application, and, more generally, in the development of embedded control systems, use of testing

for verification is prevalent. Such reactive systems interact with their environment through inputs and outputs. They

typically operate through cycles defined by time periods in which they receive values from sensors (inputs), perform

calculations, and then send values to actuators (outputs). Such systems are time sensitive, and can often be time critical.

Several modelling notations for embedded control systems have a CSP-based semantics. Some examples are MATLAB

Simulink [11, 48] and Stateflow [35, 49], which are de facto standards in the transport industry, and RoboChart and

RoboSim [18, 36], which have been introduced to support the development of robotic systems and have a tock-CSP

semantics. With the work presented here, we enable the use of models described in any of these notations, which are

appropriate for verification by model checking and proof using CSP, also to support testing.

Although the existence of model checkers for CSP makes it possible to formally verify a CSP model against another,

there is often also a need to carry out testing. This is particularly the case if we can only reason about the behaviour

of the implementation through interacting with it: we do not, for example, have access to the source code. As said,

however, we assume that there is an unknown CSP model that captures the behaviour of the SUT. This makes it possible

to formally reason about the effectiveness of our proposed testing approach and, for example, prove that all tests lead to

a valid verdict, and we identify all tests that would be needed to guarantee that all possible faults can be found.

Typically, a tester applies a test case that determines its behaviour. For example, a test case might indicate that the

tester should start by applying an input i1 and then apply a second input i2 if output o1 is observed in response to i1.

Test cases can be positive, in the sense that they attempt to verify the presence of allowed behaviours, or negative, if

they attempt to find disallowed behaviours. Here, we consider negative testing, and so a test case is defined in terms of

a behaviour not allowed by a CSP specification: if the tester observes this behaviour then the SUT must be faulty.

The testing theories for CSP are for untimed models [12, 15, 16, 40]. All these theories have some aspects in

common: they embed the usual assumption in testing that models and systems are divergence free. This means that

a CSP specification under consideration cannot follow an infinite sequence of internal (unobservable) events. This

requirement is justified by the fact that in a model, divergence is taken as a mistake. Several CSP tools support the

verification of divergence freedom [23]. In addition, in an SUT, divergence is observed in testing as a deadlock.
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Testing using CSP models: time, inputs, and outputs 3

All of the testing theories consider two types of observations. The simplest record is a trace: a sequence of observable

events. Traces can be enriched by recording refusals of sets X of observable events: the situation in which the SUT or

model is in a stable state (it cannot change state through internal events) and cannot engage in any of the events from

X . Such a refusal is typically observed in testing through the tester offering the events in X to the SUT and observing a

deadlock, detected through a timeout. Under traces refinement the SUT is correct with respect to a CSP specification

P if all traces of the SUT are also traces of P . Alternative forms of refinement (notions of correctness) consider also

observations of refusals to identify allowed and forbidden deadlocks. All existing testing theories for CSP test for traces

refinement and for deadlock separately to simplify definitions and proofs. All theories follow exactly the same approach

to testing for traces refinements, in spite of adopting very different semantic models.

Here, we consider, for the first time, testing for tock-CSP. We show that, in this case, separate testing for traces and

deadlock is still possible. Testing for traces refinement, however, is very different due to the special nature of the tock

event, and testing for (intermediate allowed) deadlocks is simpler, because the tester can observe passage of time.

As a second contribution in this paper, we also enrich the tock-CSP denotational semantics to cater for inputs and

outputs. In testing there is an asymmetry: the SUT controls outputs, while the tester controls inputs. So, the usual

CSP approach, in which inputs and outputs are both treated as synchronisations is not practical. Using the new model

presented here, we define input-output tock-CSP refinement, which we use as the notion of correctness (conformance

relation) for testing. We identify a test set for a given CSP model and prove that it is exhaustive for input-output

tock-CSP refinement. This means that every faulty implementation fails at least one test case in the set.

The denotational semantics of a tock-CSP process [3] has a number of properties that are not captured in the untimed

semantics of CSP. The semantics of a tock-CSP process is given by a set of traces, each recording a sequence of events,

including tock, and refusals. Refusals are observed before a tock event, and, possibly at the end of the trace. As a result,

we cannot record the passage of time in an unstable state. So, internal events that do not require agreement with the

environment are urgent; this ensures predictability and maximal progress.

When considering processes with inputs and outputs, we make the usual assumption that the tester (or environment)

controls inputs, the SUT controls outputs, and the tester cannot block outputs produced by the SUT. As a result, the SUT

cannot be made to deadlock if an output is enabled, that is, the tester cannot block enabled outputs. As a consequence,

since the observation of a refusal involves observing deadlock, a tester cannot observe a refusal if the SUT is in a state

in which it can produce an output. We therefore take the view that a divergence-free tock-CSP process is in a stable

state if no internal events and also no outputs are enabled. These are quiescent states in which, for example, time can

pass. We can, in addition, observe the refusal of inputs: models and implementations need not be input enabled, in

contrast with many testing approaches. We adopt this notion of stability to define an input-output model for tock-CSP.

We formalise its notion of timed traces and healthiness conditions, and calculate definitions for its operators.

Nondeterminism in the SUT can lead to the situation in which there are a number of possible results of applying a

test case T to the SUT and so there is the additional problem of determining when a test case T has been applied a

sufficient number of times. In order to handle possible nondeterminism in the SUT, we use the standard test hypothesis

that corresponds to a fairness condition: we assume that there is some value k such that testing with a test case T a

total of k times is guaranteed to lead to all possible behaviours (for T and SUT) being observed. The choice of k might

depend on domain knowledge or criticality, and there is the potential to use probabilistic arguments.

Given the distinctive role of inputs and outputs in testing, there has been much interest in input-output transition

systems (IOTSs) [51] and the ioco implementation relation [5, 55, 56]. In that context, observations are traces that record

inputs, outputs, and quiescence. Several timed variants of ioco exist. The initial relation of Krichen and Tripakis, called
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tioco, treated the passing of (discrete or continuous) time in a similar way to outputs, but did not consider quiescence

as an observation [32]. In addition, at about the same time, an implementation relation called rt-ioco, equivalent to the

Krichen and Tripakis tioco, was introduced by Larsen, Mikucionis and Nielsen [33]. Later, Schmaltz, and Tretmans

produced a version of tioco in which quiescence is also considered [45].

Our third contribution is establishing the relationship between input-output tock-CSP refinement and the Schmaltz

and Tretmans variant of tioco. We focus on this version of tioco because its consideration of quiescence makes it a

stronger relation than the original Krichen and Tripakis version, and we are interested in whether our refinement

relation is sufficiently strong and discriminating. We show that it is stronger than tioco.

Refinement is a conformance relation suitable for development, when we are dealing with models and code. On the

other hand, ioco and its timed variants take into account the restricted observability of a testing experiment. It makes,

however, no sense for developers and testers to use unrelated notions of conformance. The notion of correctness used

by developers should ensure that the tests pass when applied to correct systems. Conversely, faults identified during

testing should correspond to development mistakes. Here, for the first time, we identify how timed ioco-based testing

can shed light on refinement proof, and how design by timed refinement may influence testing. Our work unifies these

verification approaches, making it meaningful to collect and compare diverse evidence arising from both techniques.

In summary, we present here the first theory for model-based testing using a timed version of CSP, namely, tock-CSP,

with a novel notion of test case. For that, we also present a new denotational semantics for tock-CSP that distinguishes

inputs and outputs. Finally, we compare a strong version of tioco with our notion of conformance in tock-CSP, and

show it can be used for consistent guidance during both development and testing.

This paper is structured as follows. Next, we present tock-CSP and its semantics. In Section 3, we present our tock-CSP

semantics with inputs and outputs, and its refinement notion adopted in our testing theory. Section 4 describes IOLTS

and the timed ioco variants, with Section 5 discussing the relationship between input-output tock-CSP refinement

and the Schmaltz and Tretmans tioco. Testing is addressed in Section 6. We conclude in Section 7, where we also

discuss related and future work. Appendix A presents definitions of the original tock-CSP semantics referenced here.

Appendix B reproduces the definitions of all the semantic functions defined in this paper for ease of reference. A

complete set of proofs for all lemmas and theorems is available in [2].

2 PRELIMINARIES: tock-CSP

Here, we describe one of the notations we use: tock-CSP. We describe the others, IOLTS and IOTS, in Section 4.

Systems and their components are modelled in CSP using processes that interact with each other and with their

environment via events. In tock-CSP, the same approach is adopted, but, as mentioned, a special event tock marks the

passage of time. Events are atomic and instantaneous. In any given model, Σ is the set of all declared events.

The process operators of tock-CSP are basically those of CSP. The behaviours defined by them, however, consider the

special nature of the tock event. We explain the main operators below, and refer to [3] for a complete account. There,

we can find additional examples and a formal semantics, also described below and reproduced in Appendix A.

A process that is ready to synchronise with the environment on an event a can be written using the prefixing operator

→ as follows a → P . This process, after engaging on a, when the environment is ready, behaves like the process P .

While the environment is not ready, a → P waits, and time may pass. So, any number of tock events may occur before a.

The processes div, Stop, and Skip diverge, deadlock, and terminate immediately. A special event✓marks termination,

and cannot be used in process definitions. The set Σ✓ contains ✓ as well as all declared events, and Σ
✓

tock
contains tock

in addition. A process Wait n pauses for n time units before terminating; so, n occurrences of tock happen before a ✓.
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Testing using CSP models: time, inputs, and outputs 5

Processes can also be combined in sequence P ; Q, where, as usual, the behaviour is that of P , until it terminates,

when Q takes over. Another core operator is external choice (✷), which offers to the environment the possibility of

choosing between processes, via an interaction on events that are initially available. While waiting for the choice, time

may pass. So, tock events may occur, but they do not interfere with the choice. We provide an example.

Example 2.1. We present below a process RD that models a simple rescue drone and offers the environment a

choice.The environment exercises its choice by interacting on either of the events takeoff or turnoff . If it chooses the

event takeoff , then the behaviour of turnoff → Skip is no longer possible. Equally, if the environment chooses turnoff ,

the event takeoff is no longer available. The choice offered is based on takeoff and turnoff .

RD = takeoff → Wait 1; move → found → land → Stop ✷ turnoff → Skip

After takeoff , RD pauses for 1 time unit (Wait 1), before offering the event move, and waiting for as long as it takes

before move is accepted by the environment. The events offered subsequently are found and land, after which RD

deadlocks (Stop) and then the only possible events are tock. If turnoff is chosen instead, RD terminates (Skip) and after

a ✓, no other events take place. ✷

Another form of choice is internal (⊓), where the environment has no control.

Example 2.2. In the above example, instead ofWait 1, we might have a processWait 1 ⊓ Wait 2. This may capture,

for example, the fact that the delay in the execution of the take off operation (represented by the event takeoff ) depends

on features of a specific drone. So, an implementation may pause for 1 or 2 time units before calling the operation

represented by the event move. The environment has no possibility to interfere with this choice. ✷

A salient feature of tock-CSP is the possibility of defining deadlines. The deadline operator P ▶ d defines a process that

must terminate within d time units. This is a derived operator, which can be defined using a timestop: StopU . This is a

form of deadlock that does not allow time to pass: it timelocks, as no tock event can be recorded.

Example 2.3. We present below a process RDL that models the landing of the drone.

RDL = found → ((land → Skip) ▶ 1); Stop

In this example, once the target is found, the drone RDL must land in at most one time unit. ✷

Other operators are presented as needed. They include, for instance, timeout, parallelism, hiding, and renaming.

Originally, tock-CSP [42] was proposed as a form of using the standard models of CSP, notably, the stable-failures

model, and its model checker FDR [25], without changes, to reason about time properties. In this context, however, the

interpretation of tock as marking the passage of time has both positive and negative semantic consequences. On the

positive side, it becomes simple to define processes that impose a deadline by refusing or controlling the passage of

time. On the negative side, the semantics of some operators do not correspond to what may be expected. For instance,

if tock is not recognised as a special event, an external choice can be resolved by passage of time.

To address some of these drawbacks, the most recent version of FDR supports the possibility of defining a timed

section, where the operators have a semantics that is sensitive to the special nature of tock. For instance, implicitly,

all parallel processes synchronise on tock to guarantee uniform passage of time across a system. None of the existing

denotational semantics of CSP, however, can cater fully for the behaviour of (tock-CSP) processes in a timed section.

Over the years, a variety of semantic models have been proposed for tock-CSP [1, 34, 38]. None of them caters for

deadlines, termination, Zeno behaviour, and the standard (failures-based) semantics within each time unit as expected
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6 JAMES BAXTER, ANA CAVALCANTI, MACIEJ GAZDA, and ROBERT M. HIERONS

of tock-CSP processes. We, therefore, adopt the richer and recent✓-tock model in [3]. As explained, in this approach,

processes P are modelled by a set tt [[P]] of traces recording events and refusals. Formally, they are sequences whose

elements are observations from the set Obs defined below of events from Σ
✓

tock
or refusal sets from Σ

✓

tock
.

Obs ::= evt⟨⟨Σ✓
tock

⟩⟩ | ref ⟨⟨P Σ
✓

tock
⟩⟩

In examples, we often omit the type constructors evt and ref for brevity.

Example 2.4. The set tt [[RD]] includes the traces sketched below. The empty trace ⟨⟩ is in every set tt [[P]].

⟨ ⟩, ⟨Σ✓ \ {takeoff , turnoff }⟩, ⟨Σ✓ \ {takeoff , turnoff ,move}⟩, . . . , ⟨∅⟩,

Since there is no divergence, we can immediately observe the refusal of every event except tock, takeoff , and turnoff . If

a set of events can be recorded as a refusal, so can all its subsets, including the empty set ∅ of refusals. In this sense, we

have subset closure of refusals. In examples, we normally present just maximal refusals.

⟨takeoff ⟩, ⟨Σ✓ \ {takeoff , turnoff }, tock⟩, ⟨Σ✓ \ {takeoff , turnoff }, tock, takeoff ⟩,

⟨Σ✓ \ {takeoff , turnoff }, tock, Σ✓ \ {takeoff , turnoff }, tock, . . . ⟩, ⟨Σ✓ \ {takeoff , turnoff }, tock, . . . , takeoff ⟩,

The event takeoff can be observed immediately, or we can instead observe 1 time unit pass, recorded as a refusal

followed by a tock. The event takeoff can again be observed after 1 time unit, that is, after an event tock and a refusal,

because a tock is always preceded by a refusal. In fact, takeoff can be observed after any number of tock events. Passage

of time does not resolve the choice, so after any number of tock events, neither takeoff or turnoff are refused.

⟨takeoff , Σ✓⟩, ⟨takeoff , Σ✓, tock⟩, ⟨takeoff , Σ✓, tock,move⟩, ⟨takeoff , Σ✓, tock, Σ✓ \ {move}⟩,

⟨takeoff , Σ✓, tock, Σ✓ \ {move}, tock,move⟩, ⟨takeoff , Σ✓, tock, Σ✓ \ {move}, tock, . . . ,move⟩, . . .

After a takeoff , all events, except tock are refused because RD has to wait for 1 time unit before offering move. After

that tock, move is no longer refused. It might happen immediately, or after any number of tock events. The sets tt [[P]]

are prefix closed: if it includes a trace, it includes all its prefixes. In examples in the sequel, we normally elide prefixes.

⟨turnoff ,✓⟩, ⟨Σ✓ \ {takeoff , turnoff }, tock, turnoff ,✓⟩, ⟨Σ✓ \ {takeoff , turnoff }, tock, . . . , turnoff ,✓⟩

Once a turnoff takes place, RD terminates immediately and time is no longer recorded. ✷

Example 2.5. The set tt [[RDL]] includes the traces sketched below, which record the deadline.

⟨found, land, Σ✓, tock, Σ✓, tock, . . . ⟩,

⟨found, Σ✓ \ {land}, tock, land, Σ✓, tock, Σ✓, tock, . . . ⟩, ⟨found, Σ✓ \ {land}, tock, Σ✓
tock

\ {land}⟩, . . .

Once found happens, land might happen immediately, and then RDL deadlocks, and so all events except tock are refused.

Alternatively, land might happen after 1 time unit: after a tock associated to a refusal that does not include land, or tock.

After land occurs, again, all events except tock are refused. After one tock, however, while land does not take place,

another tock is refused, and so, cannot happen (until land does). Time cannot pass, as that violates the deadline. ✷

The set of sequences of Obs elements where refusals occur only before a tock or at the end, tock is not included in a

refusal that precedes tock, and tick occurs only at the end, is called TTTrace. The traces in the sets in the range of tt [[ ]]

belong to TTTrace. These sets also satisfy additional healthiness conditions. For example, ⟨ ⟩ is in all these sets.
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Testing using CSP models: time, inputs, and outputs 7

As said, the standard models of CSP and tock-CSP, including the model described above, do not distinguish between

input and output events. As a syntactic abbreviation, we can write, for example, a prefixing in?x → P to describe a

process that takes an input x through a channel in. This is, however, just a shorthand for an external choice over events

in.v, for every value v of the type of in. An event in.v is composed, but, like any other event, requires synchronisation.

We can also write out!v for a composed event out .v. It is used to indicate that out .v is meant to be an output of a value

v through a channel out. Again, in the standard semantic models, out .v is just like any other event.

Distinctively, CSP and tock-CSP are process algebras for refinement. Each model defines a refinement relation. In

each case, refinement holds between a specification process P and an implementation process Q when the behaviour

of Q is a subset of that of P . For tock-CSP, ✓-tock refinement P ⊑ Q requires tt [[Q]] ⊆ tt [[P]]. This means that the

interactions and deadlocks (refusals) of Q are possible for P , in the same order, and at the same time unit. Refinement

allows, however, reduction of nondeterminism, since there may be behaviours of P that are not present in Q.

One of our goals is to study the relationship between this notion of refinement, in the context of the novel tock-CSP

model that caters for inputs and outputs, and timed ioco, discussed in Section 4.

3 INPUTS AND OUTPUTS IN tock-CSP

Practical testing techniques require notions of input and output. Here, first, in Section 3.1, we define the input-output

✓-tock model and its healthiness conditions, and in Section 3.2, we define input-output ✓-tock refinement and explore

some of its properties. Next, in Section 3.3 we define an input-output ✓-tock model for the tock-CSP operators by

calculation from the definitions in Section 3.1 and their original✓-tock semantics (in [3] and Appendix A).

3.1 Input-output ✓-tock model

To distinguish inputs and outputs, we capture the fact that, as already said, a process is stable when it cannot engage in

internal events or outputs. Therefore, when stable, a process can refuse all outputs. This leads to the definition below of

the set iottO [[P]] of input-output✓-tock traces for a process P and set O of output events. We divide Σ into disjoint

sets I and O of inputs and outputs; ✓ and tock are neither inputs nor outputs.

Definition 3.1. iottO [[P]] =̂ {𝜌 : TTTrace | addOutsO (𝜌) ∈ tt [[P]]}

The trace addOutsO (𝜌), defined inductively below, records exactly the same events e as in the given trace 𝜌 , but its

refusals X ∪ O are a superset of the refusals X in 𝜌 that includes all outputs O. The set iottO [[P]] includes the traces 𝜌

for which addOutsO (𝜌) is in tt [[P]]. So, a trace 𝜌 is included in iottO [[P]] only if all the refusals X that it records are in

stable states, where all outputs are refused. As an aside, we note that, because addOutsO (𝜌) is a trace of tt [[P]], subset

closure of refusals means that 𝜌 is in tt [[P]] as well. So, iottO [[P]] ⊆ tt [[P]].

addOutsO (⟨⟩) = ⟨⟩

addOutsO (⟨ref X⟩ ⌢ 𝜌) = ⟨ref (X ∪ O)⟩ ⌢ addOutsO (𝜌)

addOutsO (⟨evt e⟩ ⌢ 𝜌) = ⟨evt e⟩ ⌢ addOutsO (𝜌)

To simplify our notation, in the sequel we leave the extra parameter O of addOuts implicit. Above, we define that the

empty trace is unaffected by addOuts. For a trace formed by the singleton trace ⟨ref X⟩ concatenated (operator ⌢)

with another trace 𝜌 , the resulting trace has an initial refusal X ∪ O instead, followed by the result of the recursive

application of addOuts to 𝜌 . If the singleton trace has an event, the definition is similar, but the event is not changed.
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Example 3.2. We reproduce below the process RD from Example 2.4.

RD = takeoff → Wait 1; move → found → land → Stop ✷ turnoff → Skip

We take the outputs to be takeoff , move, and land (representing interactions with actuators of the drone that control its

flight), with found and turnoff as inputs representing a sensor able to identify a target and a command to turn off the

drone. In this case, some of the traces of iottO [[RD]] are as follows.

⟨ ⟩,

⟨takeoff , Σ✓, tock,move⟩,

⟨takeoff , Σ✓, tock,move, found⟩, ⟨takeoff , Σ✓, tock,move, Σ✓ \ {found}, tock, found⟩, . . .

⟨turnoff ⟩, ⟨turnoff ,✓⟩

We can no longer observe a refusal before a takeoff or turnoff because, since takeoff is an output, RD is not stable at the

start. This is captured by the fact that ⟨O⟩ is not a trace in tt [[RD]], and so not included in iottO [[RD]]. Once takeoff

takes place, we have stability due to theWait 1, and so can observe refusals. Afterwards, again, since move is an output,

we cannot observe a refusal before it occurs. Like internal events, outputs are urgent, because, since a refusal cannot

be observed, neither can tock. As illustrated here, however, we can model behaviours in which outputs take time to

be computed by explicit uses of Wait processes. Once move takes place, since found is an input, it can be observed

immediately, or after any number of tock events. This is captured, for example, by ⟨takeoff , Σ✓, tock,move, found⟩.

Instead of a takeoff event, we may have a turnoff at the start. After that, RD terminates immediately. Now turnoff

must be immediate, or the choice is resolved in favour of the output takeoff . ✷

In the input-output ✓-tock model, imposing deadlines on outputs is unnecessary. As mentioned, since we can observe

passage of time (tock) only after a refusal, and we cannot observe a refusal if an output is available, outputs are urgent,

and so any deadline is redundant. This is illustrated by the following example.

Example 3.3. We recall the process RDL that models the landing of the drone.

RDL = found → ((land → Skip) ▶ 1); Stop

If land is an output, and found an input, iottO [[RDL]] includes the trace ⟨Σ✓ \ {found}, tock, found, land⟩. This records

the observation that found happens after one time unit. Since all outputs belong to Σ
✓ \ {found}, the initial refusals are

stable. The set iottO [[RDL]] does not, however, include ⟨found, Σ✓ \ {land}, tock, land⟩, which records the occurrence of

land after 1 time unit, because ⟨found, Σ✓, tock, land⟩ is not a trace of RDL. For a similar reason, iottO [[RDL]] does not

include ⟨found, Σ✓ \ {land}, tock, Σ✓
tock

\ land⟩. So, once found happens, land is urgent, because a refusal and, therefore,

a tock cannot be observed before land. ✷

Deadlines on inputs, however, are still useful.

Example 3.4. Below, we present a model of the landing that imposes a deadline on finding the target instead.

RDFL = ((found → Skip) ▶ 1); (land → Stop)

In this example, the trace ⟨Σ✓ \ {found}, tock, Σ \ {found}⟩, recording the deadline via the refusal of tock, is in both

tt [[RDFL]] and iottO [[RDFL]] since Σ✓ \ {found} and Σ \ {found} include all outputs. ✷

As said, the set TTTrace of well-formed ✓-tock traces is the subset of sequences of Obs (seqObs) satisfying additional

restrictions. Namely, ✓ can occur only at the end of a trace, a refusal can occur only at the end of the trace or before a
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tock event, and every tock event must be preceded by a refusal that does not include tock.

TTTrace == {𝜌 : seqObs | ∀ i : dom 𝜌 •

(i < #𝜌 ⇒ 𝜌 i ≠ evt✓) ∧

(i < #𝜌 ∧ 𝜌 i ∈ ran ref ⇒ 𝜌 (i + 1) = evt tock) ∧

(𝜌 i = evt tock ⇒ i > 1 ∧ 𝜌 (i − 1) ∈ ran ref ∧ tock ∉ (ref ∼) (𝜌 (i − 1)))

}

We use the mathematical notation of Z in our formal definitions [57], and explain any unusual operators as needed.

Sequences are indexed from 1. The size of a sequence 𝜌 is given by #𝜌 . The operator ran defines the range of a

function (such as the type constructors evt and ref ) or the set of elements of a sequence. For a function f , we use f ∼ for

its inverse. So, above (ref ∼) (𝜌 (i − 1)) is the set that defines the refusal in position i − 1 of the trace 𝜌 .

For every process P and set of output events O, the set iottO [[P]] satisfies the healthiness conditions of the✓-tock

model, which we describe below. The proof of this result can be found in [2]. Here, first of all, we reproduce the

definition of the type TTTrace of traces used in the definitions of the sets tt [[P]] and iottO [[P]].

Processes are subsets of TTTrace and are required to satisfy four healthiness conditions. The first, TT0 simply

requires that a ✓-tock process P must have a nonempty set of traces. As said, they all have at least the empty trace.

TT0(P) P ≠ ∅

The second, TT1, requires that P is prefix and subset closed, specified in terms of a combined prefix and subset relation

≲, under which 𝜌 ≲ 𝜎 if 𝜌 can be formed from a prefix of 𝜎 by replacing some or all of the refusals in it with subsets.

TT1(P) 𝜌 ≲ 𝜎 ∧ 𝜎 ∈ P ⇒ 𝜌 ∈ P

A formal definition for 𝜌 ≲ 𝜎 is provided in Appendix A.

The third healthiness condition, TT2, specifies that, wherever a refusal X occurs, a set of events Y that cannot

happen at that point can be added to it. This ensures that every event that cannot be performed is refused. In the

definition of TT2 below, the set Y is characterised by being disjoint from the set of events e that can occur immediately

at the point where X is observed as recorded by an extended trace 𝜌 ⌢ ⟨evt e⟩. For tock, the extension needs to include

the refusal X as well, since tock can occur only after a refusal. The operator ⌢ is sequence concatenation.

TT2(P) 𝜌 ⌢ ⟨ref X⟩ ⌢ 𝜎 ∈ P ∧

Y ∩ {e : Σ✓
tock

| (e ≠ tock ∧ 𝜌 ⌢ ⟨evt e⟩ ∈ P) ∨ (e = tock ∧ 𝜌 ⌢ ⟨ref X , evt tock⟩ ∈ P)} = ∅

⇒ 𝜌 ⌢ ⟨ref (X ∪ Y )⟩ ⌢ 𝜎 ∈ P

Finally, the fourth healthiness condition, TT3, specifies that wherever a refusal X occurs, there is a corresponding trace

with ✓ added to the refusal. This ensures that ✓ is always refused when the process is stable. As a consequence, when

✓ happens, its record in traces always shows that it happens unstably.

TT3(P) 𝜌 ⌢ ⟨ref X⟩ ⌢ 𝜎 ∈ P ⇒ 𝜌 ⌢ ⟨ref (X ∪ {✓})⟩ ⌢ 𝜎 ∈ P

The input-output✓-tock model characterised by iottO [[P]] satisfies the extra healthiness condition TT4 defined below.
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It similar to TT3(P), but captures the instability of outputs, rather than termination.

TT4(P) 𝜌 ⌢ ⟨ref X⟩ ⌢ 𝜎 ∈ P ⇒ 𝜌 ⌢ ⟨ref (X ∪ O)⟩ ⌢ 𝜎 ∈ P

TT4 requires that the whole set of outputs can be added to any refusal. So, if any of them happens, the record shows

instability like for ✓. The following theorem proves that the input-output✓-tock model satisfies TT4.

Theorem 3.5. If tt [[P]] satisfies the healthiness conditions of the ✓-tock model then TT4(iottO [[P]]).

Proof.

𝜌 ⌢ ⟨ref X⟩ ⌢ 𝜎 ∈ iottO [[P]]

⇒ addOuts(𝜌 ⌢ ⟨ref X⟩ ⌢ 𝜎) ∈ tt [[P]] [definition of iottO [[P]]]

⇒ addOuts(𝜌) ⌢ ⟨ref (X ∪ O)⟩ ⌢ addOuts(𝜎) ∈ tt [[P]] [definition of addOuts]

⇒ addOuts(𝜌) ⌢ addOuts(⟨X ∪ O⟩) ⌢ addOuts(𝜎) ∈ tt [[P]] [idempotence of ∪]

⇒ addOuts(𝜌 ⌢ ⟨X ∪ O⟩ ⌢ 𝜎) ∈ tt [[P]] [property of addOuts]

⇒ 𝜌 ⌢ ⟨ref (X ∪ O)⟩ ⌢ 𝜎 ∈ iottO [[P]] [definition of iottO [[P]]]

□

We next study refinement based on behaviour characterised by iottO [[P]].

3.2 Input-output ✓-tock refinement

The refinement relation ⊑IOTT can be defined in the natural way adopted in all CSP models: subset inclusion.

Definition 3.6 (Input-output ✓-tock refinement). P ⊑IOTT Q =̂ iottO [[Q]] ⊆ iottO [[P]]

It is reassuring that ✓-tock refinement ensures input-output ✓-tock refinement.

Theorem 3.7. P ⊑ Q ⇒ P ⊑IOTT Q.

Proof.

P ⊑ Q = tt [[Q]] ⊆ tt [[P]] [definition of ⊑]

⇒ {𝜌 : TTTrace | addOuts(𝜌) ∈ tt [[Q]]} ⊆ {𝜌 : TTTrace | addOuts(𝜌) ∈ tt [[P]]} [property of sets]

= iottO [[Q]] ⊆ iottO [[P]] [definition of iottO [[ ]]]

= P ⊑IOTT Q [definition of ⊑IOTT ]

□

As usual for the richer notions of refinement in CSP, it allows for reduction of nondeterminism, but does not require

elimination. Moreover, since the sets of traces representing a process are prefix closed (TT1), all partial observations of

a behaviour characterised by a trace are regarded as acceptable.

In the input-output model, a refusal cannot be observed if an output is possible (see TT4). Further, a refusal cannot

be observed if ✓ is possible. As a result, wherever a refusal X is possible, so is the refusal X ∪ O ∪ {✓}. Given that
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refusals are downwardly closed, this suggests that we can characterise the set of possible input-output ✓-tock traces of

a process in terms of those in which all refusals contain O ∪ {✓} as a subset.

In what follows, we define a function iottO
M
[[TT ]] that characterises the subset of such traces for a given set of

input-output✓-tock traces TT . We then show that the input-output semantics iottO [[P]] of a process and ⊑IOTT can be

defined using iottO
M
[[ ]]. This alternative semantic function is useful in proofs.

The definition of iottO
M
[[TT ]] uses the function addTick, whose definition presented next is similar to that of addOuts.

addTick(⟨⟩) = ⟨⟩

addTick(⟨ref X⟩ ⌢ 𝜌) = ⟨ref (X ∪ {✓})⟩ ⌢ addTick(𝜌)

addTick(⟨evt e⟩ ⌢ 𝜌) = ⟨evt e⟩ ⌢ addTick(𝜌)

The ✓-tock trace addTick(𝜌) differs from 𝜌 just in that ✓ is in all its refusals.

Definition 3.8. Given a healthy set TT of ✓-tock traces,

iottO
M
[[TT ]] =̂ {𝜌 : ran addTick | addOuts(𝜌) ∈ TT • addOuts(𝜌)}

The function addOuts is the identity on all elements of iottO
M
[[tt [[P]]]] (see proof in [2]). The theorem below uses this

result to establish a relationship between iottO [[P]] and iottO
M
[[tt [[P]]]]. Briefly, iottO [[P]] can be obtained by downward

closure with respect to ✓-tock trace prefixing ≲ of iottO
M
[[tt [[P]]]].

Theorem 3.9.

iottO [[P]] = {𝜌 : TTTrace | ∃ 𝜌1 : iott
O
M
[[tt [[P]]]] • 𝜌 ≲ 𝜌1}

Proof. Case (⇒).

𝜌 ∈ iottO [[P]]

⇒ addOuts(𝜌) ∈ tt [[P]] [definition of iottO [[P]]]

⇒ addOuts(addTick(𝜌)) ∈ tt [[P]] [tt [[P]] is TT3, and commutativity of addTick and addOut]

⇒ addOuts(addTick(𝜌)) ∈ iottO
M
[[tt [[P]]]] [addOuts(addTick(𝜌)) ∈ ran addTick and definition of iottO

M
[[P]]]

= addOuts(addTick(𝜌)) ∈ iottO
M
[[tt [[P]]]] ∧ 𝜌 ≲ addOuts(addTick(𝜌)) [property of addOuts, addTick, and ≲]

⇒ ∃ 𝜌1 : iott
O
M
[[tt [[P]]]] • 𝜌 ≲ 𝜌1 [predicate calculus]

= 𝜌 ∈ {𝜌 : TTTrace | ∃ 𝜌1 : iott
O
M
[[tt [[P]]]] • 𝜌 ≲ 𝜌1} [property of set comprehension]

Case (⇐).

𝜌 ∈ {𝜌 : TTTrace | ∃ 𝜌1 : iott
O
M
[[tt [[P]]]] • 𝜌 ≲ 𝜌1}

= ∃ 𝜌1 : iott
O
M
[[tt [[P]]]] • 𝜌 ≲ 𝜌1 [property of set comprehension]

⇒ ∃ 𝜌1 : iott
O
M
[[tt [[P]]]] • addOuts(𝜌) ≲ addOuts(𝜌1) [property of addOuts]

⇒ ∃ 𝜌1 : iott
O
M
[[tt [[P]]]] • addOuts(𝜌) ≲ 𝜌1 [addOuts is the identity]

⇒ ∃ 𝜌1 : {𝜌2 : ran addTick | addOuts(𝜌2) ∈ tt [[P]] • addOuts(𝜌2)} • addOuts(𝜌) ≲ 𝜌1 [definition of iottO
M
[[ ]]]

⇒ ∃ 𝜌1 : {𝜌2 : TTTrace | addOuts(𝜌2) ∈ tt [[P]] • addOuts(𝜌2)} • addOuts(𝜌) ≲ 𝜌1 [property of sets]
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= ∃ 𝜌1, 𝜌2 : TTTrace • addOuts(𝜌2) ∈ tt [[P]] ∧ 𝜌1 = addOuts(𝜌2) ∧ addOuts(𝜌) ≲ 𝜌1 [property of sets]

⇒ addOuts(𝜌) ∈ tt [[P]] [tt [[P]] is TT1]

= 𝜌 ∈ iottO [[P]] [definition of iottO [[P]]]

□

The model characterised by iottO [[P]] is more natural than that defined by iottO
M
[[tt [[P]]]], since iottO [[P]] records all

experiments that can be carried out in observing P . For reasoning, however, iottO
M
[[TT ]] can be useful because, when

it is applied to a healthy set TT of traces, it keeps the traces in the range of addTick and addOuts. The next theorem

establishes that input-output ✓-tock refinement can be characterised using iottO
M
[[ ]].

Theorem 3.10. P ⊑IOTT Q ⇔ iottO
M
[[tt [[Q]]]] ⊆ iottO

M
[[tt [[P]]]]

Proof. Case (⇒).

P ⊑IOTT Q

= iottO [[Q]] ⊆ iottO [[P]] [definition of ⊑IOTT ]

⇒ {𝜌 : TTTrace | addOuts(𝜌) ∈ tt [[Q]]} ⊆ {𝜌 : TTTrace | addOuts(𝜌) ∈ tt [[P]]} [definition of iottO [[Q]]]

⇒ {𝜌 : ran addTick | addOuts(𝜌) ∈ tt [[Q]] • addOuts(𝜌)}

⊆ {𝜌 : ran addTick | addOuts(𝜌) ∈ tt [[P]] • addOuts(𝜌)}

[property of sets and function application]

⇒ iottO
M
[[tt [[Q]]]] ⊆ iottO

M
[[tt [[P]]]] [definition of iottO

M
[[ ]]]

Case (⇐).

iottO
M
[[tt [[Q]]]] ⊆ iottO

M
[[tt [[P]]]]

⇒ {𝜌 : TTTrace | ∃ 𝜌1 : iott
O
M
[[tt [[Q]]]] • 𝜌 ≤RT 𝜌1}

⊆ {𝜌 : TTTrace | ∃ 𝜌1 : iott
O
M
[[tt [[P]]]] • 𝜌 ≤RT 𝜌1}

[property of sets]

⇒ iottO [[Q]] ⊆ iottO [[P]] [Theorem 3.9]

= P ⊑IOTT Q [definition of ⊑IOTT ]

□

We use iottO
M
[[tt [[P]]]] extensively in calculating, based on Definition 3.1, an input-output ✓-tock semantics for the

CSP operators based on their definitions in [3]. This is the topic of the next section.

3.3 Operators and recursion

Using Definition 3.1, we can calculate the input-output✓-tock traces of tock-CSP processes in terms of their ✓-tock

traces. A summary of the definitions for all process operators is in Tables 1 and 2. The calculations are in [2]. The

non-standard trace operators, such as tocks, fTock, and others, used in these definitions are in Appendix A.

The semantics of divergence, termination, deadlock, timestop, and delay are unaffected, since these constructs carry

out no communication, and, therefore, have no added instabilities due to possible outputs. To illustrate the calculation

of the sets iottO [[P]], we present below the result for a timestop StopU , used to define deadlines in tock-CSP. The only

traces of StopU are the empty trace and singletons ⟨ref X⟩ containing an arbitrary refusal X .
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Table 1. iottO [[ ]] model of CSP processes

Process P iottO [[P]]

div {⟨⟩}

Skip { ⟨⟩, ⟨evt✓⟩ }

Stop tocks Σ✓ ∪ {𝜌 : tocks Σ✓; X : P Σ
✓ • 𝜌 ⌢ ⟨ref X⟩}

StopU {⟨⟩} ∪ {X : P Σ
✓

tock
• ⟨ref X⟩}

Wait n {𝜌 : tocks Σ✓ | #(𝜌 ↾ {evt tock}) ≤ n}

∪{𝜌 : tocks Σ✓; X : P Σ
✓ | #(𝜌 ↾ {evt tock}) < n • 𝜌 ⌢ ⟨ref X⟩}

∪{𝜌 : tocks Σ✓ | #(𝜌 ↾ {evt tock}) = n • 𝜌 ⌢ ⟨evt✓⟩} }

e → P {𝜌 : TTTrace | e ∉ O ∧ 𝜌 ∈ tocks (Σ✓ \ {e})}

∪{𝜌 : tocks (Σ✓ \ {e}); X : P(Σ✓ \ {e}) | e ∉ O • 𝜌 ⌢ ⟨ref X⟩}

∪{𝜌1 : tocks (Σ
✓ \ {e}); 𝜌2 : iott

O [[P]] | e ∉ O ∧ e ≠ tock • 𝜌1
⌢ ⟨evt e⟩ ⌢ 𝜌2}

∪{𝜌 : iottO [[P]] | e ∈ O • ⟨evt e⟩ ⌢ 𝜌}

∪{𝜌1 : tocks Σ
✓; X : P Σ

✓; 𝜌2 : iott
O [[P]] | e = tock • 𝜌1

⌢ ⟨ref X , evt tock⟩ ⌢ 𝜌2}

P ⊓ Q iottO [[P]] ∪ iottO [[Q]]

P ✷ Q { 𝜌1 : tocks Σ
✓

tock
; 𝜌2, 𝜌3, 𝜌4 : TTTrace |

𝜌1
⌢ 𝜌2 ∈ iottO [[P]] ∧ 𝜌1

⌢ 𝜌3 ∈ iottO [[Q]] ∧

(∀ 𝜌5 : tocks Σ
✓

tock
• 𝜌5 ≲ 𝜌1

⌢ 𝜌2 ⇒ 𝜌5 ≲ 𝜌1) ∧

(∀ 𝜌5 : tocks Σ
✓

tock
• 𝜌5 ≲ 𝜌1

⌢ 𝜌3 ⇒ 𝜌5 ≲ 𝜌1) ∧

(∀X : P Σ
✓

tock
| 𝜌2 = ⟨ref X⟩ • (∃ Y : P Σ

✓

tock
• 𝜌3 = ⟨ref Y ⟩ ∧ X \ {tock} = Y \ {tock})) ∧

(∀X : P Σ
✓

tock
| 𝜌3 = ⟨ref X⟩ • (∃ Y : P Σ

✓

tock
• 𝜌2 = ⟨ref Y ⟩ ∧ X \ {tock} = Y \ {tock})) ∧

(𝜌4 = 𝜌1
⌢ 𝜌2 ∨ 𝜌4 = 𝜌1

⌢ 𝜌3)

• 𝜌4
}

P ; Q {𝜌1 : iott
O [[P]] | ¬ (∃ 𝜌2 : TTTrace • 𝜌1 = 𝜌2

⌢ ⟨evt✓⟩)}

∪{ 𝜌1, 𝜌2 : TTTrace | 𝜌1
⌢ ⟨evt✓⟩ ∈ iottO [[P]] ∧ 𝜌2 ∈ iottO [[Q]] • 𝜌1

⌢ 𝜌2 }

Theorem 3.11. iottO [[StopU ]] = {⟨⟩} ∪ {X : P Σ
✓

tock
• ⟨ref X⟩}

Proof.

iottO [[StopU ]]

= { 𝜌 : TTTrace | addOuts(𝜌) ∈ {⟨⟩} ∪ {X : P Σ
✓

tock
• ⟨ref X⟩} } [definitions of iottO [[StopU ]] and tt [[StopU ]]]

= { 𝜌 : TTTrace | addOuts(𝜌) = ⟨⟩ ∨ (∃X : P Σ
✓

tock
• addOuts(𝜌) = ⟨ref X⟩) } [property of sets]

= { 𝜌 : TTTrace | 𝜌 = ⟨⟩ ∨ (∃X : P Σ
✓

tock
• 𝜌 = ⟨ref X⟩)} [definition of addOuts and O ⊆ Σ

✓

tock
]

= {⟨⟩} ∪ {X : P Σ
✓

tock
• ⟨ref X⟩} [property of sets]

□
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Table 2. iottO [[ ]] model of CSP processes - continuation

Process P iottO [[P]]

P △ Q {𝜌1 : TTTrace; 𝜌2 : iott
O [[Q]] | 𝜌1

⌢ ⟨evt✓⟩ ∈ iottO [[P]] ∧ fTock 𝜌1 = 𝜌2 • 𝜌1
⌢ ⟨evt✓⟩}

∪ {𝜌1, 𝜌2 : TTTrace; X , Y , Z : P Σ
✓

tock
|

𝜌1
⌢ ⟨ref X⟩ ∈ iottO [[P]] ∧ 𝜌2

⌢ ⟨ref Y ⟩ ∈ iottO [[Q]] ∧

fTock 𝜌1 = 𝜌2 ∧ Z ⊆ X ∪ Y ∧ X \ {tock} = Y \ {tock} ∧

• 𝜌1
⌢ ⟨ref Z⟩

}

∪ {𝜌1 : iott
O [[P]]; 𝜌2, 𝜌3 : TTTrace |

(¬ ∃𝜙 : seqObs • 𝜌1 = 𝜙 ⌢ ⟨evt✓⟩) ∧ (¬ ∃𝜙 : seqObs; X : P Σ
✓

tock
• 𝜌1 = 𝜙 ⌢ ⟨ref X⟩)

∧

fTock 𝜌1 = 𝜌2 ∧ 𝜌2
⌢ 𝜌3 ∈ iottO [[Q]] ∧ (¬ ∃𝜙 : seqObs; X : P Σ

✓

tock
• 𝜌1 = ⟨ref X⟩ ⌢ 𝜙)

• 𝜌1
⌢ 𝜌3

}

P △d Q {𝜌1 : iott
O [[P]] | #(𝜌1 ↾ {evt tock}) < d}

∪ {𝜌1 : iott
O [[P]]; 𝜌2 : iott

O [[Q]]; 𝜙 : seqObs |

#(𝜌1 ↾ {evt tock}) = d ∧ ((d = 0 ∧ 𝜌1 = ⟨⟩) ∨ (d > 0 ∧ 𝜌1 = 𝜙 ⌢ ⟨evt tock⟩)) • 𝜌1
⌢ 𝜌2

}

P |[ X ]| Q
⋃
{𝜌1 : iott

O [[P]]; 𝜌2 : iott
O [[Q]] • (𝜌1 |[ X ]|T 𝜌2)}

P \ X
⋃
{𝜌 : iottO [[P]] • hideTrace X 𝜌}

P [[f ]]
⋃
{𝜌 : iottO [[P]] • renameTrace f 𝜌}

If e is not an output (e ∉ O) or if e is tock, a prefixing e → P , like in the original semantics, contributes traces with e as

well as events tock and their associated refusals. If, however, e is an output, the only traces that we can have are of the

form ⟨e⟩ ⌢ 𝜌 , where 𝜌 is an input-output trace of P . This reflects the fact that an output is unstable and so urgent.

Example 3.12. The traces in iottO [[takeoff → Wait(1)]] are the prefixes of ⟨takeoff , Σ✓, tock,✓⟩. ✷

Internal and external choice, sequence, interrupt, timeout, and hiding are unaffected by the presence of input and

outputs. For further illustration, we include below the calculation of the traces of a timeout P △d Q, which behaves like

the process P , until d time units have passed, when Q takes over. We recall that all calculations are in [2]. In words,

the traces of a timeout P △d Q include those of P (that is, from iottO [[P]]) for which the number of tock events is

less than d. For a sequence 𝜙 , the filtering 𝜙 ↾ S defines the sequence obtained from 𝜙 by keeping just the elements

in the set S, and #𝜙 is the number of elements of 𝜙 . Additionally, P △d Q has traces formed from traces 𝜌1 of P with

exactly d occurrences of tock followed by a trace 𝜌2 of Q. If d is 0, then 𝜌1 must be the empty trace, since Q takes over

immediately, before any events of P take place. If d is greater than 0, then 𝜌1 finishes on the last tock event, because,

again, when the deadline is over, Q starts immediately before P can engage in any more events.
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Theorem 3.13.

iottO [[P △d Q]] = {𝜌1 : iott
O [[P]] | #(𝜌1 ↾ {evt tock}) < d}∪

{𝜌1 : iott
O [[P]]; 𝜌2 : iott

O [[Q]]; 𝜙 : seqObs |

#(𝜌1 ↾ {evt tock}) = d ∧ ((d = 0 ∧ 𝜌1 = ⟨⟩) ∨ (d > 0 ∧ 𝜌1 = 𝜙 ⌢ ⟨evt tock⟩)) • 𝜌1
⌢ 𝜌2

}

Proof. We rely here on Theorem 3.10.

iottO
M
[[tt [[P △d Q]]]]

= iottO
M
[[ {𝜌2 : tt [[P]] | #(𝜌2 ↾ {evt tock}) < d} ∪

{𝜌2 : tt [[P]]; 𝜌3 : tt [[Q]]; 𝜙 : seqObs |

#(𝜌2 ↾ {evt tock}) = d ∧ ((d = 0 ∧ 𝜌2 = ⟨⟩) ∨ (d > 0 ∧ 𝜌2 = 𝜙 ⌢ ⟨evt tock⟩)) • 𝜌2
⌢ 𝜌3

} ]]

[definition of tt [[P △d Q]]]

= { 𝜌1 : ran addTick | addOuts(𝜌1) ∈

{𝜌2 : tt [[P]] | #(𝜌2 ↾ {evt tock}) < d} ∪

{𝜌2 : tt [[P]]; 𝜌3 : tt [[Q]]; 𝜙 : seqObs |

#(𝜌2 ↾ {evt tock}) = d ∧ ((d = 0 ∧ 𝜌2 = ⟨⟩) ∨ (d > 0 ∧ 𝜌2 = 𝜙 ⌢ ⟨evt tock⟩)) • 𝜌2
⌢ 𝜌3

}

• addOuts(𝜌1)

}

[definition of iottO [[ ]]]

= { 𝜌1 : ran addTick |

addOuts(𝜌1) ∈ tt [[P]] ∧ #(addOuts(𝜌1) ↾ {evt tock}) < d ∨

∃ 𝜌2 : tt [[P]]; 𝜌3 : tt [[Q]]; 𝜙 : seqObs •

#(𝜌2 ↾ {evt tock}) = d ∧ ((d = 0 ∧ 𝜌2 = ⟨⟩) ∨ (d > 0 ∧ 𝜌2 = 𝜙 ⌢ ⟨evt tock⟩)) ∧

addOuts(𝜌1) = 𝜌2
⌢ 𝜌3

• addOuts(𝜌1)

}

[property of sets]

= { 𝜌1 : ran addTick |

addOuts(addOuts(𝜌1)) ∈ tt [[P]] ∧ #(addOuts(𝜌1) ↾ {evt tock}) < d ∨

∃ 𝜌2 : TTTrace; 𝜌3 : TTTrace; 𝜙 : seqObs •

addOuts(𝜌2) ∈ tt [[P]] ∧ addOuts(𝜌3) ∈ tt [[Q]] ∧

#(𝜌2 ↾ {evt tock}) = d ∧ ((d = 0 ∧ 𝜌2 = ⟨⟩) ∨ (d > 0 ∧ 𝜌2 = 𝜙 ⌢ ⟨evt tock⟩)) ∧

addOuts(𝜌1) = 𝜌2
⌢ 𝜌3

• addOuts(𝜌1)

}

[idempotence of addOuts and 𝜌2 and 𝜌3 in ran addOuts]
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= { 𝜌1 : ran addTick |

addOuts(𝜌1) ∈ iottO [[P]] ∧ #(addOuts(𝜌1) ↾ {evt tock}) < d ∨

∃ 𝜌2 : iott
O [[P]]; 𝜌3 : iott

O [[Q]]; 𝜙 : seqObs •

#(𝜌2 ↾ {evt tock}) = d ∧ ((d = 0 ∧ 𝜌2 = ⟨⟩) ∨ (d > 0 ∧ 𝜌2 = 𝜙 ⌢ ⟨evt tock⟩)) ∧

addOuts(𝜌1) = 𝜌2
⌢ 𝜌3

• addOuts(𝜌1)

}

[definition of iottO [[ ]]]

= { 𝜌1 : ran addTick | addOuts(𝜌1) ∈

{𝜌2 : iott
O [[P]] | #(𝜌2 ↾ {evt tock}) < d} ∪

{𝜌2 : iott
O [[P]]; 𝜌3 : iott

O [[Q]]; 𝜙 : seqObs |

#(𝜌2 ↾ {evt tock}) = d ∧ ((d = 0 ∧ 𝜌2 = ⟨⟩) ∨ (d > 0 ∧ 𝜌2 = 𝜙 ⌢ ⟨evt tock⟩)) • 𝜌2
⌢ 𝜌3

}

• addOuts(𝜌1)

}

[properties of sets]

= iottO
M
[[ {𝜌2 : iott

O [[P]] | #(𝜌2 ↾ {evt tock}) < d} ∪

{𝜌2 : iott
O [[P]]; 𝜌3 : iott

O [[Q]]; 𝜙 : seqObs |

#(𝜌2 ↾ {evt tock}) = d ∧ ((d = 0 ∧ 𝜌1 = ⟨⟩) ∨ (d > 0 ∧ 𝜌2 = 𝜙 ⌢ ⟨evt tock⟩)) • 𝜌2
⌢ 𝜌3

} ]]

[definition of iottO
M
[[ ]]]

□

Uses of parallelism and renaming have to satisfy well-formedness conditions to ensure that we can define a congruence

to give their semantics. Below, we define and justify these conditions.

We have to restrict the use of the parallel operator P |[ X ]| Q to forbid synchronisation on outputs. P |[ X ]| Q defines

a process whose behaviour is characterised by the parallel execution of the processes P and Q synchronising on events

in the set X . If an event e is an input in P and Q, then it is an input in the parallelism; there is no issue. If e is an output

in P and Q, then it is an output in the parallelism. We then require that e is not in X .

Example 3.14. We consider E1 = out1 → Stop ⊓ out2 → Stop and E2 = out1 → Stop ✷ out2 → Stop. If out1 and

out2 are outputs, E1 and E2 have the same input-output refusal traces. This is because, since their initial states are

unstable, all their traces start with an event. We cannot differentiate the forms of choice due to lack of stability. We,

therefore, expect that E3 = out1 → Stop |[ {out1, out2} ]| E1 and E4 = out1 → Stop |[ {out1, out2} ]| E2 also have the

same traces. In E3, however, we have a possible stability: if E1 resolves the choice to out2 → Stop, then we have a

deadlock. In this case, the traces are all those whose events are tock and whose refusals are subsets of Σ✓ (see semantics

of Stop in Table 1). The same stability, however, is not possible for E4. ✷

So, we define that in a well formed parallelism, X does not include outputs.

A process P [[f ]], defined in terms of a process P by renaming in accordance to a function f from events to events,
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behaves as P , except that every occurrence of an event e in P is replaced with the event f (e).

Example 3.15.

RD[[id ⊕ {turnoff ↦→ off ,move ↦→ mv}]] = takeoff → Wait 1; mv → found → land → Stop ✷ off → Skip

Here, id is the identity function on events, and f ⊕ g is the overriding operator that defines the function that maps x to

g(x), if x is in the domain of g, and, otherwise, maps x to f (x). So the renaming function in this examplemaps all events to

themselves, expect for turnoff and move, which are mapped to off and mv in the function {turnoff ↦→ off ,move ↦→ mv}.

✷

In tock-CSP, there is an assumption that the renaming function f is total, and tock and✓ are not renamed. (Considering

relational renaming is a straightforward generalisation.) For our model, we assume in addition that outputs are renamed

to outputs, and, therefore, inputs to inputs. In this way, the instabilities arising from outputs of P [[f ]] are the same as

those of P , and we can indeed define the semantics of P [[f ]] in terms of that of P .

The function renameTrace f 𝜌 used in the definition of the semantics of P [[f ]] (see Table 2 and Appendix A) applies

the renaming function f to each event of 𝜌 . For the refusals X in 𝜌 , renameTrace f 𝜌 identifies all sets of events Y , such

that, via renaming of its events, we obtain X (and there may be more than one such set Y if f is not injective).

Example 3.16. In the renaming below, two input events inp1 and inp2 are renamed to a single input event inp.

E1 = out → Wait 1; (inp1 → Skip ✷ inp2 → Skip) and E2 = E1[[id ⊕ {inp1 ↦→ inp, inp2 ↦→ inp}]]

As it might be expected, the process described by this renaming can be defined as out → Wait 1; inp → Skip. Accord-

ingly, E1 has the following trace: ⟨out, Σ✓, tock, {out,✓}, tock, inp1,✓⟩. In this scenario, the input inp1 takes place after

one additional time unit following theWait 1. A trace of the renamed process E2 is ⟨out, Σ✓, tock, {out,✓}, tock, inp,✓⟩.

We note that the renaming function maps out and ✓ to themselves. Another trace includes, instead of Σ✓, the refusal

{inp, out, tock} because applying relational image of {inp, out,✓} through the inverse of the renaming function gives

Σ
✓. The inverse of the renaming function maps inp to itself, and to inp1 and inp2. ✷

A recursive process P = F (P) is defined by a function F from processes to processes described using the process

operators of tock-CSP. Its semantics of P is given by the greatest (with respect to ⊑IOTT ) fixed point of F , given by

iottO [[P]] =
⋃
{n : N • Fn (iottO [[div]])}, where Fn is defined by the repeated application of F n times.

Given our model for tock-CSP with inputs and outputs, we next compare its refinement relation to tioco.

4 INPUT OUTPUT LABELLED TRANSITION SYSTEMS (IOLTS)

Most works on testing from a formal state-based model reason about a labelled transition system that represents the

operational semantics of the original model. In addition, it is normal to distinguish between input and output events,

since, as said, they play very different roles in testing, with the tester controlling inputs and the SUT controlling outputs.

Typically, the name of an input starts with ‘?’ and that of an output starts with ‘!’. In addition, it is often assumed that

the tester cannot block outputs, and the implementation cannot block inputs.

A labelled transition system whose events are partitioned into inputs and outputs is called an input-output labelled

transition system (IOLTS) [53]. An IOLTS M can be represented by a tuple (I ,O,Q, q0, h) in which I is the set of input

events, O is the set of output events, Q is the set of states, q0 ∈ Q is the initial state, and h is the transition relation of

type Q × (I ∪ O ∪ {𝜏}) × Q. Here, 𝜏 represents a silent (internal) event. If (q1, e, q2) ∈ h then (q1, q2) is a transition of
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M , denoting it is possible for M to move from state q1 to state q2 with event e (if e ∈ I ∪ O) or without any event being

observed (if e = 𝜏). There has been significant interest in testing using an IOLTS [4, 6, 19, 20, 28, 39, 50ś55].

Timed IOLTS (TIOLTS) extend IOLTS by allowing transitions that denote durations from a set D, capturing the

passing of (typically discrete) time [53]. These events, which represent durations, are not inputs to the system (since

they are not controlled by the tester) and also are not outputs (since they are not controlled by the SUT). Sometimes,

it might also be possible for a tester to observe quiescence, that is, the SUT being in a state where it cannot produce

an output or change state without receiving an input. Quiescence is usually represented by a new symbol 𝛿 , where

𝛿 ∉ I ∪ O ∪ D ∪ {𝜏}. Quiescence is a special type of refusal, which represents the refusal of all outputs, and is normally

observed through a timeout. A tester observes suspension traces, which are sequences of events in either I ∪ O ∪ D (if

quiescence cannot be observed) or I ∪ O ∪ D ∪ {𝛿} (if quiescence can be observed).

An IOLTS is input-enabled if for each state q and input ?i, there is at least one state q′ that can be reached from

q through a sequence of internal transitions such that there is a transition of the form (q′, ?i, q′′). If an IOLTS is

input-enabled, then it is an input- output transition system (IOTS). This definition extends naturally to TIOLTS and

TIOTS; we adopt the same definition and do not allow a transition representing passage of time to be considered

an internal transition. Frequently, works on testing from an TIOLTS assume that the SUT is input-enabled but the

specification does not have to be input-enabled [53]. As a result, testing can be seen as a procedure in which one is

testing an implementation that behaves like an unknown TIOLTS N , where N has the same input and output sets as

the specification TIOLTS M . Most works also assume that the processes are divergence free since, normally, testing

cannot distinguish between divergence and deadlock. In this paper we assume that processes are divergence free but

implementations do not have to be input-enabled, allowing the development of a more general testing theory that can

be applied to systems where, for example, sensors can be disabled.

When testing from an IOLTS, a popular conformance relation is ioco [51ś53], under which, if 𝜎 is a suspension trace

of the specification and 𝜎 occurs in testing of the SUT, then any next event (output or quiescence) produced by the SUT

must be one allowed by the specification (after 𝜎). As mentioned, the ioco relation was extended to timed ioco (tioco).

We define below the Schmaltz and Tretmans version of tioco, which uses the following notation for a TIOLTS M .

• Given a suspension trace 𝜎 , the suspension traces of TIOLTSM after 𝜎 are those that can be produced byM after

𝜎 . We therefore have that 𝜎1 is a suspension trace of M after 𝜎 if, and only if, 𝜎 ⌢ 𝜎1 is a suspension trace of M .

• Out (M) is the set of observations from O ∪ D ∪ {𝛿} that M can initially perform. As a result, e ∈ O ∪ D ∪ {𝛿} is

in Out (M) if, and only if, ⟨e⟩ is a suspension trace of M .

We can now define tioco [45].

Definition 4.1. Given TIOLTS M and TIOTS N with the same sets of inputs and outputs, N conforms to M under

tioco if, and only if, for all 𝜎 , if 𝜎 is a suspension trace of M then Out (N after 𝜎) ⊆ Out (M after 𝜎).

This is the notion of tioco that we compare to refinement in our input-output model for tock-CSP presented in the

previous section. We note that although the focus of this paper is on testing from models with discrete time, tioco can

also be used for modelling and reasoning about continuous time.

As an aside, we observe that tioco is rather different from trace inclusion because of the way in which it handles

inputs that are not enabled in the specification. Under trace inclusion, if the specification has a trace 𝜙 and, for input ?i,

does not have a trace 𝜙 ⌢ ⟨?i⟩, then a correct implementation is not allowed to have the trace 𝜙 ⌢ ⟨?i⟩. In contrast,

under tioco, if the specification has a suspension trace 𝜎 , but not 𝜎 ⌢ ⟨?i⟩, not only is 𝜎 ⌢ ⟨?i⟩ an allowed behaviour of

an implementation but, in addition, all behaviours are allowed after 𝜎 ⌢ ⟨?i⟩.
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5 INPUT-OUTPUT tock-CSP REFINEMENT AND IOCOWITH TIME

In this section, we define suspension traces for processes P using iottO [[P]] to characterise tioco in the context of CSP.

With that, we establish that ⊑IOTT is stronger than Schmaltz and Tretmans tioco (Definition 4.1).

Precisely, in this section we show that if P ⊑IOTT Q, then Q conforms to P under tioco (Theorem 5.9). Moreover, we

show that there are processes P and Q related by tioco for which P ⊑IOTT Q does not hold (Theorem 5.10). Together,

these results establish that ⊑IOTT is strictly stronger than tioco for input-enabled implementations. We restrict here

attention to input-enabled implementations because tioco is only defined for such implementations. Input-output

✓-tock refinement does not have such a restriction as stated in Definition 3.6.

To define a suspension-traces model for CSP, we consider the set StraceO of valid suspension traces for output events

in O whose definition from [17] we reproduce below. Here, the set Σ𝛿 = Σ
✓

tock
∪ {𝛿} of events in scope includes an extra

special event 𝛿 that represents quiescence like the observation of the same name in an a TIOLTS.

Definition 5.1.

StraceO == {𝜎 : seq Σ𝛿 | ∀ i : 1 . . #𝜎 − 1 • 𝜎 i = 𝛿 ⇒ 𝜎 (i + 1) ∉ O}

This set includes the sequences 𝜎 of events in Σ
✓

tock
and 𝛿 , such that, a 𝛿 is never followed by an output. This is required

because, if we can observe stability, recorded by 𝛿 , then an output cannot be possible. As shown in [15], to study

inclusion of sets of suspension traces, it is enough to consider sets ST that satisfy the healthiness condition ST below.

ST 𝜎 ∈ ST ⇒ ¬ (⟨𝛿, 𝛿⟩) in 𝜎

We write 𝜎1 in 𝜎2 when the sequence 𝜎1 occurs contiguously in the sequence 𝜎2. In the context of ioco and tioco, it is

normal to allow the recording of quiescence to be repeated. Here, the subsequence ⟨𝛿, 𝛿⟩ essentially provides the same

information as the subsequence 𝛿 ; both simply denote the process being in a state where it cannot produce output or

change state without first receiving input. ST ensures that such redundant records are not included.

We now define a function st that characterises a suspension trace corresponding to a ✓-tock trace.

Definition 5.2.

st : TTTrace → StraceO

∀ e : Σ✓
tock

; X : P Σ
✓

tock
; 𝜌 : TTTrace •

st ⟨⟩ = ⟨⟩ ∧ st (⟨evt e⟩ ⌢ 𝜌) = ⟨e⟩ ⌢ st 𝜌

st (⟨ref X⟩ ⌢ 𝜌) = ⟨⟩ ∧ ¬ (O ∪ {✓} ⊆ X ) ∨ st (⟨ref X⟩ ⌢ 𝜌) = ⟨𝛿⟩ ⌢ st 𝜌 ∧ O ∪ {✓} ⊆ X

This function removes refusals that do not include all outputs and ✓ and replaces any refusal that contains all outputs

and ✓ by 𝛿 . We observe that, by TT3, st could be defined to replace a refusal that contains all outputs by 𝛿 (that is,

not require that the refusal contains ✓ as well). We would indeed obtain the same set of suspension traces when the

function is applied to the traces of a healthy set. The above definition, however, slightly simplifies some proofs.

It is worth briefly commenting on st (⟨ref X⟩ ⌢ 𝜌) when ¬ (O ∪ {✓} ⊆ X ). Here, the refusal X does not establish

stability under the input-output model since either ✓ or some outputs are not in X and so may be enabled. As a result,

⟨ref X⟩ ⌢ 𝜌 does not correspond to a suspension trace. If it happens to be the case that a process is stable, then it has

another trace ⟨ref (X ∪ O ∪ {✓})⟩ ⌢ 𝜌 for which we obtain a suspension trace that records its stability and events.
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We now define the set of timed suspension traces of a process.

Definition 5.3. tstraces[[P]] =̂ st (| iottO [[P]] |).

Here, R(| S |) is the relational image of a set S through the relation (or function, in particular) R.

The following lemma establishes that every set of suspension traces defined by tstraces[[ ]] is healthy. Omitted

proofs of this and other results presented in this section can be found in [2].

Lemma 5.4. tstraces[[P]] is ST-healthy.

The traces in tstraces[[P]] also satisfy another property: 𝛿 is followed by tock. This strengthens the normal requirement

that quiescence cannot be followed by an output, and holds for every trace 𝜎 characterised by an application of st.

Lemma 5.5. For every 𝜌 in TTTrace, for every i : 1 . . #(st 𝜌) − 1, if (st 𝜌) i = 𝛿 then (st 𝜌) (i + 1) = tock.

We call a trace that is in the range of st, and therefore satisfies the above property, a timed suspension trace.

The Schmaltz and Tretmans version of tioco can be expressed as follows in terms of timed suspension traces.

Q tioco P =̂ ∀𝜎 : tstraces[[P]] • Out (Q after 𝜎) ⊆ Out (P after 𝜎)

Here, for a process P , Out (P) denotes the set of events from O ∪ {tock, 𝛿} that start a timed suspension trace of P . In

addition, P after 𝜎 is the process whose timed suspension traces 𝜎1 are such that 𝜎 ⌢ 𝜎1 is a timed suspension trace of

P . By a property of ⊆, the above definition of tioco can be rewritten to the following.

Q tioco P =̂ ∀𝜎 : tstraces[[P]]; e : O ∪ {𝛿, tock} • e ∈ Out (Q after 𝜎) ⇒ e ∈ Out (P after 𝜎)

For a process R, we have that e is in Out (R after 𝜎), if, and only if, R can move via 𝜎 to a state in which e can be observed.

This is the case if, and only if, 𝜎 ⌢ ⟨e⟩ ∈ tstraces[[R]]. So, e ∈ Out (R after 𝜎) if, and only if, 𝜎 ⌢ ⟨e⟩ ∈ tstraces[[R]].

Based on this, we obtain the definition below of Q tioco P in terms of tstraces[[P]] and tstraces[[Q]].

Definition 5.6. For an arbitrary process P and an input-enabled process Q,

Q tioco P =̂ ∀𝜎 : tstraces[[P]]; e : O ∪ {𝛿, tock} • 𝜎 ⌢ ⟨e⟩ ∈ tstraces[[Q]] ⇒ 𝜎 ⌢ ⟨e⟩ ∈ tstraces[[P]]

Timed suspension traces that are ST-healthy, and so do not contain ⟨𝛿, 𝛿⟩ as a subsequence, are similar to input-output

✓-tock traces. We now define, for a timed suspension trace 𝜎 , the corresponding ✓-tock trace tt (𝜎).

tt : StraceO → TTTrace

∀ a : Σ; 𝜎 : StraceO •

tt (⟨ ⟩) = ⟨ ⟩ ∧ tt (⟨e⟩ ⌢ 𝜎) = ⟨evt e⟩ ⌢ tt (𝜎) ∧ tt (⟨𝛿⟩ ⌢ 𝜎) = ⟨ref (O ∪ {✓})⟩ ⌢ tt (𝜎)

This simply replaces each occurrence of 𝛿 with the refusal set O ∪ {✓}. We now establish that tt and st are related as

expected: they form a Galois connection between TTTraces, ordered by ≲, and timed suspension traces with equality.

Theorem 5.7. st (tt (𝜎)) = 𝜎 and tt (st (𝜌)) ≲ 𝜌

For a✓-tock trace 𝜌 , tt (st (𝜌)) need not be the same as 𝜌 , because the application of st to 𝜌 removes any refusals that

do not contain O and ✓ and also all information regarding the refusal of inputs.
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Interestingly, iottO [[P]] and iottO
M
[[P]] define the same sets of suspension traces through st.

Theorem 5.8. st (| iottO [[P]] |) = st (| iottO
M
[[tt [[P]]]] |)

We now show that input-output ✓-tock refinement implies tioco.

Theorem 5.9. Given processes P and Q such that Q is input-enabled, P ⊑IOTT Q ⇒ Q tioco P .

Proof.

P ⊑IOTT Q

⇒ iottO [[Q]] ⊆ iottO [[P]] [definition of ⊑IOTT ]

⇒ st (| iottO [[Q]] |) ⊆ st (| iottO [[P]] |) [property of relational image]

⇒ tstraces[[Q]] ⊆ tstraces[[P]] [definition of tstraces[[ ]]]

⇒ ∀𝜎 ′ : Straces • 𝜎 ′ ∈ tstraces[[Q]] ⇒ 𝜎 ′ ∈ tstraces[[P]] [property of set inclusion]

⇒ ∀𝜎 : tstraces[[P]]; e : O ∪ {𝛿, tock} • 𝜎 ⌢ ⟨e⟩ ∈ tstraces[[Q]] ⇒ 𝜎 ⌢ ⟨e⟩ ∈ tstraces[[P]]

[substitution of 𝜎 ⌢ ⟨e⟩ for 𝜎 ′]

⇒ Q tioco P [definition of tioco]

□

The proof above does not use the hypothesis that Q is input-enabled explicitly, but it is needed because tioco is defined

only for input-enabled implementations. Below we show that, even for these implementations, tioco is weaker.

Theorem 5.10. There are P and Q such that Q tioco P, but not P ⊑IOTT Q.

Proof. As an example, we can take as the specification P the process StopU and let Q be any input-enabled

implementation that can produce an output out in response to some urgent input in but that cannot produce an output

before first receiving an input. For example, we can have Q = (in → Skip) ▶ 0; out → . . ., where we impose a

deadline 0 on in, to make it urgent, before allowing the output out. Any input-enabled process can follow out. The

set tstraces[[StopU ]] includes ⟨⟩ and ⟨𝛿⟩. Under tioco we only need to consider the behaviour of Q after the empty

sequence, because there are no traces of Q of the form ⟨𝛿⟩ ⌢ ⟨e⟩ (see Definition 4.1). So, no restrictions arise from

tioco for 𝜎 = ⟨𝛿⟩. In addition, under tioco we only need to consider the outputs of Q, tock, and quiescence after the

empty sequence. In our example, there is no such event, because the input of Q is urgent. So, we have that Q tioco P as

required. However, P ⊑IOTT Q does not hold since the implementation Q has input-output✓-tock traces that are not

input-output ✓-tock of P (for example, any that involves the input in followed by the output out). □

We note that, in the above example, all that P (that is, StopU ) can do is deadlock, but Q can exhibit any behaviour after

⟨in, out⟩. As a result, we argue that it is natural to expect that Q is regarded as being a faulty implementation of P ,

something that is not the case if we adopt tioco as the notion of correctness.

We now know that timed input-output refinement is strictly stronger than tioco for input-enabled implementations,

which is the main result from this section. We next, in Theorem 5.13, consider the case where P and Q are both

input-enabled. Formally, P is input enabled if, and only if, all refusals in all its traces are subsets of O ∪ {✓}.

We can strengthen Theorem 5.7 for input-enabled processes.
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Theorem 5.11. For an input-enabled process P, if 𝜌 ∈ iottO
M
[[tt [[P]]]], then tt (st (𝜌)) = 𝜌 .

Proof.

𝜌 ∈ iottO
M
[[tt [[P]]]]

⇒ ∀ 1 . . #𝜌 ; X : P Σ
✓

tock
| 𝜌 i = ref X • X = O ∪ {✓}

[P is input enabled and definitions of iottO
M
[[P]], addTick, and addOuts]

⇒ ∀ 1 . . #𝜌 ; X : P Σ
✓

tock
; e : Σ✓

tock
• (𝜌 i = ref X ⇒ X = O ∪ {✓} ∧ st (𝜌) i = 𝛿) ∧ (𝜌 i = evt e ⇒ st (𝜌) i = e)

[definition of st]

⇒ ∀ 1 . . #𝜌 ; X : P Σ
✓

tock
; e : Σ✓

tock
•

(𝜌 i = ref X ⇒ X = O ∪ {✓} ∧ tt (st (𝜌)) i = ref (O ∪ {✓})) ∧ (𝜌 i = evt e ⇒ tt (st (𝜌)) i = evt e)

[definition of tt]

⇒ tt (st (𝜌)) = 𝜌 [property of sequences]

□

In the proof of Theorem 5.13, we use the lemma below regarding tioco; the corresponding result for ioco is known [55].

Lemma 5.12. Given input-enabled processes P and Q, Q tioco P ⇔ tstraces[[Q]] ⊆ tstraces[[P]] .

Proof. The right-to-left direction is immediate from the definition of tioco and so we focus on the left-to-right

direction. We assume that P and Q are input-enabled and use proof by contradiction.

Q tioco P ∧ ¬ (tstraces[[Q]] ⊆ tstraces[[P]])

⇒ Q tioco P ∧ ∃𝜎1 : Strace • 𝜎1 ∈ tstraces[[Q]] \ tstraces[[P]] [property of sets]

⇒ Q tioco P ∧ ∃𝜎1, 𝜎2 : Strace; e : Σ
✓

tock
∪ {𝛿} •

𝜎1 = 𝜎2
⌢ ⟨e⟩ ∧ 𝜎1 ∈ tstraces[[Q]] \ tstraces[[P]] ∧ 𝜎2 ∈ tstraces[[P]]

[by TT0 and TT1, ⟨⟩ ∈ tstraces[[P]] ∩ tstraces[[Q]]]

⇒ Q tioco P ∧ ∃𝜎1, 𝜎2 : Strace; e : Σ ∪ {tock, 𝛿} •

𝜎1 = 𝜎2
⌢ ⟨e⟩ ∧ 𝜎1 ∈ tstraces[[Q]] \ tstraces[[P]] ∧ 𝜎2 ∈ tstraces[[P]]

[e ≠ ✓ since Q is input-enabled]

⇒ Q tioco P ∧ ∃𝜎2 : Strace; e : Σ ∪ {tock, 𝛿} •

𝜎2
⌢ ⟨e⟩ ∈ tstraces[[Q]] \ tstraces[[P]] ∧ 𝜎2 ∈ tstraces[[P]]

[predicate calculus]

⇒ Q tioco P ∧ ∃𝜎2 : Strace; e : Σ ∪ {tock, 𝛿} •

𝜎2
⌢ ⟨e⟩ ∈ tstraces[[Q]] ∧ 𝜎2

⌢ ⟨e⟩ ∉ tstraces[[P]] ∧ 𝜎2 ∈ tstraces[[P]]

[property of sets]

⇒ ∃𝜎2 : Strace; e : Σ ∪ {tock, 𝛿} • e ∉ O ∪ {tock, 𝛿} ∧

𝜎2
⌢ ⟨e⟩ ∈ tstraces[[Q]] ∧ 𝜎2

⌢ ⟨e⟩ ∉ tstraces[[P]] ∧ 𝜎2 ∈ tstraces[[P]]

[definition of tioco]

⇒ ∃𝜎2 : Strace; e : Σ \ (O ∪ {tock, 𝛿}) • 𝜎2
⌢ ⟨e⟩ ∉ tstraces[[P]] ∧ 𝜎2 ∈ tstraces[[P]] [predicate calculus]
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This contradicts P being input-enabled as required. □

Finally, we prove that ⊑IOTT is identical to tioco if all processes are input-enabled.

Theorem 5.13. Given input-enabled processes P and Q, P ⊑IOTT Q ⇔ Q tioco P.

Proof. The left to right implication is given by Theorem 5.9. So, we assume that Q tioco P and prove that P ⊑IOTT Q.

Q tioco P

⇒ tstraces[[Q]] ⊆ tstraces[[P]] [Lemma 5.12]

⇒ st (| iottO [[Q]] |) ⊆ st (| iottO [[P]] |) [definition of tstraces]

⇒ st (| iottO
M
[[tt [[Q]]]] |) ⊆ st (| iottO

M
[[tt [[P]]]] |) [Theorem 5.8]

⇒ tt (| st (| iottO
M
[[tt [[Q]]]] |) |) ⊆ tt (| st (| iottO

M
[[tt [[P]]]] |) |) [property of relational image]

⇒ iottO
M
[[tt [[Q]]]] ⊆ iottO

M
[[tt [[P]]]] [Theorem 5.11]

⇒ P ⊑IOTT Q [Lemma 3.10]

□

To summarise, we have that input-output✓-tock refinement is stronger than the Schmaltz and Tretmans version of

tioco (and so also the Krichen and Tripakis version) and is equivalent to it if the specification is input-enabled. So, if an

implementation fails a test according to tioco, we know that the implementation is not valid under timed input-output

✓-tock refinement. This is essential to unify the development and testing activities.

We now consider how we can test for input-output ✓-tock traces refinement.

6 TESTING AND INPUT-OUTPUT tock-CSP

We now present a testing theory for tock-CSP: a generative definition of test cases, definitions of test execution and

test verdict, and a characterisation of exhaustive test sets. We provide formal definitions and proofs of soundness and

exhaustiveness, which guarantee that the tests in the suite are sound and enough to establish conformance. The theory

is generic in that it can also be used for checking standard ✓-tock refinement and traces refinement.

The formalisation, but not the application, of our theory is based on processes. Formally, a test execution involves

two processes: a process Q representing a candidate implementation for the SUT, and a test case T , a process that

attempts to elicit a specific erroneous behaviour when composed in parallel with Q. The process that represents Q

can be described using any of the tock-CSP operators, so that nondeterminism can be specified explicitly (via ⊓) or

implicitly (arising for the combined semantics of the operators), but as said Q is assumed to be divergence free. Explicit

nondeterminism P ⊓ Q defines that the SUT can make a choice, independently from the tester, to behave as either P or

Q. Implicit nondeterminism arises normally from parallelism, or even from an external choice such as a → P ✷ a → Q,

where the processes a → P and a → Q in choice offer the same event a to the tester, which then cannot identify a

particular process in the choice via interaction with that event (a → P ✷ a → Q is not equal to a → (P ✷ Q)).

A process representing the composition of an SUT and a test process and is called a test execution. A notion of an

implementation failing a test formally captures how the fail verdict for erroneous behaviour is identified through a test

execution. For a given conformance relation, we specify a set of tests that is sound (that is, no correct SUT can fail) and

exhaustive (that is, every fault can be identified by some test).
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Here, we define the above mentioned notions of test case, test execution, and failure for our input-output ✓-tock

model, but observe that the definitions also apply for the standard ✓-tock semantics (Section 6.1). Accordingly, in

Section 6.2 we provide test suites for both the input-output ✓-tock semantics and the standard ✓-tock semantics.

Finally, in the latter part of this section, we also consider semantics induced by traces of events only (Section 6.3).

6.1 Testing theory: setup

We first describe how test execution and the notion of an SUT failing a test are defined. For that, we rely on the fact

that a test case uses special verdict events V = {pass, fail, inc}. The verdict of the events pass and fail is obvious, and inc

indicates an inconclusive verdict: the test execution did not manage to drive the SUT to the end of the trace considered

in the test case. We recall that behaviour characterised by a prefix of a valid trace is valid according to the notion of

correctness captured by (input-output ✓-tock) refinement, so it is not appropriate to give a fail verdict. Moreover, in

defining test execution, we use one more special event ticktest, specific to our theory for tock-CSP, to handle termination.

This event is issued once the SUT finishes, and can be observed by the test case.

Both verdict events and ticktest are assumed to be fresh, that is, not occurring in any process under consideration

apart from the test case and test execution processes. For simplicity, we assume that V and Σ are disjoint, but that

ticktest ∈ Σ. In a test execution, all events, except the verdict events in V and tock, are hidden. The last verdict event of

the trace of the execution process provides the verdict of the experiment.

Formally, we define the execution of a test case T against an SUT Q as follows.

Definition 6.1.

Execution(Q, T ) =̂ ((Q; ticktest →U StopU ) |[ Σ ]| T ) \ Σ

We sequentially compose the SUT process Q with a prefixing for the event ticktest followed by a deadlock, so that the

test process T can detect termination of Q through the occurrence of ticktest. We use here an untimed version→U of

the prefixing operator, which does not allow time to pass. So, if Q terminates, the signalling of ticktest is urgent. This

prefixing operator can be defined using other tock-CSP operators as follows: e →U P = e → P ✷ StopU .

The parallel composition synchronises on all events in Σ, including ticktest. These events are also hidden, so that,

as said, only the passage of time and the verdict events are visible. Execution(Q, T ) is defined in the standard✓-tock

model, since T needs to observe all events in Σ, including the outputs. So, the synchronisation set in the parallelism

needs to include all outputs. We recall, however, that well-formed parallelisms in the input-output✓-tock model cannot

have outputs in their synchronisation sets. We, therefore, adopt ✓-tock in the theory here.

The verdict of a test execution is given by the final verdict event appearing before the execution of the test deadlocks.

A formal definition for the verdict, which characterises the failure verdict, is provided below.

Definition 6.2.

Q fails T =̂ ∃ 𝜌 : TTTrace • 𝜌 ⌢ ⟨evt fail, ref (Σ✓
tock

∪ V )⟩ ∈ tt [[Execution(Q, T )]]

Since Execution(Q, T ) is defined using the ✓-tock model, Q fails T is intrinsically characterised in that model. As usual,

deadlock is characterised by a refusal of all events, including tock and the verdict events.

Example 6.3. Here, we consider an example using a test that can be generated from the RD process in Example 3.2. A

forbidden trace (disallowed behaviour) of RD is ⟨takeoff ,✓⟩, since termination can happen after turnoff , but not takeoff .

Manuscript submitted to ACM



Testing using CSP models: time, inputs, and outputs 25

In our theory, the test for this trace (as formally defined in the sequel) is specified as a process as follows.

NT = inc →U takeoff →U pass →U ticktest →U fail →U StopU

Intuitively, for any SUT Q, in Execution(Q,NT ), the test NT raises the inc verdict, and then attempts to drive Q to engage

in takeoff . If that succeeds, the verdict becomes pass, as a valid trace is observed. Proceeding, there is, however, the

possibility of observing ticktest, indicating that Q terminated. In this case, the final verdict is fail as NT then deadlocks.

✷

We define test cases via an operator Ttt (𝜌) that maps a ✓-tock trace 𝜌 to the corresponding test-(case) process. Here, 𝜌

ranges over minimal traces forbidden by the specification, that is, every proper prefix of 𝜌 is a valid trace ś hence only

the final observation is forbidden. A test case Ttt (𝜌) drives the SUT through 𝜌 , until it reaches the final observation; it

can detect if an SUT admits 𝜌 when they are composed into a test execution as described above.

Ttt is defined inductively for all traces in TTTrace. There are five cases, covering the possible forms of a TTTrace.

Case (1) is for the empty trace ⟨⟩. It is included for technical convenience, as a base case for the inductive definition.

(1) Ttt (⟨⟩) = fail →U StopU

Since every process has the empty trace in its semantics, we never test for ⟨⟩ on its own, but only as a suffix of a

nontrivial forbidden trace. As shown above, the test Ttt (⟨⟩) always yields verdict fail. This captures the fact that the

verdict of a test execution that manages to drive the SUT to the end of the trace that defines its test is fail.

The other verdict events are used by the tests corresponding to longer traces. As formalised below, in general terms,

as the test succeeds in driving the SUT along the trace, the (potentially intermediate) verdicts are inc.

Case (2) is that of a refusal X at the end of the trace: so a forbidden refusal. In that case the test first outputs a verdict

fail, which can be potentially overridden by a pass, signalling that X is not refused. After fail, all events in X , except ✓,

alongside the special event ticktest are offered, and, if accepted, pass is raised. In the context of our test execution, the

event ticktest always signals that the SUT has just terminated ś hence no refusal could have been observed.

(2) Ttt (⟨ref X⟩) = fail →U

©
«

✷ e : X \ {✓} • e →U pass →U StopU

✷

ticktest →U pass →U StopU

ª®®®
¬

Case (3) covers a trace ending with a forbidden termination ✓. First, the verdict pass is output, which can potentially

be overridden by a fail, if the SUT does terminate. We recall that, according to the definition of Execution(Q, T ), the

SUT terminates if, and only if, the first component of the parallel composition performs the ticktest event. Hence if a

synchronisation on ticktest is offered, the test case proceeds to the base process Ttt (⟨⟩), which outputs the fail verdict;

otherwise the test case deadlocks and the last verdict pass becomes the verdict of the experiment.

(3) Ttt (⟨evt✓⟩) = pass →U ticktest →U Ttt (⟨⟩)

Case (4) covers traces ⟨evt e⟩ ⌢ 𝜌 starting with an event e different from tock. A non-failing verdict is output first: de-

pending on whether the entire correct trace prefix has been executed, that is, on whether 𝜌 is empty or not, the verdict

is pass or inc. The initial event e is then offered. This event may not be accepted by the SUT, in which case the process

deadlocks and the non-failing verdict just output becomes the verdict of the experiment. Otherwise e is performed, and
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we proceed to the test corresponding to the remainder of the trace where a different verdict may be given.

(4) Ttt (⟨evt e⟩
⌢ 𝜌) =



pass →U e →U Ttt (𝜌) if 𝜌 = ⟨⟩, e ≠ tock

inc →U e →U Ttt (𝜌) if 𝜌 ≠ ⟨⟩, e ≠ tock

In the next example, we illustrate the application of cases (1), (3), and (4).

Example 6.4. Here, we consider the test NT presented in Example 6.3. It is the process Ttt (⟨takeoff ,✓⟩), defined using

the forbidden trace ⟨takeoff ,✓⟩ of RD from Example 3.2. Applying the definitions above for Ttt (𝜌), we get the process

that raises the inc verdict and then takeoff (case (4)). If that succeeds, the verdict becomes pass (case (3)). Proceeding,

there is the possibility of observing ticktest, when the final verdict is fail and the test deadlocks (case (2)). ✷

The final case (5) handles traces ⟨X , tock⟩ ⌢ 𝜌 starting with a refusal X immediately followed by tock. The refusal X is a

correct observation (forbidden refusals are handled by case (2)). The test first outputs a non-failing verdict pass or inc,

depending on whether 𝜌 is empty or not. The SUT is then tested for the presence of the refusal X like in case (2). If any

event in X or termination is observed, then the test deadlocks and the non-failing verdict stands. In this case, the SUT

has not been driven to the end of the trace for the test. A timeout, after 1 time unit, however, allows for time to pass. If,

however, an SUT timelocks (because of a deadline), then the test execution deadlocks, again keeping the non-failing

verdict. On the other hand, if tock is observed, then we proceed with the test corresponding to the trace suffix 𝜌 .

(5) Ttt (⟨ref X , evt tock⟩
⌢ 𝜌) =




pass →U

©
«

✷ e : X \ {✓} • e → StopU

✷

ticktest → StopU

ª®®®®
¬
△1 Ttt (𝜌) if 𝜌 = ⟨⟩

inc →U

©
«

✷ e : X \ {✓} • e → StopU

✷

ticktest → StopU

ª®®®®
¬
△1 Ttt (𝜌) if 𝜌 ≠ ⟨⟩

As for case (4), this covers two forms of trace: one where 𝜌 is empty and one where it is not. In both cases, the refusal

of the set X of events is observed by offering all events that are in X \ {✓} and ticktest. If an SUT Q can perform an

event e ∈ X \ {✓} ∪ {ticktest} then the composition of Q and the test case in Execution(Q, Ttt (⟨ref X , evt tock⟩
⌢ 𝜌))

can perform e and then deadlock with a final verdict of either pass or inc. Further, because all events in Σ, which

includes ticktest, are hidden in Execution(Q, Ttt (⟨ref X , evt tock⟩
⌢ 𝜌)), e becomes an internal event and so is urgent.

As a result, time cannot pass until Q and the test case perform such an event e, and therefore there is no possibility

of a timeout. Execution(Q, Ttt (⟨ref X , evt tock⟩
⌢ 𝜌)) then deadlocks. This ensures that, if Q can engage in an event

e ∈ X \ {✓} ∪ {ticktest}, the test execution deadlocks and so the test cannot proceed with any events from Ttt (𝜌). As a

result, the verdict fail cannot occur and so Q passes this test case as expected.
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Example 6.5. Going back to RD in Example 3.2 again, another forbidden trace is ⟨takeoff , Σ✓, tock, found⟩ since after

takeoff and one time unit, an RD implementation must move before found. The test we get for this trace is as follows.

inc →U takeoff →U inc →U ( takeoff → StopU

✷

move → StopU

✷

found → StopU

✷

land → StopU

✷

turnoff → StopU

✷

ticktest → StopU ) △1 pass →U found →U fail →U StopU

After a second inc event, reflecting the fact that the trace continues after the refusal Σ✓, all events from Σ and ticktest (in

lieu of ✓) are offered in choice. If the SUT engages in any of these events, the test execution deadlocks. Time cannot

pass, as tock is refused as well, and the test is never interrupted. In this case, the inc event gives the verdict. If, however,

a tock happens, the choice is interrupted, and the verdict is now pass, but the SUT is offered found. If the SUT engages

in found, the final verdict is fail, and that cannot change. ✷

The following theorem formally establishes that test processes obtained with the function Ttt (𝜌) work exactly as

intended: for a given trace 𝜌 and implementation Q, the test execution involving Ttt (𝜌) and Q interacting with each

other yields verdict fail precisely when Q exhibits the trace 𝜌 . It is important to note that, while we use this result in the

next section to prove that a given test set is sound and complete, the following result is more general and shows that

Ttt can be used as the basis of testing whenever we have a test generation technique that produces a set of disallowed

traces. We return to this point in the final section, when we describe future work.

Theorem 6.6. For any 𝜌 ∈ TTTrace and implementation Q

Q fails Ttt (𝜌) ⇔ 𝜌 ∈ tt [[Q]]

Proof. We define Q̂ =̂ Q; ticktest →U STOPU , the process on the left-hand side of the parallelism in Execution(Q, T ).

Due to the semantics of hiding, a trace 𝜌h ∈ tt [[Execution(Q, T )]] = tt [[(Q̂ |[ Σ ]| T ) \ Σ]] has a corresponding trace 𝜌v

where no events are hidden, that is, such that 𝜌v ∈ tt [[Q̂ |[ Σ ]| T ]] ∧ 𝜌h ∈ hideTrace Σ 𝜌v . Importantly, we can identify

such a trace 𝜌v whose refusals all subsume Σ, that is, so that 𝜌v is Σ-saturated. We say that a trace 𝜌 is Y -saturated,

written satref (𝜌, Y ), if every refusal in 𝜌 subsumes Y , that is, satref (𝜌, Y ) ⇔ ∀ i : dom 𝜌 | 𝜌 i ∈ ran ref • Y ⊆ ref ∼ (𝜌 i).

We call a trace 𝜌v satisfying these properties a visible counterpart of 𝜌h.

Furthermore, since all events of Q̂ are in Σ, given a trace 𝜌 ∈ tt [[Q̂ |[ Σ ]| T ]], there is a corresponding trace of T with

the same event sequence. Formally, this is a trace 𝜌T such that 𝜌T ∈ tt [[T ]] and 𝜌 ∼evt 𝜌T . This captures the fact that the

projections of 𝜌 and 𝜌T to ran evt are equal. Formally, 𝜌 ∼evt 𝜌
′ ⇔ #𝜌 = #𝜌 ′ ∧ ∀ i : dom 𝜌 | 𝜌 i ∈ ran evt • 𝜌 i = 𝜌 ′ i.

We call a trace 𝜌T satisfying such properties a test-component counterpart of 𝜌h.

We now proceed with the proof by structural induction on 𝜌 . For simplicity, we omit the constructor functions evt

Manuscript submitted to ACM



28 JAMES BAXTER, ANA CAVALCANTI, MACIEJ GAZDA, and ROBERT M. HIERONS

and ref when the context makes it clear whether we refer to an event or a refusal.

Case ⟨⟩ (⇒). From TT0, ⟨⟩ ∈ tt [[Q]] always holds.

Case ⟨⟩ (⇐). We show that ⟨fail, Σ✓
tock

∪ V ⟩ ∈ tt [[(Q̂ |[ Σ ]| fail →U StopU ) \ Σ]]. It follows directly from the

semantics of hiding and the following two results proved below. First, we have the following.

⟨Σ✓
tock

∪ V ⟩ ∈ tt [[Q̂ |[ Σ ]| StopU ]] [property of parallelism and StopU ]

⇒ ⟨fail, Σ✓
tock

∪ V ⟩ ∈ tt [[Q̂ |[ Σ ]| fail →U StopU ]] [property of parallelism and prefixing]

In addition, we can make the following observation.

⟨Σ✓
tock

∪ V ⟩ ∈ hideTrace Σ ⟨Σ✓
tock

∪ V ⟩ [definition of hideTrace and Σ
✓

tock
∪ V ⊆ Σ

✓

tock
∪ V ]

⇒ ⟨fail, Σ✓
tock

∪ V ⟩ ∈ hideTrace Σ ⟨fail, Σ✓
tock

∪ V ⟩ [definition of hideTrace and fail ∉ Σ]

Case ⟨✓⟩ (⇒). Above, we do not rely on properties of Q, so for any P , we have ⟨fail, (Σ✓
tock

∪V )⟩ ∈ tt [[P |[Σ]|Ttt (⟨⟩)]].

For a 𝜌h : TTTrace so that 𝜌h
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ tt [[(Q̂ |[ Σ ]| Ttt (⟨✓⟩)) \ Σ]], we consider its visible counterpart 𝜌v .

𝜌v
⌢ ⟨fail, (Σ✓

tock
∪ V )⟩ ∈ tt [[(Q̂ |[ Σ ]| pass →U ticktest →U Ttt (⟨⟩)]]

⇔ 𝜌v
⌢ ⟨fail, (Σ✓

tock
∪ V )⟩ ∈ tt [[(Q̂ |[ Σ ]| pass →U ticktest →U fail →U StopU ]]

From the semantics of →U we deduce that 𝜌v must be ⟨pass, ticktest⟩. We then can proceed as follows. Here and in

what follows, we use the notation 𝛼 (P) to refer to the set of events used by the process P .

⟨pass, ticktest, fail, (Σ✓
tock

∪ V )⟩ ∈ tt [[Q̂ |[ Σ ]| pass →U ticktest →U Ttt (⟨⟩)]]

⇔ ⟨ticktest, fail, (Σ✓
tock

∪ V )⟩ ∈ tt [[Q̂ |[ Σ ]| ticktest →U Ttt (⟨⟩)]] [pass ∉ 𝛼 (Q̂)]

⇔ ⟨fail, (Σ✓
tock

∪ V )⟩ ∈ tt [[Q̂ after ticktest |[ Σ ]| Ttt (⟨⟩)]] [ticktest ∈ 𝛼 (Q̂)]

⇔ tt [[Q̂ after ticktest]] ≠ ∅

[(⇒) by a property of parallelism: Q̂ after ticktest must have a singleton refusal trace at least.]

[(⇐) follows from ⟨fail, (Σ✓
tock

∪ V )⟩ ∈ tt [[P |[ Σ ]| Ttt (⟨⟩)]] for any P .]

⇔ ⟨ticktest⟩ ∈ tt [[Q̂]] [definition of after ]

⇔ ⟨ticktest⟩ ∈ tt [[Q; ticktest →U StopU ]] [definition of Q̂]

⇔ ⟨✓⟩ ∈ tt [[Q]] [semantics of sequential composition and ticktest ∉ 𝛼 (Q)]

Case ⟨✓⟩ (⇐). From ⟨✓⟩ ∈ tt [[Q]], we get ⟨pass, ticktest, fail, (Σ✓
tock

∪V )⟩ ∈ tt [[Q̂ |[Σ]|Ttt (⟨✓⟩)]], as shown above for

the case (⇒). Since ⟨pass, fail, (Σ✓
tock

∪ V )⟩ ∈ hideTrace Σ ⟨pass, ticktest, fail, (Σ✓
tock

∪ V )⟩, by the definition of hideTrace,

we obtain ⟨pass, fail, (Σ✓
tock

∪ V )⟩ ∈ tt [[(Q̂ |[ Σ ]| Ttt (⟨✓⟩)) \ Σ]].

Case ⟨X⟩ (⇒). For a 𝜌h
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ tt [[(Q̂ |[ Σ ]| Ttt (⟨X⟩)) \ Σ]], we consider its visible counterpart 𝜌v , and
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its test-component counterpart 𝜌T
⌢ ⟨fail,XT ⟩ ∈ tt [[Ttt (⟨X⟩)]]. By definition of Ttt (⟨X⟩), we have the following.

𝜌T
⌢ ⟨fail,XT ⟩ ∈ tt [[fail →U ((✷ e : X \ {✓} • e →U pass →U StopU ) ✷ ticktest →U pass →U StopU )]]

From the semantics of→U and ✷, and since fail is not in X , we can deduce that 𝜌T = ⟨⟩. This, combined with

𝜌v
⌢ ⟨fail, (Σ✓

tock
∪ V )⟩ ∼evt 𝜌T

⌢ ⟨fail,XT ⟩ = ⟨fail,XT ⟩

yields 𝜌v = ⟨⟩ and so ⟨fail, (Σ✓
tock

∪ V )⟩ belongs to

tt [[Q̂ |[ Σ ]| (fail →U ((✷ e : X \ {✓} • e →U pass →U StopU ) ✷ ticktest →U pass →U StopU ))]]

By the semantics of parallelism, since fail does not belong to the synchronisation set Σ, we obtain the following.

⟨(Σ✓
tock

∪ V )⟩ ∈ tt [[Q̂ |[ Σ ]| ((✷ e : X \ {✓} • e →U pass →U StopU ) ✷ ticktest →U pass →U StopU )]]

Hence there must be refusals ⟨XL⟩ ∈ tt [[Q̂]] and

⟨XR⟩ ∈ tt [[((✷ e : X \ {✓} • e →U pass →U StopU ) ✷ ticktest →U pass →U StopU )]]

such that Σ✓
tock

∪ V = XL ∪ XR . We observe that X \ {✓} ∩ XR
= ∅ because the right-hand parallel process initially

offers an external choice that includes all events in X \ {✓}. It therefore must be the case that X \ {✓} ⊆ XL. Moreover,

because of TT3, we can choose an XL that contains ✓. Therefore, we can deduce that X ⊆ XL. Since refusals of a

process are downward-closed due to TT1, we thus finally obtain ⟨X⟩ ∈ tt [[Q̂]].

Case ⟨X⟩ (⇐). From ⟨X⟩ ∈ tt [[Q]], since no trace of Q contains ticktest or the events in V , using TT2 we get

⟨X ∪ V ∪ {ticktest}⟩ ∈ tt [[Q]]. In addition, ⟨fail, (Σ✓
tock

\ (X ∪ {ticktest})) ∪ V ⟩ is in the following set.

tt [[Ttt (⟨X⟩)]] = tt [[fail →U ((✷ e : X \ {✓} • e →U pass →U StopU ) ✷ ticktest →U pass →U StopU )]]

This follows from the semantics of→U and ✷ and TT2. We now proceed to show that

⟨fail, Σ✓
tock

∪ V ⟩ ∈ tt [[(Q̂ |[ Σ ]| Ttt (⟨X⟩)) \ Σ]]

This is a consequence of the following two results, and the semantics of parallelism and hiding.

(1) ⟨fail, Σ✓
tock

∪ V ⟩ ∈ ⟨X ∪ V ∪ {ticktest}⟩ |[ Σ ]|T ⟨fail, (Σ✓
tock

\ (X ∪ {ticktest})) ∪ V ⟩. Since X ∪ {ticktest} ⊆ Σ,

then (X ∪ V ∪ {ticktest}) \ Σ✓
tock

= V = ((Σ✓
tock

\ (X ∪ {ticktest})) ∪ V ) \ Σ✓
tock

. Moreover, we observe that

((X ∪ V ∪ {ticktest}) ∪ (Σ✓
tock

\ (X ∪ {ticktest})) ∪ V ) = Σ
✓

tock
∪ V , hence by the definition of |[ ]|T , we obtain

⟨Σ✓
tock

∪ V ⟩ ∈ ⟨X ∪ V ∪ {ticktest}⟩ |[ Σ ]|T ⟨(Σ✓
tock

\ (X ∪ {ticktest})) ∪ V ⟩. So, the definition of |[ ]|T give us (1).

(2) ⟨fail, Σ✓
tock

∪ V ⟩ ∈ hideTrace Σ ⟨fail, Σ✓
tock

∪ V ⟩. We note that fail ∉ Σ and Σ ⊆ Σ
✓

tock
∪ V , so the result follows

from the definition of hideTrace Σ ⟨fail, Σ✓
tock

∪ V ⟩.

We note that Σ✓
tock

is the synchronisation set of the parallelism, with✓ and tock added.

Case ⟨X , tock⟩ ⌢ 𝜌 (⇒). We need to prove ⟨X , tock⟩ ⌢ 𝜌 ∈ tt [[Q]], using the induction hypothesis, namely, for all Q,

Q fails Ttt (𝜌) ⇔ 𝜌 ∈ tt [[Q]]. For a 𝜌h : TTTrace so that 𝜌h
⌢ ⟨fail, Σ✓

tock
∪V ⟩ ∈ tt [[(Q̂ |[Σ ]| Ttt (⟨X , tock⟩

⌢ 𝜌) \ Σ]], we

consider its visible counterpart 𝜌v and a test-component counterpart 𝜌T so that 𝜌T
⌢ ⟨fail,XT ⟩ ∈ tt [[Ttt (⟨X , tock⟩

⌢𝜌)]].

The definition of Ttt (⟨X , tock⟩
⌢ 𝜌) gives us the following.

𝜌T
⌢ ⟨fail,XT ⟩ ∈ tt [[inc →U ((✷ e : X \ {✓} • e → StopU ) ✷ ticktest → StopU ) △1 (Ttt (𝜌))]]
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From the semantics of→U and △1, there are traces 𝜌1 and 𝜌2 and refusal X2 such that

𝜌T
⌢ ⟨fail,XT ⟩ = ⟨inc⟩ ⌢ 𝜌1

⌢ ⟨X2, tock⟩
⌢ 𝜌2

⌢ ⟨fail,XT ⟩

where 𝜌2
⌢ ⟨fail,XT ⟩ ∈ tt [[Ttt (𝜌)]], 𝜌1

⌢ ⟨X2, tock⟩ ∈ tt [[(✷ e : X \ {✓} • e → StopU ) ✷ ticktest → StopU )]], and

#(𝜌1 ↾ {tock}) = 0. For any set E, we have 𝜌1
⌢ ⟨X , tock⟩ ∈ tt [[✷ e : E • e → StopU ]] ⇒ 𝜌1 ∈ tocks(Σ \ E) since

the choice admits no further tock events after an event e in E. This and #(𝜌1 ↾ {tock}) = 0 mean that 𝜌1 = ⟨⟩. Hence

𝜌T
⌢ ⟨fail,XT ⟩ = ⟨inc,X2, tock⟩

⌢ 𝜌2
⌢ ⟨fail,XT ⟩. Since 𝜌v

⌢ ⟨fail, (Σ✓
tock

∪ V )⟩ ∼evt 𝜌T
⌢ ⟨fail,XT ⟩, then 𝜌v is of the

form ⟨inc,X3, tock⟩
⌢ 𝜌3, for some X3 and 𝜌3. So, we have that ⟨inc,X3, tock⟩

⌢ 𝜌3
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ is in

tt [[Q̂ |[ Σ ]| (inc →U ((✷ e : X \ {✓} • e → StopU ) ✷ ticktest → StopU ) △1 Ttt (𝜌))]]

From inc ∉ 𝛼 (Q̂), the set of events used in Q̂, we obtain ⟨X3, tock⟩
⌢ 𝜌3

⌢ ⟨fail, Σ✓
tock

∪ V ⟩ is in

tt [[Q̂ |[ Σ ]| (((✷ e : X \ {✓} • e → StopU ) ✷ ticktest → StopU ) △1 Ttt (𝜌))]]

By the semantics of parallelism, this means that there must be traces

⟨XL
3 , tock⟩

⌢ 𝜌L ∈ tt [[Q̂]]

⟨XR
3 , tock⟩

⌢ 𝜌R ∈ [[((✷ e : X \ {✓} • e → StopU ) ✷ ticktest → StopU ) △1 Ttt (𝜌)]]

such that (1) ⟨X3⟩ ∈ ⟨XL
3 ⟩ |[ Σ ]|T ⟨XR

3 ⟩, and (2) 𝜌3
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ 𝜌L |[ Σ ]|T 𝜌R . From (1), the definition of trace

parallelism ( |[ Σ ]|T ) gives X3 = XL
3 ∪ XR

3 . We observe that Σ ⊆ X3 (as X3 occurs in a Σ-saturated trace); we therefore

have Σ ⊆ XL
3 ∪ XR

3 . Since (X \ {✓}) ∩ XR
3 = ∅ because the right-hand parallel process initially offers an external choice

that includes all events in X \ {✓}. S, it must be the case that X \ {✓} ⊆ XL
3 . Moreover, because of TT3, we can choose

an XL
3 that contains ✓. Therefore, we can deduce that X ⊆ XL

3 . From (2) it follows that 𝜌3
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ is in

tt [[Q̂ after ⟨XL
3 , tock⟩ |[ Σ ]| (((✷ e : X \ {✓} • e → StopU ) ✷ ticktest → StopU ) △1 Ttt (𝜌)) after ⟨X

R
3 , tock⟩]]

For a process P and a trace 𝜌 , we have tt [[P after 𝜌1]] =̂ {𝜌2 : TTTrace | 𝜌1
⌢ 𝜌2 ∈ tt [[P]] • 𝜌2}. In addition,

(((✷ e : X \ {✓} • e → StopU ) ✷ ticktest → StopU ) △1 Ttt (𝜌)) after ⟨X
R
3 , tock⟩ = Ttt (𝜌)

because the interruption happens after exactly one tock, when then Ttt (𝜌) takes over. Hence

𝜌3
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ tt [[Q̂ after ⟨XL

3 , tock⟩ |[ Σ ]| Ttt (𝜌)]]

From this and the induction hypothesis, we obtain 𝜌 ∈ tt [[Q after ⟨XL
3 , tock⟩]]. Hence from the definition of after we

finally obtain ⟨XL
3 , tock⟩

⌢ 𝜌 ∈ tt [[Q]]. Since as noted above X ⊆ XL
3 , by TT1 we get ⟨X , tock⟩ ⌢ 𝜌 ∈ tt [[Q]].

Case ⟨X , tock⟩ ⌢ 𝜌 (⇐). From ⟨X , tock⟩ ⌢ 𝜌 ∈ tt [[Q]], we get 𝜌 ∈ tt [[Q after ⟨X , tock⟩]]. By the induction hypothesis,

there is a trace such that 𝜌h
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ tt [[(Q̂ after ⟨X , tock⟩ |[ Σ ]| Ttt (𝜌)) \ Σ]]. For its visible counterpart

𝜌v
⌢⟨fail, Σ✓

tock
∪V ⟩ ∈ tt [[Q̂ after ⟨X , tock⟩ |[Σ]|Ttt (𝜌)]] we have 𝜌h

⌢⟨fail, Σ✓
tock

∪V ⟩ ∈ hideTrace Σ (𝜌v
⌢⟨fail, Σ✓

tock
∪V ⟩).

We define Tver = Ttt (⟨X , tock⟩
⌢ 𝜌) after ⟨inc⟩ if 𝜌 ≠ ⟨⟩ or Tver = Ttt (⟨X , tock⟩

⌢ 𝜌) after ⟨pass⟩, if 𝜌 = ⟨⟩. In both cases,

from the definition of Ttt (𝜌), we have Tver = ((✷ e : X \ {✓} • e → StopU ) ✷ ticktest → StopU ) △1 Ttt (𝜌). For every

𝜌1 in tt [[(Q̂ after ⟨X , tock⟩) |[Σ ]| Ttt (𝜌)]], we have ⟨Σ, tock⟩
⌢ 𝜌1 ∈ tt [[Q̂ |[Σ ]| Tver ]]. This is because X is refused before

tock in Q̂ and Σ \ ({tock, ticktest} ∪ X ) are refused in Tver . So, Σ \ {ticktest} is a refusal of the parallelism. In addition,

ticktest is not an event of Q̂, so it is in particular also refused before a tock in Q̂. So, by TT2, we have the refusal Σ.
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With this result, by taking 𝜌1 to be 𝜌v
⌢ ⟨fail, Σ✓

tock
∪V ⟩, we obtain ⟨Σ, tock⟩⌢𝜌v

⌢ ⟨fail, Σ✓
tock

∪V ⟩ ∈ tt [[Q̂ |[Σ]|Tver ]].

Using the definitions of Tver and parallelism, we obtain ⟨ver, Σ, tock⟩⌢𝜌v
⌢⟨fail, Σ✓

tock
∪V ⟩ ∈ tt [[Q̂ |[Σ]|Ttt (⟨X , tock⟩

⌢𝜌)]],

where ver stands for either inc or pass. From the definition of hideTrace, we have hideTrace Σ (⟨ver, Σ, tock⟩) ≠ ∅.

Moreover, as previously noted, 𝜌v is Σ-saturated, so hideTrace Σ (𝜌v
⌢ ⟨fail, Σ✓

tock
∪ V ⟩) ≠ ∅. Together, these give

∃ 𝜌2 : TTTrace • 𝜌2
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ tt [[(Q̂ |[ Σ ]| Ttt (⟨X , tock⟩

⌢ 𝜌)) \ Σ]]

So, Q fails Ttt (⟨X , tock⟩
⌢ 𝜌), by the definition of fails.

Case ⟨e⟩ ⌢ 𝜌 (⇒). We need to prove ⟨e⟩ ⌢ 𝜌 ∈ tt [[Q]], using the induction hypothesis Q fails Ttt (𝜌) ⇔ 𝜌 ∈ tt [[Q]]

for every Q. For a 𝜌h
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ tt [[(Q̂ |[ Σ ]| Ttt (⟨e⟩

⌢ 𝜌) \ Σ]], we consider its visible counterpart

𝜌v
⌢⟨fail, (Σ✓

tock
∪V )⟩ ∈ tt [[(Q̂ |[Σ]|Ttt (⟨X , tock⟩

⌢𝜌)]] and test-component counterpart 𝜌T
⌢⟨fail,XT ⟩ ∈ tt [[Ttt (⟨e⟩

⌢𝜌)]].

From the definition of Ttt , we have 𝜌T
⌢ ⟨fail,XT ⟩ ∈ tt [[inc →U e →U Ttt (𝜌)]]. Since the trace contains the event fail,

which is used in Ttt (𝜌) only, the trace must have a suffix from tt [[Ttt (𝜌)]]. From the semantics of→U , we can deduce that

there is a 𝜌1 such that 𝜌T = ⟨inc, e⟩⌢𝜌1 and 𝜌1
⌢ ⟨fail,XT ⟩ ∈ tt [[Ttt (𝜌)]]. Since 𝜌v

⌢ ⟨fail, Σ✓
tock

∪V ⟩ ∼evt 𝜌T
⌢ ⟨fail,XT ⟩,

then 𝜌v is of the form ⟨inc, e⟩ ⌢ 𝜌3, for some 𝜌3. We therefore have

⟨inc, e⟩ ⌢ 𝜌3
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ tt [[Q̂ |[ Σ ]| (inc →U e →U Ttt (𝜌))]]

⇒ ⟨e⟩ ⌢ 𝜌3
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ tt [[Q̂ |[ Σ ]| (e →U Ttt (𝜌))]] [semantics of parallelism: inc is not in Σ]

⇒ 𝜌3
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ tt [[Q̂ after ⟨e⟩ |[ Σ ]| Ttt (𝜌)]]

[semantics of parallelism: e is in Σ and Ttt (𝜌) = (e →U Ttt (𝜌)) after ⟨e⟩]

⇒ ∃ 𝜌4 : TTrace • 𝜌4
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ tt [[(Q̂ after ⟨e⟩ |[ Σ ]| Ttt (𝜌)) \ Σ]]

[hideTrace Σ (𝜌3
⌢ ⟨fail, Σ✓

tock
∪ V ⟩) ≠ ∅ due to satref (𝜌3, Σ)]

⇒ 𝜌 ∈ tt [[Q after ⟨e⟩]] [induction hypothesis]

⇒ ⟨e⟩ ⌢ 𝜌 ∈ tt [[Q]] [definition of after ]

Case ⟨e⟩ ⌢ 𝜌 (⇐).

⟨e⟩ ⌢ 𝜌 ∈ tt [[Q]]

⇒ 𝜌 ∈ tt [[Q after ⟨e⟩]] [definition of after ]

⇒ ∃ 𝜌h : TTTrace • 𝜌h
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ tt [[(Q̂ after ⟨e⟩ |[ Σ ]| Ttt (𝜌)) \ Σ]] [induction hypothesis]

⇒ ∃ 𝜌h, 𝜌v : TTTrace •

𝜌v ∈ tt [[Q̂ after ⟨e⟩ |[ Σ ]| Ttt (𝜌)]] ∧ satref (𝜌v, Σ) ∧ 𝜌h
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ hideTrace (Σ) 𝜌v

[semantics of hiding]

⇒ ∃ 𝜌h, 𝜌v : TTTrace •

⟨e⟩ ⌢ 𝜌v
⌢ ∈ tt [[Q̂ |[ Σ ]| e →U Ttt (𝜌)]] ∧ satref (𝜌v, Σ) ∧ 𝜌h

⌢ ⟨fail, Σ✓
tock

∪ V ⟩ ∈ hideTrace (Σ) 𝜌v

[semantics of parallelism: e ∈ Σ]

⇒ ∃ 𝜌h, 𝜌v : TTTrace •

⟨inc⟩ ⌢ ⟨e⟩ ⌢ 𝜌v ∈ tt [[Q̂ |[ Σ ]| inc →U e →U Ttt (𝜌)]] ∧

satref (𝜌v, Σ) ∧ 𝜌h
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ hideTrace (Σ) 𝜌v

[semantics of parallelism: inc ∉ Σ]
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⇒ ∃ 𝜌h, 𝜌v : TTTrace •

⟨inc⟩ ⌢ ⟨e⟩ ⌢ 𝜌v ∈ tt [[Q̂ |[ Σ ]| Ttt (⟨e⟩
⌢ 𝜌)]] ∧ satref (𝜌v, Σ) ∧ 𝜌h

⌢ ⟨fail, Σ✓
tock

∪ V ⟩ ∈ hideTrace (Σ) 𝜌v

[definition of Ttt]

Since 𝜌h
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ hideTrace (Σ) 𝜌 , and hideTrace (Σ) (⟨inc, e⟩) = {⟨inc⟩} ≠ ∅, then by definition of hideTrace,

there is a 𝜌1 such that 𝜌1
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ hideTrace (Σ) (⟨inc, e⟩ ⌢ 𝜌). The semantics of the hiding operator thus

gives 𝜌1
⌢ ⟨fail, Σ✓

tock
∪ V ⟩ ∈ tt [[Q̂ |[ Σ ]| Ttt (⟨e⟩

⌢ 𝜌) \ Σ]].

□

The above theorem is the main result in this section, used next to establish exhaustiveness of our test suites.

6.2 Test suites: semantics based on ✓-tock traces

As the final ingredient of our testing theory, we need to provide collections of tests that are complete for our refinement

relations of interest. Since our tests correspond to individual traces, a test suite can be identified with a collection of

traces. The general idea is to include traces disallowed by the specification, while keeping the test suite as small as

possible. To avoid redundancies, we therefore include only traces that are minimal with respect to the prefix order ≲.

Thus, given a specification P , we first define the łabstractž test suites (that is, collections of traces) for P with respect

to the input-output and standard ✓-tock refinement as follows.

Definition 6.7.

TSOiott (P) =̂ min≲{𝜌 : TTTrace | 𝜌 ∉ iottO [[P]] • addOutsO (𝜌)}

TStt (P) =̂ min≲{𝜌 : TTTrace | 𝜌 ∉ tt [[P]] • 𝜌}

We observe that these sets may be infinite and there then remains the problem of choosing some appropriate finite

subsets to use in testing. This is a topic that we touch upon under our discussion of future work in Section 7.

With the next example, we illustrate why minimality is of interest.

Example 6.8. We consider again RD from Example 3.2, and the trace 𝜌1 = ⟨takeoff , Σ✓, tock, found, Σ✓, tock⟩. Since,

as explained in Example 6.5, the prefix 𝜌2 = ⟨takeoff , Σ✓, tock, found⟩ of 𝜌1 is forbidden, so is its extension 𝜌1. If the

test for the shorter trace 𝜌2 fails, there is no need to execute the test for 𝜌1. On the other hand, if the test for 𝜌2 passes,

the test for 𝜌1 is inconclusive. This is guaranteed because, if the test for 𝜌2 passes, it means that the test execution stops

before the found event. In this case, the test for the 𝜌1 deadlocks at that same point, where the verdict is inc. In either

case, the test for the longer 𝜌1 does not add any information: it is useless. ✷

In addition, to test for input-output ✓-tock refinement, we require output-saturated traces.

Example 6.9. We consider again RD from Example 3.2, and the trace 𝜌3 = ⟨∅⟩, which is forbidden, since the output

takeoff is possible at the start, and is minimal with respect to ≲. The test Ttt (𝜌3) raises a fail verdict and then offers

only ticktest as a possibility for the SUT (see case (2) in the definition of Ttt (𝜌)). If the SUT does not terminate, the fail

verdict stands. This is not sound if the SUT can provide an output, for example, takeoff , as specified. ✷

The corresponding test suites can now be defined in a straightforward way.

Definition 6.10. ExhaustOiott (P) =̂ {𝜌 ∈ TSOiott (P) • Ttt (𝜌)} and Exhausttt (P) =̂ {𝜌 ∈ TStt (P) • Ttt (𝜌)}

Exhaustiveness, and, therefore, soundness, is established by the following theorem.

Manuscript submitted to ACM



Testing using CSP models: time, inputs, and outputs 33

Theorem 6.11. For any specification P, the test suites ExhaustOiott (P) and Exhausttt (P) are exhaustive for, respectively,

input-output and standard✓-tock refinement.

P ̸⊑IOTT Q ⇔ ∃ T : ExhaustOiott (P) • Q fails T

P ̸⊑TT Q ⇔ ∃ T : Exhausttt (P) • Q fails T

Proof. We show below the proof for ⊑IOTT .

P ̸⊑IOTT Q

⇔ ∃ 𝜌1 : TTTrace • 𝜌1 ∉ iottO [[P]] ∧ 𝜌1 ∈ iottO [[Q]] [definition of ⊑TT ]

⇔ ∃ 𝜌1 : TTTrace •

𝜌1 ∉ {𝜌1 : TTTrace | addOuts
O (𝜌1) ∈ tt [[P]]} ∧ 𝜌1 ∈ {𝜌1 : TTTrace | addOuts

O (𝜌1) ∈ tt [[Q]]}

[definition of iott]

⇔ ∃ 𝜌1 : TTTrace •

𝜌1 ∈ {𝜌1 : TTTrace | addOuts
O (𝜌1) ∉ tt [[P]]} ∧ 𝜌1 ∈ {𝜌1 : TTTrace | addOuts

O (𝜌1) ∈ tt [[Q]]}

[property of sets]

⇔ ∃ 𝜌2 : TTTrace • 𝜌2 ∈ {𝜌1 : TTTrace | addOuts
O (𝜌1) ∉ tt [[P]] • addOutsO (𝜌1)} ∧ 𝜌2 ∈ tt [[Q]]

[property of sets]

⇔ ∃ 𝜌3 : TTTrace • 𝜌3 ∈ min≲{𝜌 : TTTrace | addOutsO (𝜌) ∉ tt [[P]] • addOutsO (𝜌)} ∧ 𝜌3 ∈ tt [[Q]] [TT1]

⇔ ∃ 𝜌3 : TS
O
iott (P) • 𝜌3 ∈ tt [[Q]] [definitions of iottO [[P]] and TSOiott (P)]

⇔ ∃ 𝜌3 : TS
O
iott (P) • Q fails Ttt (𝜌3) [Theorem 6.6]

⇔ ∃ T : ExhaustOiott (P) • Q fails T [definition of ExhaustOiott (P)]

The proof for ⊑TT is similar, since Theorem 6.6 applies to traces 𝜌 of tt [[Q]] as well.

□

It is important to observe that our tests deal with deadlines as illustrated by the following example.

Example 6.12. We consider as specification the process RDFL from Example 3.4 and the trace 𝜌 = ⟨∅, tock, ∅, tock⟩,

which is forbidden for any refinement of RDFL, as it violates the deadline of at most one tock before the event

found happens. We recall that, in this example, O = {takeoff ,move, land}, hence we need to consider the trace

addOutsO (𝜌) = ⟨{takeoff ,move, land}, tock, {takeoff ,move, land}, tock⟩. Its test case can be calculated as follows.

Ttt (addOuts
O (𝜌))

= Ttt (⟨{takeoff ,move, land}, tock, {takeoff ,move, land}, tock⟩)

= inc →U

©
«

✷ e : O • e → StopU

✷

ticktest → StopU

ª®®®
¬
△1 Ttt (⟨{takeoff ,move, land}, tock⟩) [case (5), t ≠ ⟨⟩]

= inc →U

©
«

✷ e : O • e → StopU

✷

ticktest → StopU

ª®®®
¬
△1

©
«
pass →U

©
«

✷ e : O • e → StopU

✷

ticktest → StopU

ª®®®
¬
△1 Ttt (⟨⟩)

ª®®®
¬

[case (5), t = ⟨⟩]
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= inc →U

©
«

✷ e : O • e → StopU

✷

ticktest → StopU

ª®®®
¬
△1

©
«
pass →U

©
«

✷ e : O • e → StopU

✷

ticktest → StopU

ª®®®
¬
△1 fail →U STOP

ª®®®
¬

[case (1)]

We suppose now that we have the following implementation RDFL1 = found → land → Stop. This is not a correct

refinement of RDFL, since it allows an arbitrary number of time units to pass before found happens; in particular, it

exhibits the trace 𝜌 . The erroneous behaviour can be discovered using the test case Ttt (addOuts
O (𝜌)) as shown below.

Execution(RDFL1, Ttt (addOuts
O (𝜌)))

= ((RDFL1; ticktest →U StopU ) |[ Σ ]| Ttt (addOuts
O (𝜌))) \ Σ

We need to show that there is at least one trace of the above process whose last event before deadlock is fail. We

consider first the process without the hiding and proceed as follows.

(RDFL1; ticktest →U StopU ) |[ Σ ]| Ttt (addOuts
O (𝜌))

= RDFL1 |[ Σ ]| Ttt (addOuts
O (𝜌)) [no trace of RDFL1 contains ✓]

The semantics of parallel composition is defined using a parallel operator for traces |[ ]|T . We therefore need to indicate

two traces 𝜌1 and 𝜌2 of the component processes such that their composition 𝜌1 |[ Σ ]|T 𝜌2 contains a trace with the

desired property. From the semantics of CSP operators we obtain the following natural candidates.

𝜌1 = ⟨O, tock,O, tock, Σ⟩ ∈ tt [[RDFL1]]

𝜌2 = ⟨inc, Σ \ O, tock, pass, Σ \ O, tock, fail, Σ✓
tock

∪ V ⟩ ∈ tt [[Ttt (addOuts
O (𝜌))]]

Furthermore, using the definition of |[ ]|T , we can calculate a trace for the parallelism.

⟨inc, Σ, tock, pass, Σ, tock, fail, Σ✓
tock

∪ V ⟩ ∈ 𝜌1 |[ Σ ]|T 𝜌2

⇒ ⟨inc, Σ, tock, pass, Σ, tock, fail, Σ✓
tock

∪ V ⟩ ∈ tt [[(RDFL1; ticktest →U StopU ) |[ Σ ]| Ttt (addOuts
O (𝜌))]]

Since all events occurring in the above trace are not in Σ, and all the refusals subsume Σ, we finally obtain

⟨inc, Σ, tock, pass, Σ, tock, fail, Σ✓
tock

∪ V ⟩ ∈ ((RDFL1; ticktest →U StopU ) |[ Σ ]| Ttt (addOuts
O (𝜌))) \ Σ

according to the semantics of hiding. Hence we can conclude that RDFL1 fails Ttt (addOuts
O (𝜌)). ✷

Although timelocks are purely specification devices used to capture deadlines, our theory can handle such specifications.

It can also be used for a weaker conformance relation, namely, traces refinement, as discussed in the next section.

6.3 Event traces

Here, we briefly discuss a semantics characterised by traces containing only events in Σ
✓

tock
. This type of semantics is

typically referred to in the literature as a trace semantics; in our context, for clarity and notational convenience, we use

the term event traces. Formally, the set ETrace of event traces can be defined as follows.

Definition 6.13.

ETrace == {𝜌 : seqObs | ran 𝜌 ⊆ ran evt}

We observe that ETrace is not a subset of TTTrace, as event traces in ETrace do not contain any refusals, whereas traces

in TTTrace are required to have refusals preceding every tock event.
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The presence of tock gives rise to a trace semantics, induced by the semantics defined by the ✓-tock model, that has

more observational power than the standard trace semantics of CSP. Since a tock can happen in a stable state only, its

occurrence implicitly entails observation of at least an empty refusal ∅. In the input-output setting, one can make an

even stronger inference, as refusal of all outputs must have occurred before each tock.

The above observations suggest a straightforward translation operator, called et2iott below, from ETrace to TTTrace,

yielding ✓-tock traces corresponding to a given event trace.

Definition 6.14.

et2iottO (⟨⟩) = ⟨⟩

et2iottO (⟨e⟩ ⌢ 𝜌) =



e ⌢ et2iottO (𝜌) if e ≠ tock

⟨O, tock⟩ ⌢ et2iottO (𝜌) if e = tock

We can now conveniently formalise the input-output event trace semantics in terms of the✓-tock semantics.

Definition 6.15. eiottO [[P]] =̂ {𝜌 ∈ ETrace | et2iottO (𝜌) ∈ iott [[P]]}

In the definition of exhaustive test suits for traces refinement, we can apply an approach similar to that used for✓-tock

refinement in the earlier part of this section. We first define the test suite in terms of traces for a specification P .

TSOeiott (P) =̂ min≲{𝜌 ∈ ETrace ∧ 𝜌 ∉ eiottO [[P]] • et2iottO (𝜌)}

The definition of the corresponding CSP test suite is as follows.

ExhaustOeiott (P) =̂ {𝜌 ∈ TSOeiott (P) • Ttt (𝜌)}}

We can then easily show that the above test suite is exhaustive.

Example 6.16. We recall the previous Example 6.12. The property considered there ś violation of a deadline of at most

one tock before the event found ś can be expressed using a syntactically simpler event trace, namely 𝜌 = ⟨tock, tock⟩. The

corresponding process in the test suite ExhaustOeiott (RDFL) is Ttt (et2iott
O (𝜌)), where et2iottO (𝜌) = ⟨O, tock,O, tock⟩.

Since the latter trace is equal to addOutsO (𝜌) from Example 6.12, the same test can be used in both examples, as

expected. ✷

In summary, our tests can be used also to test for traces refinement only. While the weaker traces-refinement relation

does not require all the tests required to test for refinement, the notion of test is the same.

7 CONCLUSIONS

We have presented the first testing theory for timewise refinement available in the literature. Other refinement relations

that take inputs and outputs into account have been presented, but none of them deal with time. By considering time,

and inputs and outputs in CSP, we have a theory of testing that can form the basis for practical testing.

Existing testing theories for CSP (and its variants) [13, 40] take advantage of a core theorem that shows how

refinement can be expressed in terms of traces refinement and another conf relation concerned just with deadlocks.

Those testing theories provide two definitions of test cases (for testing for traces refinement and for conf ) and two

exhaustive test sets. This is advantageous in terms of formalisation, since the test cases for the weaker relations are

simpler. In the context of tock-CSP, however, tests for traces refinement are no longer simple, because of the special

nature of tock, which does not represent an interaction. To deal with tock, we have to deal with refusals anyway. It is
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for this reason that, here, we deal directly with ✓-tock traces and input-output ✓-tock-refinement and consider the

tests for traces refinement as a special case. An advantage is that we then have a single suite of more powerful tests

that check for the conformance of interactions, time, and deadlocks.

In addition, in [15], since there is no possibility of observing timeouts, we use prioritisation to check refusals: the SUT

events are prioritised, and, if they do not happen, we then can issue a verdict event. In that context, we use prioritisation

also to handle termination. For tock-CSP, we can use timeouts instead of prioritisation. We, therefore, adopt a simpler

definition of test execution, and handle termination via an extra special event ticktest.

The work in [40] adopts the standard traces and failures semantics of CSP. For a finite non-terminating CSP model,

finite optimal test suites for checking traces and failures refinement are presented, and their exhaustiveness is proven.

The fault domains for which failure detection can be guaranteed are specified by means of normalised transition graphs

representing the failures semantics of finite-state CSP processes adopted in a popular model checker [25]. The definition

of finite test suites for input-output tock-CSP is part of our agenda for future work. Importantly, Theorem 6.6 shows

that our testing theory can be used to test for any trace not allowed by the specification; it does not apply only to the

(set of disallowed) traces described in this paper. As a result, our testing theory can be used with any test generation

algorithm that identifies traces that are not allowed by the specification.

CSP and a timed version of ioco have been considered in [8], where the authors define a new conformance relation

called csptio. Like in our work, and as usual in formal theories of testing, both the specification and the SUT are assumed

to be described in CSP. In [8], however, a normal form is considered for the process descriptions to reflect, in particular,

the cyclic paradigm of data-flow reactive systems. On the other hand, both discrete and dense time are considered by

combining CSP and SMT-solving technology. The goal in [8] is not to adopt refinement as a conformance relation, as

we do here, but to use CSP technology to reason about a relation inspired by ioco. This work has been taken forward to

underpin testing techniques based on controlled natural language [7].

We have used tock-CSP extensively to give semantics to domain-specific modelling languages for robotics [9]. In

particular, all our software modelling languages have a tock-CSP semantics. In our future work, we will use the testing

theory presented here to justify test-generation approaches based on models written in these languages.

For example, previously, we have used mutation testing [10] to generate tests from models written in the control-

software design language RoboChart. The approach essentially creates mutants of the specification by seeding faults

and then uses a model-checker to find a behaviour of a mutant that is not allowed by the specification. The tests

generated, however, do not take into account time or inputs and outputs. We will revisit our approach and our examples

to consider their rich set of time properties. We will also create the infrastructure to execute the tests and provide

verdicts as specified here. As noted above, once we have a behaviour of a mutant that is not allowed by the specification,

Theorem 6.6 shows that our function Ttt can be used to generate a test for this disallowed behaviour.

Finally, it is worth noting that there are at least two issues related to efficiency of testing. First, the tests we use are

essentially sequential and there is potential to use other types of tests, such as those in the form of trees, to improve

efficiency. As an example, we consider two disallowed behaviours 𝜌1 = 𝜌 ⌢ ⟨o1⟩
⌢ 𝜌3 and 𝜌2 = 𝜌 ⌢ ⟨o2⟩

⌢ 𝜌4 that have

a common prefix and then have different outputs. Using sequential tests, as described in this paper, if we are testing for

𝜌1 and the output o2 is produced by the SUT after 𝜌 then testing terminates with an inconclusive verdict. Instead, one

could combine the two tests so that if o1 is produced after 𝜌 then the test continues as defined for Ttt (𝜌1) and if o2 is

produced after 𝜌 then the test continues as defined for Ttt (𝜌2). General optimisations such as this are a problem for

future, and have been tackled in the context of CSP previously [12]. Second, recent work has shown how redundancies

can be eliminated in a set of tests [24] and it should be possible to use this approach to further improve efficiency.
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A DEFINITIONS FROM tock-CSP DENOTATIONAL SEMANTICS

Here, we reproduce the semantics of tock-CSP [3], including some operators used in the input-output semantics here.

Trace prefix relation

≲ : Obs ↔ Obs

∀𝜎, 𝜌 : seqObs; e : Σ✓
tock

; X , Y : P Σ
✓

tock
•

⟨⟩ ≲ 𝜌 ∧ (𝜎 ≲ 𝜌 ⇒ ⟨evt e⟩ ⌢ 𝜎 ≲ ⟨evt e⟩ ⌢ 𝜌) ∧ (𝜎 ≲ 𝜌 ∧ X ⊆ Y ⇒ ⟨ref X⟩ ⌢ 𝜎 ≲ ⟨ref Y ⟩ ⌢ 𝜌)

Divergence and termination

tt [[div]] = {⟨⟩}

tt [[Skip]] = {⟨⟩, ⟨evt✓⟩}

Timed deadlock

tt [[Stop]] = tocks Σ✓ ∪ {𝜌 : tocks Σ✓; X : P Σ
✓ • 𝜌 ⌢ ⟨ref X⟩}

tocks : P Σ
✓

tock
→ P TTTrace

∀X : P Σ
✓

tock
• ⟨⟩ ∈ tocks X ∧ (∀ 𝜌 : tocks X ; Y : P Σ

✓

tock
| Y ⊆ X • ⟨ref Y , evt tock⟩ ⌢ 𝜌 ∈ tocks X )

Timestop

tt [[StopU ]] = {⟨⟩} ∪ {X : P Σ
✓

tock
• ⟨ref X⟩}

Delay

tt [[Wait n]] = {𝜌 : tocks Σ✓ | #(𝜌 ↾ {evt tock}) ≤ n}

∪ {𝜌 : tocks Σ✓; X : P Σ
✓ | #(𝜌 ↾ {evt tock}) < n • 𝜌 ⌢ ⟨ref X⟩}

∪ {𝜌 : tocks Σ✓ | #(𝜌 ↾ {evt tock}) = n • 𝜌 ⌢ ⟨evt✓⟩}

Prefixing

tt [[e → P]] = tocks (Σ✓ \ {e})

∪ {𝜌1 : tocks (Σ
✓ \ {e}); X : P(Σ✓ \ {e}) • 𝜌1

⌢ ⟨ref X⟩}

∪ {𝜌1 : tocks (Σ
✓ \ {e}); 𝜌2 : tt [[P]] | e ≠ tock • 𝜌1

⌢ ⟨evt e⟩ ⌢ 𝜌2}

∪ {𝜌1 : tocks Σ
✓; X : P Σ

✓; 𝜌2 : tt [[P]] | e = tock • 𝜌1
⌢ ⟨ref X , evt tock⟩ ⌢ 𝜌2}

Internal choice

tt [[P ⊓ Q]] = tt [[P]] ∪ tt [[Q]]
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External choice

tt [[P ✷ Q]] = {𝜌1 : tocks Σ
✓

tock
; 𝜌2, 𝜌3, 𝜌4 : TTTrace |

𝜌1
⌢ 𝜌2 ∈ tt [[P]] ∧ 𝜌1

⌢ 𝜌3 ∈ tt [[Q]] ∧

(∀ 𝜌5 : tocks Σ
✓

tock
• 𝜌5 prefix 𝜌1

⌢ 𝜌2 ⇒ 𝜌5 prefix 𝜌1) ∧

(∀ 𝜌5 : tocks Σ
✓

tock
• 𝜌5 prefix 𝜌1

⌢ 𝜌3 ⇒ 𝜌5 prefix 𝜌1) ∧

(∀X : P Σ
✓

tock
• 𝜌2 = ⟨ref X⟩ ⇒ ∃ Y : P Σ

✓

tock
• 𝜌3 = ⟨ref Y ⟩ ∧ X \ {tock} = Y \ {tock}) ∧

(∀X : P Σ
✓

tock
• 𝜌3 = ⟨ref X⟩ ⇒ ∃ Y : P Σ

✓

tock
• 𝜌2 = ⟨ref Y ⟩ ∧ X \ {tock} = Y \ {tock}) ∧

(𝜌4 = 𝜌1
⌢ 𝜌2 ∨ 𝜌4 = 𝜌1

⌢ 𝜌3)

• 𝜌4

}

Sequence

tt [[P ; Q]] = {𝜌1 : tt [[P]] | ¬ (∃ 𝜌2 : TTTrace • 𝜌1 = 𝜌2
⌢ ⟨evt✓⟩)}

∪ {𝜌1, 𝜌2 : TTTrace | 𝜌1
⌢ ⟨evt✓⟩ ∈ tt [[P]] ∧ 𝜌2 ∈ tt [[Q]] • 𝜌1

⌢ 𝜌2}

Interrupt

tt [[P △ Q]] =

{𝜌1 : TTTrace; 𝜌2 : tt [[Q]] | 𝜌1
⌢ ⟨evt✓⟩ ∈ tt [[P]] ∧ fTock 𝜌1 = 𝜌2 • 𝜌1

⌢ ⟨evt✓⟩}

∪ {𝜌1, 𝜌2 : TTTrace; X , Y , Z : P Σ
✓

tock
|

𝜌1
⌢ ⟨ref X⟩ ∈ tt [[P]] ∧ 𝜌2

⌢ ⟨ref Y ⟩ ∈ tt [[Q]] ∧ fTock 𝜌1 = 𝜌2 ∧ Z ⊆ X ∪ Y ∧ X \ {tock} = Y \ {tock}

• 𝜌1
⌢ ⟨ref Z⟩

}

∪ {𝜌1 : tt [[P]]; 𝜌2, 𝜌3 : TTTrace |

(¬ ∃𝜙 : seqObs • 𝜌1 = 𝜙 ⌢ ⟨evt✓⟩) ∧ (¬ ∃𝜙 : seqObs; X : P Σ
✓

tock
• 𝜌1 = 𝜙 ⌢ ⟨ref X⟩) ∧

fTock 𝜌1 = 𝜌2 ∧ 𝜌2
⌢ 𝜌3 ∈ tt [[Q]] ∧ (¬ ∃𝜙 : seqObs; X : P Σ

✓

tock
• 𝜌3 = ⟨ref X⟩ ⌢ 𝜙)

• 𝜌1
⌢ 𝜌3

}

fTock : TTTrace → TTTrace

fTock ⟨⟩ = ⟨⟩ ∧ ∀X : P Σ
✓

tock
• fTock ⟨ref X⟩ = ⟨⟩

∀ e : Σ✓; 𝜌 : TTTrace • fTock (⟨evt e⟩ ⌢ 𝜌) = fTock 𝜌

∀X : P Σ
✓

tock
; 𝜌 : TTTrace • fTock (⟨ref X , evt tock⟩ ⌢ 𝜌) = ⟨ref X , evt tock⟩ ⌢ fTock 𝜌

Timeout

tt [[P △d Q]] =

{𝜌1 : tt [[P]] | #(𝜌1 ↾ {evt tock}) < d}

∪ {𝜌1 : tt [[P]]; 𝜌2 : tt [[Q]]; 𝜙 : seq Σ✓
tock

|

#(𝜌1 ↾ {evt tock}) = d ∧ ((d = 0 ∧ 𝜌1 = ⟨⟩) ∨ (d > 0 ∧ 𝜌1 = 𝜙 ⌢ ⟨evt tock⟩)) • 𝜌1
⌢ 𝜌2

}
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Parallelism

tt [[P |[A ]| Q]] =
⋃
{𝜌1 : tt [[P]]; 𝜌2 : tt [[Q]] • 𝜌1 |[A ]|T 𝜌2}

|[ ]|T : (TTTrace × P Σ × TTTrace) → P TTTrace

∀X : P Σ; Y , Z : P Σ
✓

tock
; e1, e2 : Σ; 𝜌1, 𝜌2 : TTTrace •

⟨⟩ |[ X ]|T ⟨⟩ = {⟨⟩} ∧

⟨⟩ |[ X ]|T ⟨ref Y ⟩ = {⟨⟩} ∧

⟨⟩ |[ X ]|T ⟨evt✓⟩ = {⟨⟩} ∧

e1 ∉ X ⇒ ⟨⟩ |[ X ]|T (⟨evt e1⟩
⌢ 𝜌1) = {𝜌2 : ⟨⟩ |[ X ]|T 𝜌1 • ⟨evt e1⟩

⌢ 𝜌2} ∧

e1 ∈ X ⇒ ⟨⟩ |[ X ]|T (⟨evt e1⟩
⌢ 𝜌1) = {} ∧

⟨⟩ |[ X ]|T (⟨ref Y , evt tock⟩ ⌢ 𝜌1) = {} ∧

Y \ (X ∪ {✓, tock}) = Z \ (X ∪ {✓, tock}) ⇒ ⟨ref Y ⟩ |[ X ]|T ⟨ref Z⟩ = {⟨ref (Y ∪ Z)⟩} ∧

Y \ (X ∪ {✓, tock}) ≠ Z \ (X ∪ {✓, tock}) ⇒ ⟨ref Y ⟩ |[ X ]|T ⟨ref Z⟩ = {} ∧

⟨ref Y ⟩ |[ X ]|T ⟨evt✓⟩ = {W : Σ✓
tock

| W ⊆ X • ⟨ref (Y ∪W )} ∧

e1 ∉ X ⇒ ⟨ref Y ⟩ |[ X ]|T (⟨evt e1⟩
⌢ 𝜌1) = {𝜌2 : ⟨ref Y ⟩ |[ X ]|T 𝜌1 • ⟨evt e1⟩

⌢ 𝜌2}) ∧

e1 ∈ X ⇒ ⟨ref Y ⟩ |[ X ]|T (⟨evt e1⟩
⌢ 𝜌1) = {} ∧

⟨ref Y ⟩ |[ X ]|T (⟨ref Z, evt tock⟩ ⌢ 𝜌1) = {} ∧

⟨evt✓⟩ |[ X ]|T ⟨evt✓⟩ = {⟨evt✓⟩} ∧

e1 ∉ X ⇒ ⟨evt✓⟩ |[ X ]|T (⟨evt e1⟩
⌢ 𝜌1) = {𝜌2 : ⟨evt✓⟩ |[ X ]|T 𝜌1 • ⟨evt e1⟩

⌢ 𝜌2}) ∧

e1 ∈ X ⇒ ⟨evt✓⟩ |[ X ]|T (⟨evt e1⟩
⌢ 𝜌1) = {} ∧

⟨evt✓⟩ |[ X ]|T (⟨ref Y , evt tock⟩ ⌢ 𝜌1) =

{Z : P Σ
✓

tock
; 𝜌2 : TTTrace |

⟨ref Z⟩ ∈ ⟨evt✓⟩ |[ X ]|T ⟨ref Y ⟩ ∧ 𝜌2 ∈ ⟨evt✓⟩ |[ X ]|T 𝜌1 • ⟨ref Z, evt tock⟩ ⌢ 𝜌2

} ∧

e1 ∉ X ∧ e2 ∉ X ⇒ (⟨evt e1⟩
⌢ 𝜌1) |[ X ]|T (⟨evt e2⟩

⌢ 𝜌2) =

{𝜌3 : 𝜌1 |[ X ]|T (⟨evt e2⟩
⌢ 𝜌2) • ⟨evt e1⟩

⌢ 𝜌3} ∪ {𝜌3 : (⟨evt e1⟩
⌢ 𝜌1) |[ X ]|T 𝜌2 • ⟨evt e2⟩

⌢ 𝜌3} ∧

e1 ∉ X ∧ e2 ∈ X ⇒ (⟨evt e1⟩
⌢ 𝜌1) |[ X ]|T (⟨evt e2⟩

⌢ 𝜌2) =

{𝜌3 : 𝜌1 |[ X ]|T (⟨evt e2⟩
⌢ 𝜌2) • ⟨evt e1⟩

⌢ 𝜌3} ∧

e1 ∈ X ∧ e2 ∈ X ∧ e1 = e2 ⇒ (⟨evt e1⟩
⌢ 𝜌1) |[ X ]|T (⟨evt e2⟩

⌢ 𝜌2) = {𝜌3 : 𝜌1 |[ X ]|T 𝜌2 • ⟨evt e1⟩
⌢ 𝜌3} ∧

e1 ∈ X ∧ e2 ∈ X ∧ e1 ≠ e2 ⇒ (⟨evt e1⟩
⌢ 𝜌1) |[ X ]|T (⟨evt e2⟩

⌢ 𝜌2) = {} ∧

e1 ∉ X ⇒ (⟨evt e1⟩
⌢ 𝜌1) |[ X ]|T (⟨ref Z, evt tock⟩ ⌢ 𝜌2) =

{𝜌3 : 𝜌1 |[ X ]|T (⟨ref Z, evt tock⟩ ⌢ 𝜌2) • ⟨evt e1⟩
⌢ 𝜌3} ∧

e1 ∈ X ⇒ (⟨evt e1⟩
⌢ 𝜌1) |[ X ]|T (⟨ref Z, evt tock⟩ ⌢ 𝜌2) = {} ∧

(⟨ref Y , evt tock⟩ ⌢ 𝜌1) |[ X ]|T (⟨ref Z, evt tock⟩ ⌢ 𝜌2) =

{W : P Σ
✓

tock
; 𝜌3 : TTTrace |

⟨ref W ⟩ ∈ ⟨ref Y ⟩ |[ X ]|T ⟨ref Z⟩ ∧ 𝜌3 ∈ 𝜌1 |[ X ]|T 𝜌2 • ⟨ref W , evt tock⟩ ⌢ 𝜌3

} ∧

𝜌2 |[ X ]|T 𝜌1 = 𝜌1 |[ X ]|T 𝜌2
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Hiding

tt [[P \ X ]] =
⋃
{𝜌 : tt [[P]] • hideTrace X 𝜌}

hideTrace : P Σ
✓

tock
→ (TTTrace → P TTTrace)

∀X , Y : P Σ
✓

tock
; e : Σ✓

tock
; 𝜌1 : TTTrace •

hideTrace X ⟨⟩ = {⟨⟩} ∧

hideTrace X (⟨evt e⟩ ⌢ 𝜌1) = {𝜌2 : hideTrace X 𝜌1 | e ∈ X } ∪ {𝜌2 : hideTrace X 𝜌1 | e ∉ X • ⟨evt e⟩ ⌢ 𝜌2} ∧

hideTrace X ⟨ref Y ⟩ = {Z : P Y | X ⊆ Y • ⟨ref Z⟩} ∧

hideTrace X (⟨ref Y , evt tock⟩ ⌢ 𝜌1) =

{𝜌2 : hideTrace X 𝜌1 | tock ∈ X }

∪ {Z : P Y ; 𝜌2 : hideTrace X 𝜌1 | tock ∉ X ∧ X ⊆ Y • ⟨ref Z, evt tock⟩ ⌢ 𝜌2})

Renaming

tt [[P [[f ]]]] =
⋃
{𝜌 : tt [[P]] • renameTrace f 𝜌}

renameTrace : (Σ✓
tock

→ Σ
✓

tock
) → (seqObs → P seqObs)

∀ f : Σ✓
tock

→ Σ
✓

tock
; e : Σ✓

tock
; X : P Σ

✓

tock
; 𝜙 : seqObs •

renameTrace f ⟨⟩ = {⟨⟩} ∧

renameTrace f (⟨evt e⟩ ⌢ 𝜙) = {t : renameTrace f 𝜙 • ⟨evt (f e)⟩ ⌢ t} ∧

renameTrace f (⟨ref X⟩ ⌢ 𝜙) = {t : renameTrace f 𝜙 ; Y : P Σ
✓

tock
| X = (f ∼) (| Y |) • ⟨ref Y ⟩ ⌢ t}

B SUMMARY OF ADDITIONAL SEMANTIC FUNCTIONS

iottO [[P]] =̂ {𝜌 : TTTrace | addOutsO (𝜌) ∈ tt [[P]]}

iottO
M
[[TT ]] =̂ {𝜌 : ran addTick | addOuts(𝜌) ∈ TT • addOuts(𝜌)}

tstraces[[P]] =̂ st (| iottO [[P]] |)

eiottO [[P]] =̂ {𝜌 ∈ ETrace | et2iottO (𝜌) ∈ iott [[P]]}
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