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Abstract: Malaysia has been experiencing smoke-haze episodes almost annually for the past few
decades. PM2.5 is the main component in haze and causes harmful impacts on health due to its small
aerodynamic size. This study aimed to explore the implications of PM2.5 exposure on the dietary
intake of working individuals. Two phased 13-weeks follow-up study was conducted involving
440 participants, consisting of two cohorts of outdoor and indoor workers. Ambient PM2.5 concen-
trations were monitored using DustTrakTM DRX Aerosol Monitor. Data on Simplified Nutritional
Appetite Questionnaire (SNAQ) and 24 h diet recall were collected weekly. The highest PM2.5 con-
centration of 122.90 ± 2.07 µg/m3 was recorded in August, and it vastly exceeded the standard value
stipulated by US EPA and WHO. SNAQ scores and calorie intake were found to be significantly
(p < 0.05) associated with changes in PM2.5 exposure of outdoor workers. Several moderate and
positive correlations (R-value ranged from 0.4 to 0.6) were established between SNAQ scores, calorie
intake and PM2.5 exposure. Overall findings suggested that long hours of PM2.5 exposure affect
personal dietary intake, potentially increasing the risk of metabolic syndromes and other unde-
sired health conditions. The current policy should be strengthened to safeguard the well-being of
outdoor workers.

Keywords: air pollution; particulate matter (PM2.5); Simplified Nutritional Appetite Questionnaire
(SNAQ); calorie intake; outdoor workers

1. Introduction

Ambient air pollution significantly contributes to disease burden, especially heart
and chronic respiratory diseases. This phenomenon leads to approximately 4.2 million
annual premature deaths and is predicted to be the main contributor to global premature
mortality by 2050 [1–4]. Higher exposure to air pollutants was observed in low- and
middle-income countries [5–7]. Haze is a well-known air pollution phenomenon linked to
persistent particulate matter episodes in Southeast Asia (SEA), significantly impacting the
economy, health and environment [8]. Countries such as Malaysia, Singapore, Indonesia,
and Thailand have been experiencing almost yearly smoke-haze episodes for decades due
to the recurrent slash and burn agricultural activities and prolonged dry season [9,10].
Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) poses a greater
threat to human cardiovascular and respiratory systems due to its capability to reach the
deepest recesses of lungs and penetration into bloodstream, impairing vital organs [11–13].
A recent animal toxicological study reported PM2.5 emitted during smoldering activity to
be more toxic when compared to vehicular emissions at equal doses [14]. Prolonged hours
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of exposure to ambient PM2.5 was suggested to elicit more significant impacts on mortality
and morbidity in the long run [15].

Malaysia’s prevalence of obesity has increased by four-fold since 1996 and inevitably
has reached an epidemic level, especially for urban dwellers [16–18]. Now, Malaysia has
the highest adult obesity rate among SEA countries. Obesity is the most preventable
death globally and it utilizes substantial social resources [19]. The prevalence of obesity
is expected to worsen by year 2025, given no implementation of control measures on its
attributing risk factors [20,21]. Obesity is an outcome of complex interactions between
intrinsic and extrinsic factors such as genetics, environmental, social and behavioral factors
that eventually determine energy intake and expenditure [22]. Ultimately, the ratio of high
energy intake to energy expenditure precedes the high rate of obesity [23]. A longitudinal
study in China highlighted a 1.54% increase in average PM2.5 concentrations over the past
12 months to increase the body mass index (BMI), overweight and obesity by 0.27, 0.82%
and 0.27%, respectively [24]. Additionally, similar observations have been reported in
United States (US), Serbia, Italy, South Korea, Canada and Netherlands [25].

Several mechanisms have been proposed to explain the association between exposure
to air pollution and unhealthy BMI. Air pollution can lead to disruption in metabolic
pathways via increased inflammation in adipose tissue and oxidative stress, decreased
efficiency in glucose metabolism and hepatic accumulation [26–28]. Prolonged exposure to
air pollution was associated with neuroinflammation in the brain and thereafter, potentially
altering appetite and eliciting anxiety-induced overeating behaviors [29,30]. Epidemiologi-
cal findings indicated that airborne particles could induce pro-inflammatory responses in
the central nervous system of children, resulting in poor appetite control, increased caloric
intake and changes in basal metabolism [31]. Additionally, air pollution can negatively
impact intentional efforts to lose weight by retaining behaviour for high-calorie intake [32].
Air pollution indirectly promotes a sedentary lifestyle by decreasing lung function, impair-
ing exercise performance and discouraging regular physical activities [33,34]. Poor outdoor
air quality can further exacerbate the situation causing excessive sedentary behaviour [35].

Without a doubt, industrialization and urbanization will continue to surge in Asian
countries and are expected to follow suit by air pollution and related health issues. Al-
though the negative impacts of air pollution were well researched, its impact on food
intake remains scanty and rare, especially in developing countries. Secondly, most previous
studies were focused on occupational-associated air pollutants such as vehicle admissions,
mining dusts, construction dusts, and waste treatment odors [36–43]. This study aimed
to determine the impact of PM2.5 exposure on food intake among outdoor workers via a
cohort longitudinal approach. Results are anticipated to provide insights on possible un-
derlying causes for the high prevalence of obesity in Malaysia, allowing early intervention
and mitigation plans.

2. Materials and Methods
2.1. PM2.5 Measurements

Ambient PM2.5 concentration was measured using DustTrakTM DRX Aerosol Monitor
(Model 8520, TSI, Shoreview, MN, USA) [44–46]. DustTrakTM DRX consisted of a photome-
ter and an optical counter, the concentration of PM2.5 was determined by illuminates a
laser diode into a sample stream, and the reflected light corresponding to the amounts of
PM was captured by photodetector. The photometric voltage output from the DustTrakTM

DRX was translated into real-time mass concentrations of PM2.5. The reading was recorded
at 5 min interval. During real-time monitoring, the inlet of the sampler was placed about
1.2 to 1.5 m above ground. All DustTrakTM DRX were installed without 1 km radius of each
participant recruitment site. The recorded data was then cross verified with the readings
from Department of Environment (DOE) Malaysia.
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2.2. Study Population

This is cohort study with two cycles conducted at different timeframes; first cycle was
conducted from August to November 2016, while the second cycle was conducted from
June to August 2017. Sampling duration coincided with Malaysia’s monsoon season and
the equatorial SEA region’s dry season, which had higher chances for a haze episode [47].
A total of 440 participants aged 18 and above, regardless of gender were recruited among
working adults in Kuala Lumpur, Malaysia. Participants with outdoor exposure of more
than 12 average hours per day were categorized as outdoor workers cohort, while those
who spent less than 5 average hours outdoors daily were categorized as indoor workers
cohort, as defined in previous study (Tovalin et al., 2006). Individuals with irregular or
uncategorisable working hours were excluded from this study. Additionally, pregnant
women and participants who were undergoing medication, particularly for respiratory
conditions, were excluded. This study was ethically cleared by University Malaya Medical
Centre Ethics Committee (UMMC EC) (approval code 20165-2447). The research was
conducted with full compliance to Declaration of Helsinki and the Malaysian Guidelines
for Good Clinical Practice (Guideline, 2001). Participants who fulfilled the selection criteria
and willing to give consented were recruited in this study.

2.3. Dietary Intakes

Throughout the 13 weeks of study, all participants were required to complete a weekly
self-administrated questionnaire consisting of 3 sections: (1) Sociodemographic, (2) Simpli-
fied Nutrition Appetite Questionnaire (SNAQ), and (3) 24 h diet recall (24hDR) log. The
Simplified Nutritional Appetite Questionnaire (SNAQ) is the simplified version of the Ap-
petite, Hunger and Sensory Perception (AHSP) questionnaire which originally developed
to assess the appetite among community-dwelling elderly population in Netherland [48].
SNAQ was shown to have equal reliability, specificity, and sensitivity as original question-
naire in predicting malnutrition in nonspecialized population [49]. The SNAQ composed
of four items that assess appetite, satiety, taste of food and number of meals per day, respec-
tively. Each item was provided with five options with the scale of 1 to 5. Total scoring of
SNAQ ranged from 4 to 20. Lower scores indicate higher risk of weight loss. Cutoff point
of ≤14 was suggested to predict malnutrition and involuntary weight loss [50].

Information on calorie intake was assessed using an adapted and an interactive pre-
tested 24 h diet recalls (24hDR) method [51]. This method was previously validated in a
Malaysia’s national survey program [52]. The 24hDR were taken for three non-consecutive
days over the week, including two weekdays and one weekend. The diet recall was
conducted in the greatest possible details, which include the estimated portion size, volume
of food, types, brands, and cooking methods, with the aid of some common household
measurement photographs as reference. All recall data were analysed using the Nutritionist
Pro 6.0 (Axxya Systems-Nutritionist Pro, Stafford, TX, USA).

2.4. Statistical Analysis

Socio-demographics were presented as categorical data, expressed in frequency and
percentage. All outcomes were analysed as continuous dependent variables, presented as
mean ± SD for normally distributed data or median (interquartile range) for non-normally
distributed data. The changes in dietary intakes from baseline to last follow-up visit were
analyzed using a general linear model (GLM) for repeated measures. The within-subjects
factor was defined as the sampling time point. Indoor/outdoor was tested as the between-
subject effect. Adjustments were made for individual-varying covariates, including gender,
age, ethnicity, and smoking habit. Levene and Box M tests assessed the homogeneity of
the variance and covariance structure of the dependent variables. The sphericity test of
the residual covariance matrix was assessed using Mauchly’s sphericity test. Pearson’s
two-tailed correlation coefficients were calculated to investigate the relationships between
continuous variables. Results were considered significant if p < 0.05 with 95% of confi-
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dence interval. Statistical analysis was performed using SPSS 26.0 (IBM Corp., New York,
NY, USA) for macOS.

3. Results
3.1. PM2.5 Data

The changes in concentration of ambient PM2.5 on a weekly basis from May 2016
to October 2017 (80 weeks) is illustrated in Figure 1. The peak of ambient PM2.5 was
charted at the third week of August, with maximum concentration of 122.90 ± 2.07 µg/m3.
Minimum concentration of ambient PM2.5 were recorded twice at the fourth week of July
2016 and first week of August 2017, with respective concentration of 57.47 ± 3.80 µg/m3 and
57.47 ± 1.64 µg/m3. The average concentration of ambient PM2.5 recorded during the
80 weeks of assessment was 84.99 ± 1.69 µg/m3.
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3.2. Characteristics of Participant

Majority of the participants (n = 409, 92.9%) given their consent and completed the
13-week cohort study, while 7.1% of them (n = 31) dropped out due to the long follow-
up and repetitive weekly assessments. Characteristics of participants are presented in
Table 1. Majority of the outdoor workers are male (n = 201, 95.7%), while the majority of
indoor workers are female (n = 124, 62.3%). The overall gender ratio was about two to one
(male: female). About half of the participants aged 30 and above (n = 165, 41.3%); of which,
56.4% of the participants were indoor workers (n = 93), and 44.6% of them were outdoor
workers (n = 72). Only a small portion of participants smoked (n = 52, 12.7%), and the
majority of them (n = 47, 90.4%) came from the outdoor workers cohort.

Table 1. Characteristics of Participants.

Characteristic Indoor Workers Outdoor Workers Overall

Gender (n/%)
Male 75 (37.7) 201 (95.7) 276 (67.5)
Female 124 (62.3) 9 (4.3) 133 (32.5)
Age (years) (n/%)
≤30 106 (53.3) 138 (65.7) 244 (59.7)
31–40 62 (31.2) 49 (23.3) 111 (27.1)
41–50 13 (6.5) 22 (10.5) 35 (8.6)
>50 18 (9.0) 1 (0.5) 19 (4.6)
Smoking Habit (n/%)
Yes 5 (2.5) 47 (22.4) 52 (12.7)
No 194 (97.5) 163 (77.6) 357 (87.3)
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3.3. Simplified Nutrition Appetite Questionnaire (SNAQ)

The changes in mean SNAQ scores of both cohorts during the 13 weeks of 2-cycle
follow-ups are shown in Figure 2. Correlation analysis revealed a significant change
(p < 0.05) in SNAQ scores among outdoor workers during the study period, which corre-
lated moderately and positively with ambient PM2.5 concentration, with respective R-value
of 0.541 and 0.453 corresponding to first and second cycle of assessment. No significant
correlation was found on the changes of SNAQ scores among indoor workers (Table 2).
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Table 2. Pearson Correlation Coefficient Matrix of the Measured Variables.

Variables
PM2.5 Concentration

Cycle 1 Cycle 2

Appetite Indoor Workers 0.134 0.093
Outdoor Workers 0.541 * 0.453 *

Calorie Intake
Indoor Workers 0.179 0.087
Outdoor Workers 0.493 * 0.581 *

* Correlation is significant at the 0.05 level.

3.4. Calorie Intake (24-Hour Diet Recall)

Changes in calorie intake of both indoor and outdoor worker cohorts are shown in
Figure 3. The average calorie intake of outdoor workers was significantly higher (p < 0.05)
than indoor workers for both cycles. When tested against changes in the ambient PM2.5
concentration, the changes in calorie intake among outdoor workers were found to be
significant and moderately correlated, with R-value of 0.493 and 0.581 for cycle 1 and 2,
respectively. No significant correlation was observed among indoor workers (Table 2).
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4. Discussion

Our findings revealed consistently high ambient PM2.5 throughout the study period.
Our average recorded value was 84.99 ± 1.69 µg/m3, which is 2.4-fold more elevated than
the healthy value of 35 µg/m3 as proposed by United States Environmental Protection
Agency (US EPA) and 3.4 fold higher than 25 µg/m3 as proposed by World Health Orga-
nization (WHO) [53,54]. Haze affected most countries in the SEA region with at least one
to two yearly haze episodes over the past decades [47]. In Malaysia, haze usually occurs
during the dry season between June and September, with its most severe and prolonged
haze recorded in September 2015 [55]. Similarly, this study observed the highest PM2.5
peak of 122.90 ± 2.07 µg/m3 during the third week of August. Countries within the equa-
torial region such as Indonesia experienced drought from June to September during its
southwest monsoon, which provoked smoldering fire [56]. Agricultural activities such as
anthropogenic drainage and peat harvesting reduced moisture content in the peat profile,
rendering them more susceptible to smoldering [57]. Concurrently, the fierce southerly
and south-westerly winds would intensify transboundary transport of air pollutants to
the neighboring country, Malaysia, thus explaining soaring concentrations of PM2.5 in
this study. On the other hand, the lowest PM2.5 peak recorded was attributed to frequent
rainfalls. High relative humidity during the rainfall season effectively reduced ambient
PM2.5 [58].

Amidst Asian countries, Malaysia’s prevalence of obesity was unbeatable highest due
to their unhealthy eating habits [59,60]. The prevailing model of obesity is characterized
by increased calorie intake and a sedentary lifestyle resulting in positive energy balance
and excess fat storage [61]. Consumption of fast food and lack of physical activities
for urban dwellers are known to be driving factors for obesity, but emerging evidence
suggests other contributing factors for obesity [31,62,63]. Ambient air pollutant is a probable
environmental obesogens associated with metabolic disorders such as insulin resistance,
metabolic syndrome, and type 2 diabetes [64–66]. In this study, appetite was significantly
(p < 0.05) associated with PM2.5 exposure of outdoor workers, with a moderate and positive
correlation. Although its underlying mechanisms are poorly understood, appetite is known
to be driven by Ghrelin hormone secretion, which may be disrupted by inhaling polluted
air [67,68]. Ghrelin, an orexigenic hormone, is principally synthesized by oxyntic cells in the
stomach and released in response to fasting [69]. High circulating plasma levels of Ghrelin
act on the hypothalamus and vagus nerve to stimulate hunger, and its levels are rapidly
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downregulated after a meal [70]. A previous study showed that high PM2.5 exposure could
drastically increase the recurrence of sleep disorders, indirectly increasing ghrelin secretion
levels [71]. Chronic PM2.5 exposure also correlated with physiological stress, which has
been implicated as a major contributor to ghrelin levels [72–74]. Notwithstanding, the
moderate correlation found in this study suggests other contributing factors for appetite
changes of outdoor workers, such as high energy expenditure [75], and changes in ambient
temperature [76].

Besides appetite modification, air pollution is also suggested to elicit behavioral
changes, particularly reducing the desire for exercise and increasing calorie intake [24].
Air pollution may induce various phycological distress such as anxiety and depression,
thereby releasing cortisol hormone and increasing the appetite for high-energy foods [77].
Our findings reported that outdoor workers with prolonged ambient PM2.5 exposure
underwent significant (p < 0.05) changes in their calorie intakes, which correlated positively
with concentrations of PM2.5. Likewise, data from the China Health and Nutrition Survey
(CHNS) involving 13,741 adult participants highlighted that urban residents with higher
exposure to air pollutants were likely to have a higher intake of fat [78]. Toxicological
analysis of urban ambient PM2.5 was linked to inflammatory response and oxidative stress
through multiple pathways [79–81]. Elevated levels of pro-inflammatory factors such
as interleukin-6 (IL-6) disrupt food intake regulation and exert a direct effect on weight
gain [82]. Previous studies reported that Inflammation in the hypothalamus caused by
PM2.5 is the primary cause of hyperphagia [83,84]. Such observation is worrisome because
the synergistic effects of PM2.5 exposure and a high-fat diet can induce non-alcoholic fatty
liver disease (NAFLD), a precursor for the manifestation of metabolic syndrome [85,86].
Additionally, this synergistic effect also induces glucose intolerance [87,88], intestinal
damage [89], heart injury [90,91], atherosclerosis [92], and ankylosing spondylitis [93].
The low calorie intake observed among indoor workers is most likely due to the calorie
restriction diet of most female workers who aims to lose weights. This concur with a
previous study conducted in Malaysia reporting calorie restriction diet to be commonly
practised by most female participants, including those with normal weight; they aim to
achieve a better body image and satisfaction [94,95]. Additionally, stressful and depressive
environments contribute to undereating or habit of meal skipping [96].

5. Conclusions

Haze is affecting most countries in SEA region, including Malaysia, with almost
yearly sightings over past decades. PM2.5 is the main culprit causing adverse human
health impacts due to its minuscule size. In this study, we charted the highest ambient
PM2.5 peak of 122.90 ± 2.07 µg/m3 and mean ambient PM2.5 of 84.99 ± 1.69 µg/m3,
which vastly exceeded the standard value stipulated by US EPA and WHO, as well as the
average annual value in many developing countries. Significant positive and moderate
correlations were reported between appetite, calorie intake and PM2.5 exposure of outdoor
workers. Currently, the awareness of PM2.5 is immensely focused on its harmful impacts
to the respiratory tract, while little is known about its effects on dietary intake. Thus,
this study is anticipated to be the first large cohort study on this knowledge gap. Our
findings suggested prolonged hours of PM2.5 exposure can alter appetite and increase
calorie intake, potentially increasing the risk of metabolic syndromes and other undesired
health conditions. The present work highlighted the importance of determining the health
risk due to air pollution in Malaysia. Results from this study would be useful to guide the
government, private sector, health professionals, non-governmental organizations (NGOs),
and relevant stakeholders in strengthening existing regulations and enforcing preventive
measures, particularly to protect outdoor workers.
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