
This is a repository copy of EtriCA: Event-triggered context-aware story generation
augmented by cross attention.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/193591/

Version: Published Version

Proceedings Paper:
Tang, C., Lin, C. orcid.org/0000-0003-3454-2468, Huang, H. et al. (2 more authors) (2022)
EtriCA: Event-triggered context-aware story generation augmented by cross attention. In:
Goldberg, Y., Kozareva, Z. and Zhang, Y., (eds.) Findings of the Association for
Computational Linguistics: EMNLP 2022. 2022 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2022), 07-11 Dec 2022, Abu Dhabi. Association for
Computational Linguistics , pp. 5504-5518.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Findings of the Association for Computational Linguistics: EMNLP 2022, pages 5533 - 5547

December 7-11, 2022 ©2022 Association for Computational Linguistics

EtriCA: Event-Triggered Context-Aware Story Generation
Augmented by Cross Attention

Chen Tang1, Chenghua Lin2∗, Henglin Huang1, Frank Guerin1 and Zhihao Zhang3

1Department of Computer Science, The University of Surrey, UK
2Department of Computer Science, The University of Sheffield, UK

3School of Economics and Management, Beihang University, Beijing, China

{chen.tang,hh01034,f.guerin}@surrey.ac.uk

c.lin@sheffield.ac.uk, zhhzhang@buaa.edu.cn

Abstract

One of the key challenges of automatic story

generation is how to generate a long narrative that

can maintain fluency, relevance, and coherence.

Despite recent progress, current story generation

systems still face the challenge of how to

effectively capture contextual and event features,

which has a profound impact on a model’s genera-

tion performance. To address these challenges, we

present EtriCA, a novel neural generation model,

which improves the relevance and coherence of

the generated stories through residually mapping

context features to event sequences with a cross-

attention mechanism. Such a feature capturing

mechanism allows our model to better exploit the

logical relatedness between events when generat-

ing stories. Extensive experiments based on both

automatic and human evaluations show that our

model significantly outperforms state-of-the-art

baselines, demonstrating the effectiveness of our

model in leveraging context and event features.

1 Introduction

Story Generation aims to generate fluent, relevant and

coherent narratives conditioned on a given context.

As the task is notoriously difficult, a common strategy

is to employ storylines composed of events to support

the generation process (Yao et al., 2019; Chen et al.,

2021; Alhussain and Azmi, 2021; Tang et al., 2022b).

This process imitates the behavior of human writers.

Firstly, a story will start from a sketch of key words

containing events, and then human writers will

unfold the story following the track of planned event

sequences.

Despite recent progress, existing approaches are

still ineffective in exploiting planned events when

generating stories. Usually, pre-trained generation

models, e.g., BART (Goldfarb-Tarrant et al., 2020;

Clark and Smith, 2021; Huang et al., 2022) are em-

ployed to generate stories after event planning. How-

ever, as shown by the conflicts in Figure 1, the sep-

arate sentences generated by BART look reasonable,

*Corresponding author.

Reference Text:

t1: He needed to get home from work .

t2: He was driving slowly to avoid accidents .

t3: Unfortunately the roads were too slick and

Ken lost control .

t4: His tires lost traction and he hit a tree .

Leading Context (): was driving around in the snow .

: needed get : driving : were slick

Bart:

: lost traction

t1: He needed to get the car fixed and replaced.

not relevant

not coherent

t2: He was driving very fast and got stuck in the

ditch.

t3: The roads were slick and down.

t4: He lost traction and ended up driving long

distances .

Write

against
A B

Figure 1: Conditioned on leading context and reference

events (extracted from reference stories), existing

generation models still suffer from problems of relevance

and coherence. For instance, we fine-tune BART (Lewis

et al., 2020) to generate stories. The leading context and

reference text in this example are collected from ROC

Stories (Mostafazadeh et al., 2016). Some conflicts among

them are observed and coloured.

but there are several issues observed considering the

whole story: As a commonsense story, if the car needs

to be “fixed and replaced” then it is too broken to

“drive around”; “Ken” should not drive the car “very

fast” in the “snow”; If “Ken” “got stuck in the ditch”

or “lost traction”, he cannot then be "driving long

distances". We hypothesise that these problems come

from the inadequacy of capturing contextual features

when keeping track of event sequences, because (i) the

planned events generally lack background information,

e.g., Ken (the character) and snow (the scene) and (ii)

training stories may have the same events but different

reference stories, which may lead to confusion during

inference if not considering the story-specific scenario.

5533

Therefore, to address these challenges we propose

EtriCA - a novel Event-Triggered Context-Aware

end-to-end framework for story generation. Given

both leading context and planned events, EtriCA can

more effectively capture contextual and event features

from inputs than state-of-the-art (abbr. SOTA)

baseline models. Traditional generation models

struggle to learn contextual representations when

implicitly keeping track of the state of events due

to feature differences of events and contexts. As an

abstract storyline, an event sequence only contains

schematic information related to actions (e.g. the

verb), while the context usually records story-specific

details, e.g., the scene and characters in a story.

To comprehensively leverage both features, we

draw inspiration from prior work dealing with infor-

mation fusion (Chen et al., 2018; Xing et al., 2020; He

et al., 2020; You et al., 2020; Wang et al., 2021; Tang

et al., 2022a) to encode heterogeneous features with

a cross attention mechanism (Gheini et al., 2021). We

aim to inform our model of the context background

when the neural module unfolds each event into a

narrative. We propose a novel neural module that

learns to implicitly map contextual features to event

features through information fusion on their numeric

vector spaces (we call this process contextualising

events). The whole process is illustrated in Figure. 2.

With the contextualised event features, an autoregres-

sive decoder is employed to dynamically generate

stories by learning to unfold the contextualised events.

We also introduce an auxiliary task of Sentence

Similarity Prediction (Guan et al., 2021) to enhance

the coherence between event-driven sentences.

To support research on event-driven story gener-

ation, we propose a new task formulated by writing

stories according to a given leading context and event

sequence. We improve the event extraction framework

of Chen et al. (2021) by exploiting dependency

parsing to capture event related roles from sentences,

instead of using heuristic rules. We also present two

datasets where multi-sentence narratives from existing

datasets are paired with event sequences using our au-

tomatic event extraction framework. Importantly, our

task formulation can also benefit the study of control-

lable story generation, considering there is increasing

interest in storyline-based neural generative frame-

works (Xu et al., 2020; Ghazarian et al., 2021; Chen

et al., 2021). According to our extensive experiments,

EtriCA performs better than baseline models consid-

ering the metrics of fluency, coherence, and relevance.

Our contributions1 can be summarised as follows:

• A new task formulation for event-driven story

writing, which requires the generation model to

write stories according to a given leading context

and event sequence.

• We annotate event sequences on two existing

popular datasets for our new task, and introduce new

automatic metrics based on semantic embeddings

to measure the coherence and relevance of the

generated stories.

• We propose a neural generation model EtriCA,

which leverages the context and event sequence

with an enhanced cross-attention based feature cap-

turing mechanism and sentence-level representation

learning.

• We conduct a range of experiments to demonstrate

the advances of our proposed approach, and com-

prehensively analyse the underlying characteristics

contributing to writing a more fluent, relevant, and

coherent story.

2 Related Work

2.1 Neural Story Generation

Before the surge of deep learning techniques, story

generation models only generated simple sentences

and heavily relied on manual designs (McIntyre and

Lapata, 2009; Woodsend and Lapata, 2010; McIntyre

and Lapata, 2010; Huang and Huang, 2013; Kybartas

and Bidarra, 2016). Since neural story generation

came into being, end-to-end neural models, especially

pre-trained models, e.g., BART (Lewis et al., 2020)

and GPT-2 (Radford et al., 2019), are widely em-

ployed as the main module of story writing (Rashkin

et al., 2020; Guan et al., 2020; Goldfarb-Tarrant et al.,

2020; Clark and Smith, 2021). However, it is hard

to guarantee logical correctness for naive Seq2Seq

models when the generated text is growing longer, so

recent work is exploring multi-step generations which

implement neural models in traditional generative

pipelines (Guan et al., 2021). For example, Yao et al.

(2019); Goldfarb-Tarrant et al. (2020); Chen et al.

(2021) split story generation into planning (inputs to

events) and writing (events to stories), and leverage

two neural generation models to learn them.

2.2 Event Planning for Story Generation

At the planning stage, prior research (Yao et al., 2019;

Rashkin et al., 2020; Goldfarb-Tarrant et al., 2020;

1The related code is available at https://github.com/

tangg555/EtriCA-storygeneration

5534

Context

… driving around … snow

story

accidents
he

slowly

hit a tree

∗ 𝜷

Generator

…

E

…

: hidden states

Q

V

K

Contextualised

Features

Text Prediction:

Sentence 1 Sentence 2

attention

scores

Figure 2: The overview of the event feature contextualising process. The leading context coloured in red contains some

important information which affects the generation process, e.g., the weather "snows" may lead to "accident". These

implicit clues help the neural generator to disambiguate the context of events. We firstly fuse both context and event

features, and then feed them to the generator.

could not afford to sleep in . woke up suddenly to the sunlight . I I

AUW PART VERB VERBPART ADPPRON

nsubj

neg

aux xcomp

prt nsubj

advmod

prep pobj

amod

PRON ADPVERB ADPADV ADJ NOUNPOS:

TOK:

trigger arg:comp

[: not afford sleep] [:woke up]

temporal

dependencies
trigger

root

bright

aux

arg:mod

DET

prt

det

arg:mod

DEP:

EVENT:

Figure 3: An example to illustrate the process of event extraction. TOK is the basic unit of a sentence. POS is the part

of speech, and DEP stands for dependencies between tokens. Through parsing dependencies, the event trigger (also

recognised as the root of sentence) filters all significant roles to represent a complete action. Meanwhile, extracted

neighbour events are considered to have temporal relations.

Jhamtani and Berg-Kirkpatrick, 2020; Ghazarian

et al., 2021) mostly focused on extracting event

sequences from the reference text as the ground truths

of plot planning, and then leveraged neural models

(Radford et al., 2019; Lewis et al., 2020) to predict

events with given leading context or titles. Events

have a lot of representation formats, e.g., verbs, tuples,

key words, etc. Among them a straight forward

approach is extracting verbs as events (Jhamtani and

Berg-Kirkpatrick, 2020; Guan et al., 2020; Kong

et al., 2021), which is also the method we followed.

However, verbs alone are not good enough to keep

information integrity. For instance, semantic roles like

negation (not) are significant for correct understand-

ing. Peng and Roth (2016) and Chen et al. (2021) use

some heuristic rules to include these semantic roles,

but those heuristic rules are not complete to include

all the key roles. Therefore, inspired by related

works (Rusu et al., 2014; Björne and Salakoski, 2018;

Huang et al., 2018) in open-domain event extraction,

we propose an event extraction workflow based

dependency parsing to capture essential components

for verb phrases in sentences as events.

3 Methodology

3.1 Task Formulation

Under the umbrella of controllable story generation

we define the following task: write a story that

leverages both the given leading context and a

given planned event sequence. Our primary goal

is to investigate how to consider the context while

keeping track of the given event sequence with

neural generation models, so we expand the original

context-aware story generation settings of Guan et al.

(2021) by adding an event sequence, for each leading

context, as the storyline to follow.

Input: The input for each sample includes a leading

context C = {c1, c2, ..., cn} which acts as the

first sentence of a story, and an event sequence

E={e1,e2,...,em} as a storyline to build up a sketch

for a story. ci means the i-th token of the leading

5535

context, and ei means the i-th event representing the

i-th sentence in a story.

Output: The output is a multi-sentence story

S= {s11,s12,...,s21...,smn }. , sij denotes the j-th token

of i-th sentence in a story.

3.2 Event Sequence Preparation

Following the prior work of event extraction (Chen

et al., 2021) (discussed in Sec. 2.2), we present an

automatic framework which includes all verb related

roles by analysing dependencies between words2.

The event representation is not the focus of this study

however. Figure 3 shows an example of the event

extraction process. The details of the event schema

are appended in Appendix. A.2.

3.3 Neural Framework

At the writing stage, conditioned on a leading context

C and planned events E (see Sec. 3.1), the neural

model generates a multi-sentence story S. Figure 4

shows the overview of the whole process.

Planned Events Representation The language

models of conventional generation frameworks either

based on transformers (Vaswani et al., 2017) or RNNs

(Ghosh et al., 2017), are commonly designed to

encode natural language input text, so the extracted

events need to be firstly serialised to plain text. We sep-

arate the string format of events introduced in Sec. 3.2

with special tokens, e.g., “<e_s> needed get <e_sep> ...

<e_e>”, where “<e_s>”,“<e_sep>”, “<e_e>” represent

the start, separation, and end of planning, respectively.

Contextualised Features Representation At the en-

coding stage, neural models have the inputs of C and

E which have feature differences as mentioned above.

Conventional end-to-end models usually concatenate

embeddings of different inputs, since neural encoders

capture their features in numeric vector space (e.g.

through self-attention). However, when the event

sequence grows longer, the growing concatenated

embeddings may decrease the influence of C (we

discuss this in Appendix A.4). Instead, we firstly

leverage two separate BART (Lewis et al., 2020) en-

coders to incorporate features, and then fuse features

2We use spaCy (https://spacy.io/) to split sentences
and parse dependencies between words in each sentence.

with multi-head attentions calculated as below:

Fc=Encoderc(C);Fe=Encodere(E) (1)

Qi=WQ
i Fe,Ki=WK

i Fc,Vi=WV
i Fc, (2)

Ai=softmax(
QiK

T
i√

dk
)Vi (3)

Fca=Concat(A1,...,Am)W
M (4)

where Encoderc and Encodere inherit pre-trained

parameters from BART but do not share trainable

parameters when fine-tuning. Fc and Fe stand for

the features captured from C and E, respectively. i
denotes the i-th head of the attention scores which

have m heads in total. WQ
i , WK

i , WV
i , and WM are

trainable parameters. The i-th head attention Ai is

the attention-based weight sum of the feature matrix.

Finally, the obtained Fca represents the attentions of

ongoing events under the consideration of context.

In order to contextualise the input event features, we

incrementally add theFca to the original event features

Fe so that neural models are forced to learn the context

gap between event sequences and stories, i.e.,

Fhe=Fe+β⊙Fca (5)

Fh=Concat(Fc,Fhe) (6)

where β denotes the scale factor of Fca. β ⊙ Fca

is the representation of the context gap trained via

residual mapping. Fh concatenates both leading

context features Fc and contextualised event features

Fhe. These are fed into a neural decoder to predict

tokens and sentence representations.

Decoding and Sentence-level Fitting As in other

conventional generation systems, we employ an

auto-regressive decoder to generate story tokens yt
as equations below.

Ht=Decoder(y<t,Fh) (7)

P(yt|y<t,X)=softmax(HtW) (8)

yt
sampling←− P(yt|y<t,Fh) (9)

where t denotes a time step. X denotes the input

to the neural model. Ht is the t-th hidden state

of the decoder module. Ht is computed from the

information of both context and events contained in

Fh and the prior predicted story y<t. W is a trainable

parameter, and P(yt|y<t, Fh) is the probability

distribution of the vocabulary including special tokens.

Through a sampling strategy, e.g., argmax , we collect

the predicted token yt.

5536

Context Encoder Event Encoder

<s> Ken was driving …</s> e1: needed get <e_sep><e_s> <e_e>…

Contextualised Module

Etrica Decoder

Contextualising Module

Cross Attention

Concat

Reference Stories:

e2: driving

K

V

Q

[𝒔𝒕] [𝒔𝒆𝒏 𝟏]

Sentence Similarity

Prediction

𝑯𝒔𝒆𝒏𝟏
𝑯𝒔𝒆𝒏𝟐
𝑯𝒔𝒆𝒏𝟑

𝑯𝒔𝒆𝒏𝟏 𝑯𝒔𝒆𝒏𝟐 𝑯𝒔𝒆𝒏𝟑

Decoder

Text Prediction

Autoregressive

Figure 4: The overview of EtriCA architecture. The technique details are explained in Sec 3.3. When training, in addition

to predicting text tokens {y11,...,yij} one by one, we train the decoder to learn sentence-level representations by the

similarity prediction auxiliary task shown in the dotted box. Through representation learning, neural models learn how

to generate the reference-like stories with given leading context and planned event sequence.

In addition to the token-level representation, we

introduce an auxiliary task of Sentence Similarity

Prediction (Guan et al., 2021) to learn sentence-level

representations and training methods. Due to the page

limit, the details are moved to Appendix A.4.

Training and Inference As shown in Figure 4, the

neural model is trained to fit both token and sentence

level references as follows:

Llm=− 1

N

N∑

t=1

logP(yt|y<t,X) (10)

Lsent=
1

m2

m∑

i=1

m∑

j=1

(max|sims
ij−simy

ij|,∆) (11)

Loverall=Llm+λLsent (12)

where Llm is the cross-entropy loss of P(yt|y<t,Fh).
Lsent is the loss of predicted sentence similarities.

sims
ij and simy

ij denote the sentence similarities

between the i-th and j-th sentences in a reference

story and a generated stories, respectively. λ is an

adjustable scale factor, and Loverall is the overall loss.

By minimising Loverall , the neural model learns to

predict a human-like story. The Sentence Similarity

Prediction only works on training, and when doing

inference the neural model finally outputs stories

without those special tokens.

4 Experiment

4.1 Datasets

In this study, we annotate two popular datasets,

ROCStories (ROC) (Mostafazadeh et al., 2016) and

Writing Prompts (WP) (Fan et al., 2018) with extra

event sequences as our benchmarks. We follow the

settings of prior work (Xu et al., 2020; Guan et al.,

2021) to preprocess these data. The stories in both

datasets are split into sentences by NLTK (Bird and

Loper, 2004). The data of ROC are delexicalised

by masking all the names with tokens of [MALE],

[FEMALE], and [NEUTRAL]. The data of WP are

recollected from the original development and test set,

and we retain the first eleven sentences in each story3.

For both datasets, the first sentence in a story is

extracted to be the leading context C as the input, and

the rest is used as the reference story S. Finally, we

obtain a long story dataset, WP (10 sentences), and a

short story dataset, ROC (4 sentences) for the follow-

ing experiments. The event sequence E is extracted

from the reference story S as the planned plot to guide

story generation. Statistically, the ROC has stories

as the Train/Dev/Test set of 88344/4908/4909 stories,

respectively, and the split of WP is 26758/2000/2000.

4.2 Baselines

We compare EtriCA with following SOTA generation

models: (1) P&W (Plan and Write) (Yao et al., 2019):

The main architecture is based on a BiLSTM with

an attention mechanism (Garg et al., 2019). To make

the comparison more fair, we enhance the original

code by replacing original static word embeddings

with the dynamic embeddings of the pre-trained

BART; (2) GPT-2 (Radford et al., 2019): A popular

auto-regressive generative model which has been

3The original WP dataset is too large, and the topics are
unconstrained.

5537

Models
ROC Stories Writing Prompts

PPL↓ R-1↑ R-2↑ R-L↑ B-1↑ B-2↑ PPL↓ R-1↑ R-2↑ R-L↑ B-1↑ B-2↑

P&Wl+e 6.22 22.82 2.65 15.90 0.297 0.150 16.47 23.49 1.74 12.17 0.259 0.086
GPT-2l+e 10.02 29.85 6.45 20.58 0.347 0.201 49.48 18.59 2.18 10.38 0.130 0.051
BARTl+e 3.39 48.74 21.95 40.69 0.505 0.351 10.84 37.19 8.14 22.73 0.351 0.174
HINTl+e 3.97 46.71 20.81 37.21 0.488 0.337 14.45 38.86 8.98 23.06 0.373 0.190

EtriCA (ours) 2.88 49.29 22.59 41.43 0.506 0.354 8.11 39.90 9.65 25.21 0.387 0.202
- w/o sen 3.33 49.18 22.39 41.09 0.512 0.359 9.88 39.88 9.37 24.86 0.385 0.199
- w/o cm 2.97 48.53 21.55 40.34 0.499 0.345 9.15 36.08 7.55 21.01 0.356 0.175
- w/o leading 3.24 42.55 17.21 35.90 0.450 0.287 9.37 35.46 7.22 20.69 0.357 0.172
- w/o events 4.50 24.51 2.70 16.86 0.311 0.156 12.77 23.77 1.89 12.26 0.263 0.089

Table 1: Automatic evaluation of referenced metrics on ROC and WP datasets. The best performance in each line is

highlighted in bold. ↑/↓means the higher/lower the better, respectively. l+e means the input of the model concatenates

the leading context and event sequence. w/o sen, w/o cm, w/o leading, and w/o events means ablating the auxiliary

task of sentence similarity prediction, respectively, the contextualising module, the leading features, and the event features.

widely used in prior works (Rashkin et al., 2020;

Guan et al., 2020; Clark and Smith, 2021); (3) BART:

This is a composed model constructed with a BERT-

like (Devlin et al., 2019) encoder and a GPT-like

decoder, and shown advances in prior NLG works

(Goldfarb-Tarrant et al., 2020; Clark and Smith, 2021).

(4) HINT (Guan et al., 2021): It is currently the

SOTA framework on context-aware story generation,

which enhanced the coherence and relevance through

training with two training objectives.

4.3 Implementation Details

The main contribution of our generation model is

the contextualising module, which can adapt to

other encoder-decoder frameworks. Therefore, we

employ the encoders and decoders from the BART

framework (Lewis et al., 2020), which has shown

strong performance in prior studies (Goldfarb-Tarrant

et al., 2020; Guan et al., 2021), to build our neural

generation model. We fine-tune our generation model

based on a publicly available BART checkpoint4

and fix the random seed to 42. All of our code

is implemented in PyTorch, and trained with the

PyTorch Lightning framework. More details of the

hyper-parameters of the model, training and inference

are described in Appendix A.1.

4.4 Automatic Evaluation

4.4.1 Evaluation Metrics

Perplexity (PPL) measures the uncertainty of gen-

erated tokens predicted by neural models. ROUGE-n

(R-n) (Lin, 2004) is a set of reference metrics

measuring the coverage rate between generated

stories and the referenced stories where n denotes

4The checkpoint of bart-base loaded from https:

//huggingface.co/facebook/bart-base

n-grams. BLEU-n (B-n) (Papineni et al., 2002) is also

a set of reference metrics to compute n-gram overlaps

between the generated stories and the references. Lex-

ical Repetition-n (LR-n) is an unreferenced metric

to compute the percentage of generated stories which

have a 4-gram repeated at least n times (Shao et al.,

2019). Distinction-n (D-n) is an unreferenced metric

qualifying the distinction of stories by measuring the

ratio of distinct n-grams to all those generated n-grams

(Li et al., 2016). Intra-story Repetition (Yao et al.,

2019) measures the repetition of each sentence in a

story by the overlaps of trigrams. Intra-story Coher-

ence and Relevance (Xu et al., 2018), originally used

in dialogue evaluation, is based on cosine similarity

between semantic embeddings5 to calculate sentence-

level coherence and relevance. This approach is used

to measure the relatedness between neighbouring gen-

erated sentences as the intra-story coherence, and the

relatedness between the leading context and story sen-

tence as the intra-story relevance6. Intra-story Aggre-

gate Metrics i.e. repetition, coherence, and relevance,

are obtained by the mean of sentence-level metrics.

4.4.2 Evaluation Results

Reference metrics. Table 1 shows the automatic

evaluation results on both the short story dataset ROC

and the long story dataset WP. It can be observed

that EtriCA outperforms all baselines on all metrics

for both datasets. Compared to the strongest baseline

BART and HINT, our model reduces perplexity by

15% on ROC and 25% on WP, respectively. For the

5Glove Vectors are used here. https://nlp.stanford.

edu/projects/glove/
6This work is originally an unsurpervised metric developed

for conversations. We use the same methods for evaluating
our generated stories by implementing it on the sentences
in a story. The code we use is from the repository https:

//github.com/tonywenuon/dialog-coherence-metric.

5538

Models
ROC Stories Writing Prompts

LR-2↓ D-4↑ LR-2↓ D-4↑
P&Wl+e 0.297 0.773 0.443 0.834

GPT-2l+e 0.528 0.675 0.760 0.684

BARTl+e 0.245 0.804 0.378 0.894

HINTl+e 0.264 0.734 0.338 0.855

EtriCA 0.244 0.799 0.359 0.889

- w/o sen 0.286 0.794. 0.343 0.900

- w/o cm 0.245 0.800 0.514 0.827

- w/o leading 0.260 0.795 0.517 0.892

- w/o events 0.245 0.792 0.412 0.850

Golden 0.048 0.906 0.286 0.950

Table 2: Automatic evaluation of unreferenced metrics

on the ROC and WP datasets for the generation models

writing stories conditioned on both leading text and the

reference event sequence. Golden in the table denotes the

reference stories.

BLEU and ROUGE metrics, EtriCA also outperforms

other baselines, which demonstrates that EtriCA

generates stories more closely resembling the human

written reference stories.

In addition, with the ablation study, it can be

observed that both the context and event features play

an important role in improving the generation process.

Considering the performance of - w/o leading and -

w/o events, they indicate that the features contained

in the two kinds of inputs are complementary to each

other, and both of them are essential for good story

writing. Therefore, the task of how to effectively

incorporate both features is important for enhancing

the ability of writing a high-quality story. When

EtriCA does not implement our contextualising

module (abbr. cm), all the metrics substantially drop,

and some metrics even become lower than those of

BARTl+e and HINTl+e. This observation suggests

that our contextualising module can more effectively

fuse the heterogeneous features, and generate a

richer semantic representation for the following story

writing. Similarly, the sentence-level representations

also improve most of the metrics, although not as

much as the contextualising module. We hypothesise

it is because the contextualised module has signif-

icantly reduced the gap between event sequences

and the stories (each event is paired with each

sentence), making the improvement by sentence-level

representations less prominent. Our hypothesis is also

confirmed in the following experiments.

Unreferenced Metrics. In another set of experi-

ments, we examine repetition and diversity of the

Figure 5: The results of intra-story repetitions and

aggregate scores on stories of the ROC dataset. The

curve graphs illustrate the intra-story repetition for each

sentence (leading context as the first sentence) in a story.

The histograms depict the aggregate scores of intra-story

repetitions over the story sentences.

generated stories, where the results are reported in

Table 2. It can be observed that EtriCA gives strong

performance for both lexical repetition (LR-2) and

diversity (D-4), either achieves the best performance

or is on a par with the best performing baseline.

To further investigate how our model performs on

writing along with the planned events, we follow Yao

et al. (2019) to observe the intra-story repetitions for

each generated sentence, as shown in Figure 5. The

results show that EtriCA consistently outperforms the

baselines for both sentence-level and story-level (i.e.,

aggregated) repetitious scores, indicating that EtriCA

performs better on event-triggered story writing.

In-depth analysis Furthermore, we present more

experimental results7 to analyse the intra-story

coherence and relevance of our models. We select

the two strongest baselines according to previous

experimental results to compare. As shown in Table 3,

our approach consistently outperforms the baselines

for both the intra-story coherence and relevance.

This indicates our contextualising module improves

the feature capturing for both the context and event

features to enhance the logical relatedness between

story sentences, and between the story and the input.

Additionally, the ablation results, in which EtriCA

and “- w/o sen” have very close performance, also

confirm the aforementioned hypothesis that the

feature capturing mechanism of the contextualising

7We tried to conduct intra-story analysis (repetition, co-
herence, relevance) on the WP dataset. However, even in the
referenced stories, there are a great number of sentences that are
too short and conversational, e.g. “well ?” or “you said that ?”, to
be meaningfully analysed. Therefore, we only conduct intra-story
experiments on the ROC dataset.

5539

Models
Coherence Relevance

wiki. twit. comm. wiki. twit. comm.

BARTl+e 0.4658 0.6293 0.5865 0.5316 0.6710 0.6439

HINTl+e 0.4627 0.6276 0.5818 0.5323 0.6718 0.6427

EtriCA 0.4667 0.6306 0.5876 0.5332 0.6722 0.6445

- w/o sen 0.4680 0.6322 0.5864 0.5356 0.6745 0.6457

- w/o cm 0.4602 0.6232 0.5775 0.5281 0.6676 0.6381

Golden 0.6631 0.7996 0.8298 0.6610 0.7997 0.8265

Table 3: The results of aggregate scores of intra-story

coherence and relevance for the ROC dataset, which are

calculated based on semantic embeddings. wiki., twit.,

comm. denotes the glove embeddings of “Wikipedia 2014

+ Gigaword 5 (6B tokens)”, “Twitter (2B tweets, 27B

tokens)”, and “Common Crawl (42B tokens)”, respectively.

module partly replaces the functions of sentence-level

representations.

Figure 6 further shows that our model significantly

outperforms baselines for coherence and relevance,

which indicates its advance in feature capturing and

generating more event and context related stories.

Leading Context: [MALE] had lost his dog over a month ago .

Event Sequence: missed dog→ notices something→ sees dog

→ turns out be

BARTl+e: He missed his dog for a whole month. One day he

notices something moving and is startled. He sees the dog on

the floor. It turns out to be a squirrel.

HINTl+e: One day [MALE] missed his dog. He notices

something about her name on the dog’s tag. [MALE] sees the

dog in the tags. It turns out it could be a dog from the police

department.

EtriCA: He missed his dog badly. He notices something

strange on the curb. He sees the dog outside. It turns out to

be a stray dog.

- w/o sen: He had missed his dog so much that he had to search

for him. As he was searching, he notices something about a

dog. He sees the dog with a bag. It turns out to be a stray, a

wad of dog spray.

- w/o cm: [MALE] missed his dog this summer. He notices

something on his neighbor’s wall about a house. [MALE]

notices the dog was very sad. it turns out that there must be

a really sad day next time.

Table 4: A case study for an example in ROC Stories.

[MALE], [FEMALE], and [NEUTRAL] are the specital

tokens to replace names in stories. The highlighted bold

words denote the events corresponding to the given event

sequence.

4.5 Human Evaluation

We conducted human evaluation based on pair-wise

comparisons with two competitive baselines and the

ablated model without our proposed contextualising

module. We randomly sample 150 stories from

Choices(%)
Etri. vs. w/o cm

Etri. w/o cm Kappa

Fluency 36.1∗∗ 18.0 55.3

Coherence 40.2∗∗ 22.7 48.9

Relevance 23.2 21.7 48.5

Choices(%)
Etri. vs. BARTl+e

Etri. BARTl+e Kappa

Fluency 33.6∗∗ 16.4 56.2

Coherence 32.8∗ 19.1 48.1

Relevance 16.8 9.8 45.1

Choices(%)
Etri. vs. HINTl+e

Etri. HINTl+e Kappa

Fluency 32.3∗∗ 17.3 55.4

Coherence 35.3∗ 21.8 58.3

Relevance 14.9 8.5 50.9

Table 5: Human evaluation results on the ROC dataset.

The scores stand for the percentage of model chosen in pair

comparisons (win another model). Kappa means the Fleiss’

Kappa (Fleiss, 1971) coefficient that is used to measure

inter-annotator agreement. All of our results have reached

moderate agreement. ∗ refers to significance at p<0.05,

whilst ∗∗ refers to significance at p<0.01, on a sign test.

the test datasets of ROC Stories8. There are 3

evaluators invited to choose which generated story

is better (Win/Lose/Tie) on three aspects: (i) Fluency

considers each sentence in isolation and measures

the quality from a linguistic perspective, e.g., the

grammatical correctness or the correct representation

of semantic meaning; (ii) Coherence measures the

logical relatedness between story sentences; (iii)

Relevance measures the context relevance between

stories and the leading contexts. When summarising

the human annotation result, the final results are

counted by majority voting.

As shown in Table 5, EtriCA outperforms SOTA

baselines in terms of fluency, coherence, and relevance.

All generation models have relatively little conflict

with the given input, so they all have good perfor-

mance on relevance, causing less differences in rele-

vance. On the other hand, the advances on fluency and

coherence are very significant, indicating the advan-

tage of our contextualising module in capturing high-

level features from the context and event sequences.

4.6 Case Study

As is shown in Table 4, examples indicate that

compared to baseline models, EtriCA generates a

8WP is not used to conduct experiments since long stories
are difficult to get acceptable annotation agreement.

5540

(a) wiki. coherence (b) twit. coherence (c) comm. coherence

(d) wiki. relevance (e) twit. relevance (f) comm. relevance

Figure 6: The results of intra-story coherence and relevance on the ROC dataset.

more logically related story with given inputs, and

contains fewer confusing expressions inside the story.

(More examples in Appendix. A.6)

5 Conclusion

We present a controllable story generation task condi-

tioned with leading contexts and event sequences. We

also provide two new datasets with extra annotated

events, and introduce a new set of automatic metrics to

measure coherence and fluency. We propose EtriCA,

a novel generation model, which better exploits

context and event features with a cross attention

based contextualising network. Through extensive

experiments and analyses, we demonstrate EtriCA

can generate stories with better fluency, coherence,

and relevance compared to competitive baselines.

Acknowledgements

Chen Tang is supported by the China Scholar-

ship Council (CSC) for his doctoral study (File

No.202006120039). We also gratefully acknowl-

edge the anonymous reviewers for their insightful

comments.

Limitations

According to our methodology and some observations

from experiments, we conclude the limitations around

our study as follows:

• Robustness: The quality of given events may affect

the robustness of generation models. It is very hard

to define whether a plot (an event sequence) is

“interesting” or “bad”. When provided with unusual

or strange events for a story, the generation model

struggles to follow the events cohesively.

• Sequence Length: Our neural models cannot write

stories that are too long in length. Because of

the features of neural encoders and decoders, the

inputs and outputs generally have a certain length

limitation, e.g. 1024 tokens.

• Generalisation: The training datasets of stories

limit the topics of open domain story writing.

Although large-scale pre-training has been widely

adopted, our neural models still struggle to tackle

some topics, writing styles, etc. For instance, the

performance of story generation on WP is relatively

worse than on ROC, because WP contains spoken

language and irregular expressions.

• Experiments: For the limitation of resources, we

did not conduct some further experiments in this

study. For instance, we did not further study the

performance of difference event representations

because it is not the focus of this study.

References

Arwa I Alhussain and Aqil M Azmi. 2021. Automatic
story generation: a survey of approaches. ACM
Computing Surveys (CSUR), 54(5):1–38.

Steven Bird and Edward Loper. 2004. NLTK: The natural
language toolkit. In Proceedings of the ACL Interactive

5541

Poster and Demonstration Sessions, pages 214–217,
Barcelona, Spain.

Jari Björne and Tapio Salakoski. 2018. Biomedical event
extraction using convolutional neural networks and
dependency parsing. In Proceedings of the BioNLP
2018 workshop, pages 98–108, Melbourne, Australia.

Di Chen, Jiachen Du, Lidong Bing, and Ruifeng Xu. 2018.
Hybrid neural attention for agreement/disagreement
inference in online debates. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium.

Hong Chen, Raphael Shu, Hiroya Takamura, and Hideki
Nakayama. 2021. GraphPlan: Story generation by
planning with event graph. In Proceedings of the
14th International Conference on Natural Language
Generation, Aberdeen, Scotland, UK.

Elizabeth Clark and Noah A. Smith. 2021. Choose your
own adventure: Paired suggestions in collaborative
writing for evaluating story generation models. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3566–3575, Online.

Marie-Catherine De Marneffe and Christopher D Manning.
2008. Stanford typed dependencies manual. Technical
report, Technical report, Stanford University.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia.

Joseph L Fleiss. 1971. Measuring nominal scale agreement
among many raters. Psychological bulletin, 76(5):378.

Sarthak Garg, Stephan Peitz, Udhyakumar Nallasamy, and
Matthias Paulik. 2019. Jointly learning to align and
translate with transformer models. In Proceedings of
the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 4453–4462, Hong Kong, China.

Sarik Ghazarian, Zixi Liu, Akash S M, Ralph Weischedel,
Aram Galstyan, and Nanyun Peng. 2021. Plot-guided
adversarial example construction for evaluating
open-domain story generation. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Online.

Mozhdeh Gheini, Xiang Ren, and Jonathan May. 2021.
Cross-attention is all you need: Adapting pretrained
transformers for machine translation. In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 1754–1765. Association for Computational
Linguistics.

Sayan Ghosh, Mathieu Chollet, Eugene Laksana, Louis-
Philippe Morency, and Stefan Scherer. 2017. Affect-
LM: A neural language model for customizable affective
text generation. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), Vancouver, Canada.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph
Weischedel, and Nanyun Peng. 2020. Content planning
for neural story generation with aristotelian rescoring. In
Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Online.

Jian Guan, Fei Huang, Zhihao Zhao, Xiaoyan Zhu,
and Minlie Huang. 2020. A knowledge-enhanced
pretraining model for commonsense story generation.
Transactions of the Association for Computational
Linguistics, 8:93–108.

Jian Guan, Xiaoxi Mao, Changjie Fan, Zitao Liu, Wenbiao
Ding, and Minlie Huang. 2021. Long text generation by
modeling sentence-level and discourse-level coherence.
In Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 6379–6393, Online.

Xuanli He, Quan Hung Tran, Gholamreza Haffari, Walter
Chang, Zhe Lin, Trung Bui, Franck Dernoncourt, and
Nhan Dam. 2020. Scene graph modification based
on natural language commands. In Findings of the
Association for Computational Linguistics: EMNLP
2020, Online.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Henglin Huang, Chen Tang, Tyler Loakman, Frank Guerin,
and Chenghua Lin. 2022. Improving chinese story
generation via awareness of syntactic dependencies
and semantics. In Proceedings of the 2nd Conference
of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 12th International
Joint Conference on Natural Language Processing
(AACL-IJCNLP), Online.

Lifu Huang and Lian’en Huang. 2013. Optimized event
storyline generation based on mixture-event-aspect
model. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 726–735, Seattle, Washington, USA.

Lifu Huang, Heng Ji, Kyunghyun Cho, Ido Dagan,
Sebastian Riedel, and Clare Voss. 2018. Zero-shot
transfer learning for event extraction. In Proceedings

5542

of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2160–2170, Melbourne, Australia.

Harsh Jhamtani and Taylor Berg-Kirkpatrick. 2020.
Narrative text generation with a latent discrete plan.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 3637–3650, Online.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Xiangzhe Kong, Jialiang Huang, Ziquan Tung, Jian
Guan, and Minlie Huang. 2021. Stylized story
generation with style-guided planning. arXiv preprint
arXiv:2105.08625.

Ben Kybartas and Rafael Bidarra. 2016. A survey on
story generation techniques for authoring computational
narratives. IEEE Transactions on Computational
Intelligence and AI in Games, 9(3):239–253.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Online.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting objective
function for neural conversation models. In Proceedings
of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 110–119, San
Diego, California.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74–81, Barcelona, Spain.

Neil McIntyre and Mirella Lapata. 2009. Learning to tell
tales: A data-driven approach to story generation. In
Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP, pages 217–225, Suntec, Singapore.

Neil McIntyre and Mirella Lapata. 2010. Plot induction
and evolutionary search for story generation. In Pro-
ceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 1562–1572,
Uppsala, Sweden.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus and
cloze evaluation for deeper understanding of common-
sense stories. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 839–849, San Diego, California.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguis-
tics, pages 311–318, Philadelphia, Pennsylvania, USA.

Haoruo Peng and Dan Roth. 2016. Two discourse
driven language models for semantics. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 290–300, Berlin, Germany.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and
Jianfeng Gao. 2020. PlotMachines: Outline-conditioned
generation with dynamic plot state tracking. In Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Online.

Delia Rusu, James Hodson, and Anthony Kimball.
2014. Unsupervised techniques for extracting and
clustering complex events in news. In Proceedings
of the Second Workshop on EVENTS: Definition,
Detection, Coreference, and Representation, pages
26–34, Baltimore, Maryland, USA.

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei
Xu, and Xiaoyan Zhu. 2019. Long and diverse text
generation with planning-based hierarchical variational
model. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
3257–3268, Hong Kong, China.

Chen Tang, Frank Guerin, Yucheng Li, and Chenghua Lin.
2022a. Recent advances in neural text generation: A
task-agnostic survey. arXiv preprint arXiv:2203.03047.

Chen Tang, Zhihao Zhang, Tyler Loakman, Chenghua Lin,
and Frank Guerin. 2022b. NGEP: A graph-based event
planning framework for story generation. In Proceed-
ings of the 2nd Conference of the Asia-Pacific Chapter
of the Association for Computational Linguistics and
the 12th International Joint Conference on Natural
Language Processing (AACL-IJCNLP), Online.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, page 6000–6010, Red Hook, NY, USA.
Curran Associates Inc.

Dingmin Wang, Chenghua Lin, Qi Liu, and Kam-Fai
Wong. 2021. Fast and scalable dialogue state tracking
with explicit modular decomposition. In Proceedings of
the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pages 289–295, Online.

5543

Kristian Woodsend and Mirella Lapata. 2010. Automatic
generation of story highlights. In Proceedings of the
48th Annual Meeting of the Association for Computa-
tional Linguistics, pages 565–574, Uppsala, Sweden.

Xinyu Xing, Xiaosheng Fan, and Xiaojun Wan. 2020.
Automatic generation of citation texts in scholarly
papers: A pilot study. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 6181–6190, Online.

Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul
Puri, Pascale Fung, Anima Anandkumar, and Bryan
Catanzaro. 2020. MEGATRON-CNTRL: Controllable
story generation with external knowledge using large-
scale language models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2831–2845, Online.

Xinnuo Xu, Ondřej Dušek, Ioannis Konstas, and Verena
Rieser. 2018. Better conversations by modeling,
filtering, and optimizing for coherence and diversity.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3981–3991, Brussels, Belgium.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin Knight,
Dongyan Zhao, and Rui Yan. 2019. Plan-and-write:
Towards better automatic storytelling. In Proceedings
of the AAAI Conference on Artificial Intelligence.

Weiqiu You, Simeng Sun, and Mohit Iyyer. 2020.
Hard-coded Gaussian attention for neural machine
translation. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages
7689–7700, Online.

A Appendix

A.1 Implementation Details

Hyparameters of model To leverage pre-trained

parameters, most of the hyparameters for the encoder,

decoder, and embedding layers are restored from the

public checkpoints9 on Huggingface. In addition, we

set other parameters as follows: The residual scale

factor β in Equation. 5 is set to 0.1. The margin

∆ in Equation. 11 is set to 0.1. The scale factor λ
in Equation. 12 is set to 0.1. There are also some

parameters are learnable via training on datasets. In

our framework, the two encoders and the decoder all

have 6 hidden layers implementing 12-head attention

mechanism. Both encoders and decoders share the

embeddings layer containing vocabulary up to 50,625

tokens with Byte-Pair Encoding (Radford et al., 2019),

and additional special tokens mentioned in Sec. 3.

9BART from the bart-base https://huggingface.

co/facebook/bart-base, and GPT-2 from gpt2-base
https://huggingface.co/gpt2

Training Settings Our experiments are carried out

on multiple GPUs (e.g., RTX A4000) on a cloud plat-

form, so for the convenience of reproduction, we fix

the random seed to 42. When training neural models,

we implement PyTorch Lightning10 framework to set

up training processes. The training parameters setup

are listed as follows: The batch size is set to 64; The

learning rate is 8e-5; max source length is set to 1024;

The optimiser uses Adam (Kingma and Ba, 2014),

and the ϵ of Adam is set to 1e-8. The whole training

process will last for 5 epochs, but the result only

considers the checkpoint with the best performance on

the metric of loss (the lowest). It is worth mentioning

that EtriCA needs two separate encoders to encode

context (natural language) and events (concatenated

serialised events) separately, but the encoder of public

BART checkpoint is only pre-trained on natural

language text. Therefore, to make the event encoder

learn event features better, we firstly train a BART

model on stories given both the context and planned

events, and then restore the pre-trained encoder

paratermeters to the event encoder of EtriCA.

Inference Settings When evaluating and testing,

we adopt the nucleus sampling (Holtzman et al.,

2019) strategy to generate texts. We also change the

batch size to 15 when doing the inference, because

nucleus sampling requires large amount of memory,

A.2 Details of Event Schema

An event is supposed to represent an important change

that happens, so generally the representation of an

action. The schema for an event aims to include all rel-

evant roles to the action and filter trivial details for rep-

resentation. Inspired by the work of Rusu et al. (2014);

Björne and Salakoski (2018) which used dependency

parser to capture dependencies between words belong-

ing to different clauses, we extract event mentions

from sentences according to the hierarchy of typed

dependencies (De Marneffe and Manning, 2008) (see

details in Appendix. A.2). In this way we can obtain

more informative and unambiguous events compared

to single-verb events used in previous work (Jhamtani

and Berg-Kirkpatrick, 2020; Guan et al., 2020; Kong

et al., 2021). The schema is shown in Figure 7.

As shown in Figure. 7, event arguments are

extracted according to selected dependencies

between words. Here, we give the details of these

dependencies, and Table. 6 indicate the roles of

10It offers a lot of api interfaces which simplify engineering.
https://www.pytorchlightning.ai/

5544

Attributes Dependencies Examples

Trigger root the predicate e.g. drive

Arguments Role=modifier prt, neg Bill does not drive

Role=agent agent killed by the crime

Role=comp dobj, acomp,

ccomp, xcomp

gave me a raise

comp

agent

mod

Figure 7: The schema of event shows the relations with

event arguments and word dependencies. We offer some

examples to indicate these dependencies, e.g., in "Bill does

not drive" "not" is a negation (neg) to "drive", so it is an

event modifier.

these dependencies in a sentence. (more details of

dependencies see De Marneffe and Manning (2008))

Dep. Full Name Example

prt phrasal verb particle [shut]-prt->[down]

neg negation modifier [drive]-neg->[not]

agent agent [killed]-agent->[police]

dobj direct object [gave]-dobj->[raise]

acomp adjectival complement [looks]-acomp->[beautiful]

ccomp clausal complement [says]-comp->[like]

xcomp open clausal complement [like]-xcomp->[swim]

Table 6: Details of dependencies in Event Schema.

Examples are extracted with the format of [head]-

dependency->[tail].

The schemas of events are required to consider

performance with respect to both generalisation and

representation. More dependencies included can

make an event more informative but may cut down

its generalisation ability. For instance, Subject (e.g.

I, you, Kent, ...) is useful to state the character of an

event, but stories usually have different characters

that may make it difficult for extracted events from

one story to be reused in another story. E.g., "Kent

is driving" and "He is driving" are the same meaning

but if the subject "Kent" is extracted as an event

role, it is very hard to predict same event for another

story, which means the generalisation is damaged.

According to similar criterion we select key roles as

the arguments to events with the consideration of both

generalisation and representation.

A.3 Details of Event Extraction

We extract events from the text of training dataset in-

cluding reference stories and leading contexts. The

data structure of an event is a set including relevant

trigger and arguments in a sentence. We firstly use

spaCy11 to parse dependencies between words in a

sentence, and then annotate event trigger and argu-

11
https://spacy.io/

ments according to the dependencies. An event e con-

tains attributes introduced in Figure 7, in which the

event trigger as the root is generally the predicate. Be-

fore encoders accept text as the input, extracted events

will be serialised to text format to feed the model.

Since existing story datasets do not have the

reference storylines paired with reference stories, we

develop an event extractor to extract event sequences

from reference stories as the storylines. We follow the

route to represent events as verb phrases. Verbs as the

anchor of sentences can be seen as the event trigger,

so our primary goal is to extract all the key roles (as

event arguments) related to the event trigger. The

neighbourhood of extracted events will be considered

as temporal relations.

With temporally related events from training stories,

we construct an event graph denoted as G, which

is an isomorphic graph with single event type and

single relation type. We suppose G is a data structure

composed by triples in eh,r,et format. The workflow

of the extraction process is explained as follows:

Algorithm 1: Extract Event Sequence E

Input: A story S with m sentences

Output: Event Sequence

E for S containing m event objects

1 Initialise E←∅

and roles←{trigger,mod,agent,comp}
foreach si in S do

2 Initialise ei←∅

3 Normalise si

and get dependencies depi with spaCy

4 Extract

event trigger t and position pt from depi
5 ei.trigger←t
6 foreach role in role do

7 if t∈depi.heads
and role∈depi.tails then

8 Extract (role,pr) from depi
9 ei.role←(role,pr)

10 ei.string←r∈roles aligned by pr ↑
11 E append ei

A.4 Details of Methodology

Sentence Prediction Task An auto-regressive

decoder will predict yt based on prior tokens y<t,

so we let a neural model learn to generate a special

hidden state Hi
sep at the position of special token

[sepi] where i denotes the i-th sentence. We use

5545

Figure 8: The snapshot of our evaluation interface. The stories are randomly collected from the ROC dataset, and

the annotators are required to choose a choice for each question on the right colomn. For the convenience of accurate

annotation, the system allow annotators to directly compare different generated stories with given input. A survey will

be automatically recorded with all the three questions answered and the "submit" button pressed.

Sentence-Bert to obtain a numeric vector F sent
i ,

which contains the features of sentences through

representation learning. Then we force the similarity

score sims
ij between generated sentences to fit

similarities between sentences in the reference stories.

The calculation of similarity score is shown below:

F sent
i =Sentence-Bert({si1,...,sin}) (13)

sims
ij=cosine(F sent

i ,F sent
j) (14)

uij=(Hi
sep)

⊺W sepHj
sep (15)

simy
ij=sigmoid(uij+uji) (16)

where i and j denote the indices of a sentence. sim
denotes the similarity. sims

ij, the ground-truth similar-

ity, is computed by cosine similarity between outputs

of Sentence-Bert. uij is an intermediate variable of

similarity obtained from predicted sentence represen-

tations, and W sep denotes a trainable parameter. To

guarantee simy
ij is symmetric with respect to either

i to j or j to i, uij and uji are both incorporated.

Contextualised Features Representation Con-

ventional end-to-end models usually concatenate

embeddings of different input, e.g. here we con-

catenate C and E as the input to the baseline model.

The encoders such as LSTM, Bert-like encoders will

incorporate the heterogeneous features. However,

there may be some potential problems: (i) C and E
have different word distribution, since C is natural

language but E is not. A single encoder may not

capture the two type of features in a single input

numeric vector, efficiently and effectively; (ii) With

the increment of the length of stories, the relative size

of E will surpass C. The single encoder may pay less

attention to C features, e.g. the vectors C involved in

the calculations of attention scores become relatively

less when the plan events increase.

A.5 Details of Human Evaluation

We developed an evaluation system, which helps us

to collect annotations of evaluation, to make the story

pairs for annotation anonymous, fairly shuffled, and

easy to compare. Figure 8 is the snapshot of our

annotating process.

Evaluators are required to follow the annotation

standards shown on the left top corner. Considering

the different biases among individuals, we also notify

every annotator our standards set for this task: (i)

Fluency considers the errors shown in generated text,

e.g. grammatical errors≥ spelling errors≥ unnatural

repetitions >language quality. (ii) Coherence focuses

on the logical relatedness between sentences. We

asked annotators to count all the incoherent parts, and

consider how many word edits would be needed to

make the story coherent (i.e. fewer edits needed =

more coherent story). (iii) Relevance focuses on

the relatedness between generated sentences and

5546

Input
Leading Context [MALE] had lost his dog over a month ago .

Event Sequence missed dog→ notices something→ sees dog→ turns out be

P&Wl+e He wished he could live with his friend. He ’d run in them all the time. But one day, he woke up

exhausted. He went to the doctor with his best friend.

GPT-2l+e [MALE] was only a parent at the time. [MALE] notices the dog and he lets it go. He notices the

dog has been moved and so he notices what happened. [MALE] then realises that it is a bad dog

and there is something wrong with his life.

BARTl+e He missed his dog for a whole month. One day he notices something moving and is startled. He

sees the dog on the floor. It turns out to be a squirrel.

HINTl+e One day [MALE] missed his dog. He notices something about her name on the dog’s tag. [MALE]

sees the dog in the tags. It turns out it could be a dog from the police department.

EtriCA He missed his dog badly. He notices something strange on the curb. He sees the dog outside. It

turns out to be a stray dog.

- w/o sen He had missed his dog so much that he had to search for him. As he was searching, he notices

something about a dog. He sees the dog with a bag. It turns out to be a stray, a wad of dog spray.

- w/o cm [MALE] missed his dog this summer. He notices something on his neighbor’s wall about a house.

[MALE] notices the dog was very sad. it turns out that there must be a really sad day next time.

- w/o leading He missed his dog. [MALE] notices something in the area. he sees a dog. it turns out to be a

black dog.

- w/o events He was devastated by the loss. He decided to pull a long string of nail polish. He found a couple

of old nail polish cans that were very old. His dog enjoyed his touches.

Table 7: A case study of generated stories conditioned with a leading context and an event sequence collected from ROC

Stories. [MALE], [FEMALE], and [NEUTRAL] are the specital tokens to replace names in story. The highlighted bold

words denote the events corresponding to the given event sequence.

the leading context. However, it is very subjective

to judge if a story is "interesting" or not relevant.

Therefore, we suggest evaluators to judge how

irrelevant a story is by counting the conflict generated

sentences with the leading context.

A.6 Case Study

As is shown in Table A.6, EtriCA can generate better

stories considering both context relatedness and story

quality. The strong baselines models, i.e. BARTl+e

and HINTl+e, generate stories with good obedience

to the planned event sequences, and relatively good

fluency. However, they fail to write reasonable

stories with the logical relatedness to the ongoing

circumstances. For instance, "It turns out to be a

squirrel." is a good sentence and also uses the event

"turns out be", but it has nothing to do with the topic -

"the dog is missing", and no coherence with previous

sentences as well.

In terms of the results obtained for the ablation

study, we see the importance of different components

to the whole generation model. If there is no planned

event sequence (see - w/o events), it is very hard

to let a neural model write a coherent story, which

is also demonstrated in previous work (Yao et al.,

2019). If there is no given leading context (see -

w/o leading), neural models struggle to unfold the

planned events, because the neural model does not

understand the concept of a "topic" for a story, it may

cause confusion. Without the contextualising module

(see - w/o cm), the neural model struggles to process

the heterogeneous features from context and events.

5547

