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Abstract— We propose a new framework to decompose 3D
facial shape into identity and expression. Existing 3D face
disentanglement methods assume the presence of a correspond-
ing neutral (i.e. identity) face for each subject. Our method
designs an identity discriminator to obviate this requirement.
This is a binary classifier that determines if two input faces
are from the same identity, and encourages the synthesised
identity face to have the same identity features as the input
face and to approach the ‘apathy’ expression. To this end, we
take advantage of adversarial learning to train a PointNet-based
variational auto-encoder and discriminator. Comprehensive
experiments are employed on CoMA, BU3DFE, and FaceScape
datasets. Results demonstrate state-of-the-art performance with
the option of operating in a more versatile application setting of
no known neutral ground truths. Code is available at https:
//github.com/rmraaron/FaceExpDisentanglement.

I. INTRODUCTION

We tackle the problem of understanding a 3D facial image

from the shape channel only (i.e. no color-texture) in order

to obviate any ambient lighting requirements. The most

immediate problem is how to disentangle 3D shape that

results from a given subject identity and 3D shape that is as a

result of a subject’s facial expression. Such a decomposition

has many applications; for example, facial identity and

expression interpolations, facial expression transfer [6], [35],

[36], as shown in Fig. 1, face recognition [11], [22], [23],

[26], [27], [28], and facial animation [4], [7].

We aim to learn to disentangle identity and expression

and to reconstruct 3D human faces, irrespective of whether

neutral faces, corresponding to the identity of the expressive

faces, can be accessed or not. To reach this goal, we propose

an adversarial approach that combines a variational auto-

encoder (VAE) [21] with an identity discriminator. For the

VAE, we apply a PointNet-based [31] encoder and two

decoders: the identity decoder and the expression decoder.

We also employ it as our base network for the identity

discriminator, which is a classifier that learns to determine

whether or not a pair of 3D faces are from the same identity.

We employ the findings of Grasshof et al. [13], [14], which

shows that the centre of the expression space is the point of

apathy, where all face muscles are relaxed, and our identity

discriminator is able to capture inherently similar features,

i.e. identity features, from various expression faces. The

extracted identity parts from the same person are assumed to

be the apathy expression (i.e. emotionless with relaxed facial

muscles). Conversely, the identity discriminator aims to make

different identity representations distant from each other. The

adversarial process drives our network to synthesise invariant

identity faces from the same subject.

Ground-truth

Expression transferred

Ground-truth

Expression transferred

Fig. 1: Expression transfer using our disentanglement net-

work on FaceScape data (left) and CoMA data (right).

Compared to other methods that require a corresponding

neutral face for each subject, we consider the invariant, ap-

athetic identity representations learned by the discriminator

as our ‘neutral’, in the scenarios when we are not able to

obtain ground truth neutrals. Thorough qualitative and quan-

titative evaluations show that our adversarial approach can

disentangle identity and expression features and synthesise

high quality 3D face shapes. In summary, contributions are:

• An adversarial approach to facial identity and expres-

sion disentanglement that exploits a PointNet-based

VAE and discriminator.

• To the best of our knowledge, we are the first to address

the scenario of unknown ground truth neutrals, leverag-

ing the invariance of identities from same individuals

and employing the apathy ‘expression’ as the center of

expression space in order to train an end-to-end model,

i.e. the identity discriminator and the VAE are trained

simultaneously in an unsupervised manner.

• We compare the results of using and not using neutral

ground-truths, and observe the performance of disen-

tanglement on applications including face recognition,

expression transfer and expression interpolation.

• Evaluation on publicly-available datasets demonstrates

state-of-the-art results with the option of operating in a

more versatile application setting of no known neutral

ground truths.

II. RELATED WORK

Many recent works aim to analyse 2D and 3D images

of the human face in terms of their physically-meaningful

components i.e. subject identity, facial expression, surface

reflectance, illumination and camera parameters. The in-

troduction of 3D Morphable Models (3DMMs) [2] is a
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notable early milestone. In subsequent years, 3D face models

were developed that use more sophisticated shape morphing

techniques [15], or a larger body of 3D training samples [3],

or that cover the full cranium as well as the face [10] and

that have articulated components [24], [30].

Several works focus on identity and expressions analysis.

A statistical model [5] was employed to fit 3D faces and

analysed facial identity and expression and explored their

variations. Bouaziz et al. [4] combined an identity PCA

model, a dynamic expression template, and a parameterized

deformation model, which transformed the neutral shape to

generate user-specific blendshapes.

Many nonlinear models were proposed to decouple the

identity and expression features from a 3D face shape.

Tewari et al. [34] presented a multi-frame video-based self-

supervised training of a deep network to disentangles facial

shape, appearance, expression, and illumination.

Tran and Liu [37] proposed a nonlinear 3D Morphable

Model (3DMM). Liu et al. [25] also presented a framework

to learn a nonlinear face model by treating 3D scans as

unorganized point clouds and transforming them into shape

and expression latent representations and then recovering 3D

shapes. [26] utilised an encoder-decoder network to regress

3D face shapes from 2D face images and to disentangle the

identity and non-identity components of 3D face shapes.

In order to construct both identity and expression 3D

shape models from general 3D face datasets, we need high-

performance identity-expression disentanglement, which is

the aim of this work, and we now focus on prior works

specifically aimed at this goal.

A. Disentangled Face Representations

Human facial expression analysis has been the focus of

many studies, in which it requires an identity-agnostic ex-

pression representation. Jiang et al. [16] observe that human

expressions lie in a high-dimensional manifold and that the

expression manifolds of different subjects are similar. Neutral

expressions, i.e. identity attributes, were set as the origin

points and they proposed a nonlinear framework to decom-

pose 3D face meshes into identity and expression attributes.

Abrevaya et al. [1] introduced the use of the Generative

Adversarial Network (GAN) [12] architecture for decoupling

3D facial natural factors, such as identity and expressions.

Zhang et al. [41] combined a VAE with an adversarial net-

work in order to eliminate correlations between identity and

expression representations and ensure their independence.

Kacem et al. [17] employed a GAN to extract expressive

representations. Zhang et al. [40] modelled expressions as

the deviation from the identity and extracted a deviation

feature vector using a deviation learning network with a

pseudo-siamese structure. Note that existing disentanglement

methods take neutral expressions into consideration. We also

decouple expressions from 3D faces without the requirement

for corresponding neutral expression ground truths.

III. PROPOSED METHOD

In this section, we describe the details of our end-to-

end method for 3D facial identity and expression disen-

tanglement. Fig. 2 demonstrates our overall joint learning

pipeline. We introduce our overall architecture in the Sec. III-

A and then we explain the encoder-decoder, the identity

discriminator and the loss functions.

A. Overall Architecture

We view each aligned 3D face scan X
i ∈ R

n×3 (i ∈
[1, · · · ,m]) as point clouds where n is the number of vertices

and m is the number of input 3D face scans. (Note that we

simplify X
i to X in the following.) Each instance of X is

divided into the identity part Xid ∈ R
n×3 and the expression

deformation part Xexp ∈ R
n×3. We assume identity and

expressions are independent, so that the full face is the

sum of the identity shape and the expression blendshape,

formulated as:

X = Xid +Xexp. (1)

In our architecture, shown in Fig. 2, the whole network is

designed as a GAN, where the encoder-decoder network is

the ‘generator’ part of the network. We employ a variational

encoder, based on PointNet, to learn identity and expression

distributions and sample their latent vectors zid and zexp re-

spectively. Two decoders are used to reconstruct the identity

X̄id and expression X̄exp components from corresponding

latent vectors zid and zexp and using (1), the full faces are

synthesised.

Another essential part of the GAN framework is the

discriminator and we propose an identity discriminator. The

input of this discriminator is a face shape pair containing

a 3D face X (Xi) and its predicted identity shape X̄id

(X̄i
id) from the identity decoder or another 3D face shape

X
j with the same identity. This discriminator is trained to

distinguish a ‘real’ face shape pair (i.e. same identity) from a

‘fake’ pair (i.e. different identity). When jointly training the

end-to-end model, the original face shape pairs with same

identities (Xi,Xj) are considered as real samples, and those

pairs that include predicted identity shapes from the identity

decoder (Xi, X̄id) are considered as fake. Thus, the generator

is encouraged to learn an intrinsic identity latent distribution

in the process of adversarial learning.

B. Variational Encoder-Decoder Network

Although we aim to disentangle 3D face identity shapes

and expressions, 3D face reconstruction is also considered.

We employ a VAE network, in which the encoder is used

to predict distributions of latent representations from input

point clouds and the decoders are used to recover these 3D

face shapes. To better decouple identity and expressions, the

encoder outputs distributions for identities and expressions

separately, and two decoder branches, i.e. ID decoder and

EXP decoder, receive their corresponding sampled represen-

tations and reconstruct 3D identity face shapes and expres-

sion blendshapes individually.

The VAE models the probability P (X) of the input 3D

face shapes and we assume that 3D face shapes are deter-

mined by latent features zid and zexp representing identity

and expression respectively. This generative model estimates

2
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𝐳exp

𝐳id = 𝛍id + 𝛔id ⊙ 𝛜𝛜 ~ 𝑵(𝟎, 𝑰) 𝐳id𝐗
Encoder

𝛍id
𝛔id
𝛔exp
𝛍exp

𝐳exp = 𝛍exp + 𝛔exp ⊙ 𝛜𝛜 ~ 𝑵(𝟎, 𝑰)

Sample

Sample

ID

Decoder

EXP

Decoder
ഥ𝐗exp⨁

Mean Face

⨁
ഥ𝐗ഥ𝐗id

ID 

Discriminator

Ground-truth:

real pair

Synthesis: 

fake pair

Fig. 2: A framework of 3D face identity and expression disentanglement. This joint learning network includes a variational

encoder-decoder part for 3D face reconstruction and a discriminator to enforce the same identity in an adversarial manner

parameters that maximize the likelihood of 3D face identities

and expressions, as follows:

pθ(Xid) =

∫
pθ (zid) pθ (Xid|zid) dz, (2)

pθ′(Xexp) =

∫
pθ′ (zexp) pθ′ (Xexp|zexp) dz, (3)

where pθ (Xid|zid) and pθ′ (Xexp|zexp) represent the iden-

tity decoder and expression decoder respectively. We assume

a unit Gaussian distribution for the prior distributions pθ (zid)
and pθ′ (zexp).

Due to the intractable posterior pθ (zid|Xid), the dis-

tribution qφ (zid|Xid) is defined in the identity encoder

to approximate pθ (zid|Xid). We use the Kullback-Leibler

(KL) divergence term DKL (qφ (zid|Xid) ||pθ (zid|Xid)) to

minimize their difference. Similarly for pθ′ (zexp|Xexp).
The VAE aims to maximize the log-likelihood of 3D facial

identities and expressions, taking the identity branch as an

example:

log pθ (Xid) = Ez∼qφ(zid|Xid) [log pθ(Xid)] ≥ ELBO, (4)

where ELBO is defined as the following expectation:

Ez [log pθ (Xid|zid)]−DKL (qφ (zid|Xid) ||pθ (zid)) . (5)

Thus, the VAE is assumed to estimate parameters θ and φ

to maximize the ELBO (Evidence Lower Bound) in (4) and

(5). In other words, negative ELBO is considered as one of

the loss function terms in our network.

C. Adversarial Training

Face identity shapes and expression blendshapes are sam-

pled from the p (X|z) distributions and to promote better

decoupling of identity shapes from expressions, an adversar-

ial training process is employed.

Our proposed identity discriminator DID is trained to

distinguish between real and fake samples. Additionally, we

input a 3D face shape pair into the identity discriminator that

decides whether the input pair has the same identity shape.

ID

Discriminator

Diff ID: Fake

Same ID: Real

pretrain

Ground-truth: Real

Synthesis: Fake

joint-train

𝐀i𝐁i

𝐗
𝐗

ഥ𝐗id

෩𝐗
𝐀i𝐀j

Fig. 3: The pre-train input pairs and the joint end-to-end train

input pairs of the identity (ID) discriminator

Apathy

(a) 3D facial shape space
(b) Expression affine sub-
space [13] (© 2021 IEEE)

Fig. 4: Illustrations of 3D facial shape space and expression

affine subspace. In the second sub-figure, there is a special

point indicated by the top-right red face: the point of apathy

For instance, if we input a face scan pair Ai and Aj with the

same identity Aid, this identity discriminator is expected to

classify this pair into the real class (note that the subscripts

(i, j) index expressions). Otherwise, a pair Ai and Bi should

be classified into the fake class due to one with the identity

Aid and another with the identity Bid, as illustrated in Fig. 3.

In facial expression analysis [8], [9], [33], the latent

variables that represent identity and facial expression, lie on a

manifold in high dimensional space, as illustrated in Fig. 4a.

Stella et al. proposed that the point of apathy is the centre of

expressions [13], [14], and expressions trajectories obtained

by varying the strength of human emotion originate from this

point, as shown in Fig. 4b. Based on these observations, the

implicit connection of faces with the same identity, notwith-

3
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standing various expressions, is the apathetic expression. Our

adversarial process encourages common information from a

face shape pair with the same identity to be retained. If

we only compare the smile expression with the surprised

expression from the same individual, not only their same

identity but their similar expression deformations, e.g. open

mouth, will be recorded by the discriminator. However,

there are several shape pairs from the same identity and

their expressions are distributed in divergent directions that

intersect at the point of apathy - so the discriminator will

ultimately retain all pairs’ common information - apathy.

Thus, the identity discriminator has the ability to capture

similar latent features, i.e. identity features, between pairs

belonging to same subject, and to enforce these features to

be close to the their apathy faces.

In a GAN framework, a generator and discriminators are

trained adversarially. In our network, the ideal situation is

that synthesised face identity shapes from the VAE can fool

the discriminator. In other words, the predicted neutral face

shapes are close enough to the corresponding facial identities

to make the discriminator believe that they belong to the

‘real’ class. During the adversarial process, the discriminator

takes advantage of a loss function that enables the identity

decoder distribution p (Xid|zid) to approximate to the face

identity distribution p (Xid). The loss used to jointly train

the generator and discriminator is:

Jadv = max
θd

[
E(X̃,X)∼psame

[
log

(
DID

(
X̃,X; θd

))]

+EX∼pdata
[log (1−DID (G (X) ,X; θd))]

]
, (6)

where psame is the distribution of all same-identity 3D face

pairs. The sampled pair from psame, i.e.
(
X̃,X

)
in (6), is

equivalent to sampling from the original dataset twice, such

that the two sampled faces have the same identity. G (X)
is the combination of the encoder and the decoder, and its

output is the synthesised identity shape X̄id.

D. End-to-end Loss Function Terms

We define five components in our loss function that

is required to train our end-to-end network for 3D face

reconstruction and identity-expression disentanglement. The

overall loss function is:

Ltotal = λ1Lrecon+λ2LKL+λ3LDID
+λ4Lneu+λ5Llap,

(7)

where λ1−5 are hyperparameters to balance these five losses.

The Lrecon is the Mean Squared Error (MSE) for 3D face

reconstruction; the LKL loss is the ELBO term from (5).

We use two KL losses, one for the identity part and another

for the expression part, to constrain the posterior distribution

close to the unit Gaussian distribution N (0, I ). The LDID

in (8) is simplified from the (6), by using a cross entropy.

LDID
= −

[
y log

(
DID

(
X̃,X

))
+ (1− y) log

(
DID

(
X̄id,X

))]
,

(8)

where y is the label (1 for the 3D face pair
(
X̃,X

)
sampled

from ground truth data and 0 for the 3D face pair including

the predicted identity shape X̄id). After facial identity shapes

X̄id are predicted by the identity decoder, X̄id is fed into the

encoder again, and the associated identity latent vector z̄id

is sampled. Lneu is the L1 loss for zid and z̄id. To minimise

the mean curvature and make 3D faces smooth, we employ

a Laplacian regularization loss Llap [18] that is written as

Llap = ∥LX∥2, where L is the discrete Laplace-Beltrami

operator.

IV. EVALUATION

In this section, we present an experimental evaluation of

our proposed reconstruction and disentanglement method.

Firstly, datasets, implementation details, and evaluation met-

rics are introduced. We compare our methods (both with

and without neutral ground-truths) against baselines on three

public datasets. We also perform ablation studies to analyse

the benefits of the components in our architecture design. To

demonstrate the utility and effectiveness of our approach, we

show the results of several applications, including: expression

transfer, expression interpolation and face recognition (latter

in Supplementary Material).

A. Datasets Employed

The three datasets used are given below. In BU3DFE and

CoMA the ratio of training set size to test set size is 9:1,

and in FaceScape the ratio is 7:3.

CoMA dataset [32] contains motion sequences of 20,466

meshes from 12 different individuals. Each subject performs

12 extreme, asymmetric facial expressions. We follow [32]

and divide these meshes into a training and test set, so that

the sequences are fixed in alphabetical order and we take

10 frames from every 100 frames as test samples. There

are 18,422 and 2040 meshes in the training set and test set

respectively.

BU3DFE [39] includes 100 subjects with 2500 3D facial

scans, and each subject is asked to perform seven expres-

sions. With the exception of the neutral expression, each of

the six other expressions includes four levels of intensity. We

follow [41] and select the first 10 subjects as the test set and

the rest are used for training. There are 2247 meshes in the

training set and 250 meshes in the test set. The test identities

are unseen in training.

FaceScape [38] contains 847 subjects and each subject

performs 20 expressions. We randomly select 30% of the

subjects as the test set and the rest are used for training.

There are 11,812 and 5055 meshes in the training and test

set respectively. The test identities are unseen in training.

B. Implementation Details

In the FaceScape dataset, there are 26,317 vertices and

52,261 faces per subject. This is prohibitive in terms of GPU

memory and time when training and so we simplify meshes

using a quadric-based edge collapse strategy after which each

mesh includes 4547 vertices and 8999 faces.

We pretrain a PointNet-based network as the identity

discriminator. As depicted in Fig. 3, we sample a 3D face

scan each time from the training dataset, and the specific

4
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input and the sampled face shape constitute a pair. If the

subject identity of a pair is the same, the label is set as

“True”, otherwise the label is “False”.

We adopt the pretrained identity discriminator as an

initialisation in the joint end-to-end training, and explore

alternative pairs to train the encoder-decoder and the identity

discriminator together. The new “True” pair represents the

input ground truth 3D face shape and a sampled one with

the same identity, whereas the predicted identity shape from

identity decoder and the original one are regarded as a

“False” pair.

For a fair comparison, the PointNet-based encoder takes

four identity latent dimensions and four expression latent

dimensions, which is the same as the compared methods, in

the CoMA dataset. For BU3DFE we use 40 dimensions for

each latent vector and for FaceScape we use 64.

We implement the network with PyTorch [29] and run it

on an NVIDIA A40 system. We pretrain the identity discrim-

inator using a batch size of 32 and 50, 100, 100 epochs on

CoMA, BU3DFE, and FaceScape respectively. End-to-end

networks are trained using the Adam optimiser [20] with the

learning rate at 1× 10−4, and a learning rate decay is set as

0.7 every 50 epochs.

Different hyperparameters for different datasets are ex-

plored to balance each loss, including λ1 being set as 250

on BU3DFE and 5000 on CoMA and FaceScape, and λ3

as 5× 10−4 on CoMA as well as FaceScape and 1× 10−3

on BU3DFE. In FaceScape and CoMA, we only use the

Laplacian loss to make predicted identity faces smooth when

neutral ground-truths are not available. We train the joint

end-to-end network for 280 epochs and a batch size of 8 on

BU3DFE, 280 epochs and a batch size of 32 on FaceScape,

and 300 epochs and a batch size of 32 on CoMA. We conduct

every leave-one-out experiment three times and report their

average results.

C. Evaluation Metrics

We adopt the evaluation metrics used in [16], [17], [41],

i.e. both reconstruction and disentanglement metrics. Our

system is based on point clouds, so the average vertex

distance between synthesised 3D face shapes X̄ and original

3D face shapes X is considered as the reconstruction error

Erec in (9):

Erec(X, X̄) =
1

n

n∑

i=1

∥∥Xi − X̄i

∥∥
2
, (9)

where n is the number of vertices of X. We report the mean

and the median of the average vertex distance.

The standard deviation of reconstructed identity shapes

from 3D faces with the same identity is assumed as the

disentanglement error Edis. This is designed to evaluate the

disentanglement. Given a test set containing raw 3D faces

with various identity shapes that are represented as Aid, Bid,

· · ·, Nid, the raw 3D faces owning the same identity A
id and

different expressions are denoted as Ai. The disentanglement

error Edis is computed as:

Edis = σ
(∥∥Aid

i −A
id
mean

∥∥
2

)
, (10)

where A
id
mean is the mean of predicted identity shapes A

id
i

from Ai (i ∈ [1, · · · , k]), and k is the number of expression

types. We do not quantitatively evaluate the predicted expres-

sion shape because we consider that different people express

the same expressions in slightly different ways, which is

affected by their anatomy.

The average vertex distance AVDneu of identity shapes

is used to evaluate the reconstruction and disentanglement

process as well.

D. Comparison with Recent Literature

We compare our work with five state-of-the-art 3D face

disentanglement methods, FLAME [24], Jiang et al. [16],

and DI-MeshEncoder [41] on CoMA and BU3DFE, and

Kacem et al. [17] and Convolutional Mesh Autoencoder

(Conv-MeshAE) [32] on FaceScape. We carefully report

results from [41] since we have the same training and

test set. The FLAME model is factored in the sense that

it separates the representation of identity, pose, and facial

expression. It includes a learned shape space of identity

variations and expression blendshapes to capture non-rigid

deformations of faces. Jiang et al. and DI-MeshEncoder

adopt a Graph Convolutional Network (GCN) based auto-

encoder to reconstruct 3D face shapes and decouple identity

and expression attributes. Kacem et al. uses a GCN network

and a discriminator for expression neutralisation and face

recognition. Conv-MeshAE proposes a GCN architecture

to represent 3D face shapes into non-linear latent space.

Although this is a 3D reconstruction method instead of

disentangling identity and expression shapes, we follow [17]

to consider pairs of expressive and neutral faces as its input

and ground-truths, respectively. We use a widely-adopted

autoencoder structure based on PointNet that is unlike these

four methods and, furthermore, neutral ground truths are not

required in our method. Our discriminator is employed on

raw data. This is different from [41] who use a discriminator

to enforce independence of two distributions, which is based

on Kim and Mnih’s PMLR 2018 work [19]. Our work is

also different from [17], who use a discriminator in the latent

space to learn a valid translation from expressive to neutral

representations.

E. Results and Discussions

TABLE I: Disentanglement (Edis) and reconstruction results

(Erec) on CoMA. Compared with FLAME, Jiang et al., DI-

MeshEnc and Conv-MeshAE. All errors are in millimeters

Methods
Edis Erec

mean med mean ± std med

FLAME [24] 0.599 0.591 1.451 ± 1.649 0.871
Jiang et al. [16] 0.064 0.062 1.413 ± 1.639 1.017

DI-MeshEncoder [41] 0.019 0.020 0.665 ± 0.748 0.434

Conv-MeshAE [32] 0.313 0.317 — —

Ours 0.176 0.180 0.783 ± 0.225 0.772
Ours+ne-gt 0.014 0.013 0.651 ± 0.208 0.625

The quantitative results on CoMA and BU3DFE that are

compared with FLAME, Jiang et al., DI-MeshEncoder and
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TABLE II: Disentanglement and reconstruction results on

BU3DFE. Compared with FLAME, Jiang et al., DI-MeshEnc

and Conv-MeshAE. All errors are in millimeters

Methods
Edis Erec

mean med mean ± std med

FLAME [24] 0.600 0.632 2.596 ± 2.055 2.055
Jiang et al. [16] 0.611 0.590 2.054 ± 1.199 1.814

DI-MeshEnc [41] 0.361 0.327 1.551 ± 0.924 1.375
Conv-MeshAE [32] 0.361 0.377 — —

Ours 0.443 0.439 1.421 ± 0.412 1.306

Ours+ne-gt 0.348 0.339 1.500 ± 0.423 1.467

TABLE III: Average vertex distance of identity shapes

AVDneu and disentanglement results Edis on FaceScape.

Compared with [17] and [32]. All errors are in millimeters

Methods
AVDneu Edis

mean ± std median mean med

Kacem et al. [17] 2.02 ± — — — —
Conv-MeshAE [32] 2.00 ± 0.52 1.90 0.64 0.62

Ours 3.11 ± 0.92 2.96 0.77 0.76
Ours+ne-gt 1.93 ± 0.61 1.82 0.57 0.55

Conv-MeshAE are given in Tab. I and Tab. II respectively.

Erec of Conv-MeshAE is missing because its generated

shapes are identities instead of original input faces. We

also report AVDneu that is compared with Conv-MeshAE

on BU3DFE and CoMA in the Supplementary Material.

We only compare with Conv-MeshAE and Kacem et al.

on FaceScape with the results listed in Tab. III, since the

FaceScape dataset was published recently and there are very

few disentanglement experiments on it. Kacem et al. adopts

different training and test set splits and predicts neutral

shapes of unseen identities on the CoMA dataset. We also

conduct experiments with this split scheme and report results

in the Supplementary Material.

The “Ours” in these tables means that our method does

not access the neutral ground-truths in end-to-end training,

which fits to some real-world scenarios where corresponding

identity shapes are not available. The “Ours+ne-gt” denotes

that we use neutral faces as ground-truths, as is the case with

all the methods that we compare with.

From Tab. I and Tab. II, we observe that we achieve

improvements on Edis in CoMA and Erec in BU3DFE.

From Tab. II, we see one of our methods with the best

Edis and the other with the best Erec. The reason is that

we employ a GAN network and there is a trade-off between

reconstruction and disentanglement performance. Unsurpris-

ingly, disentanglement performance (represented by Edis)

drops when neutral ground-truths are not accessed in our

method, especially in the CoMA dataset. This lower Edis

is a result of the small number of identities. On average,

more than 1500 meshes have the same identity, so there

are many mesh-pairs of the same identity. The variance of

retained common information is larger than those with strong

supervision or those with fewer pairings in the discriminator

training. Tab. III shows that our method also has strong

Synthesis

Error 

map

0mm >3mm

Ground-

truth

Fig. 5: Results of unseen 3D face disentanglement using

neutrals on FaceScape - from left to right group: the best,

the average, and the worst. Each group has three faces: full

face, neutral and expression

Ground-

truth

Synthesis

Error 

map

0mm >4mm

Fig. 6: Results of unseen 3D face disentanglement without

neutrals on FaceScape. The same arrangement as Fig. 5

performance on the FaceScape dataset.

In Fig. 5, we select some representatively unseen identity

results of 3D face reconstructions and disentanglement using

neutral ground-truths on FaceScape. They are divided into

three groups to show our best, average and worst perfor-

mance (based on quantitative metrics). In each group, the

first row consists of the ground truth full face, neutral,

and expression. The second row consists of corresponding

prediction results. We show the error heat maps in the third

row. Fig. 6 reports results of 3D face disentanglement and

reconstruction without ground truth neutrals on FaceScape.

As shown in Fig. 7 and Fig. 8, the predicted neutral faces

have extremely low error when using neutral ground-truths

on CoMA, and expression predictions perform slightly worse

than identity parts. The unseen identity results of BU3DFE

are illustrated in Fig. 9 and Fig. 10. In the worst case with-

out neutral ground-truths of BU3DFE and FaceScape, the

predicted identity shapes have slight expressions (open / left

mouth), especially when expression shapes are exaggerated.

Ground-

truth

Error 

map

0mm >3mm

Synthesis

Fig. 7: Results of 3D face disentanglement using neutrals on

CoMA. The same arrangement as Fig. 5
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TABLE IV: Comparison results of Erec, Edis and AVDneu on CoMA, BU3DFE and FaceScape. The ‘−ne-gt’ means our

methods without neutral ground-truths and ‘−id-dis’ means our method without the identity discriminator. Conversely, the

‘+ne-gt’ and ‘+id-dis’ mean our method with neutrals and the identity discriminator respectively. All errors are in millimeters

Methods Dataset
AVDneu Edis Erec

mean ± std median mean median mean ± std median

−ne-gt

−id-dis
CoMA

2.775 ± 0.948 2.509 1.439 1.443 0.686 ± 0.190 0.674
+id-dis 1.528 ± 0.675 ↓ 1.268 ↓ 0.176 ↓ 0.180 ↓ 0.783 ± 0.225 0.651
−id-dis

BU3DFE
4.108 ± 1.246 3.958 1.211 1.144 1.469 ± 0.405 1.359

+id-dis 2.429 ± 0.667 ↓ 2.283 ↓ 0.443 ↓ 0.439 ↓ 1.421 ± 0.412 ↓ 1.306 ↓

−id-dis
FaceScape

12.020 ± 0.514 11.876 1.791 1.795 1.187 ± 0.300 1.138
+id-dis 3.112 ± 0.916 ↓ 2.957 ↓ 0.765 ↓ 0.758 ↓ 1.157 ± 0.286 ↓ 1.109 ↓

+ne-gt

−id-dis
CoMA

0.071 ± 0.012 0.070 0.016 0.015 0.669 ± 0.213 0.647
+id-dis 0.065 ± 0.012 ↓ 0.063 ↓ 0.014 ↓ 0.013 ↓ 0.651 ↓ ± 0.208 ↓ 0.625 ↓

−id-dis
BU3DFE

1.885 ± 0.459 1.733 0.345 0.337 1.509 ± 0.427 1.382

+id-dis 1.894 ± 0.430 1.764 0.348 0.339 1.500 ± 0.423 ↓ 1.404
−id-dis

FaceScape
1.927 ± 0.617 1.821 0.582 0.563 1.393 ± 0.379 1.330

+id-dis 1.927 ± 0.610 ↓ 1.815 ↓ 0.569 ↓ 0.551 ↓ 1.370 ± 0.369 ↓ 1.307 ↓

Ground-

truth

Synthesis

Error 

map

0mm >4mm

Fig. 8: Results of 3D face disentanglement without neutrals

on CoMA. The same arrangement as Fig. 5

Ground-

truth

Synthesis

Error 

map

0mm >3mm

Fig. 9: Results of unseen 3D face disentanglement using

neutrals on BU3DFE. The same arrangement as Fig. 5

F. Ablation Study

We now study the effectiveness of our discriminator.

From Tab. IV, we can observe that our discriminator greatly

improves disentanglement performance when we cannot

access neutral ground-truths. For example, our ‘+id-dis’

outperforms the ‘−id-dis’ on FaceScape without ground-

truth neutrals by around 75% of AVDneu and 57% of Edis

(decreasing from 12.020 to 3.112 and from 1.791 to 0.765

respectively). The same effectiveness is qualitatively depicted

in Fig. 11. The improvements of disentanglement with neu-

tral ground-truths are not as significant as the case with un-

available ground-truths. Note that using ground-truth neutrals

is a strong supervised training process whereas, in contrast,

the VAE and discriminator learn identity representations

adversarially in an weakly-supervised process. Thus, when

ground-truth neutrals (strong supervised process) works, the

effectiveness of weakly-supervised process is not obvious.

Ground-

truth

Synthesis

Error 

map

0mm >4mm

Fig. 10: Results of unseen 3D face disentanglement without

neutrals on BU3DFE. The same arrangement as Fig. 5

Ground-

truth

−ne-gt− id-dis

−ne-gt+ id-dis

FaceScape BU3DFE CoMA

Fig. 11: Comparisons on using/not-using the identity dis-

criminator when neutral ground truths are unknown on three

datasets: FaceScape, BU3DFE and CoMA. Each datase has

three faces: full face, neutral and expression

In addition, some reconstruction results are compromised a

small degree because of the adversarial learning.

G. Applications

We apply our network in expression transfer, identity

and expression interpolation, and face recognition. Taking

CoMA and FaceScape, we randomly select two subjects

with different expressions in the test set and transfer their

expression latent representations, as shown in Fig. 1. We

display disentangled identity and expression interpolations

in the Supplementary Material. We implement face recog-

nition on FaceScape and BU3DFE, since there are only 12

individuals on CoMA, and we compare it with Kacem et

al. and Conv-MeshAE. The results are also published in the

Supplementary Material and a very similar to each other.
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V. CONCLUSIONS

We proposed a method employing a VAE and a discrim-

inator for disentangling 3D face identities and expressions.

To learn identity representations, we use pairs of 3D faces

to train an identity discriminator, which is forced to capture

identity features of the same subjects only. This particularly

improves the performance in the situations where neutral

expressions are not available. Additionally, the joint end-to-

end learning of the encoder-decoder network and the identity

discriminator helps reconstruct 3D faces. We perform evalu-

ations on CoMA, FaceScape and BU3DFE, showing the high

effectiveness of our network for 3D face reconstruction and

identity/expression disentanglement.
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