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Abstract— We present a progressive 3D registration frame-
work that is a highly-efficient variant of fully-automatic, classi-
cal non-rigid ICP. Since it uses the Laplace-Beltrami operator
for deformation regularisation, we view the overall process
as Laplacian ICP (L-ICP). This exploits a ‘small deforma-
tion per iteration’ assumption and is progressively coarse-to-
fine, employing an increasingly flexible deformation model,
an increasing number of correspondence sets, and increas-
ingly sophisticated correspondence estimation. Correspondence
matching is only permitted within predefined vertex subsets
derived from domain-specific feature extractors. Additionally,
we present a new benchmark and a pair of evaluation metrics
for 3D non-rigid registration, based on annotation transfer. We
use this to evaluate our framework on a publicly-available
dataset of 3D human head scans (Headspace). The method
is highly robust and only requires a small fraction of the
computation time compared to the most popular classical
approach, yet has comparable registration performance.

I. INTRODUCTION

Determining surface correspondences across a set of 3D
shapes is key to modelling them. One approach employs non-
rigid transformation of a template (source) shape, so that its
vertices align with those of a target shape - see Figure 1.
When a template is non-rigidly registered to a set of shapes
of some class, this enables construction of statistical shape
models, such as 3D Morphable Models (3DMMs, [1], [23]).

Non-rigid registration has been extensively explored both
in terms of classical optimisation algorithms and deep learn-
ing. Often, the latter requires a large corpus of training data,
data augmentation techniques or transfer learning. Here, we
revisit the classical approaches, which do not have such
requirements and are of high utility in low data volume cases.
In this respect, we provide a new formulation of dense, non-
rigid Iterative Closest Points.

In essence, our algorithm incorporates a form of
progressively-relaxed Laplacian deformation regularisation
into an progressively coarse-to-fine ICP-style framework [3],
[1] - and hence our approach is termed Laplacian ICP (L-
ICP). Laplacian mesh editing [25] is known to be computa-
tionally efficient, due to its sparse linear structure and hence
a key benefit of L-ICP is that it is very efficient computation-
ally, when compared with competing classical approaches for
non-rigid registration, such as Optimal-step N-ICP [1] and
Coherent Point Drift (CPD [21]). The approach is designed to
incorporate shape morphing constraints supplied by domain-
specific feature extraction algorithms, as shown in Figure 1,
which has facial landmarks, ear landmarks and an intrinsic
symmetry contour on a human head. Furthermore, it handles
variable mesh resolution via the cotangent weighting scheme
of the Laplace-Beltrami operator.

Target Data Template Morph

Fig. 1: Target scan (left) and template (right) morphed with
Laplacian ICP. Correspondence sets are: (i) landmarks (red);
(ii) right ear landmarks (cyan); (iii) left ear landmarks (cyan);
(iv) symmetry contour (blue); and (v) all remaining vertices
on mesh (grey surface).

L-ICP is packaged in a very flexible, staged non-rigid reg-
istration framework, where stages are defined by high-level
scripting. Therefore, it is easily adapted to different shape
classes, guided by domain-specific sets of automatically-
extracted correspondences. It is a progressively coarse-to-
fine process that, as it transitions into each new stage,
may employ: i) an increasing number of correspondence
sets (landmarks, contours, regions); ii) an increasingly re-
fined correspondence estimation; iii) an increasingly flexible
shape deformation model and iv) an iterative shape refine-
ment, used after correspondences stabilise, that generates a
Laplace-Beltrami operator consistent with the template itself.
Since our algorithm estimates the deformed shape directly
in a linear system, it is easy to incorporate constraints from
other linear relations on the deformation, such as those from
3DMMs or extrinsic symmetry constraints. We evaluate our
work on the Headspace dataset of 3D human head scans [9]
and compare to the per-vertex affine regularisation approach
from the most commonly-used N-ICP variant [1].

In summary, our contributions are: i) fully-dense morphing
via progressively relaxed Laplace-Beltrami regularisation; ii)
a flexible and progressive coarse-to-fine registration frame-
work; iii) a new publicly-available non-rigid registration
benchmark for the Headspace [9] human head dataset, com-
prised of a set of manual annotations (859 subjects) and
a pair of annotation transfer metrics. We will make our
annotation data and registration code available in the interests
of reproducibility.



134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

FG2023
#68

FG2023
#68

FG2023 Submission. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

II. RELATED WORK

Non-rigid 3D registration, correspondence matching and
3DMM fitting are highly-active research areas. Methods
focus on correspondences across organic shape sets such as
faces [5], [17], [9], [23], human bodies [4], [20], [13], [24]
and various human organs [15]. Alternatively, they focus on
man made objects, such as chairs, cups and aircraft [28],
[19]. A current popular approach, due to its compactness
and flexibility, is to employ implicit surface representations;
for example, where the 3D surface is the zero level set of
a learnt Signed Distance (to surface) Function (SDF) [22],
[11], or where the function returns an occupancy indicator.
Zheng et al. [30] propose the use of Deep Implicit Templates
for 3D shape representation. Their method employs a Deep
Implicit Function (DIF) that is decomposed into a warping
function and an implicit template. The warping function
transforms point samples of the raw scan to their canonical
positions, which are then mapped to SDF values by the
implicit template. In contrast to [12], their approach is able
to learn an implicit template for some shape class. The
method also establishes dense correspondences across the
shape dataset in an unsupervised fashion.

Rather than the standard pipeline of multi-view 3D shape
reconstruction, followed by a 3D-to-3D template to data
registration scheme, the ToFu system of Li et al. [18] outputs
a 3D facial mesh in a consistent topology directly from a set
of calibrated 2D input images. The idea here is to consider a
feature volume, where a grid of points in that volume selects
2D features by projection into the multi-view images. A
coarse-to-fine architecture is then able to predict a consistent
facial mesh topology.

In this work, we revisit classical ICP [3] in its non-
rigid form [1]. Widely-used methods of classical non-rigid
registration include Non-rigid Iterative Closest Point (NICP)
[1], Coherent Point Drift (CPD) [21], Thin Plate Spline
(TPS) approaches [6], [29] and the method of Li et al.
method [16], which employs a Levenberg-Marquardt based
optimisation. The As-Rigid-As-Possible (ARAP) form of
deformation regularisation was introduced by Sorkine et
al. [25] in their work on surface editing. Here the mesh
Laplacian was employed to ensure that shape details are
preserved. This proved extremely effective, as the relative
location of vertices and hence local shape is encoded by the
Laplacian. Furthermore, it was noted that by using the cotan-
gent scheme in the computation of the Laplacian operator,
non-uniformity in 3D mesh resolution and connectivity could
be accommodated. Dai et al. [8] use the Laplace-Beltrami
shape regularisation as a way of initialising the Coherent
Point Drift [21] algorithm. Although we employ a similar
early-stage template adaptation, [8] use fixed landmarks with
a single fixed stiffness weight, whereas ours uses both fixed
and variable correspondence sets and a stiffness weighting
schedule. More importantly, we demonstrate, for the first
time, that it is possible to use LB regularisation to do fast,
fully dense, and complete shape morphing.

III. LAPLACIAN ICP

Any form of non-rigid 3D ICP seeks to iteratively refine
a source shape, such that it becomes registered with a target
shape. A key question is how to regularise the deformation
of the source mesh. Inspired by Laplacian surface editing
[25], we employ the Laplace-Beltrami (LB) operator in our
regularisation term. When the LB operator is applied to a
mesh, it extracts vectors in the direction of the local surface
normal, with magnitude proportional to the local mean
surface curvature. This computation is of a discrete form
and here we employ the cotangent approximation scheme.
Thus, within our iterative optimisation scheme, we consider
a regularising energy term, Ereg, of the form

Ereg(Xi+1) = ||Li+1Xi+1 − LiXi||2F (1)

where X ∈ RN×3 is a matrix of N source mesh vertex
positions, Li = L(Xi) is the LB operator (L ∈ RN×N ,
sparse) computed from the source shape (e.g. template) at
the ith iteration and ||.||F is the Frobenius norm. This reg-
ularisation simultaneously applies an orientation constraint
on the template update, because of the extracted surface
normal directions - and a shape constraint, due to the
surface normal magnitudes being proportional to local mean
surface curvature. Note that rank(L) = N − 1. A physical
interpretation of this is that a pure translation applied to
all vertices of X would provide no change in the energy
described by Eqn. 1. The positional error associated with at
least one pair of corresponding vertices from template to data
can provide the necessary additional constraint as a shape
error, Eshp, that we aim to minimise. We form a weighted
combination of our energy terms as:

E = Eshp + λEreg, (2)

where the parameter λ balances the influence of the two
component energies. Specifically, the energy for a new
deformation is given as:

E(Xi+1) = ||PiXi+1 −QiYi||2F + λiEreg(Xi+1) (3)

where Yi are the target data vertices, Pi and Qi are highly-
structured binary selection matrices (discussed later) that
define source-target bijective correspondences and λi is a
weighting that defines the amount of mesh deformation
regularisation.

Clearly, Eqn. 3 is not closed form, as the regularisation
term, Ereg(.), at the update step (i + 1), is dependent on
Li+1, which is a function of Xi+1, i.e. the updated template
itself. This suggests an iterative procedure, where we invoke
a small deformation per-iteration assumption, so that Xi+1 ≈
Xi, which implies Li+1 ≈ Li and that we can compute
an accurate regularising term, Ereg . We ensure this small
deformation assumption holds by initialising L-ICP with a
high value of λi giving a large template mesh ‘stiffness’.
This parameter gradually becomes smaller as the template
gets closer to the target data, thus balancing it with a smaller
Eshp term. In other words, we employ a regularising mesh
stiffness schedule, of gradually decreasing stiffness. This is

2
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analagous to the mesh stiffness schedule defined in N-ICP
[1] that regulates mesh deformation by limiting differences
in locally-affine transformations. Thus λ changes in each
iteration of L-ICP, as do the data vertices Y, as any rigid
component of template-data alignment is applied to the data
rather than the template, for reasons described later.

We use a set of domain-specific feature extractors to
generate C subsets of source vertices (selected by P1...C) and
target vertices (selected by Q1...C) that are in correspondence
with each other. Using these correspondence sets and the
small deformation approximation for regularisation, we have
our overall energy term as:

Ei+1 =

C∑
j=1

αj ||Pj
iP

jXi+1−Qj
iQ

jYi||2F+λi||Li(Xi+1−Xi)||2F ,

(4)
where (Pj

i ,Q
j
i ) select correspondences from within corre-

spondence sets (Pj ,Qj). Note that Ei+1 = E(Xi+1) and
αj is a weighting that expresses the relative confidence in the
jth correspondence set. Eqn. 4 requires a linear solve for 3N
variables per iteration, whereas N-ICP [1] requires a linear
solve for 12N variables as per-vertex affine transformations
are computed. Furthermore, the L-ICP constraint is vertex-
based, whereas the N-ICP constraint is edge-based, giving
around three times as many shape regulation equations in
the linear solve for a triangular mesh. As a result, L-ICP is
much more compact and efficient than N-ICP.

A. Fixed correspondence shape refinement

Suppose that, within some iteration, i, of L-ICP, we fix
both the correspondences (all C Pi,Qi matrices) and the
parameter λi and iteratively minimise the energy defined
in Eqn. 4 by updating the template mesh X (i.e. employ
an inner optimisation loop). This drives the regularisation
term, Ereg , to zero, allowing the template to move closer
to the data in steps of decreasing size until the recomputed
template, Xi+1, and the LB operator employed in the update,
Li, become consistent with each other. In practice, we find
that this second-order template deformation only takes a few
iterations until the change in X over an iteration becomes
small. For some fixed set of correspondences, this process
provides a small template shape refinement. Therefore, it is
only used in the final morphing stage of our framework,
when the set of correspondences has become stable.

IV. COARSE-TO-FINE L-ICP FRAMEWORK

Our L-ICP registration framework is shown in Fig. 2.
This defines a set of s = 1 . . . S user-defined, application-
dependent, coarse-to-fine registration stages, each of which
terminates when the stage’s template deformation falls below
some threshold, ||∆X||2F < ts, or a maximum number of it-
erations, imax

s is reached. Within each stage, the user defines:
i) a set of correspondence sets; ii) a correspondence strategy;
iii) a template deformation model, and iv) stage termination
conditions, (ts, i

max
s ). The end user can rapidly define a

morphing process as a set of such stages, as each stage
inherits properties from the previous stage, unless they are

re-specified. Typically, early registration stages have a few
landmark-based correspondence sets, coarse correspondence
matching and low-dimensional deformation models (e.g.
global affine or low-dimensional 3DMMs). Later stages have
many correspondence sets, fine correspondence matching and
high-dimensional deformation models (e.g. high-dimensional
3DMMs or free movement with 3N degrees of freedom).
A key feature is that we switch to a higher-dimensional
deformation model before switching to dense correspondence
search over the full surface. With otherwise free movement
of the template vertices, this relies on the aforementioned
Laplacian shape regularisation to effectively interpolate be-
tween the sparse correspondences, thus adapting the source
template to the target shape. In essence, such template
adaptation is akin to a fully-automatic, iterative mesh editing
process and is the reason that our method is successful on
widely different target shapes using a single template (e.g.
small babies heads and large adult heads). Our framework is
very flexible and is designed to exploit situations where there
are landmarks and/or contours and/or surface regions (e.g.
from semantic parts segmentation) that correspond across
the source and target shapes. In the case of landmarks, a
bijective (one-to-one) correspondence is predefined, and for
contours and regions, we employ mutual nearest neighbour
search. We now detail the stage-selectable choices in our
L-ICP framework that relate to Fig 2.

A. Correspondence sets for the human head

Our example application is to register the FaceWarehouse
head template [7] with the Headspace dataset of 3D human
heads [9]. In order to generate the correspondence selection
matrices, Pj

i ,Q
j
i in Eq. 4, which define sets of corresponding

mesh vertices, we employ a 3D face landmarker system, a 3D
ear landmarker system, our own symmetry contour extractor,
and a large correspondence set region that is all vertices that
are otherwise unused in these landmark and contour sets. The
face and ear landmarkers employ the 2D channel as well as
the 3D, whereas the symmetry contour extraction is based
on 3D data only.

The face landmarker system uses the standard dlib face
landmarker, which is based on the work of Kazemi and
Sullivan [14]. This extracts 68 2D facial landmarks of which
we retain 52, discarding the 16 that follow the apparent
contour of the face. We project these 2D facial landmarks to
their nearest vertices on the target 3D data scan.

We employ the Human Ear Reconstruction Autoencoder
(HERA) system of Sun et al. [27] to generate 55 landmarks
per ear. This regresses the pose and shape parameters of a
3D Morphable Model (3DMM) of the human ear [10], such
that a synthesised 2D image of the ear matches a rendered
image of the colour-textured 3D target data. Two side views
of the target 3D head can be determined using the facial
landmarks, and the left ear is reflected enabling us to use a
single right ear model. Again, 2D landmarks are projected to
their nearest 3D vertices, and the residual Euclidean distance
is stored, allowing the weighting of individual landmarks
(larger distances have lower weights).

3
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LB-regularised

1

Fig. 2: L-ICP registration framework. Central orange panel: coarse-to-fine registration stages. Left pink panel: feature
extractors for target data. Right purple panel: template deformation models.

We incorporate the method of Benz et al. [2] for symmetry
plane extraction into a more general procedure for symmetry
contour generation. The piecewise nature of our algorithm
allows the extracted symmetry contour to be intrinsic; for
example, if the nose is bent to one side, it successfully tracks
the nose ridge.

Finally the sets of template/data vertices, Bt,d, not desig-
nated as face/ear landmarks and not on the symmetry contour
are defined for region-based correspondences e.g. for the
template: Bt = {X \ {Ft ∪ El

t ∪ Er
t ∪ St}}, where X is

the set of all vertices on the templates and Ft,El
t,Er

t ,St
are the sets of template face landmarks, left ear landmarks,
right ear landmarks and symmetry contour on the template
respectively.

B. Correspondence matching

We perform a correspondence match for all active corre-
spondence sets that do not consist of fixed landmarks. These
relate to either corresponding surface contours or correspond-
ing surface regions. Our framework enables one of three
approaches to be selected. All three approaches are reliant on
mutual nearest neighbours (MNN), where we take the subset
of the bidirectional 1-nearest neighbour search results, such
that the correspondence relation is bijective. Additiionally,
this mutual nearest neighbour search can specified to be over
the 3-DOF vertex positions or 6-DOF vertex positions and
their associated normal vectors, with an weighting factor
between positions and their normals. Firstly, MNN search
in itself is a suitably conservative approach for early-stage
morphing and has the benefits of handling mesh holes
automatically and obviating the need for a manually-tuned
threshold to filter out bad correspondences. Secondly, in the
normal shooting method, the MNN approach is augmented
by projecting a vector from the template to its corresponding

data vertex along the source normal, which in general, results
in an off-surface target point. However, when the source and
target are close to each other, this is often a better morph
direction, due to the generally different spatial sampling of
the two surfaces.

C. Deformation models

Early stages of deformation use a global affine model,
described next, whereas later stages use LB-regularised tem-
plate deformation.

1) Affine deformation: Suppose that the template shape is
given as a matrix of vertex positions, Xi ∈ RN×3, after the
(i − 1)th shape update with initial shape X1, and that the
data, whose 6 DoF pose may vary, is given as the matrix of
vertex positions Yi ∈ RNY ×3, then we solve the following
linear least squares equation for the affine transform Ai ∈
R4×3:

 α1P
1
iP

1Xi α11
1
i

...
...

αCP
C
i P

CXi αC1
C
i

Ai =

 α1Q
1
iQ

1Yi

...
αCQ

C
i Q

CYi

 , (5)

where (α1 . . . αC) are the relative influence weights for
various sets of correspondences. Pj

i ∈ {0, 1}Nj×Nj
a is a

binary selection matrix that selects N j vertices associated
with the j’th correspondence set (j = 1 . . . C) from the
set of all N j

a vertices in that correspondence set and Pj ∈
{0, 1}Nj

a×N is the binary matrix that selects all members
of the correspondence set from the template vertices. Note
that if the correspondence set contains fixed landmarks, then
Pj

i = INj
a
, otherwise it is determined by mutual nearest

neighbour correspondence search, whereas Pj are constant
matrices. Also note that 1j

i is a vector of 1s with length
equal to the number of correspondences on iteration i for

4
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correspondence set j. The matrices Qj
i ,Q

j are binary selec-
tion matrices that select data vertices in an analagous way
to the template selection matrices. We choose to decompose
the affine transform into a rigid part and a non-rigid part,
such that

Ai =

[
RiBi

ti

]
(6)

where Ri ∈ R3×3 is a rotation matrix, Bi ∈ R3×3 is a non-
rigid deformation matrix composed of anisotropic scaling
and shears and ti ∈ R1×3 is a translation vector. We then
apply the rigid part of the affine transform to the data:

Yi+1 = (Yi − 1NY
ti)R

T
i (7)

where 1NY
is a column vector of NY 1s. The non-rigid part

of the affine transform is applied to the template:

Xi+1 = XiBi (8)

We could apply the full affine transform to the template, so
this may seem like an unnecessary complication. However, it
is very useful to employ this decomposition, which maintains
a canonical pose of the template, particularly in variants of
L-ICP that constrain template deformation to be symmetrical,
or employ a 3DMM to reduce the dimensionality of the
template deformation model.

2) LB regularised template deformation: In later stages of
the morphing process, we wish to deform the template in a
more detailed way that cannot be modelled by a simple low-
dimensional transform. To achieve this, we solve directly for
source mesh vertex positions, under the regularisation of the
Laplace-Beltrami constraint. Specifically, we minimize the
energy in Equation 4 by iteratively solving for Xi+1 in the
following weighted linear least-squares problem:

α1P
1
iP

1

...
αCP

C
i P

C

λiLi

Xi+1 =


α1Q

1
iQ

1Yi

...
αCQ

C
i Q

CYi

λiLiXi

 , (9)

where αj are relative influence weights for various sets
of correspondences and λi is the mesh stiffness weight at
iteration i of the deformation stage.

V. 3D REGISTRATION OF THE HUMAN HEAD

Correspondence sets are weighted using empirical grid
search as follows: face landmarks 1.5, symmetry contour 1.4,
left/right ear landmarks 1.0, all other vertices 1.0. We define
five stages within our framework for human head registration
and an example of the morphing stage outputs is shown in
Fig. 3.
Stage 1 - Affine template initialisation. Goal: align the
data to the template, transform the template to the same
scale and aspect ratio of the data. Settings: i) correspondence
sets, C = 3: face landmarks, left ear landmarks, right
ear landmarks; ii) correspondence matching: mutual nearest
neighbours (MNN); iii) deformation model: global affine
(one shot). We solve the linear least squares problem in Eq
5 for the required global affine deformation, which is then

decomposed and distributed between the target data (rigid
part) and the template (non-rigid part), as described in Eq 6
to 8.
Stage 2 - Affine template adaptation. Goal: improve depth
and height scaling using symmetry contour. Settings: i)
correspondence sets, C = 4 : three landmark sets from
previous stage plus the symmetry contour; ii) correspondence
matching: MNN; iii) deformation model: global affine (iter-
ative). We iteratively compute the affine template update, Ai

using Eq 5 and perform the template/target updates according
to Eq 6 to 8. A small number of iterations stabilises the
symmetry contour correspondences, maximum number of
iterations is set at 15.
Stage 3 - Laplacian template adaptation. Goal: adapt the
template shape to the landmarks and symmetry contour. Set-
tings: i) correspondence sets, C = 4, same as previous stage;
ii) correspondence matching: MNN; iii) deformation model:
LB-regulated free vertex deformation (iterative). This stage
significantly deforms the source template, as it recomputes
better correspondences along the symmetry contour, while
simultaneously decreasing the regularising mesh stiffness (λi

in Eq 9), according to some predefined schedule, at each
iteration. The stiffness parameter ranges from 100 to 0.1 with
a maximum number of iterations set at 58.
Stage 4 - Morphing with dense correspondences. Goal:
compute dense correspondences for dense morphing. Set-
tings: i) correspondence sets, C = 5: all landmark sets
plus symmetry contour plus the ‘set difference’ region; ii)
correspondence matching: MNN; iii) deformation model:
LB-regulated free vertex deformation (iterative). Here we
extend correspondences to the set difference region - i.e.
the template region vertices that are not already used as
either a landmark or on the symmetry contour. The stiffness
parameter ranges from 100 to 1 with maximum iterations set
to 31.
Stage 5 - Morphing with normal shooting. Goal: employ
more refined dense correspondences for dense morphing.
This stage re-specifies the correspondence search to the nor-
mal shooting correspondence method, but otherwise inherits
all other framework selections from stage 4. The stiffness
parameter ranges from 0.9 to 0.1 with maximum iterations
set to 27. This means the maximum number of shape change
iterations is 132 over all stages.

VI. EVALUATION

Quantitative evaluation of 3D shape registration and cor-
respondence quality using real-world data is notoriously
difficult due to a lack of high-quality ground truth data.
One approach is to use a proxy evaluation where better
correspondences are deemed to be those that build better
statistical models according to some metrics. For example,
Styner et al. [26] proposed the use of three 3DMM metrics -
compactness, generalisation and specificity. However, these
are only meaningful when the template is on or very close
to the data surface (results in supplementary). Furthermore,
for soft organic shapes, strong perceptual consensus on what
is a good correspondence often only exists at a very sparse
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Fig. 3: Far left shows the employed Facewarehouse [7] full head template, far right shows the raw 3D Headspace data [9].
Intermediate images show morph stages 2-5 of our L-ICP framework. In most applications, only the final registration quality
matters (column 5) and we see that the poor shape around the eyes after stage 3 (column 3) has been corrected. Zoom
required, more morphs in supplementary.

set of surface locations. In our human head example, these
are the physical junctions of tissues, such as eye and mouth
corners. To mitigate these problems, we propose a different
form of evaluation procedure and benchmark, which is based
on the manual annotation of facial contours. Quantitative
metrics are proposed that capture both the repeatability and
homogeneity of how such annotations are transferred from
the data onto the non-rigidly registered template. These are
detailed further in Section VI-B, but we first describe the
dataset used.

A. Dataset

To evaluate the L-ICP framework, we use the publicly-
available Headspace dataset [9] of high resolution (150K-
200K vertices) 3D images of the human head. The primary
format for this dataset is OBJ, which provides vertex coordi-
nates, mesh connectivity and texture coordinate information.
It is also equipped with five 2D images per subject, used to
texture map the 3D mesh surface using the supplied texture
coordinates, and five corresponding camera calibration files
with both intrinsic and extrinsic camera parameters. We
employ two of the five views (left-frontal and right-frontal)
to manually annotate a range of facial feature contours
on the 2D images, including those around the eyes and
eyelid, mouth, nose, nasolabial folds and ears. In the case of
facial contours that are not well-defined in the image pair,
annotators are instructed to omit them. Due to the labour-
intensive nature of this, we have around 57% coverage of
the Headspace dataset.

B. Annotation transfer

We transfer the 2D target data annotations to the 3D
target mesh, which is achieved via left/right camera ray-
to-mesh intersection, where rays are generated using the
left/right camera calibration matrices. These 3D target scan
mesh surface coordinates are then transferred on to their
nearest neighbor template mesh vertices, after registration.
If multiple annotations (e.g. left and right view of the same
facial contour) transfer to the same 3D template coordinate,
that is recorded as a single hit. Examples of this annotation
transfer over a wide subject age range are given in Figure 4.

In the case of a consistent non-rigid registration perfor-
mance, the annotations on different subject’s target data scans
should transfer to the same vertices on the template, or at

Fig. 4: Left two columns: images with manual annotations.
Third column: two-view annotations amalgamated and pro-
jected to 3D target scans. Fourth column - morphed templates
with annotations transferred. Fifth column - annotations
swapped across the two subjects - diverse annotation swaps
in supplementary.

least to closely neighboring vertices. Thus, by measuring
the template surface density of such an annotation transfer
process, we can generate a quantitative evaluation of reg-
istration repeatability. Additionally, this can be qualitatively
evaluated by color-mapping the template with the density of
those annotation transfers. These should be sharply defined
on the template. Figure 5-left shows a front and side view of
the employed Facewarehouse [7] template, with its surface
color mapped with the frequency of the annotation transfers
over Nsubj = 675 Headspace subjects, with dark blue being
zero transfers and yellow being the maximum frequency of
transfer. The transfer is highly-repeatable around facial fea-
tures, especially the mouth and nose. This is expected, as the
registration process is well-guided by automatic landmarking
in these regions. In contrast, there is lower repeatability
around the nasolabial folds.

1) Annotation transfer metrics: A quantitative repeatabil-
ity metric should indicate high performance when template
vertices are selected in the transfer numerous times (in the
best case, Nsubj times) and low performance when they are
selected few times (in the worst case, once). Let v ∈ V
be the set of template vertex indices that have at least
one annotation transfer (tv ≥ 1) and denote the vertex set
cardinality (for vertices with non-zero tv) be |V|. We define
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Fig. 5: Annotation transfer density color map for Nsubj =
675 Headspace subjects [9] after L-ICP registration. (We
omit 184 annotated subjects where there is not a full set
of ear landmarks due to hair/cap occlusions.) The transfer is
highly-repeatable around the mouth and nose region but is
lower around the nasolabial folds.

the mean annotation transfer density as:

d̄ =
1

Nsubj |V|
∑
v∈V

tv (10)

where Nsubj is the number of subject target scans employed
in the evaluation.

The density metric is straightforward to apply and is
a quantitative measure that relates directly to qualitative
annotation density colormaps. However, it is annotation-
label agnostic and does not handle the case when annotation
contours are in close proximity to each other (e.g. bottom of
upper lip and top of lower lip). Here, contours with different
semantic labels may transfer to the same morphed template
vertices. Ideally, template vertices are selected by annotations
of a single semantic label. Therefore, we additionally define
a mean annotation transfer homogeneity metric. To do this,
we define tv,i ≥ 1 as the non-zero number of annotation
transfers for vertex v ∈ Vi where i indexes a semantic
annotation label in the full set of annotations A. The mean
homogeneity is then

h̄ =
∑
i∈A

ωih̄i =
ωi

∑
v∈Vi

tv,i∑
v∈Vi

∑
j∈A tv,j

, wi =

∑
v∈Vi

tv,i∑
v∈V

∑
j∈A tv,j

(11)
where h̄i is mean homogeneity per annotation label i and
ωi is a weighting based on the relative prevalence of that
annotation label, with

∑
i∈A ωi = 1.

A limitation of these metrics is that they are template mesh
specific. Templates of higher resolutions will give lower
values for these metrics, since a given template vertex can
only be selected for the annotation transfer (i.e. as the 1-
nearest neighbour) over a smaller surface area. It may be
possible to use an additional normalising factor, αres, that
adjusts for template resolution, but this may be confounded
by non-uniform template resolutions.

In Figure 6 we compare L-ICP with a version of our
framework that has the per-vertex affine constraint (PVAC)
[1] substituted for Laplacian regularisation, with all param-
eters the same. We compare the two approaches in terms
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Fig. 6: Top left: annotation transfer density, 118 subjects over
five registration stages. PVAC employs the Per Vertex Affine
Constraint [1] within our framework. Top right: annotation
transfer homogeneity. Bottom row: colormaps of annotation
transfer density: L-ICP stages two (left) to five (right) -
please zoom.

of annotation density and homogeneity over five stages of
morphing. (This is done over 118 subjects due to high
PVAC computation time.) Although the PVAC constraint ap-
proaches its maximum in fewer stages, the final performance
is very similar at a fraction of the computational cost.

C. Processing time

The following table gives the average processing times in
seconds for L-ICP to reach the end of each stage (averaged
over 118 scans). Scans are typically 150K-200K vertices
with a template of size 11.51K vertices. This was evaluated
on a Macbook Pro with 2.3 GHz Quad-Core Intel Core i7,
32GB of memory, macOS Big Sur, running Matlab version
R2021a. L-ICP is over 26 times faster at stage 5, than when
a per-vertex affine constraint (PVAC) is employed within
the same coarse-to-fine framework, with the same features
and using the same stiffness schedule. Thus, L-ICP gives
a dense, consumer laptop-based registration in around 47
seconds compared to around 20 minutes for PVAC.

Stage 1 2 3 4 5
L-ICP (s) 0.03 0.28 15.68 32.38 47.13
PVAC (s) 0.03 0.24 252.86 1183.67 1230.51

VII. CONCLUSIONS

We have demonstrated that fully-automatic, densely-
corresponded non-rigid registration only requires a Laplacian
regularisation term and hence is relatively rapid to compute.
It achieves this via a small deformation per iteration as-
sumption within a progressive coarse-to-fine framework that
is guided by within-set correspondences from application-
specific feature extractors. We have shown that the results
are comparable with using per-vertex affine constraints, but at
considerably lower computational cost. Finally, we presented
a new benchmark for registration based on contour sketch
annotations and a pair of annotation transfer metrics.
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