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Abstract—Machine learning (ML) techniques for predicting 
the progression of Alzheimer's disease (AD) can greatly assist 
researchers and clinicians in establishing effective AD prevention 
and treatment strategies. The problems of monotonicity of data 
forms and scarcity of medical data are the main reasons that 
currently limit the performance of ML approaches. In this 
research, we propose a novel similarity-based quantification 
approach that simultaneously considers the magnitude and 
direction relationships of structural variations among brain 
biomarkers, and encodes quantified data as third-order tensors to 
solve problem of data form monotonicity, then combining tensor 
multi-tasking learning model to predict AD progression. In this 
model, the prediction of each patient is considered as a task, and 
each task shares a set of latent factors obtained by tensor 
decomposition, knowledge sharing between tasks can improve the 
generalization of the model and solve the problem of scarcity of 
medical data. The model can be utilised to efficiently predict the 
progression of AD integrating magnetic resonance imaging (MRI) 
data and cognitive scores of AD patients at different stages. To 
evaluate the effectiveness of the proposed approach, we conducted 
extensive experiments utilising MRI data from the Alzheimer's 
Disease Neuroimaging Initiative (ADNI). The results reveal that 
the proposed model predicts AD progression more accurately and 
consistently than single-task and state-of-the-art multi-task 
regression approaches on various cognitive scores. The proposed 
approach can recognize brain structural variation in patients and 
apply it to reliably predict and diagnose AD progression. 

Keywords—Alzheimer's disease progression, amalgamated 
magnitude-direction quantification, brain structure variation, tensor 
multi-task learning 

I. INTRODUCTION 
In Alzheimer's disease, neurons and their connections 

deteriorate, leading to cognitive impairment and memory loss 

[1]. There is no cure for AD, which can be physiologically, 
psychologically and emotionally traumatic for patients and their 
families. For a better understanding and early diagnosis of AD, 
it is essential to comprehend the AD progression and identify 
pathological biomarkers.  

Previous studies have concentrated on utilising biomarker 
data along with machine learning algorithms to calculate 
patients' cognitive scores as target for determining the severity 
of cognitive impairment in patients. Existing models for 
predicting AD progression include machine learning regression 
algorithms [2], deep learning approaches based on neural 
networks [3] and survival models based on statistical 
probabilities [4]. The above models face two main problems. 
The first is the problem of small dataset, it is difficult to obtain 
data on neurological diseases such as AD. The accuracy of 
traditional machine learning algorithms is limited, and it is 
difficult to train high-precision deep learning models with small 
dataset. The second problem is the monotonicity of the data form 
and the resulting loss of hidden information. The input features 
of the above models are represented as second-order matrices 
containing patient and biomarker information, which makes it 
difficult to predict and analyse disease progression from 
multiple dimensions (e.g., spatial and temporal dimensions). At 
the same time, since the second-order matrix generally focuses 
on a single biomarker, the correlation information between 
different AD biomarkers will be lost. 

For the problem of small dataset, multi-task learning (MTL) 
can share knowledge and information across tasks, outperforms 
standard single-task learning approaches in terms of model 
accuracy, generalizability and interpretability, and is most 



efficient when sample numbers are small [5]. To address the 
problem of monotonicity of the data form and the resulting loss 
of hidden information, this paper proposes to construct a third-
order tensor with three components per index to build an AD 
prediction model to better represent AD data in both spatial and 
temporal dimensions. The utilisation of tensor in regression 
algorithms can enhance prediction accuracy, stability, and 
interpretability by better representing AD biomarker features.  

In this research, we propose an amalgamated magnitude-
direction brain structure variation quantification with tensor-
based MTL approach to predict AD progression by 
incorporating spatio-temporal information on relative structural 
variations between different brain biomarkers. Specifically, we 
propose a novel similarity computation-based quantification 
method to simultaneously assess the magnitude and direction of 
brain structural variations, which describes the similarity of 
morphological variation trends among different biomarkers as a 
third-order tensor and its dimensions correspond to the first 
biomarker, second biomarker and patient sample. The proposed 
approach then decomposes the tensor utilising a 
CANDECOMP/PARAFAC (CP) decomposition [6] and 
extracts a collection of rank one latent factors from the original 
data (Fig. 1). Each latent factor is represented by its first 
biomarker, second biomarker and patient sample dimensions to 
explain the latent factors that affect the variability of the data in 
an interpretable way that can serve as a predictor for training the 
MTL model. And these latent factors are shared by the 
predictions of each patient sample, which is the task in this study.  

The main contributions of this research can be summarized 
as follows:  

 We propose a novel similarity-based quantification approach 
that simultaneously considers the magnitude and direction 
correlations of structural variations between brain biomarkers, it 
contains comprehensive information on brain structural 
variations and can effectively distinguish between CN 
(cognitively normal elderly), MCI (mild cognitive impairment) 
and AD patients, and encoded MRI biomarker data as a third-
order tensor to solve the problem of the data form monotonicity.  

 We combine the above tensor with a multi-task learning 
algorithm for AD progression prediction, which uses tensor 

decomposition to learn task relevance from the original data. 
This allows all samples to share latent knowledge of biomarkers 
based on brain structural variations, and significantly improves 
the accuracy and stability of AD progression prediction. 

 We identified and analysed important relative structural 
variation relationships between brain biomarkers in the 
prediction of AD progression that could be utilised as potential 
indicators for AD early identification. 

The rest of this paper proceeds as follows: Section II 
introduces the related works. Section III presents the proposed 
approach. Section IV includes details on the ADNI datasets, pre-
processing, and experimental procedures. Section V presents the 
experimental results for the ADNI datasets, along with a 
discussion. Section VI concludes this research.  

II. RELATED WORK 
Abundant research in the field of brain science have focused 

on the differences in brain structure variations between CN, 
MCI and AD. [7] use imaging data from large human 
populations to find patterns of brain anatomy and function 
related with AD, CN, schizophrenia and abnormal brain 
development. [8] investigated the link between cerebrospinal 
fluid (CSF) and MRI biomarkers, clinical diagnosis, and 
cognitive function in individuals with CN, AD and aMCI 
(amnestic mild cognitive impairment). MRI was found to 
provide superior cross-sectional integrated cognitive and 
functional abilities, as well as enhanced cross-sectional 
grouping and discriminating. [9] used automated MRI analysis 
to assess cortical thickness in healthy older people, MCI patients, 
and AD patients. As the disease progressed from MCI to AD, 
patterns of cortical thinning were noticed, and it was discovered 
that the whole cortex thinned and extended considerably into the 
lateral temporal cortex. Based on the study of brain structural 
variation, the correlation between AD MRI biomarkers is also 
the focus of brain research. [10] enhanced the classification 
performance of AD and its precursor stages by merging relevant 
information with ROI-based data and correlating regional mean 
cortical thickness with multi-kernel support vector machines. 
[11] examined brain networks using graph theory by 
thresholding the cortical thickness correlation matrix for 
different areas. According to the study, there are differences in 

 
Fig. 1. CP decomposition on a similarity tensor representation based on the similarity of the structure variation trend between brain biomarkers. 



the brain biomarkers for CN, MCI, and AD. It also studied and 
analysed the relationship between the course of Alzheimer's 
disease and biomarkers. The above studies demonstrated the 
importance and validity of structural brain variation and brain 
biomarker correlations for AD research, but they focus on a 
single biomarker or a single category of biomarkers, ignoring 
the correlation of structural variations in different categories of 
brain biomarkers, which is essential for characterizing AD. 

To quantify the correlation of structural variation between 
different types of brain biomarkers, we represented the trend of 
morphological variation of MRI biomarkers as a vector and 
utilised a similarity-based calculation to calculate the similarity 
of structural variation between brain biomarkers. The similarity 
between vectors can be calculated in a number of approaches. 
The Euclidean distance is the simplest method to calculate the 
distance and is derived from the formula for the distance 
between two points in Euclidean space. The Mahalanobis 
distance is a reliable approach for determining the similarity of 
two unknown sample sets. It is not impacted by scale unlike the 
Euclidean distance, and the Mahalanobis distance between two 
points has no relation with the measuring unit of the original data; 
nonetheless, its drawback is that it exaggerates the effect of 
minor factors [12]. The cosine similarity measures the difference 
between two subjects by using the cosine value of the angle 
between two vectors in a vector space [13]. Cosine similarity, as 
opposed to Euclidean distance, focuses on the difference in 
direction of two vectors, whereas Euclidean distance quantifies 
the difference in values. The above are several standard, 
commonly used and effective similarity computation methods, 
but they all share the same problem of not being able to assess 
both the magnitude and the direction of the vector, whereas 
structural variation in the brain is a complex process that 
contains both magnitude and direction information, therefore, 
existing similarity computation methods cannot quantify all its 
variation information. For this reason, we propose a novel 
similarity quantification method that can simultaneously assess 
the magnitude and direction of the brain structural variation. 

Multi-task learning aims to learn numerous related tasks 
together to ensure that the knowledge contained in one task may 
be utilised by other tasks, therefore boosting the generalisation 
performance of all tasks [5]. MTL methodology is extensively 
employed in the field of biomedical engineering; for our 
research case AD, multi-task learning offers a wide range of 
applications in numerous domains. For feature learning 
approach, existing approaches have focused on modelling task 
interactions through the use of novel regularisation methods 
[14][15][16]. And kernel approaches were added to the 
methodology to accommodate non-linear relationships [17][18]. 
For feature selection approach, [19] presented a multi multi-task 
learning strategy that identifies a common subset of multiple 
variable-related features from each modality and predicts 
multiple variables from multi-modal input concurrently. [20] 
presented a deep belief network-based multi-task learning AD 
classification algorithm that introduces a multi-task feature 
selection technique, evaluates the internal connection between 
several related tasks, and identifies feature sets relevant to all 
tasks. For low-rank approach, [21] presented a robust multi-task 
learning system that uses a low-rank structure to represent task 
links while identifying anomalous tasks using a group sparse 

structure. Different from the setting of the algorithm target as the 
task in the above methods, we believe that knowledge sharing 
across prediction tasks of various patients can enhance 
achievable performance, therefore, we establish the prediction 
task of a single patient as one task, which is a small-scale task 
setup approach.  

III. METHODOLOGY 

A. Denotation 
For brevity, we represent tensors as italic capital letters, such 

as X or Y, and matrices by capital letters, such as A or B. Vectors 
are denoted by lowercase letters such as x whereas Scalars are 
denoted by italic lowercase letters such as a. 

B. Amalgamated magnitude-direction quantification for brain 
structure variation 
Correlation of structural variation between brain biomarkers 

was calculated utilising two consecutive MRI examinations. To 
calculate the rate of change and velocity of brain biomarkers, we 
utilised baseline BL (the date the patient was first tested in 
hospital) and M06 (the six-month time point after the first visit) 
MRI, where x is the value of the rate of interest brain biomarker 
and t is the date of the MRI examination. The rate of change is 

, the velocity is  per month. The rate of change 
and velocity of each brain biomarker was then utilised to create 
a vector to describe its trend of structural variation.  

We then propose a two-stage quantitative approach that 
simultaneously assesses the magnitude and direction of 
structural variation among brain biomarkers. The Mahalanobis 
distance was first utilised to calculate the similarity of the 
absolute values of the two vectors to reflect the similarity in the 
magnitude of the structural variation of the two MRI biomarkers. 
Mahalanobis distance is utilised because it is scale independent 
when dividing by the covariance matrix. The Mahalanobis 
distance between the absolute values of vectors x  and x  is 

stated as: Ma |x |, x = |x | − x S (|x | − x ) , 
where S is covariance matrix. The quantified value of 
Mahalanobis distance is between 1 and 0, where 1 is completely 
similar and 0 is completely dissimilar. Then we add the direction 
information to the values. We noticed that for the two brain 
biomarkers, there were only five cases of their structural 
variation direction relationship: 1) both grow, 2) both decline, 3) 
one grows and the other declines, 4) one changes and the other 
does not change, 5) both remain unchanged. We set cases 1) and 
2) to be synchronous variation, case 3) to be asynchronous 
variation, and cases 4) and 5) to be completely irrelevant. A 
mapping function (1) is then utilised to map the values 
previously calculated utilising the Mahalanobis distance to 
values between 1 and -1 to add directional information. Where 
1 means completely relevant in the case of synchronous 
variation, 0 means completely irrelevant and -1 means 
completely relevant in the case of asynchronous variation.  𝑥 = 𝑥, if two biomarkers varied synchronously 𝑥 = −𝑥, if two biomarkers varied asynchronously𝑥 = 0, if two biomarkers are not relevant    (1) 



  Fig. 2 shows the structural variation correlations of brain 
biomarkers for AD, CN and MCI expressed by Euclidean 
distance, Mahalanobis distance, Cosine similarity and our 
proposed Amalgamated magnitude-direction quantification. We 
observed that our proposed quantification approach showed the 
greatest difference in matrix distribution across disease stages 
compared to Euclidean and Mahalanobis distances, with the data 
for Euclidean distances being too sparse and the data for 
Mahalanobis distances being more uniform. The distribution of 
cosine similarity data across disease stages is similar to our 
proposed quantification approach, but the data has more maxima 
and minima because it only contains information on the 
direction of structural variation in brain biomarkers, whereas our 
approach contains both magnitude and direction information, 
resulting in a similar matrix distribution to cosine similarity, 
with a smooth data distribution and diverse data characteristics. 
It allows the AD progression prediction process to include more 
comprehensive information on brain structural variations, while 
enhancing the interpretability of brain biomarker correlations in 
AD progression at the results analysis process.  

C. Tensor multi-task learning regression 
The above approach quantifies each individual's BL and 

M06 MRI data into a structural variation similarity matrix 
containing information on both magnitude and direction, and 
then integrates the similarity matrices of all individuals into a 
similarity tensor. This is combined with our proposed tensor 
multi-task learning regression algorithm to perform AD 
progression prediction. Preliminary versions of the regression 
algorithm have been reported [22][23], and this research extends 
it and combines it with the newly proposed quantification 
method to include more comprehensive information on brain 
structural variation in the AD progression prediction process.  

To forecast future cognitive scores (e.g., MMSE and ADAS-
Cog). Consider the following tensor multi-task regression 

problem for n training samples with 𝑑  and 𝑑  features in t time 
points. Let X ∈  ℝ × ×  be the input tensor from two 
successive MRI detections and it is the combination of 
amalgamated magnitude-direction quantified matrix for all n 
samples X  ∈  ℝ × , Y = [y , ⋯ , y  ] ∈  ℝ ×  be the targets 
and y = [𝑦 , ⋯ , 𝑦  ] ∈  ℝ  is the corresponding target 
(cognitive scores) at various future time points. We utilise the 
operator ⨀ as follows: Z = M ⨀ N denotes 𝑧 = 𝑚 𝑛 , for all 
i, j. 

Because the association calculation between biomarkers is 
paired and half of the data is duplicated, the input tensor for the 
similarity of morphological variation trends in brain biomarkers 
is a symmetric tensor. Duplicate data leads to an increase in 
computational complexity and computational cost. To solve the 
problem of duplicate data, the study proposes the duplicate data 
correction matrix:  

K = 
0 1 ⋯ 1⋮ ⋱ ⋮10 ⋯ 0  ∈  ℝ ×                       (2) 

For t-th prediction time point, the proposed approach's 
objective function can be described as follows:  𝐿 (𝑋, y ) = min, , , 12 ‖y − y ‖ + 𝜆2 ‖𝑋 −  ⟦A ,  B ,  C ⟧‖+  𝛽‖W ,  A ,  B ,  C ‖  

(3) 𝑦 =  U  

where U = (A B )⨀K⨀W ⨀X  , U ∈  ℝ ×  
where the first term evaluates empirical error for the training 
data, y = [𝑦 , ⋯ , 𝑦 ] ∈  ℝ  are the predicted values, A  ∈ ℝ ×  is the latent factor matrix for the first biomarker 
dimension and B  ∈  ℝ ×  is the latent factor matrix for the 
second biomarker dimension with r latent factors, W  ∈  ℝ ×  
is the model parameter matrix for t-th prediction time point, 𝜆 

 
Fig. 2. Examples of (a) Euclidean distance, (b) Mahalanobis distance, (c) Cosine similarity and (d) Amalgamated magnitude-direction quantification matrix 

distribution for AD, CN and MCI brain structure variation quantification. (The scale for (a) Euclidean distance and (b) Mahalanobis distance from top to bottom 
is 1.0, 0.8, 0.6, 0.4, 0.2, 0.0. The scale for (c) Cosine similarity and (d) Amalgamated magnitude-direction quantification from top to bottom is 1.00, 0.75, 0.50, 

0.25, 0.00, -0.25, -0.50, -0.75, -1.00). 



and 𝛽 are the regularization parameters. Acquiring latent factors 
by optimising CP tensor decomposition objective 
function ‖𝑋 −  ⟦A ,  B ,  C ⟧‖ , where 𝑋 = ⟦A ,  B ,  C ⟧ =∑ a ∘  b  ∘  c  where ∘ represent the outer product operation 
between two vectors, while a , b  and c  correspond to the 
vectors related with the i-th latent factor for t-th prediction time 
point. ‖W ,  A ,  B ,  C ‖  applying an ℓ1-norm on the, A , B , C  and W matrices respectively.  

For all prediction time points, the objective function is as 
follows: 𝐿(𝑋, Y) = min ∑ 𝐿 (𝑋, y ) + 𝜃∥∥W P(𝛼)∥∥           (4) 

where ∥∥W P(𝛼)∥∥  is the generalized temporal smoothness term, the model parameter matrix W  ∈  ℝ( × )× is the temporal dimension unfolding for model parameter tensor W ∈  ℝ × × , 𝜃  is regularization parameter. The generalised 
temporal smoothing states that while diagnosing Alzheimer's 
disease, the expert examines not only the patient's present 
symptoms, but also their previous symptoms. As a result, we 
can utilise matrix multiplication to derive the more realistic 
temporal smoothness assumption: WP(𝛼) = WHD (𝛼 )D (𝛼 ) ⋯ D (𝛼 )           (5) 
where H ∈  ℝ ×( )  has the following description: H = −1 
if 𝑖 = 𝑗 + 1, H = 1 if 𝑖 = 𝑗  and H = 0  otherwise. P(𝛼) 
represents the association between progress, it contains the 
hyperparameters 𝛼, which denotes the interactional degree of 
the present progression and all previous progressions; the 
interactional degree criteria differ for each stage of disease 
progression because the influence of each stage on the stage 
after it is not always consistent, and it is dependent on the 
results of cross-validation. D (𝛼 ) ∈  ℝ( )×( ) is an identity 
matrix and the value of D , (𝛼 ) is replaced by 1 − 𝛼  if 𝑚 =𝑛 = 𝑖 + 1 , the value of D , (𝛼 )  is replaced by 𝛼  if 𝑚 =𝑖, 𝑛 = 𝑖 + 1.  

Latent factors A ∈  ℝ × × , B ∈  ℝ × × , C ∈  ℝ × ×  
and model parameter W ∈  ℝ × ×  can be learned by 
optimising the objective function iteratively for each group of 
variables to be solved. Because not all parts of the objective 
function are differentiable, we utilise proximal gradient descent 
to resolve each subproblem. The parts in our objective function 
relating Frobenius norms are differentiable, but the parts 
involving the sparsity ℓ 1-norms are not differentiable. To 
construct the proximal problem for a non-smooth objective 
function, the proximal approach is extensively used 
[24][25][26], By substituting the smooth function for the 
quadratic function, we can get sum of the smooth and non-
smooth functions. Its quadratic functions can be constructed in 
a number of ways applying Taylor series, and the proximate 
problems that result are typically simpler to solve than the 
original models. The strategy can hasten optimization 
convergence and simplify the construction of distributed 
optimization algorithms.  

IV. EXPERIMENTS 

A.  Dataset 
The Alzheimer's Disease Neuroimaging Initiative (ADNI) 

database was used to obtain data for this investigation 
(adni.loni.usc.edu). A University of California, San Francisco 
(UCSF) team employed the FreeSurfer image analysis system 
(http://surfer.nmr.mgh.harvard.edu/) to conduct volumetric 
segmentations and cortical reconstruction using imaging data 
from the ADNI database, which contains all ADNI subprojects 
(ADNI 1, 2, GO, 3). We collected MRI data from the ADNI 
website and then conducted through the following pre-
processing steps: 1) Removal of image records with failed 
quality control; 2) Individuals who lacked BL and M06 MRIs 
were eliminated; 3) Removal of features with more than half of 
the samples having missing values; 4) Fill in the remaining 
missing data by taking the average of the features.  

There are 313 MRI features in total after pre-processing 
operations, and they can be divided into five categories: the 
volumes of specific white matter parcellations (SV), the total 
surface area of the cortex (SA), the volumes of cortical 
parcellations (CV), average cortical thickness (TA) and standard 
deviation in cortical thickness (TS). The demographic details of 
the ADNI MRI data used in the research are shown in Table I.  

B. Evaluation metrics 
The similarity tensor of structural variation between brain 

biomarkers was utilised to construct predictive models for each 
target. We randomly split the data into a training and test set in 

TABLE I. DEMOGRAPHIC CHARACTERISTIC OF THE STUDIED SUBJECTS 
VALUED ARE SPECIFIED AS MEAN±STANDARD DEVIATION.  

Time 
point Attribute MMSE ADAS-

Cog 

M12 

 

 
 

M24 

 

 
 

M36 

 

 
 

M48 

 

 
 

M60 

Sample size 
(CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size 
(CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size 
(CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size 
(CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size 
(CN, MCI, AD) 

Gender(f/m) 

Age 

1332 (358, 
725, 249) 

579/753 

75.0±7.1 

1110 (330, 
617, 163) 

484/626 

76.0±7.2 

710 (192, 
509, 9) 

307/403 

76.7±7.0 

456 (120, 
334, 2) 

195/261 

77.1±6.9 

262 (88, 
174, 0) 

108/154 

78.7±6.7 

1299 (351, 
716, 232) 

565/734 

75.1±7.1 

1066 (321, 
602, 143) 

464/602 

73.±7.1 

677 (186, 
485, 6) 

292/385 

73.5±7.0 

431 (114, 
315, 2) 

185/246 

73.1±6.9 

245 (86, 
159, 0) 

102/143 

73.9±6.7 

 



a 9:1 ratio. Because the number of model parameters (λ, β and 
θ), the hyperparameters α and the latent factor r must be chosen 
during the training phase, we choose them utilising 5-fold 
cross-validation on the model training process. 

The study compares the predicted ability of multiple 
approaches for each single time point using the root mean square 
error (rMSE) as the major assessment metric. For the overall 
regression performance evaluation, we use normalised mean 
square error (nMSE), which is used in multi-task learning 
research [27], and weighted correlation coefficient (wR), which 
is used in medical literatures to resolve AD progression 
problems [28]. The rMSE, nMSE and wR are defined as follows: rMSE(y, 𝑦) = ‖ ‖                            (6) 

nMSE (Y, Y) = ∑  ∥∥ , ∥∥ ( )∑                    (7) wR(Y, Y) = ∑    ,∑                       (8) 
where y is the ground truth of target at a single time point and y 
is the corresponding prediction from a prediction model for the 
rMSE. For the nMSE and wR, Y  is the ground truth of target at 
time point i and Y  is the corresponding prediction from a 
prediction model, Corr is the correlation coefficient between two 
vectors. The mean and standard deviation of 20 experimental 
iterations of the different data splits are reported. 

V. RESULTS AND DISCUSSION 

A. Comparison with the state-of-the-arts 
We utilised the proposed amalgamated magnitude-direction 

quantification combined with the tensor multitask learning 
regression algorithm (AMDQ-TMTL) to compare with the 
following single-task learning and state-of-the-art multitask 
learning, which were selected as competing methods in the 
research of predicting clinical deterioration. Including Ridge 
regression (Ridge) [29], Lasso regression (Lasso) [30], 
Temporal Group Lasso (TGL) [2], Non-convex Fused Sparse 
Group Lasso (nFSGL1) [31], Convex Fused Sparse Group 
Lasso (cFSGL) [2], Fused Laplacian Sparse Group Lasso (FL-
SGL) [32] and Non-Convex Calibrated Multi-Task Learning 
(NC-CMTL) [33]. Experimental results for MMSE prediction 
are shown in Table II and for ADAS-Cog prediction are shown 
in Table III. 

The proposed approach has a lower rMSE than other models 
for all individual time points. In terms of overall regression 
performance, our proposed approach exceeds state-of-the-art 
algorithms in terms of nMSE and wR for MMSE and ADAS-
Cog, demonstrating that our method outperforms competitors. 
Our observations are as follows: 1) The proposed AMDQ-
TMTL approach outperforms single-task learning models and 
state-of-the-art MTL models, which validates the application of 
similarity calculation containing both magnitude and direction 
information for brain structural variation and the exploitation of 
the tensor latent factor hypothesis in our MTL formulation. 2) 
The proposed AMDQ-TMTL algorithm significantly improves 
prediction stability. The results obtained through 20 iterations of 
the experiment had a lower standard deviation than the state-of-

TABLE II. COMPARISON OF THE RESULTS FROM OUR PROPOSED METHODS WITH STATE-OF-THE-ART METHODS FOR MMSE AT TIME POINTS M12 TO M60. THE 
BEST RESULTS ARE BOLDED. 

Target: MMSE nMSE wR M12 rMSE M24 rMSE M36 rMSE M48 rMSE M60 rMSE 

Ridge 

Lasso 

TGL 

nCFGL1 

cFSGL 

FL-SGL 

NC-CMTL 

AMDQ-TMTL 

2.4874±4.8534 

0.8947±0.0909 

0.4020±0.0521 

0.3562±0.0415 

0.3274±0.0238 

0.4988±0.0513 

0.4973±0.0600 

0.2771±0.0096 

0.2522±0.0963 

0.4307±0.0814 

0.8184±0.0301 

0.8405±0.0138 

0.8347±0.0248 

0.7475±0.0312 

0.7670±0.0426 

0.8739±0.0063 

4.4886±1.9690 

1.9714±0.2192 

1.3829±0.2115 

1.3357±0.2420 

1.3529±0.1276 

1.6909±0.1817 

1.5728±0.1654 

1.3146±0.0311 

5.6765±1.2738 

2.3112±0.2860 

1.4261±0.1613 

1.4220±0.1461 

1.4616±0.2137 

1.7383±0.1374 

1.5987±0.1718 

1.3638±0.1419 

6.0979±2.0777 

2.8583±0.6391 

1.7775±0.3474 

1.7461±0.2546 

1.6610±0.2686 

2.1410±0.5211 

1.8805±0.1196 

1.3317±0.1813 

7.5200±1.7215 

3.5472±0.6325 

2.1648±0.5556 

2.1255±0.3665 

2.0098±0.3717 

2.6623±0.4586 

2.6200±0.4209 

1.7059±0.3142 

7.2992±1.8936 

4.5034±1.0273 

2.7628±0.3295 

2.7130±0.5322 

2.6400±0.6849 

3.0783±0.5438 

4.1446±1.2208 

2.3047±0.3744 

 
TABLE III. COMPARISON OF THE RESULTS FROM OUR PROPOSED METHODS WITH STATE-OF-THE-ART METHODS FOR ADAS-COG AT TIME POINTS M12 TO M60. 

THE BEST RESULTS ARE BOLDED. 
Target: ADAS-Cog nMSE wR M12 rMSE M24 rMSE M36 rMSE M48 rMSE M60 rMSE 

Ridge 

Lasso 

TGL 

nCFGL1 

cFSGL 

FL-SGL 

NC-CMTL 

AMDQ-TMTL 

2.3098±0.3173

0.8855±0.1250

0.3180±0.0666

0.2846±0.0715

0.3208±0.0717

0.4817±0.0927

0.2393±0.0323

0.1585±0.0470

0.2505±0.1042

0.4065±0.0951

0.8568±0.0306

0.8753±0.0395

0.8582±0.0275

0.7841±0.0079

0.8826±0.0222

0.9102±0.0335

11.1110±1.5294 

6.1045±1.2568 

3.8917±0.7509 

4.1608±0.6385 

3.9790±0.8610 

4.7609±1.0911 

3.9980±0.6890 

1.8916±0.4561 

11.1444±1.4665

7.0128±1.2575 

3.5174±0.4375 

3.6252±0.7720 

3.5344±0.4348 

4.3630±0.4959 

3.6433±0.7796 

1.9747±0.1502 

13.5850±2.0725 

8.1833±1.5708 

3.9497±0.6136 

3.6492±0.6487 

4.0206±0.2632 

4.3774±0.3522 

3.8006±0.5050 

1.9433±0.2124 

14.9580±2.7276 

11.0483±1.8357 

4.3520±1.0386 

5.8214±2.4860 

4.6390±0.9821 

6.0582±1.0090 

4.7475±1.9865 

2.4944±0.7428 

18.9206±2.2966 

12.8538±2.5683 

8.5801±1.3462 

6.6881±2.0821 

8.0030±1.2742 

9.7911±1.6663 

7.2107±1.6098 

3.1906±0.4281 

 



the-art comparison technique. This may be due to the proposed 
quantification method incorporates information on global brain 
variability and the addition of brain biomarker latent factors to 
the prediction algorithm to improve stability. 

B. Interpretability 
The interpretability of approach and results is as crucial in 

medical research as model performance. Because there is 
presently no cure for AD, the key to current treatment is early 
detection and prevention of the disease. Therefore, identifying 
significant brain biomarker structural variation relationships in 
early MRI data can help clinicians recognize individuals with 
suspected AD for early prevention. Since the MMSE dataset has 
a larger sample size than the ADAS-Cog dataset at each time 
point, it presents a more comprehensive range of samples. The 
top 10 brain biomarker structural variation correlations of the 
proposed AMDQ-TMTL method are shown in descending order 

of the weighted parameter values by MMSE prediction at 
different time points in Tables IV, V, VI, VII and VIII. Higher 
values imply a greater impact on the final prediction. The 
important brain biomarker relationships identified can be 
utilised as potential indicators for early identification of AD.  

We discovered one of the brain structure variation 
correlations between brain biomarkers were important at most 
of time points (M24, M36, M48 and M60). That is Vol(C). of 
R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal.  

The superior frontal gyrus is a gyrus of the frontal lobe of the 
brain, occupying one-third of the size of the frontal lobe. It is an 
important area that controls many functions such as movement, 
working memory, resting state and cognition. And the superior 
frontal gyrus on one side of the cerebral hemisphere is 
responsible for planning various complex movements on the 
other side of the body [34].  

The correlation between the cortical volume variation of the 
superior frontal gyrus in the right and left hemispheres of the 
brain can be a factor in the symptoms of memory loss, physical 
function deterioration, and cognitive dysfunction in AD patients. 

VI. CONCLUSION 
We propose a new quantification approach of brain structural 

variation for AD prediction scenarios combined with tensor 
multitask learning regression methods to predict AD 
progression at various time points to overcome variability and 
instability in prediction accuracy. Specifically, our quantitative 
approach considers both the magnitude and directional 
correlations of structural variation among brain biomarkers and 
quantifies them as third-order tensors to address data form 
monotonicity problem, and tensor multitask learning regression 

TABLE IV. THE TOP-10 RANK BRAIN BIOMARKER CORRELATIONS IN TIME 
POINT M12 FOR THE AMDQ-TMTL MODEL ON MMSE PREDICTION. 

Brain biomarker correlation Weight 
Vol(C). of R.SuperiorParietal - CTA. of R.InferiorParietal 1.2248 
CTA. of R.Postcentral - Vol(C). of R.Insula 1.0616 
CTA. of R.RostralMiddleFrontal - Vol(C). of 
R.LateralOccipital 1.0461 

Vol(C). of R.Precentral - Vol(C). of L.RostralMiddleFrontal 0.8838 
Vol(WM). of CorpusCallosumAnterior - CTA. of 
R.InferiorParietal 0.8760 

CTA. of R.Postcentral - CTA. of R.Precentral 0.8503 
CTStd. of L.Postcentral - CTA. of R.InferiorParietal 0.8168 
CTA. of L.ParsOpercularis - CTA. of L.RostralMiddleFrontal 0.8167 
Vol(C). of R.Paracentral - Vol(C). of L.SuperiorFrontal 0.7991 
CTA. of R.Pericalcarine - Vol(C). of R.InferiorTemporal 0.7875 

 

TABLE V. THE TOP-10 RANK BRAIN BIOMARKER CORRELATIONS IN TIME 
POINT M24 FOR THE AMDQ-TMTL MODEL ON MMSE PREDICTION. 

Brain biomarker correlation Weight 
Vol(C). of R.TransverseTemporal - CTStd. of R.Lingual 1.0065 
CTA. of R.TransverseTemporal - CTA. of L.Precuneus 0.9556 
CTA. of R.SuperiorParietal - Vol(C). of L.SuperiorFrontal 0.9520 
CTA. of L.Precentral - CTA. of L.SuperiorTemporal 0.9135 
Vol(C). of R.ParsTriangularis - Vol(C). of R.Precuneus 0.9068 
Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.8881 
CTA. of L.InferiorParietal - CTA. of L.ParsOrbitalis 0.8698 
Vol(C). of R.ParsTriangularis - Vol(C). of L.InferiorTemporal 0.8350 
CTA. of L.CaudalMiddleFrontal - CTA. of 
L.SuperiorTemporal 0.8210 

CTA. of R.Precuneus - Vol(C). of L.InferiorTemporal 0.8194 
 

TABLE VI. THE TOP-10 RANK BRAIN BIOMARKER CORRELATIONS IN TIME 
POINT M36 FOR THE AMDQ-TMTL MODEL ON MMSE PREDICTION. 

Brain biomarker correlation Weight 
CTA. of R.RostralMiddleFrontal - Vol(C). of 
R.LateralOccipital 1.4163 

Vol(C). of R.SuperiorTemporal - CTA. of L.Pericalcarine 1.3244 
Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 1.2301 
CTA. of L.ParsOpercularis - CTA. of L.RostralMiddleFrontal 1.0588 
Vol(C). of L.MiddleTemporal - CTA. of L.SuperiorFrontal 0.9816 
CTA. of R.RostralAnteriorCingulate - CTA. of 
L.CaudalMiddleFrontal 0.9768 

CTA. of R.RostralAnteriorCingulate - Vol(C). of 
L.CaudalMiddleFrontal 0.9729 

CTA. of R.RostralMiddleFrontal - CTA. of L.Supramarginal 0.9712 
Vol(C). of R.SuperiorTemporal - CTA. of R.MiddleTemporal 0.9630 
Vol(C). of L.IsthmusCingulate - CTA. of R.Fusiform 0.9447 

 

TABLE VII. THE TOP-10 RANK BRAIN BIOMARKER CORRELATIONS IN 
TIME POINT M48 FOR THE AMDQ-TMTL MODEL ON MMSE PREDICTION. 

Brain biomarker correlation Weight 
Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 1.3938 
Vol(C). of R.SuperiorTemporal - CTA. of L.Pericalcarine 1.2555 
Vol(C). of R.SuperiorTemporal - CTA. of R.MiddleTemporal 1.1114 
Vol(C). of R.TransverseTemporal - CTStd. of R.Lingual 1.1095 
Surf. Area of R.Pericalcarine - CTA. of R.Pericalcarine 1.0473 
Vol(C). of R.SuperiorTemporal - CTA. of L.Paracentral 1.0407 
CTA. of L.InferiorParietal - CTA. of L.ParsOrbitalis 1.0220 
CTA. of L.LateralOccipital - CTA. of R.LateralOccipital 0.9934 
Vol(C). of L.MiddleTemporal - Vol(C). of L.SuperiorFrontal 0.9706 
CTA. of R.SuperiorParietal - Vol(C). of L.SuperiorFrontal 0.9528 

 

TABLE VIII. THE TOP-10 RANK BRAIN BIOMARKER CORRELATIONS IN 
TIME POINT M60 FOR THE AMDQ-TMTL MODEL ON MMSE PREDICTION. 

Brain biomarker correlation Weight 
Vol(C). of R.Paracentral - Vol(C). of L.SuperiorFrontal 1.5628 
CTA. of L.InferiorParietal - CTA. of L.ParsOrbitalis 1.5124 
CTStd. of R.Postcentral - Surf. Area of L.PosteriorCingulate 1.5091 
Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 1.4332 
Vol(C). of L.SuperiorFrontal - Surf. Area of 
R.InferiorTemporal 1.3372 

Vol(C). of R.Paracentral - CTA. of L.CaudalMiddleFrontal 1.3096 
Vol(C). of R.Precentral - Vol(C). of L.RostralMiddleFrontal 1.2670 
Vol(C). of R.Paracentral - Vol(C). of L.MiddleTemporal 1.2659 
CTA. of R.Precentral - CTA. of L.MedialOrbitofrontal 1.2594 
Vol(C). of R.Postcentral - Vol(WM). of R.Hippocampus 1.2586 

 



uses tensor latent factors as multitask relationships to share 
knowledge and improve model generalisation to address small 
dataset problem. The experimental results demonstrate that the 
proposed approach can be utilized to identify brain structural 
differences in individuals with AD, MCI and CN, that it has the 
ability to predict and diagnose AD progression, and it only 
requires MRI data from patient to achieve superior prediction 
performance.  
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