
Vol.:(0123456789)1 3

Behavior Research Methods
https://doi.org/10.3758/s13428-022-01983-5

Measuring motion‑to‑photon latency for sensorimotor experiments
with virtual reality systems

Matthew Warburton1 · Mark Mon‑Williams1,2,3,4 · Faisal Mushtaq1,2 · J. Ryan Morehead1,2

Accepted: 19 September 2022
© The Author(s) 2022

Abstract
Consumer virtual reality (VR) systems are increasingly being deployed in research to study sensorimotor behaviors, but
properties of such systems require verification before being used as scientific tools. The ‘motion-to-photon’ latency (the lag
between a user making a movement and the movement being displayed within the display) is a particularly important metric
as temporal delays can degrade sensorimotor performance. Extant approaches to quantifying this measure have involved the
use of bespoke software and hardware and produce a single measure of latency and ignore the effect of the motion predic-
tion algorithms used in modern VR systems. This reduces confidence in the generalizability of the results. We developed a
novel, system-independent, high-speed camera-based latency measurement technique to co-register real and virtual controller
movements, allowing assessment of how latencies change through a movement. We applied this technique to measure the
motion-to-photon latency of controller movements in the HTC Vive, Oculus Rift, Oculus Rift S, and Valve Index, using the
Unity game engine and SteamVR. For the start of a sudden movement, all measured headsets had mean latencies between 21
and 42 ms. Once motion prediction could account for the inherent delays, the latency was functionally reduced to 2–13 ms,
and our technique revealed that this reduction occurs within ~25–58 ms of movement onset. Our findings indicate that sud-
den accelerations (e.g., movement onset, impacts, and direction changes) will increase latencies and lower spatial accuracy.
Our technique allows researchers to measure these factors and determine the impact on their experimental design before
collecting sensorimotor data from VR systems.

Keywords Virtual reality · Latency · Sensorimotor · Movement

The recent development of low-cost consumer systems has
seen virtual reality (VR) systems increasingly used to study
behavior. The potential for the use of VR systems in behav-
ioral research has long been recognized. These systems offer
the ability to present scenarios with high degrees of eco-
logical validity (Loomis et al., 1999) while also allowing a
level of control that goes beyond what is possible in the real

world (Wann & Mon-Williams, 1996). This means users can
be immersed in highly realistic simulations, but be asked
to catch a ball that does not obey the laws of gravity (Fink
et al., 2009) or explore non-Euclidean environments (War-
ren et al., 2017). This versatility offers a powerful tool for
interrogating behavior – from studying rodents, flies, and
zebrafish (Holscher, 2005; Stowers et al., 2017) to exam-
ining the complexities of human psychological processing.
Research into sensorimotor behavior is increasingly harness-
ing these benefits, allowing complex sensorimotor skills
such as golf putting and pool shooting to be studied with
ease (Haar et al., 2020; Harris et al., 2020).

Popular use of the term VR now almost exclusively refers
to head-mounted displays (HMDs), a display mounted close
to the eyes presenting stereoscopic images to give a sense of
depth and allowing interactions via hand-held controllers.
While historically expensive (Brooks, 1999; Slater, 2018),
HMDs such as the Oculus Rift (Facebook Technologies,
2021) and HTC Vive (HTC Corporation, 2021) have made

 * Matthew Warburton
 pscmwa@leeds.ac.uk

1 School of Psychology, University of Leeds, Leeds, UK
2 Centre for Immersive Technologies, University of Leeds,

Leeds, UK
3 Centre for Applied Education Research, Wolfson Centre

for Applied Health Research, Bradford Teaching Hospitals
NHS Foundation Trust, Bradford, West Yorkshire, UK

4 National Centre for Optics, Vision and Eye Care, University
of South-Eastern Norway, Hasbergs vei 36, 3616 Kongsberg,
Norway

http://orcid.org/0000-0001-5309-4424
http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-022-01983-5&domain=pdf

 Behavior Research Methods

1 3

using VR in research a realistic option for many laboratories,
not just those with specialist facilities. These HMDs have
strong integration with popular game engines such as Unity
(Unity Technologies, 2021) and Unreal Engine (Epic Games,
2021), which are used to develop professional VR games,
and tools such as SteamVR (Valve Corporation, 2021) allow
developed experiments to be deployed with any HMD. With
the increasing use of these HMDs in behavioral research, a
range of software frameworks have been created that spe-
cifically integrate with Unity to allow researchers to design
experiments more easily and incorporate features common
to behavioral research (Bebko & Troje, 2020; Brookes et al.,
2019; Watson et al., 2019).

While consumer HMDs have been adopted to study
behavior, they were not designed to be scientific tools. As
such, certain properties of these systems need to be veri-
fied to ensure the measurements they provide adequately
address the research questions without confounding biases.
One area where verification has thus far been lacking is in
measuring the latency between the execution and visual
feedback of movements, known as motion-to-photon latency
(Fig. 1a). The VR environment has many processing steps,
each of which introduce latencies. These steps, shown in
Fig. 1b, include sampling the sensors, transferring the data
to the computer and processing it, using the data to simu-
late a virtual environment, rendering the virtual environ-
ment to images, and displaying them on the HMD. The sum
of delays along this pipeline gives the motion-to-photon
latency. Because of these delays, by the time current track-
ing data is displayed on the HMD, it is likely that the HMD
and controllers will be in different positions and orienta-
tions. Latency is known to affect the end-user experience
in VR, increasing levels of cybersickness (DiZio & Lack-
ner, 2000) and lowering user’s feeling of “presence” in the
environment (Welch et al., 1996). Much effort has therefore
been dedicated to reducing latency in consumer VR systems
(Carmack, 2013). Motion prediction is commonly used in
consumer VR (LaValle et al., 2014) to reduce the effective
latency of the system. This works by predicting the trajec-
tory at the time the rendered images are presented to the
HMD, rather than using the tracking data captured when
the images are created. The effect of motion prediction is
illustrated in Fig. 1c, where the start of the movement is
initially delayed. However, as soon as the motion-prediction
algorithm detects motion, it can extrapolate this to predict
where the HMD or controller will be at the time feedback is
presented, functionally reducing latency.

It is important to understand the latency of experimental
equipment because it has been observed to impact users’
sensorimotor performance. For instance, simple self-paced
tasks such as handwriting and tracing are degraded in the
presence of increased latency (Kalmus et al., 1960; Smith

et al., 1960), with delays as little as 40 ms increasing errors
and time taken and reducing neatness (Bergeijk & David,
1959). Similarly, performance on manual tracking tasks
worsens when an additional delay is introduced (Foulkes
& Miall, 2000; Langenberg et al., 1998; Miall et al., 1985;
Miall & Jackson, 2006; Smith, 1972; Vercher & Gauthier,
1992) with delays as small as 17 ms enough to degrade the
amount of time participants can lock on the moving tar-
get (Smith, 1972). While some studies demonstrate par-
ticipants could adapt to these introduced delays (Foulkes
& Miall, 2000; Miall & Jackson, 2006), temporal lags have
been shown to disrupt the ability to adapt to visual displace-
ments of hand movements (Brudner et al., 2016; Held et al.,
1966; Held & Durlach, 1989; Honda et al., 2012; Kitazawa
& Yin, 2002; Tanaka et al., 2011), with adaptation to prism
displacement being reduced by delays as little as 50 ms
(Kitazawa et al., 1995). It is therefore critical that research-
ers determine the latency of the system used in their experi-
ments, and ensure that their conclusions are not undermined
by this potentially confounding factor.

Previous studies investigating latency in HMD VR sys-
tems have thus far focused only on movements applied to
the HMD itself (though for latency of pass-through video
and hand tracking in AR, see Abdlkarim et al., 2022; Gruen
et al., 2020). Rotations applied to the Oculus Rift DK2 show
latencies in the range of 40–85 ms (Chang et al., 2016;
Feldstein & Ellis, 2020; Raaen & Kjellmo, 2015; Seo et al.,
2017), though a minority of studies have found latencies in
the region of 1–26 ms, depending on the settings (Kijima &
Miyajima, 2016; Zhao et al., 2017). Translations applied to
the HTC Vive and HTC Vive Pro have shown latencies of
about 22 ms (Jones et al., 2019; Niehorster et al., 2017; Xun
et al., 2019). Estimated values for other popular headsets,
like the Oculus Rift CV1, Oculus Rift S, and Valve Index,
are currently absent from the literature. Estimations for con-
troller movements are entirely absent.

Several techniques have been used to assess motion-to-pho-
ton latencies. Pendulums or servo motors can be employed to
find the difference in time between some motion feature like
reaching the neutral point (Liang et al., 1991; Mine, 1993),
zero velocity (Friston & Steed, 2014), or passing a threshold
angle (Papadakis et al., 2011) or position (He et al., 2000).
Some techniques have employed sudden movements, and
found the difference in time between the actual movement
onset and an indication that virtual motion had started (Bryson
& Fisher, 1990; Feldstein & Ellis, 2020; Raaen & Kjellmo,
2015; Seo et al., 2017; Yang et al., 2017). Others examined the
whole movement profile by comparing the real movement and
a virtual representation, calculating some measure of average
latency (Adelstein et al., 1996; Becher et al., 2018; Di Luca,
2010; Gilson & Glennerster, 2012; Scarfe & Glennerster,
2019; Steed, 2008; Zhao et al., 2017).

Behavior Research Methods

1 3

A critical issue with this variety of techniques is that they will
produce different latency measurements if motion prediction is
used. For sudden movements, where recent tracking data shows
no consistent trend, the improvements from motion prediction
are nullified. For continuous movements, like those produced
by a pendulum, tracking data will show a consistent trend and
motion prediction will reduce the effective latency. In the pres-
ence of motion prediction used on current HMD VR systems,
we should expect the latency of sudden movements to be higher
than continuous movements. A complete understanding of the
system’s latency properties can only be gained by considering
how latency changes over the full motion profile, as this latency
changes dynamically over the course of a movement. The meas-
urements are also dependent on the pipeline used to produce
the virtual environment, for example what software is used to
simulate and render the environment (Wiesing et al., 2020). An
approach is therefore needed that applies to typical research set-
ups and that allows accurate like-for-like comparisons between
different VR systems.

We developed a novel latency measurement technique, where
a 240-fps smartphone camera recorded the movement of a VR
controller mounted in a linear guide assembly (restricting motion
to one plane) and the screen of an HMD. Simultaneously, a tool
developed in Unity controlled the color of the HMD screen in a
predictable pattern and measured the virtual controller position.
Video processing produced a file of real controller positions and
HMD screen colors, which was then matched with a file output
from Unity relating the virtual controller position to the HMD
screen color. An automated frame-counting procedure was used
to find the difference in time between real motion events and
those events being reported to the HMDs. This technique was
used to measure the input latency of popular immersive VR
systems (HTC Vive, Oculus Rift CV1, Oculus Rift S, and Valve
Index). To ensure that the latency measurements are relevant to
typical research setups, the Unity game engine and the Unity
Experiment Framework (Brookes et al., 2019) were used to cre-
ate the program that monitored the controller position and con-
trolled the HMD screen’s color and SteamVR (Valve Corpora-
tion, 2021) was used to ensure the input was HMD-agnostic. To
account for the use of motion prediction, we measured latency
at two points – at the start of the movement, where motion pre-
diction is nullified, and at the middle of the movement, where
motion prediction can functionally reduce latency. Further, this
technique allowed us to observe how quickly this reduction hap-
pens by assessing the latency across the whole movement.

Method

Latency measurement technique

A novel latency measurement technique was developed to
assess the latency of the VR controllers, shown in Fig. 2. A

custom Unity program was created to monitor the position
of a VR controller and control the screen of the VR HMD.
The VR controller was mounted in a bench clamp that was
connected to a linear guide, allowing the position of the VR
controller to be varied in a single axis, and a battery powered
LED was secured to this assembly. The color of the HMD’s
screen was controlled throughout, and a file was output for
each trial with the virtual controller position and HMD
screen color at each time-step, sampled at the HMD’s frame
rate. A smartphone was used to record a separate video of
each trial at 240 fps, ensuring the LED and the HMD were
visible throughout (Fig. 2a). A trial, shown in Fig. 2b, was
started by moving the controller assembly to either end of
the linear rails and pressing a button on the controller, which
turned the screen cyan for one HMD frame, blank for 50
frames, and then cyan for one more frame on each button
press. After this, the screen alternated between cyan and red
every frame, apart from every tenth frame where the screen
turned magenta. Pilot testing of detecting the HMD screen
color showed that this combination of colors allowed the
highest discriminability once recorded on the smartphone,
such that frame color was never mis-classified. A series of
sudden movements followed by a settling period were then
applied to the VR controller assembly, moving it from one
end of the linear rails to the other. Some techniques suddenly
shove the device being measured with a hand (Niehorster
et al., 2017). We wanted to ensure the movement onset was
sudden enough to detect accurately, so our sudden move-
ments were initiated by hitting the side of the VR controller
assembly, after a short backswing, with a blunt object (the
handle side of a screwdriver in this case) and then pushing
the assembly to the opposite end of the rails. Forty such
movements were applied to the controller assembly per trial
by the experimenter. To standardize the movements between
systems, the movements were applied at a rate of approxi-
mately one movement cycle per 3 s (around 0.75 s to move,
and 2.25 s to settle).

Our technique used the HMD screen color as an inter-
mediary to link the real and virtual controller positions. By
matching the screen colors in the file output from Unity to
the frames in the video, the real and virtual controller posi-
tions could be co-registered. The sequence of operations is
shown in Fig. 2c. The videos were processed offline to give
files containing the real controller position and the color of
the HMD screens at each camera frame. The analysis took
the file output from both the video processing and Unity for
each trial and matched the camera frame where the HMD
first changed to a new color to that observation in the Unity
file. As the camera sampling rate was higher than that of the
HMD, one HMD frame lasted multiple camera frames, so we
were only interested in the first camera frame where a cer-
tain color was shown. This link between the real and virtual
screen colors allowed the virtual controller position to be

 Behavior Research Methods

1 3

Behavior Research Methods

1 3

matched to real controller positions, as detailed in the Analy-
sis section. Latency was then assessed at the start and middle
of each movement, to mimic the typically used techniques,
and across the full motion profile, to see how quickly motion
prediction allows the latency to be functionally reduced.

Equipment

Desktop PC

The program used to interface with the VR systems was run
on a desktop PC with the Windows 10 operating system. The
computer specifications were an AMD Ryzen 2600X CPU,
32 GB DDR4 RAM, and Nvidia GTX 1060 GPU (driver
version 457.09), meeting at least the minimum specification
for all HMDs tested.

VR system assembly

The latency of four VR systems was assessed: HTC Vive (1080
x 1200px per eye, 90 Hz), Oculus Rift CV1 (1080 x 1200px
per eye, 90-Hz refresh rate), Oculus Rift S (1280 x 1440px per
eye, 80 Hz), and Valve Index (1440 × 1600px per eye, 80 Hz/90
Hz/120 Hz/144 Hz). As the Valve Index features four different
frame rates, in total seven VR setups were tested. These head-
sets were chosen as they are flagship systems from the most
popular manufacturers of VR HMDs and dominate the share of
devices used for gaming (Lang, 2020). The HMD and right-hand
controller for each system were used when assessing latency.
All the tested HMDs feature low pixel persistence where the
screen is only illuminated for a short period at the end of each
frame to reduce motion blur (0.33 ms for the Valve Index – 2 ms
for the Oculus Rift). For the Oculus Rift, this means that for a
11.1-ms frame duration, the screen is blank for 9.1 ms, and only
illuminated for the final 2 ms. The captured videos therefore
have frames where the HMD screen is not illuminated between
frames where it is illuminated (as an example, Figure S1 in Sup-
plementary Materials shows the screen turning black, instead of
another color, when the HMD frame swaps).

A bench clamp (Panavise 301, 1.2 kg) was used to hold
the VR controller and was connected to a linear rail assem-
bly allowing 185 mm of travel which compromised two Igus
TS-04-15-300 linear guide rails and four Igus TW-04-15 T
linear guide blocks. This assembly allowed a common setup
to be used for all VR systems and restricted movement of
the controller to a single axis, which was orthogonal to the
view of the camera, maximizing the camera’s sensitivity to
measure controller position. An LED powered by a CR2032
battery was secured to the vice, close to the controller.

Smartphone

A Google Pixel 4a smartphone (Android 11), mounted on
a tripod, was used to record the videos. The videos were
recorded at a resolution of 1280x720 pixels and a framer-
ate of 240 fps. The default camera settings for the phone
were used when recording the videos, beside brightness
being lowered to improve contrast. Recordings were started
remotely using volume control buttons on a pair of ear-
phones plugged into the phone via a 3.5-mm audio jack.
To validate the framerate of the camera, a microcontroller
(Elegoo Uno R3) was used to turn on an LED every second
for 30 s, and a video was recorded to count how many frames
passed between two subsequent flashes. This gave an aver-
age framerate of 239.90 fps, negligibly different than the
nominal framerate (0.002 ms difference in frame length).

Software

VR program

A custom program was written to perform the VR elements
of the experiment. To ensure that the latency measurements
would be representative of typical VR experiments, the
Unity (version 2019.4 LTS) game engine (Unity Technolo-
gies, 2021) and SteamVR plugin (version 1.14.16, Unity
plugin version 2.6.1) (Valve Corporation, 2021) were used
to develop the program. The SteamVR plugin ensures that
VR input to the program is agnostic of the specific HMD
used. Default SteamVR settings were used for each HMD.
The Unity Experiment Framework (Brookes et al., 2019)
was used to ease program development and output a file
for every trial containing the screen color and virtual con-
troller position at every HMD frame. Prior to testing each
setup (including different frame rates for the Valve Index),
the built-in software was used to calibrate the tracking and
set the origin and forward-facing direction (Oculus SDK
for Oculus Rift and Oculus Rift S, SteamVR for HTC Vive
and Valve Index).

In the program, the 3D position of the VR controller
was monitored just before the frame is rendered, where
SteamVR updates the controller position. The color of the

Fig. 1 a Latency represented as a temporal difference between a real
movement and its virtual visualization. The effect of latency is shown
in a reaching task, where the virtual movement lags behind the real
one. b The pipeline of operations a position sample goes through
to be presented to the user. Each step along the pipeline has its own
latency, and the sum of these operations gives the motion-to-photon
latency of the system. Motion prediction can be used to predict where
the controller will be when the frame is presented to the user, func-
tionally reducing latency. c Once a movement can be predicted reli-
ably, the virtual movement can match the real one. The effect of this
is shown in a reaching task, where the initial portion of the movement
is still delayed but once motion can be predicted, the virtual move-
ment matches the real one. The end of the movement may be simi-
larly affected, with the virtual motion overshooting motion offset due
to the deceleration.

◂

 Behavior Research Methods

1 3

HMD screens was controlled by covering each screen’s
rendering camera with textures representing the different
available screen colors (black, cyan, red, magenta) and using
culling masks to only display the required color on a given
frame. The screen color update was triggered by SteamVR
updating the controller position. A file was output every
trial giving the position of the controller and the color of

the HMD screens at every HMD frame. As Unity recom-
mends no additional computation be done in the loop once
the controller position is updated, these data were gathered
in the late update loop. This loop runs before the controller
and screen are updated, meaning the reported position and
screen colors lag the time stamp by one frame, which was
corrected for in the analysis.

Behavior Research Methods

1 3

Video processing

A semi-automated video processing procedure was per-
formed using Python (version 3.7.0) and the OpenCV (ver-
sion 4.2.0) image processing library (Bradski, 2000). For a
folder of videos, this procedure searched for the position of
the LED and color of the HMD screen within user-identified
regions of interest (ROI) around the controller assembly
LED and within the HMD screens. This allowed the real
and virtual movements to be co-registered for each video
frame. The high-level description of this data processing
pipeline is shown in Fig. 3a.

During the processing of each folder of videos, user input
was required to identify the extreme positions of the control-
ler assembly LED and a point in each HMD screen. A win-
dow with a slider to control the frame number was presented,
and left mouse clicks were required at roughly the center of
the LED in the two extreme positions. A left mouse click
was required at a point in each HMD screen, at a point low
enough in the screen that the ROI would include the bottom
edge (an ROI was used to reduce video processing time and
restrict analysis to only regions where the screen should be,
and a point on the lower edge was required as the camera’s
rolling shutter meant pixels at the bottom would be the first
to illuminate). A second window with a slider to control
the threshold (on a scale of 0–255) used when converting
frames to black-and-white was then presented. A threshold
value of 150 was used throughout as pilot analysis indicated
this adequately captured the LED outline. This process was
performed only on the first video in the supplied folder of

videos. The user-supplied positions were used to define an
ROI around the possible VR controller assembly LED posi-
tions by taking the line between the left and right align-
ment positions and padding in all directions by 20 pixels to
account for the height and width of the LED, giving a rec-
tangle where the LED should always be found. An ROI was
then defined for each HMD screen by padding the selected
points by 20 in all directions. The same ROIs were used for
every video inside the folder. The process of identifying the
ROIs is shown in Fig. 3b.

The rest of the process was then automated for every
video inside the folder, performing the same steps on each
frame of each video. To find the position of the VR con-
troller assembly LED on each frame, the image was turned
to black and white using the user-supplied threshold, and
the LED ROI was then used to turn any pixels outside of
it black, so only white pixels related to the LED should
remain. Any contours of white pixels were then identified,
and if multiple existed the largest was taken to be the LED.
The position of the center of the contour (rounded to the
nearest pixel in both dimensions) was then identified and
stored. The steps to find the LED are shown in Fig. 3c.

To find the color of each HMD screen, the pixels inside
each screen ROI were first converted to hue saturation value
(HSV) coordinates, and three separate image masks (one for
each color) were created to indicate whether the pixels in the
ROI matched the following criteria:

As black screens had very low saturation and values
(typically zero for each), the checks on these properties
ensured only colored pixels were matched. Because only
three colors were used, they were each given a wide hue
range to ensure there was little chance of colored screens
not being detected. If no pixels were matched in any of the
three color masks, then the screen was classified as being
black. If at least one mask was matched, then a check was
performed on the mask with the most matched pixels to see
if more than 10% of the ROI had matched pixels. If this was
true, the screen color was classified as the mask’s color. If
not, then the screen’s color was marked as ambiguous, and it
was checked whether the matched pixels were concentrated
in the top or bottom of the ROI. The ambiguous classifica-
tion was needed because the camera and HMD refresh were
not synchronized, so some frames captured the HMD screen
just turning on (where, due to the camera’s rolling shutter,
the matches were concentrated in the bottom of the ROI) or
off (where the matches were concentrated in the top of the
ROI), leading to a low amount of the ROI pixels matching.
Pilot testing showed that colors were harder to distinguish

red =

⎡
⎢
⎢
⎢
⎢
⎣

320 − 40
◦

> 20%

> 20%

⎤
⎥
⎥
⎥
⎥
⎦

, cyan =

⎡
⎢
⎢
⎢
⎢
⎣

140 − 240
◦

> 20%

> 20%

⎤
⎥
⎥
⎥
⎥
⎦

, magenta =

⎡
⎢
⎢
⎢
⎢
⎣

240 − 320
◦

> 20%

> 20%

⎤
⎥
⎥
⎥
⎥
⎦

Fig. 2 a Equipment: The experimental setup used to measure the
input latency of VR controllers. A desktop PC ran a custom program
that monitored the controller position and controlled the VR HMDs
screen color. The VR controller had an LED attached that was always
on. A smartphone recorded the VR HMD and controller setups so that
the LED and HMD were visible. b Movement pattern: The controller
assembly was moved to the extreme positions of linear rails and a but-
ton pressed to align the extreme positions, turning the screen cyan for
one frame at the start and end of each alignment. Forty sudden move-
ments were then applied to the controller assembly, translating it from
one side of the linear rails to the other, with periods between move-
ments to allow the equipment to settle. The screen color after alignment
was alternated between cyan and red every frame, apart from every
tenth frame where the screen turned magenta. c Data processing pipe-
line: The Unity script controlled the HMD screen color through the
task and recorded the VR controller position and screen color at every
HMD frame, and output this to a CSV file. While the task was being
performed, a video was recorded of the HMD screen colors and real
controller position. Video processing was performed on the videos to
convert them to a CSV file containing the HMD screen color and real
controller position at each camera frame. An analysis script used both
output files and matched camera and HMD frames where the screen
color was shared, allowing the real and virtual controller positions to
be linked. The analysis script then used these matched real and virtual
controller positions to measure the motion-to-photon latency at differ-
ent parts of the movement

◂

 Behavior Research Methods

1 3

Behavior Research Methods

1 3

when the screen was turning on or off. However, for such
frames where a low amount of the ROI was filled due to the
screen turning on or off, the camera’s rolling shutter guar-
anteed that the following or preceding frame respectively
featured enough colored pixels in the ROI to be accurate.
Therefore, marking the frame color as ambiguous and indi-
cating where pixels were concentrated allowed the screen
color to be corrected during post hoc analysis. The steps to
find the screen colors are shown in Fig. 3d, and the handling
of ambiguous frames is demonstrated in supplementary
material (Figure S1).

These steps were then repeated for every frame. A
comma-separated variable (CSV) results file was exported
for each video with a row for each frame containing the
frame number, the 2D coordinates of the VR controller
assembly LED in pixels, and the color of each HMD screen.
A video was also exported that added this information to the
original video so the results could be validated by adding a
line representing the outline of the LED, a point representing
the LED’s center, and text above each screen indicating the
detected screen colors.

To test the performance of the video processing proce-
dure at reporting the correct color, a script was created that
used the first video output by the video processing script of
each setup (with the identified screen colors added to each
frame) and selected 500 random frames from each video to
display to the validator. For each randomly selected frame,
the validator was presented with the previous, current,
and next frame displayed side by side, and had to indicate
whether the screen colors of the current frame were either
stated correctly (text agreed with screen color), or where
the screen color was ambiguous due to partial illumination
whether it could be identified by looking at the previous or
next frame if the partial illumination was at the top or bottom

of the ROI, respectively. If the information was correct, the
validator pressed the ‘Y’ key, and otherwise pressed the ‘N’
key. This process was repeated until the randomly selected
frames for each setup had been classified. This showed that
all screen colors presented to the validator were either cor-
rect or could be identified during analysis.

Analysis

The analysis script was written using R (version 3.5.3; R
Core Team, 2021). The analysis script read in the CSV files
created during the video processing, giving the real control-
ler position and HMD screen color for each camera frame,
and the VR program, giving the virtual controller position
and HMD screen color for each HMD frame.

The first process performed was to co-register the real and
VR movements by aligning the camera and HMD frames
featuring the same screen color. A reduced data set for the
real controller movements was first created so that the virtual
controller positions could be paired, which was then inte-
grated back into the full data set. In total, 2,107,500 camera
frames (observations) were processed during the analysis.
For each real result file, any missing positional data for the
LED was spline interpolated (one observation Valve Index
at 120Hz, 182 observation Oculus Rift S). The HMD screen
color was corrected for any observations where the color
was marked as ambiguous, by either using the screen color
from the previous or next observation where the ambiguous
color was at the top or bottom of the ROI, respectively. The
data set at this point was the ‘full’ data set of real controller
movements. As all the HMDs used low pixel persistence
the camera captured black frames between the HMD screen
being illuminated, so these were filtered out. A single screen
color was created for each observation by checking whether
either screen reported a non-black color. There were no cases
where the HMD screen colors did not match each other.
Because the HMD could be illuminated for multiple camera
frames, only the first observation was kept where the same
color was reported for more than one frame consecutively, as
we are only interested in the earliest time a particular frame
color was reported. For both files, this left only observations
where either the alignment procedure or main task was per-
formed. The real and virtual alignment positions, to be used
later in the analysis, were found by calculating the mean
controller position during the two alignment procedures and
these observations were then excluded to leave only observa-
tions from the main task. This gave the reduced data set used
to co-register real and virtual movements.

With the pre-processing performed, the screen colors from
the video processing and VR program then needed to be
matched. Counters were initialized at the first observation for
the real and VR movements and were iterated together until
either the end of the real movement data was reached or there

Fig. 3 a Video processing pipeline: For each VR system setup, the
first video is used to identify the regions of interest (ROIs) in the
video frames. After this, each frame of each video for that setup is
probed to find the LED and screen colors. The results for each video
are output to file. b Set ROIs: On the first video for each setup,
four positions are manually identified by the user: (1) controller left
extreme position, (2) controller right extreme position, (3) left screen,
and (4) right screen. c Identify LED: On each frame, the LED is
found by converting the image to black-and-white via a threshold,
restricting the video to only pixels bounded by the rectangle covering
ROIs 1 and 2, finding the largest contour in the frame and then iden-
tifying the center of the contour, which is recorded as the controller’s
real position. d Identify colors: On each frame, the screen color is
found by restricting the video frame to only pixels inside either ROI 3
or 4 (to find left or right screen color, respectively) and creating three
separate masks indicating whether the pixels are either cyan, red, or
magenta. Checks are then performed on the masks. If no masks have
any matches the screen color is recorded as black. If a mask does
have a match and more than 10% of the ROI is filled then the screen
color is recorded as the mask with the most matches, and if not is
recorded as being ambiguous, and can be corrected for in post hoc
analysis. This is performed for both the left and right screens

◂

 Behavior Research Methods

1 3

was a discrepancy between the real and VR screen colors. Dis-
crepancies between the real and VR screen colors were rare
(two corrections Valve Index at 80 Hz, four correction Valve
Index at 120 Hz, four corrections Valve Index at 144Hz, 12 cor-
rections Oculus Rift, two corrections Oculus Rift S). Though
impossible to confirm, these discrepancies resembled the cam-
era either dropping or repeating a frame. Whenever a discrep-
ancy was encountered, a process was performed to realign the
real and virtual datasets at the next matching purple frame. If
the real dataset reached a purple frame sooner than expected
(likely camera dropped a frame), then the virtual counter was
moved to the next purple frame, and the counters were iterated
again. Otherwise, this was done by moving both counters back
to the previous congruent purple frame, and then finding the
difference in time between this frame and the next 50 purple
frames for both data sets. A search was then performed to find
the pair of real and virtual purple frames that had the closest
time difference from the previous congruent purple frame. The
counters were then set at these frames and iterated again.

In total, these discrepancies lost four sudden latency
measurements (two for the Valve Index at 80 Hz, one for
the Valve Index at 144 Hz, and one for the Oculus Rift) and
five continuous latency measurements (two for the Valve
Index at 80 Hz, one for the Valve Index at 144 Hz, and two
for the Oculus Rift). Further, one video of the Valve Index at
120 Hz only featured 30 movements, reducing the number of
sudden and continuous measurements for this video by ten.
This process gave a link between the real and virtual frame
numbers, which were then used to incorporate the virtual
controller positions into the ‘full’ data set containing the
real controller positions. This led to a data set that had real
controller positions at every sample but only VR controller
positions on the first frame of every screen color alternation.

Latency for sudden movements

To find the latency of the sudden movements, each move-
ment onset needed to be identified. While it is typical to use
methods like determining when a movement passes a thresh-
old speed or percentage of peak speed to find reaction times
(Brenner & Smeets, 2019), to ensure accurate measures of
latency we need to know the first frame that movement started
which requires a more precise method. A simple movement
onset technique could be used to find the real motion onsets,
as the resolution of the videos was relatively low (~2.12px/
mm), the real controller positions were affected little by noise
and showed monotonic changes in position during move-
ments. To determine movement onset, the mid-point of each
end-to-end movement was found and at each of these frames
the direction of movement (1 for increasing position, – 1 for
decreasing position) was defined. A backward search was
then initiated at each mid-point, terminating when either the
position difference to the previous frame was in the opposite

direction to that expected (i.e., [pf − pf − 1] × direction < 0), or
in the case where the position difference was zero, where the
position difference to the frame before that was zero or in the
opposite direction (i.e., [pf − pf − 2] × direction ≤ 0). This was
then the first frame where motion thereafter was consistently
in the same direction, while not misclassifying the controller
as being stationary during pairs of frames where the controller
position did not change (e.g., due to slow movements). As the
initial motion was always sudden, any pairs of frames with
zero position difference should be further into the movement
and should not affect motion onset detection.

To ensure the method captured real motion onset well, a
sample of 40 randomly selected movement starts was manu-
ally classified for each setup. An application programmed in
R presented the validator with a graph of the cursor posi-
tion over time, restricted to the specific motion start, and
the validator selected the data point where motion onset
occurred. This was performed for each randomly selected
movement for each setup, and the validator-selected points
were compared to those automatically detected. The only
discrepancies were for the Valve Index at 120 Hz, where one
motion onset was automatically identified three frames later
than the manual classification, and the HTC Vive, where one
motion was detected six frames later than manual classifica-
tion. Assuming this rate of discrepancy was representative of
the whole sample for that setup, it would have affected mean
measured latency by about 0.3 and 0.6 ms, respectively.

As the spatial resolution of the VR movements was higher
than the video, noise meant that a stationary controller led
to non-stationary position samples, so the same technique
could not be used here. Instead, motion onset for the VR
movement was classified using an outlier detection tech-
nique that compared each new position sample to the median
absolute deviation (MAD) of a window of previous samples
(Leys et al., 2013):

where x is the new position sample, M is the median func-
tion, w is the window of previous positions, n is the element
number in window with length N, and c is a threshold. The
timestamp of the measured real controller onset, identified
above, was used as a start point, and the frames featuring
a VR movement were then iterated through forward until
the inequality was met. This then was the first frame where
movement deviated meaningfully from the previous sam-
ples, indicating movement had started.

Finding the optimal parameters for the outlier detection
method involved two steps. The virtual motion start procedure
was first run using a default pair of parameter values (w = 38,
c = 12.5) that provided reasonable detection during pilot test-
ing. The same application used to validate real movement

|x−M(wn)|
1.4826×M(|wn

−M(wn)|)
> c

n = {1, 2,… ,N}

Behavior Research Methods

1 3

onset was used to present the validator with 40 of these virtual
movement onsets for each setup. The validator then manu-
ally identified the motion onset. A grid search was then per-
formed where every combination of parameters in the range
N = [10, 11, …, 40] and c = [5, 5.1, …, 20] was used to generate
frames where motion onset would be detected, and these were
compared to the manually classified onsets. Parameter values
could be found that gave no misclassifications in the sample
for the HTC Vive or the Valve Index (at all frame rates). The
best performing values for the Oculus Rift had three misclas-
sifications, where two observations were detected two frames
early and one observation was detected two frames late, and
for the Oculus Rift S had two misclassifications, where two
observations were detected three frames earlier. Assuming
this is representative of the whole sample, mean measured
latency would be 0.2 ms and 0.6ms lower than it should be
for the headsets, respectively. Virtual motion onset detection
was then re-run with the identified optimal parameters for
each setup. This validation procedure adds confidence that the
motion onset algorithms work well, but as described, a small
number of the samples were not perfectly detected. This is
likely to lead to some individual samples providing lower or
higher values than the true latency, but should have minimal
impact on the group averages.

The real and VR movement onset frames were then
matched together. A fuzzy left join was performed between
the real and VR movement onset for both screens, where
observations were matched if the absolute frame difference
was up to 25 frames, and the difference in frames between
the real and VR movement onset frames gave the latency.
In the case where multiple matches existed for a detected
movement onset, only the smallest difference was kept. The
distribution of these differences was then visualized in his-
togram plots. This process was performed for each result,
and the results for each trial were then collated and plotted
together to give the overall latency distribution of the HMD.
Values outside of 3 standard deviations of the mean value for
each setup were discarded, removing 19 observations (two
observations Valve Index at 80 Hz, two observations Valve
Index at 90 Hz, five observations Valve Index at 120 Hz,
eight observations Valve Index at 144 Hz, two observations
HTC Vive). As both the screen illuminating and the real
controller starting to move have uncertainty arising from
the sample-and-hold nature of video frames (e.g., the real
controller could have actually started moving at any point in
the time between the current and previous frame), this will
on average cancel out but give a ± 4.2 ms uncertainty around
any single value (Feldstein & Ellis, 2020).

Latency for continuous movements

To find the latency of continuous movements, the frames
where the controller crossed threshold positions needed to

be identified. The threshold positions were defined in rela-
tion to the alignment positions, so the real and VR positions
were normalized by making 0 and 1 represent the two align-
ment positions. The frames where the real and VR position
crossed the mid-point between the two alignment positions
were then identified (i.e., the mid-point lay between the
current and previous position). The process to match real
and VR mid-point crossing was the same as for the sudden
movements. Values outside of 3 standard deviations of the
mean value for each setup were discarded, removing two
observations (one observation Valve Index at 144 Hz, one
observation HTC Vive).

Latency over the full movement trajectory

To understand how the latency developed after the sud-
den start, the complete real and virtual motions were
compared. The first comparison was to find the latency
at which each real controller position could be displayed
on the screen of the HMD. To do this, all movements
were aligned at motion onset and the positions were
normalized about the two threshold positions as in the
continuous movements, but also modified so all move-
ments acted in a positive direction (i.e., any movements
where controller position decreased were reversed). At
each time point from the motion onset, the normalized
real controller position was compared to the normalized
virtual controller positions to find the next time the HMD
screen was on that could have reported this movement.
This was done by projecting the normalized real con-
troller position forward in time until it intersected a line
between two normalized virtual controller positions, and
then finding the next frame that the HMD screen turned
on. The difference between these two frames was then
classed as the minimum possible latency of that control-
ler position given the constraints of the HMD frame rate.
This was repeated for each normalized real controller
position. This gives a measure of the latency for each real
position sample, but because only the time that the HMD
screen turns on has uncertainty due to the sample-and-
hold behavior, the measure will on average over-report
latency by half a camera frame’s duration (i.e., 2.1 ms).
To also understand how this latency impacts the presen-
tation of the controller position on screen, the difference
in normalized position between the real and virtual con-
troller positions was also calculated for each time step.
This then gave the positional error that was induced by
the latency of the system. Both measures allow the time
course of the motion prediction to be assessed, as the
latency and positional error should drop from movement
onset, so the time when latency and positional error sta-
bilize should indicate how long the motion prediction
takes to “warm up”.

 Behavior Research Methods

1 3

Results

The novel latency measurement technique was used to assess
the properties of the controller position input of four HMDs
(Oculus Rift, Oculus Rift S, HTC Vive, Valve Index) in two
movement conditions – Sudden Movement, where move-
ment onset is detected, and Continuous Movement, where
the controller was moved smoothly after the sudden motion
onset, shown in Fig. 4a.

The time between a sudden movement being applied to
the controller assembly and the movement being reported on
the screen of the different HMDs is shown in the left panel
of Fig. 4b. This indicates that the HMD with the lowest
latency was the Oculus Rift, and the HMD with the high-
est latency was the Valve Index operating at 80 Hz. The
Valve Index operating at 144 Hz was only marginally better
than the HTC Vive (90 Hz) and worse than the Oculus Rift
(90 Hz) and Rift S (80 Hz), despite having a much higher
refresh rate than these HMDs. The measured latency was
consistent between recordings for all HMDs, with the high-
est between-video standard deviation being 1.75 ms for the
Oculus Rift S.

While moving the controller suddenly ensures that
the measured latency is not affected by motion predic-
tion, movements tend to be executed smoothly, and as
such, we expected lower latencies later in the movement,
where accurate motion prediction was possible. The time
between the movement mid-point being crossed by the
controller assembly and the crossing being reported on
the screen of the HMD is shown in the right panel of
Fig. 4b. It is clear from the comparison between Sud-
den and Continuous Movement conditions that motion
prediction allows the base latency of the system to be
ameliorated. Both the Oculus Rift and HTC Vive have
near-zero latency once motion prediction is functioning,
while the Valve Index, with the worst continuous latency,
has mean latencies below 13 ms across all refresh rates.
Again, the latencies were consistent between videos, with
the highest between-video standard deviation being 0.75
ms for the Valve Index at 120 Hz.

A linear model (R2 = 0.89, F(13, 5,535) = 3,424.05, p
< 0.001) was fit to the sudden and continuous latency data
with effects of HMD setup and type of latency measure-
ment. The model showed significant main effects of HMD
setup (F(6, 5,535) = 1,202.99, p < 0.001), indicating the
measured latency depended on the HMD setup, and meas-
urement type (F(1, 5,535) = 35,813.28, p < 0.001), with
sudden latencies being significantly higher than continuous
latencies, as well as a significant interaction between HMD
setup and latency type (F(1, 5,535) = 246.91, p < 0.001).
Post hoc comparisons using Bonferroni–Holm correction
showed that all HMD setups showed significantly different
latencies for sudden movements (ps < 0.003), and that all

HMD setups showed significantly different latencies for
continuous movements (ps < 0.001) except for compari-
sons between the different Valve Index frame rates which
were all non-significant (ps > 0.073). Further, all HMD
setups showed a significant decrease in latency between
sudden and continuous movements (ps < 0.001).

As the sudden and continuous latency measurements
only capture a snapshot of the latency properties, it is
unclear how the latency develops over time. To understand
this, the real and virtual motions were compared to under-
stand how soon after motion onset the latency could be
reduced by motion prediction. This comparison was per-
formed for all HMD setups but only visualized for the Ocu-
lus Rift and the Valve Index at 90 Hz, as these HMDs had
the lowest and highest latency for that frame rate, respec-
tively. A comparison of the movements for the two HMDs
is shown in Fig. 5a. This shows there is an initial delay for
the virtual controller to move, after which the virtual con-
troller over-compensates to catch up to the real one before
stabilizing. The systems also show overshooting behavior
upon a sudden stop, shown in Figure S3 in the supplemen-
tary materials, but the current experiment was not designed
to assess this in detail. Note that Fig. 5a shows, on average,
that movements start earlier than the sudden latency meas-
urements would suggest (e.g., the Valve Index position at
29 ms is non-zero). This is due to finding the mean posi-
tion of a small number of movements that have initiated
and a larger number that have not, in accordance with the
histograms reported in Fig. 4b.

The real controller position at each time point was
compared to the next time point that the HMD could
reflect this position to give a measure of the latency
over the entire movement (Fig. 5b). This confirms the
HMDs have high latency initially before reaching a pla-
teau, which is reduced slowly through the rest of the
movement. Note, however, that the shape of the latency
curve will depend on the movement performed. We fit an
exponential distribution to the latency values during the
first 100 ms of the movement to determine how quickly
motion prediction would reach its ‘continuous’ latency.
Specifically, this was where the difference in fitted val-
ues first fell below a standard deviation of the fitted
residuals (where noise begins to outweigh signal), which
indicated the latency stabilized at low levels within the
first 33 ms (Oculus Rift) to 54 ms (HTC Vive) of the
movement. We also tested a different method, when the
latency falls within an arbitrary threshold of 2 ms from
the asymptotic value, which found similar values (25 ms
Oculus Rift to 58 ms Valve Index at 80 Hz). The latency
over the first 100 ms of motion is shown for all sys-
tems in Fig. 6. As detailed in the Methodology section,
this procedure will over-estimate latency by 2.1 ms on
average because the real controller position is used as a

Behavior Research Methods

1 3

reference point, meaning the measurement uncertainty
only affects the virtual controller position.

While the latency can be interpreted literally as a temporal
offset in positions, i.e., the virtual controller lags behind the
real one, it may also be thought of as a positional offset, i.e.,
the virtual controller is always offset relative to the real one
(Adelstein et al., 2003). To understand the implications of
this, the real normalized controller position was taken from
the virtual one at each time step, shown in Fig. 5c. The low

continuous latency of the Oculus Rift results in the average
positional offset being negligible. While the Valve Index has
a higher average positional offset, this is only 0.013 normal-
ized units (~ 2.4 mm) when the latency has stabilized. These
are, however, average values – the motion prediction will not
work perfectly. Therefore, while the average temporal latency
and positional offset are near-zero for the Oculus Rift, at any
given time step these values are likely to be non-zero and
will fluctuate.

Fig. 4 a The latency at the start (Sudden) and middle (Continuous) of
the movement was measured. Note that the real controller positions
were sampled every camera frame, whereas virtual controller posi-
tions could only be sampled every HMD frame. b Histograms of the
measured latency for the different HMDs in the Sudden Movement
(left panel) and Continuous Movement (right panel) conditions. The
mean and standard deviation for each HMD and frame rate combina-

tion is shown beneath the histogram. The histogram bin widths were
4.17 ms, to match the camera frame rate, centered on a latency of 0
ms. Some of the variability present in the measurements is due to the
stochasticity between the event occurring (the movement onset or the
mid-point crossing), and when the camera captures a new frame or
the HMD displays a new frame, as illustrated in Figure S2 in supple-
mentary materials

 Behavior Research Methods

1 3

Discussion

While recent low-cost consumer VR HMDs have been rap-
idly adopted to study sensorimotor behavior, these tools are
not designed to be scientific instruments, and as such, require

verification to ensure the measurements they make are fit for
purpose. Temporal latencies in the visual feedback of move-
ment are known to degrade sensorimotor performance, but
existing investigations test only HMD movements and use
inconsistent software and hardware, making comparisons

Fig. 5 Latency properties of the Oculus Rift and Valve Index at 90
Hz during a movement. Points show the mean value while the lines
show individual movements. a Each movement was plotted rela-
tive to motion onset. Inset panels show a closer view of the motion
onset. b The minimum latency that each real position could be dis-
played on the HMD was found. This was done for each sample after

motion onset by projecting the real controller position forward in time
until a greater virtual controller position was found, and then find-
ing the next frame where the HMD was illuminated. c The difference
between the virtual and real normalized positions was found at each
time step to show the effect latency has on what is displayed by the
HMD

Behavior Research Methods

1 3

impossible and giving little idea of what latencies a typical
research pipeline would show. We have developed a technique
that allows researchers to measure the latencies throughout a
movement and determine whether their experiment can be con-
ducted in light of any technical limitations that might exist in
VR hardware. We used this technique to measure the motion-
to-photon latency of current popular HMD controllers (HTC
Vive, Oculus Rift, Oculus Rift S, Valve Index). We found that
(i) all of these HMDs show low levels of latency at the start of

a movement (21–42 ms); (ii) the latency stabilizes near these
lower values early in the movement (25–58 ms from motion
onset); and reduces further later in the movement once built-in
motion prediction algorithms can be employed (2–13 ms).

Unity and SteamVR timings

It is clear from the difference in latency between the sud-
den and continuous sections of the movement that motion

Fig. 6 The minimum latency at which real controller positions could
be displayed, as a function of the time from motion onset. The points
show the average latency, the red curve shows the fit of an expo-

nential function, and the dashed lines show the time at which the
observed latency fell within 2 ms of the exponential fit’s asymptotic
latency

 Behavior Research Methods

1 3

prediction allows the latency to be functionally reduced.
Using the Unity Profiler tool, which allows the user to see
what functions were called on a frame and how long they
took, the timeline of a frame being generated to being dis-
played on the HMD can be understood. A high-level over-
view of this timeline is shown in Fig. 7a. Simulations are first
run on the CPU, shown in Fig. 7b, which includes running
physics simulations and any user-defined logic in the Fixed
Update, Update, and Late Update loops. Unity then waits
until the end of the frame, just before rendering the frame,
to allow SteamVR to update the tracking data (position and
rotation) of any tracked objects. After this is done, the frame
is offloaded to the GPU to be rendered to images, and then
presented for display. When the rendered frame is presented,
it is sent to the HMD and prepared to be shown. As low-
persistence displays are used, the screens are illuminated for
between 0.5 and 2 ms (depending on system) at the end of the
refresh cycle. These operations are aligned with the vertical-
synchronization of the HMDs, which maintains regular frame
rates. The simulation, render, and presentation stages each
take a frame to complete.

Based on this high-level overview, we should therefore
expect the motion prediction to be predicting roughly two
frames ahead, as the tracking data are updated at the end of the
first frame of a three-frame process (Fig. 7a). This is ratified
by the SteamVR Unity plugin source code, making explicit
that the predictions made are two frames ahead (SteamVR_
Action_Pose.cs). That the latency is mostly ameliorated by
motion prediction for the HTC Vive, Oculus Rift, and Ocu-
lus Rift S suggests that the majority of the latency therefore
comes during the rendering and presentation stages for these
systems. Even after motion prediction, the Valve Index how-
ever has a significant amount of latency remaining, which is
consistent across frame rates. We surmise that the Valve Index
has additional latency prior to the positions being sampled by
SteamVR, or after display information is sent to the HMD by
the graphics card. This is because there were no changes to
computer or software, no issues in the SteamVR frame tim-
ing overlay, the Unity Profiler showed no difference in frame
timelines during development across systems, and the Index’s
remaining latency did not depend on the frame rate.

Because the equipment tracking data are updated in the
Before Render loop, any physics operations or logic involv-
ing the position or rotation of the controller in the Fixed
Update or Update loops will be working with the tracking
data of the previous frame. While logic could be run in the
Before Render loop, it is not advised by Unity as any addi-
tional work there will increase the visual latency. To dem-
onstrate the effect of this, the Unity program was modified
to turn the screen on for one frame when motion onset was
detected (by implementing an online version of the motion
onset detection used), and the left and right screen colors

Fig. 7 Unity + SteamVR frame processing operations. a Frame time-
line: For a given frame to be shown to the user, it first must be simu-
lated, rendered, sent to the HMD and then displayed. The tracking data
(position and rotation) of tracked objects like the HMD and controllers
are updated at the end of the simulation stage. b Simulation flow: Inside
the simulation stage, loops are called sequentially. First the Fixed Update
loop operates, which handles physics operations, followed by the opera-
tion of the Update loop. Typically, logic for experiments (including game
state changes, feedback, and interactions driven by controller movements)
will be driven either by the Fixed Update or Update Loops. A Late Update
loop operates, then there is a wait until the simulations are about to be
rendered, where the Before Render loop runs, which is where the tracking
data is updated. c Effect of loop used: The latency measurement tech-
nique was modified to detect virtual motion onset online using the same
outlier detection algorithm, and the screens flashed to indicate movement
had started. However, the screens were controlled in different loops, one
in the Update Loop and one in the Before Render loop. As the tracking
data are updated in the Before Render loop this reports motion earlier,
whereas the Update loop captures motion onset one frame later, leading to
a 1 HMD frame latency. The implication is using the position or rotation
of the controller or HMD to drive logic will incur a 1 frame latency. The
data shows one video for the Oculus Rift S

Behavior Research Methods

1 3

were updated in the Update and Before Render loops inde-
pendently. Figure 7c shows that when the Update loop uses
the position to drive logic it comes with an additional head-
set frame of latency. In an experimental context, this means
that logic-based feedback (such as a target exploding when
hit, text being displayed, or a sound playing) will be delayed
by one frame.

In the past, the complexity of the scene being simulated
and rendered may have also contributed to the observed
latency. If completion of a step in Fig. 7a immediately ini-
tiated the next step, then the time taken to perform these
operations would add to the latency. However, this can lead
to a visual artifact where parts of multiple frames are shown
simultaneously on the display (Feldstein & Ellis, 2020).
Modern VR systems, and often computers more generally,
utilize vertical-synchronization (VSync) to alleviate this
problem, which presents a single rendered image to the
display at fixed intervals. These VSync intervals are then
used to synchronize each element of the pipeline, with the
simulation and rendering steps each having a set amount
of time to complete in. For simple scenes, most of the time
per frame is actually spent waiting for the VSync interval,
as shown in Figure S4 in the Supplementary Materials. As
long as the scene is not overly complex, such that the simula-
tion or rendering steps overrun their allowed time, then the
latency should not depend on the complexity of the scene
being shown.

Implications for sensorimotor experiments

For any movement with changes in direction, speed, or
acceleration, the performance of the motion prediction algo-
rithms, and hence the observed latency, will be dictated by
how quickly changes in movement properties are being per-
formed. If we consider the best method proposed in early
research for the Oculus Rift (LaValle et al., 2014), the accel-
eration is assumed to be constant over the prediction interval
(these principles will likely hold even if more sophisticated
methods are used). Therefore, when the real controller
motion is accelerating, the reported position will be under-
estimated, and when the real controller motion is decelerat-
ing, the reported position will be overestimated. However,
the rate at which these changes occur in the experiment will
dictate how successfully the movement will be represented
(i.e., motion prediction will be less successful when changes
occur very quickly). For an example of a typical sensorimo-
tor reaching task, the data from Wei and Körding (2009)
was collapsed across trials and participants to produce an
average hand-position over time, aligned at motion onset
as identified by the Teasdale method (1993). The points at
which the latency became asymptotically low was marked
for the best (Oculus Rift) and worst (Valve Index at 80Hz)
performing systems, which indicated that across all tested

systems participants would have moved by less than 2 mm
when latency reached low levels. In typical point-to-point
movement tasks then, it is likely that the majority of the
movement would be presented with low latency by a modern
VR system (Fig. 8).

Manual tracking tasks present useful case studies for
considering the consequences of predictable and unpre-
dictable movements on behavior in VR. If the pattern
being tracked is predictable, motion prediction should be
able to ameliorate the latency through most of the move-
ment. For example, in Smith (1972), participants were
tasked with tracking a cursor moving along either a cir-
cular (20-cm diameter) or octagonal (19-cm square with
short flattened corners) pattern at low speeds (120° per
second), which should allow cursor motion to be predicted
reasonably well. The study found that introduced delays
degraded participant’s ability to stay on the target in a
log-linear fashion, with even a 17-ms delay degrading
performance slightly relative to no delay. Therefore, it is
likely that a small degradation in performance will be pre-
sent when using off-the-shelf VR to study manual tracking
relative to equipment with no delays (though this may be
negligibly small). However, other manual tracking tasks
employ unpredictable signals, such as the complex sig-
nals generated through combining different sine wave fre-
quencies (e.g., Foulkes & Miall, 2000), requiring repeated

Fig. 8 Data from Wei and Körding (2009), with lines indicating when
the Oculus Rift (90 Hz) and Valve Index (80 Hz) would reach low
levels of latency. The points and line show the average hand position
in the x-direction across participants and trials, resampled to a fixed
frame rate and aligned at motion onset, as identified according to
Teasdale et al. (1993)

 Behavior Research Methods

1 3

changes of direction. If these changes in direction are per-
formed quickly, the motion-prediction algorithms would
likely recognize the change in direction late and overshoot
the stationary position slightly, effectively adding noise
and increasing latency during the direction change. The
extent of this overshooting behavior will depend on the
speed of direction changes, and future work should sys-
tematically assess the performance of systems across a
range of movement frequencies. As this latency will be
intermittent, and the range of additional latencies tested
on these tasks is larger than the base latency for these
systems (Foulkes & Miall, 2000; Miall & Jackson, 2006),
it is unclear what effect this sort of overshooting behavior
might have on tracking behavior. It is therefore important
that researchers establish (and report) the nature of the
impact of these delays on their experimental task.

Performance on another widely used paradigm in senso-
rimotor research, visuomotor adaptation, is also known to be
degraded when delays are introduced. Kitazawa et al. (1995)
had participants reach from a button to a target on a screen
in front of them, with vision during the motion precluded
and only displayed when the target was reached (terminal
feedback). Prism goggles were used to displace vision to
either the left or right, inducing motor adaptation to the dis-
placement. Both the rate at which participants corrected the
displacement while wearing goggles, and the initial error
once the goggles were removed (indicating the amount of
adaptation that occurred) were significantly degraded when
the terminal feedback was delayed by 50 ms or more, but
not significantly when the feedback was delayed by 10 or 20
ms. However, it should be noted that these experiments were
designed to assess the effect of delays over a large range
(up to 10,000 ms) rather than focusing on the small delays
we saw in our study and were therefore likely underpow-
ered to detect differences at 10 and 20 ms if they did exist.
Given that point-to-point reaches tend to be fairly smooth,
where motion prediction should perform well, it is likely that
both online and terminal feedback in visuomotor adaptation
studies would be delivered with little latency. This implies
that there should be little degradation of motor adaptation
because of the delays of the VR equipment, though it is
possible a more highly powered study would find learning
degradation at small delays.

Understanding the effects of small delays on adaptation
would require further study. While other studies have inves-
tigated the effect of delays on adaptation, they often impose
delays that are much larger than the base latencies of the VR
systems considered (Brudner et al., 2016; Held et al., 1966;
Schween & Hegele, 2017; Tanaka et al., 2011). Moreover,
some setups have substantial base delays of ~ 60 ms (Honda
et al., 2012), while others have utilized motion prediction
algorithms (similar to those used in the VR systems stud-
ied here) to overcome their base latencies (Brudner et al.,

2016; McKenna et al., 2017). This indicates that it is critical
to know the latency inherent to the system being used, as
the amount of adaptation observed will differ depending on
whether a low or high latency setup was used.

Comparison with other methods

The technique developed for this study was designed to
overcome shortcomings of extant latency measurement
methods. Many of the previously employed methods only
give an idea of the latency at set points in a movement
trajectory, usually either the start (Bryson & Fisher, 1990;
Feldstein & Ellis, 2020; Raaen & Kjellmo, 2015; Seo et al.,
2017; Yang et al., 2017), middle (Liang et al., 1991; Mine,
1993) or at some threshold point (Friston & Steed, 2014;
He et al., 2000; Papadakis et al., 2011). We demonstrated
that measures at a single point in the movement were not
sufficient to capture the latency properties of current off
the shelf VR systems because of motion prediction. Fur-
ther, previous work that does compare the full real and
virtual movement trajectory employ techniques such as
cross-correlation to produce a single measure of latency
(Adelstein et al., 1996; Becher et al., 2018; Di Luca, 2010;
Gilson & Glennerster, 2012; Scarfe & Glennerster, 2019;
Steed, 2008; Zhao et al., 2017). Again, this will not cap-
ture the latency properties of a system that uses motion
prediction well, as these measures will likely be weighted
heavily towards the ‘continuous’ latency. Instead, we have
developed a technique that can provide a measure of the
latency through the whole movement to demonstrate the
effect of motion prediction.

Furthermore, we wanted our technique to be user-friendly
and accessible to any researcher wanting to measure their
own system. Many previously developed techniques that
assess full motion profiles use electrical hardware that
are not easily deployed in many sensorimotor laboratories
– such as rotary encoders, motors, photodiodes, amplifiers
and oscilloscopes (Adelstein et al., 1996; Becher et al., 2018;
Di Luca, 2010; Zhao et al., 2017). The advantage of our
technique is that all of the mechanical hardware required
can be bought or fabricated relatively cheaply, and the only
additional electrical hardware used is a smart phone capa-
ble of recording at 240 fps or above. While existing tech-
niques use a high-speed camera to measure latency (Gilson
& Glennerster, 2012; Steed, 2008), it requires the virtual
representation be visible to the camera. This would be diffi-
cult for HMDs, as any representation will likely be too small
to be measured accurately, with additional warping due to
the lenses. Our method does not attempt to represent the
virtual motion parametrically, but rather uses the color of the
HMD’s screen to co-register the real movements, captured
by the camera, and the virtual movement, written to file with
the corresponding screen color.

Behavior Research Methods

1 3

The presented technique could be expanded upon by
assessing the response of the systems to movements at dif-
ferent frequencies. While the current technique allows the
effect of motion prediction to be characterized during simple
movements, it is unclear how fast participants would have to
move for the motion prediction to perform badly, for exam-
ple when making changes of direction in a manual track-
ing task. This could be assessed by linearly actuating the
controller at known frequencies, and assessing the gain and
latency response of the system (e.g., Adelstein et al., 1996).
Knowing the system’s response across a frequency range,
and comparing that to the frequencies with which people
can move their arms, would fully provide further insight into
the types of movements that can be reliably measured using
current VR systems.

In addition, the precision of our latency estimates could
be further improved. The camera we used has a high frame
rate for a commercial smartphone, but one could employ a
dedicated high-speed camera that records at 1000 FPS or
greater, which would reduce the uncertainty around obser-
vations. Higher precision estimates of latencies may also be
possible by filtering the data (with a suitably high cut-off fre-
quency, see Schreven et al. (2015)) and using an interpola-
tion algorithm (Brenner & Smeets, 2019), but care needs to
be taken as poorly tuned parameters for either process may
detrimentally adjust the data, potentially missing impor-
tant features like the jump in the virtual controller position
shown in Fig. 5a around motion onset.

Conclusions

We have created a novel technique to measure the
motion-to-photon latency of controller movements. We
tested the technique using four popular VR HMDs – the
HTC Vive, Oculus Rift, Oculus Rift S, and Valve Index.
Measurements of latency were made at the start of the
movement, where all latencies were between 21 and 42
ms on average, and at the middle of the movement, where
all latencies were 2–13 ms on average. Measurements
of latency through the whole movement showed the
motion-prediction algorithms reduce this latency within
the first 25–58 ms of the movement. There are likely to
be a number of experimental tasks and research ques-
tions where these latencies (and the variability thereof)
are not problematic. Conversely, there will be tasks that
are adversely affected by these temporal delays and the
fact that the latencies vary throughout the movement. It
is therefore incumbent on researchers to determine the
latencies associated with the equipment they are using,
report these latencies, and ensure that conclusions drawn
from their experimental results are not undermined by
this potentially confounding variable. The technique we

report within this manuscript (and the associated soft-
ware that we have made freely available) will enable
researchers to make these measurements. In turn, this
should enable the potential of VR systems in research
to be realized.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13428- 022- 01983-5.

Acknowledgements Authors F.M and M.M-W were supported by Fel-
lowships from the Alan Turing Institute and a Research Grant from
The Engineering and Physical Sciences Research Council (EPSRC)
(EP/R031193/1).

Data availability All scripts required to perform and analyze the
latency measurements are available in the Open Science Framework
repository, https:// osf. io/ emh5z/.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abdlkarim, D., Di Luca, M., Aves, P., Yeo, S.-H., Miall, R. C., Hol-
land, P., & Galea, J. M. (2022). A methodological framework to
assess the accuracy of virtual reality hand-tracking systems: A
case study with the oculus quest 2. BioRxiv. https:// doi. org/ 10.
1101/ 2022. 02. 18. 481001

Adelstein, B. D., Johnston, E. R., & Ellis, S. R. (1996). Dynamic
response of electromagnetic spatial displacement trackers. Pres-
ence: Teleoperators & Virtual Environments, 5(3), 302–318.
https:// doi. org/ 10. 1162/ pres. 1996.5. 3. 302

Adelstein, B. D., Lee, T. G., & Ellis, S. R. (2003). Head tracking
latency in virtual environments: Psychophysics and a model. Pro-
ceedings of the Human Factors and Ergonomics Society Annual
Meeting, 47, 2083–2087.

Bebko, A. O., & Troje, N. F. (2020). bmlTUX: Design and control of
experiments in virtual reality and beyond. I-Perception, 11(4), 1–12.

Becher, A., Angerer, J., & Grauschopf, T. (2018). Novel Approach to
Measure Motion-To-Photon and Mouth-To-Ear Latency in Dis-
tributed Virtual Reality Systems. ArXiv:1809.06320 [Cs]. http://
arxiv. org/ abs/ 1809. 06320

Bergeijk, W. A. V., & David, E. E. (1959). Delayed handwriting. Per-
ceptual and Motor Skills, 9, 347–357.

Bradski, G. (2000). The OpenCV library. Dr. Dobb’s Journal of Soft-
ware Tools, 25, 120–126.

Brenner, E., & Smeets, J. B. J. (2019). How can you best measure reac-
tion times? Journal of Motor Behavior, 51(5), 486–495. https://
doi. org/ 10. 1080/ 00222 895. 2018. 15183 11

Brookes, J., Warburton, M., Alghadier, M., Mon-Williams, M., &
Mushtaq, F. (2019). Studying human behavior with virtual reality:

https://doi.org/10.3758/s13428-022-01983-5
https://osf.io/emh5z/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2022.02.18.481001
https://doi.org/10.1101/2022.02.18.481001
https://doi.org/10.1162/pres.1996.5.3.302
http://arxiv.org/abs/1809.06320
http://arxiv.org/abs/1809.06320
https://doi.org/10.1080/00222895.2018.1518311
https://doi.org/10.1080/00222895.2018.1518311

 Behavior Research Methods

1 3

The Unity experiment framework. Behavior Research Methods,
52, 455–463. https:// doi. org/ 10. 3758/ s13428- 019- 01242-0

Brooks, F. P. (1999). What’s real about virtual reality? IEEE Computer
Graphics and Applications, 12.

Brudner, S. N., Kethidi, N., Graeupner, D., Ivry, R. B., & Taylor, J. A.
(2016). Delayed feedback during sensorimotor learning selectively
disrupts adaptation but not strategy use. Journal of Neurophysiol-
ogy, 115(3), 1499–1511. https:// doi. org/ 10. 1152/ jn. 00066. 2015

Bryson, S. T., & Fisher, S. S. (1990). Defining, modeling, and measur-
ing system lag in virtual environments. Stereoscopic Displays and
Applications, 1256, 98–109.

Carmack, J. (2013). Latency Mitigation Strategies. AltDevBlogADay.
https:// web. archi ve. org/ web/ 20130 22501 3015/ http:// www. altde
vblog aday. com/ 2013/ 02/ 22/ laten cy- mitig ation- strat egies/

Chang, C.-M., Hsu, C.-H., Hsu, C.-F., & Chen, K.-T. (2016). Perfor-
mance Measurements of Virtual Reality Systems: Quantifying the
Timing and Positioning Accuracy. Proceedings of the 2016 ACM
on Multimedia Conference - MM ’16, 655–659. https:// doi. org/
10. 1145/ 29642 84. 29673 03

Corporation, H. T. C. (2021). HTC vive https:// www. vive. com/ uk/
produ ct/.

Di Luca, M. (2010). New method to measure end-to-end delay of vir-
tual reality. Presence: Teleoperators and Virtual Environments,
19(6), 569–584. https:// doi. org/ 10. 1162/ pres_a_ 00023

DiZio, P., & Lackner, J. R. (2000). Motion sickness side effects and
after-effects of immersive virtual environments created with hel-
met-mounted visual displays. NATO RTO-MP-54, the Capability
of Virtual Reality to Meet Military Requirements, 11-1-11–14.

Epic Games. (2021). Unreal Engine. https:// www. unrea lengi ne. com
Facebook Technologies. (2021). Oculus Rift. https:// www. oculus. com/

rift/
Feldstein, I. T., & Ellis, S. R. (2020). A simple video-based technique

for measuring latency in virtual reality or teleoperation. IEEE
Transactions on Visualization and Computer Graphics, 1–1.
https:// doi. org/ 10. 1109/ TVCG. 2020. 29805 27

Fink, P. W., Foo, P. S., & Warren, W. H. (2009). Catching fly balls in
virtual reality: A critical test of the outfielder problem. Journal of
Vision, 9(13), 14–14. https:// doi. org/ 10. 1167/9. 13. 14

Foulkes, A. J. M. C., & Miall, R. C. (2000). Adaptation to visual feed-
back delays in a human manual tracking task. Experimental Brain
Research, 131(1), 101–110. https:// doi. org/ 10. 1007/ s0022 19900
286

Friston, S., & Steed, A. (2014). Measuring latency in virtual environ-
ments. IEEE Transactions on Visualization and Computer Graph-
ics, 20(4), 616–625. https:// doi. org/ 10. 1109/ TVCG. 2014. 30

Gilson, S., & Glennerster, A. (2012). High fidelity immersive virtual
reality. In X. Tan (Ed.), Virtual reality—Human computer interac-
tion (pp. 41–58). InTech.

Gruen, R., Ofek, E., Steed, A., Gal, R., Sinclair, M., & Gonzalez-
Franco, M. (2020). Measuring system visual latency through cog-
nitive latency on video see-through AR devices. 2020 IEEE Con-
ference on Virtual Reality and 3D User Interfaces (VR), 791–799.
https:// doi. org/ 10. 1109/ VR462 66. 2020. 00103

Haar, S., van Assel, C. M., & Faisal, A. A. (2020). Motor learning in
real-world pool billiards. Scientific Reports, 10(1), 20046. https://
doi. org/ 10. 1038/ s41598- 020- 76805-9

Harris, D. J., Buckingham, G., Wilson, M. R., Brookes, J., Mushtaq,
F., Mon-Williams, M., & Vine, S. J. (2020). Exploring sensori-
motor performance and user experience within a virtual reality
golf putting simulator. Virtual Reality. https:// doi. org/ 10. 1007/
s10055- 020- 00480-4

He, D., Liu, F., Pape, D., Dawe, G., & Sandin, D. (2000). Video-based
measurement of system latency. International Immersive Projec-
tion Technology Workshop, 6.

Held, R., & Durlach, N. (1989). Telepresence, time delay, and adapta-
tion. In S. R. Ellis, M. K. Kaiser, & A. Grunwald (Eds.), Pictorial
communication in virtual and real environments. NASA.

Held, R., Efstathiou, A., & Greene, M. (1966). Adaptation to displaced
and delayed visual feedback from the hand. Journal of Experimen-
tal Psychology, 72(6), 887–891. https:// doi. org/ 10. 1037/ h0023 868

Holscher, C. (2005). Rats are able to navigate in virtual environments.
Journal of Experimental Biology, 208(3), 561–569. https:// doi.
org/ 10. 1242/ jeb. 01371

Honda, T., Hirashima, M., & Nozaki, D. (2012). Adaptation to visual
feedback delay influences Visuomotor learning. PLoS One, 7(5),
e37900. https:// doi. org/ 10. 1371/ journ al. pone. 00379 00

Jones, J. A., Luckett, E., Key, T., & Newsome, N. (2019). Latency
measurement in head-mounted virtual environments. 2019 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR),
1000–1001. https:// doi. org/ 10. 1109/ VR. 2019. 87983 61

Kalmus, H., Fry, D., & Denes, P. (1960). Effects of delayed visual
control on writing, drawing and tracing. Language and Speech,
3(2), 96–108.

Kijima, R., & Miyajima, K. (2016). Measurement of head mounted
Display’s latency in rotation and side effect caused by lag com-
pensation by simultaneous observation—An example result using
oculus rift DK2. IEEE Virtual Reality (VR), 2016, 203–204.
https:// doi. org/ 10. 1109/ VR. 2016. 75047 24

Kitazawa, S., Kohno, T., & Uka, T. (1995). Effects of delayed visual
information on the rate and amount of prism adaptation in the
human. The Journal of Neuroscience, 15(11), 7644–7652. https://
doi. org/ 10. 1523/ JNEUR OSCI. 15- 11- 07644. 1995

Kitazawa, S., & Yin, P.-B. (2002). Prism adaptation with delayed visual
error signals in the monkey. Experimental Brain Research, 144(2),
258–261. https:// doi. org/ 10. 1007/ s00221- 002- 1089-6

Lang, B. (2020, April 7). Analysis: Monthly-connected VR headsets
on steam reach record high of 1.7 million. Road to VR. https://
www. roadt ovr. com/ steam- survey- vr- heads et- growth- march- 2020/

Langenberg, U., Hefter, H., Kessler, K., & Cooke, J. (1998). Sinusoi-
dal forearm tracking with delayed visual feedback I. dependence
of the tracking error on the relative delay. Experimental Brain
Research, 118(2), 161–170.

LaValle, S. M., Yershova, A., Katsev, M., & Antonov, M. (2014). Head
tracking for the oculus rift. IEEE International Conference on
Robotics and Automation (ICRA), 2014, 187–194. https:// doi. org/
10. 1109/ ICRA. 2014. 69066 08

Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detect-
ing outliers: Do not use standard deviation around the mean, use
absolute deviation around the median. Journal of Experimental
Social Psychology, 49(4), 764–766. https:// doi. org/ 10. 1016/j. jesp.
2013. 03. 013

Liang, J., Shaw, C., & Green, M. (1991). On temporal-spatial realism
in the virtual reality environment. Proceedings of the 4th annual
ACM symposium on user Interface software and technology -
UIST ’91, 19–25. https:// doi. org/ 10. 1145/ 120782. 120784.

Loomis, J. M., Blascovich, J. J., & Beall, A. C. (1999). Immersive
virtual environment technology as a basic research tool in psy-
chology. Behavior Research Methods, Instruments, & Computers,
31(4), 557–564. https:// doi. org/ 10. 3758/ BF032 00735

McKenna, E., Bray, L. C. J., Zhou, W., & Joiner, W. M. (2017). The
absence or temporal offset of visual feedback does not influence
adaptation to novel movement dynamics. Journal of Neurophysi-
ology, 118(4), 2483–2498. https:// doi. org/ 10. 1152/ jn. 00636. 2016

Miall, R. C., & Jackson, J. K. (2006). Adaptation to visual feed-
back delays in manual tracking: Evidence against the Smith
predictor model of human visually guided action. Experimen-
tal Brain Research, 172(1), 77–84. https:// doi. org/ 10. 1007/
s00221- 005- 0306-5

https://doi.org/10.3758/s13428-019-01242-0
https://doi.org/10.1152/jn.00066.2015
https://web.archive.org/web/20130225013015/http://www.altdevblogaday.com/2013/02/22/latency-mitigation-strategies/
https://web.archive.org/web/20130225013015/http://www.altdevblogaday.com/2013/02/22/latency-mitigation-strategies/
https://doi.org/10.1145/2964284.2967303
https://doi.org/10.1145/2964284.2967303
https://www.vive.com/uk/product/
https://www.vive.com/uk/product/
https://doi.org/10.1162/pres_a_00023
https://www.unrealengine.com
https://www.oculus.com/rift/
https://www.oculus.com/rift/
https://doi.org/10.1109/TVCG.2020.2980527
https://doi.org/10.1167/9.13.14
https://doi.org/10.1007/s002219900286
https://doi.org/10.1007/s002219900286
https://doi.org/10.1109/TVCG.2014.30
https://doi.org/10.1109/VR46266.2020.00103
https://doi.org/10.1038/s41598-020-76805-9
https://doi.org/10.1038/s41598-020-76805-9
https://doi.org/10.1007/s10055-020-00480-4
https://doi.org/10.1007/s10055-020-00480-4
https://doi.org/10.1037/h0023868
https://doi.org/10.1242/jeb.01371
https://doi.org/10.1242/jeb.01371
https://doi.org/10.1371/journal.pone.0037900
https://doi.org/10.1109/VR.2019.8798361
https://doi.org/10.1109/VR.2016.7504724
https://doi.org/10.1523/JNEUROSCI.15-11-07644.1995
https://doi.org/10.1523/JNEUROSCI.15-11-07644.1995
https://doi.org/10.1007/s00221-002-1089-6
https://www.roadtovr.com/steam-survey-vr-headset-growth-march-2020/
https://www.roadtovr.com/steam-survey-vr-headset-growth-march-2020/
https://doi.org/10.1109/ICRA.2014.6906608
https://doi.org/10.1109/ICRA.2014.6906608
https://doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/10.1145/120782.120784
https://doi.org/10.3758/BF03200735
https://doi.org/10.1152/jn.00636.2016
https://doi.org/10.1007/s00221-005-0306-5
https://doi.org/10.1007/s00221-005-0306-5

Behavior Research Methods

1 3

Miall, R. C., Weir, D. J., & Stein, J. F. (1985). Visuomotor tracking
with delayed visual feedback. Neuroscience, 16(3), 511–520.
https:// doi. org/ 10. 1016/ 0306- 4522(85) 90189-7

Mine, M. R. (1993). Characterization of end-to-end delays in head-
mounted display systems (Vol. (No. TR93-001, p. p. 11).). Uni-
versity of North Carolina at Chapel Hill.

Niehorster, D. C., Li, L., & Lappe, M. (2017). The accuracy and
precision of position and orientation tracking in the HTC vive
virtual reality system for scientific research. I-Perception, 8(3),
204166951770820. https:// doi. org/ 10. 1177/ 20416 69517 708205

Papadakis, G., Mania, K., & Koutroulis, E. (2011). A system to meas-
ure, control and minimize end-to-end head tracking latency in
immersive simulations. Proceedings of the 10th international con-
ference on virtual reality continuum and its applications in indus-
try - VRCAI ’11, 581. https:// doi. org/ 10. 1145/ 20877 56. 20878 69

R Core Team. (2021). R: A language and environment for statistical
computing (3.5.3). https:// www.R- proje ct. org/

Raaen, K., & Kjellmo, I. (2015). Measuring latency in virtual reality
systems. In K. Chorianopoulos, M. Divitini, J. Baalsrud Hauge, L.
Jaccheri, & R. Malaka (Eds.), Entertainment computing (ICEC)
(Vol. 9353, pp. 457–462). Springer International Publishing.
https:// doi. org/ 10. 1007/ 978-3- 319- 24589-8_ 40

Scarfe, P., & Glennerster, A. (2019). The science behind virtual reality
displays. Annual Review of Vision Science, 5(1), 529–547. https://
doi. org/ 10. 1146/ annur ev- vision- 091718- 014942

Schreven, S., Beek, P. J., & Smeets, J. B. J. (2015). Optimising filtering
parameters for a 3D motion analysis system. Journal of Electro-
myography and Kinesiology, 25(5), 808–814. https:// doi. org/ 10.
1016/j. jelek in. 2015. 06. 004

Schween, R., & Hegele, M. (2017). Feedback delay attenuates implicit
but facilitates explicit adjustments to a visuomotor rotation. Neu-
robiology of Learning and Memory, 140, 124–133. https:// doi. org/
10. 1016/j. nlm. 2017. 02. 015

Seo, M.-W., Choi, S.-W., Lee, S.-L., Oh, E.-Y., Baek, J.-S., & Kang, S.-J. (2017).
Photosensor-based latency measurement system for head-mounted
displays. Sensors, 17(5), 1112. https:// doi. org/ 10. 3390/ s1705 1112

Slater, M. (2018). Immersion and the illusion of presence in virtual
reality. British Journal of Psychology, 109(3), 431–433. https://
doi. org/ 10. 1111/ bjop. 12305

Smith, W. M. (1972). Feedback: Real-time delayed vision of One’s own
tracking behavior. Science, 176(4037), 939–940. https:// doi. org/
10. 1126/ scien ce. 176. 4037. 939

Smith, W. M., McCrary, J. W., & Smith, K. U. (1960). Delayed visual
feedback and behavior. Science, 132(3433), 1013–1014. https://
doi. org/ 10. 1126/ scien ce. 132. 3433. 1013

Steed, A. (2008). A simple method for estimating the latency of interac-
tive, real-time graphics simulations. Proceedings of the 2008 ACM
Symposium on virtual reality software and technology - VRST ’08,
123. https:// doi. org/ 10. 1145/ 14505 79. 14506 06.

Stowers, J. R., Hofbauer, M., Bastien, R., Griessner, J., Higgins, P.,
Farooqui, S., Fischer, R. M., Nowikovsky, K., Haubensak, W.,
Couzin, I. D., Tessmar-Raible, K., & Straw, A. D. (2017). Vir-
tual reality for freely moving animals. Nature Methods, 14(10),
995–1002. https:// doi. org/ 10. 1038/ nmeth. 4399

Tanaka, H., Homma, K., & Imamizu, H. (2011). Physical delay but
not subjective delay determines learning rate in prism adaptation.

Experimental Brain Research, 208(2), 257–268. https:// doi. org/
10. 1007/ s00221- 010- 2476-z

Teasdale, N., Bard, C., Fleury, M., Young, D. E., & Proteau, L. (1993).
Determining movement onsets from temporal series. Journal of
Motor Behavior, 25(2), 97–106. https:// doi. org/ 10. 1080/ 00222
895. 1993. 99416 44

Unity Technologies. (2021). Unity. https:// unity 3d. com
Valve Corporation (2021). SteamVR. https:// store. steam power ed. com/

app/ 250820/ Steam VR/
Vercher, J.-L., & Gauthier, G. M. (1992). Oculo-manual coordination

control: Ocular and manual tracking of visual targets with delayed
visual feedback of the hand motion. Experimental Brain Research,
90(3). https:// doi. org/ 10. 1007/ BF002 30944

Wann, J., & Mon-Williams, M. (1996). What does virtual reality
NEED?: Human factors issues in the design of three-dimensional
computer environments. International Journal of Human-Com-
puter Studies, 44(6), 829–847. https:// doi. org/ 10. 1006/ ijhc. 1996.
0035

Warren, W. H., Rothman, D. B., Schnapp, B. H., & Ericson, J. D.
(2017). Wormholes in virtual space: From cognitive maps to cog-
nitive graphs. Cognition, 166, 152–163. https:// doi. org/ 10. 1016/j.
cogni tion. 2017. 05. 020

Watson, M. R., Voloh, B., Thomas, C., Hasan, A., & Womelsdorf, T.
(2019). USE: An integrative suite for temporally-precise psycho-
physical experiments in virtual environments for human, nonhu-
man, and artificially intelligent agents. Journal of Neuroscience
Methods, 326, 108374.

Wei, K., & Körding, K. P. (2009). Relevance of error: What drives
motor adaptation? Journal of Neurophysiology, 101(2), 655–664.
https:// doi. org/ 10. 1152/ jn. 90545. 2008

Welch, R. B., Blackmon, T. T., Liu, A., Mellers, B. A., & Stark, L. W.
(1996). The effects of pictorial realism, delay of visual feedback,
and observer interactivity on the subjective sense of presence.
Presence: Teleoperators and Virtual Environments, 5(3), 263–
273. https:// doi. org/ 10. 1162/ pres. 1996.5. 3. 263

Wiesing, M., Fink, G. R., & Weidner, R. (2020). Accuracy and preci-
sion of stimulus timing and reaction times with unreal engine and
SteamVR. PLoS One, 15(4), e0231152. https:// doi. org/ 10. 1371/
journ al. pone. 02311 52

Xun, H., Wang, Y., & Weng, D. (2019). New system to measure motion
motion-to-photon latency of virtual reality head mounted display.
2019 IEEE International Symposium on Mixed and Augmented
Reality Adjunct (ISMAR-Adjunct), 58–62. https:// doi. org/ 10. 1109/
ISMAR- Adjun ct. 2019. 00029

Yang, Y., Weng, D., Li, D., & Xun, H. (2017). An improved method of
pose estimation for Lighthouse Base station extension. Sensors,
17(10), 2411. https:// doi. org/ 10. 3390/ s1710 2411

Zhao, J., Allison, R. S., Vinnikov, M., & Jennings, S. (2017). Estimat-
ing the motion-to-photon latency in head mounted displays. IEEE
Virtual Reality (VR), 2017, 313–314. https:// doi. org/ 10. 1109/ VR.
2017. 78923 02

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/0306-4522(85)90189-7
https://doi.org/10.1177/2041669517708205
https://doi.org/10.1145/2087756.2087869
https://www.r-project.org/
https://doi.org/10.1007/978-3-319-24589-8_40
https://doi.org/10.1146/annurev-vision-091718-014942
https://doi.org/10.1146/annurev-vision-091718-014942
https://doi.org/10.1016/j.jelekin.2015.06.004
https://doi.org/10.1016/j.jelekin.2015.06.004
https://doi.org/10.1016/j.nlm.2017.02.015
https://doi.org/10.1016/j.nlm.2017.02.015
https://doi.org/10.3390/s17051112
https://doi.org/10.1111/bjop.12305
https://doi.org/10.1111/bjop.12305
https://doi.org/10.1126/science.176.4037.939
https://doi.org/10.1126/science.176.4037.939
https://doi.org/10.1126/science.132.3433.1013
https://doi.org/10.1126/science.132.3433.1013
https://doi.org/10.1145/1450579.1450606
https://doi.org/10.1038/nmeth.4399
https://doi.org/10.1007/s00221-010-2476-z
https://doi.org/10.1007/s00221-010-2476-z
https://doi.org/10.1080/00222895.1993.9941644
https://doi.org/10.1080/00222895.1993.9941644
https://unity3d.com
https://store.steampowered.com/app/250820/SteamVR/
https://store.steampowered.com/app/250820/SteamVR/
https://doi.org/10.1007/BF00230944
https://doi.org/10.1006/ijhc.1996.0035
https://doi.org/10.1006/ijhc.1996.0035
https://doi.org/10.1016/j.cognition.2017.05.020
https://doi.org/10.1016/j.cognition.2017.05.020
https://doi.org/10.1152/jn.90545.2008
https://doi.org/10.1162/pres.1996.5.3.263
https://doi.org/10.1371/journal.pone.0231152
https://doi.org/10.1371/journal.pone.0231152
https://doi.org/10.1109/ISMAR-Adjunct.2019.00029
https://doi.org/10.1109/ISMAR-Adjunct.2019.00029
https://doi.org/10.3390/s17102411
https://doi.org/10.1109/VR.2017.7892302
https://doi.org/10.1109/VR.2017.7892302

	Measuring motion-to-photon latency for sensorimotor experiments with virtual reality systems
	Abstract
	Method
	Latency measurement technique
	Equipment
	Desktop PC
	VR system assembly
	Smartphone

	Software
	VR program
	Video processing

	Analysis
	Latency for sudden movements
	Latency for continuous movements
	Latency over the full movement trajectory

	Results
	Discussion
	Unity and SteamVR timings
	Implications for sensorimotor experiments
	Comparison with other methods

	Conclusions
	Acknowledgements
	References

