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Abstract
Consumer virtual reality (VR) systems are increasingly being deployed in research to study sensorimotor behaviors, but 
properties of such systems require verification before being used as scientific tools. The ‘motion-to-photon’ latency (the lag 
between a user making a movement and the movement being displayed within the display) is a particularly important metric 
as temporal delays can degrade sensorimotor performance. Extant approaches to quantifying this measure have involved the 
use of bespoke software and hardware and produce a single measure of latency and ignore the effect of the motion predic-
tion algorithms used in modern VR systems. This reduces confidence in the generalizability of the results. We developed a 
novel, system-independent, high-speed camera-based latency measurement technique to co-register real and virtual controller 
movements, allowing assessment of how latencies change through a movement. We applied this technique to measure the 
motion-to-photon latency of controller movements in the HTC Vive, Oculus Rift, Oculus Rift S, and Valve Index, using the 
Unity game engine and SteamVR. For the start of a sudden movement, all measured headsets had mean latencies between 21 
and 42 ms. Once motion prediction could account for the inherent delays, the latency was functionally reduced to 2–13 ms, 
and our technique revealed that this reduction occurs within ~25–58 ms of movement onset. Our findings indicate that sud-
den accelerations (e.g., movement onset, impacts, and direction changes) will increase latencies and lower spatial accuracy. 
Our technique allows researchers to measure these factors and determine the impact on their experimental design before 
collecting sensorimotor data from VR systems.
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The recent development of low-cost consumer systems has 
seen virtual reality (VR) systems increasingly used to study 
behavior. The potential for the use of VR systems in behav-
ioral research has long been recognized. These systems offer 
the ability to present scenarios with high degrees of eco-
logical validity (Loomis et al., 1999) while also allowing a 
level of control that goes beyond what is possible in the real 

world (Wann & Mon-Williams, 1996). This means users can 
be immersed in highly realistic simulations, but be asked 
to catch a ball that does not obey the laws of gravity (Fink 
et al., 2009) or explore non-Euclidean environments (War-
ren et al., 2017). This versatility offers a powerful tool for 
interrogating behavior – from studying rodents, flies, and 
zebrafish (Holscher, 2005; Stowers et al., 2017) to exam-
ining the complexities of human psychological processing. 
Research into sensorimotor behavior is increasingly harness-
ing these benefits, allowing complex sensorimotor skills 
such as golf putting and pool shooting to be studied with 
ease (Haar et al., 2020; Harris et al., 2020).

Popular use of the term VR now almost exclusively refers 
to head-mounted displays (HMDs), a display mounted close 
to the eyes presenting stereoscopic images to give a sense of 
depth and allowing interactions via hand-held controllers. 
While historically expensive (Brooks, 1999; Slater, 2018), 
HMDs such as the Oculus Rift (Facebook Technologies, 
2021) and HTC Vive (HTC Corporation, 2021) have made 
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using VR in research a realistic option for many laboratories, 
not just those with specialist facilities. These HMDs have 
strong integration with popular game engines such as Unity 
(Unity Technologies, 2021) and Unreal Engine (Epic Games, 
2021), which are used to develop professional VR games, 
and tools such as SteamVR (Valve Corporation, 2021) allow 
developed experiments to be deployed with any HMD. With 
the increasing use of these HMDs in behavioral research, a 
range of software frameworks have been created that spe-
cifically integrate with Unity to allow researchers to design 
experiments more easily and incorporate features common 
to behavioral research (Bebko & Troje, 2020; Brookes et al., 
2019; Watson et al., 2019).

While consumer HMDs have been adopted to study 
behavior, they were not designed to be scientific tools. As 
such, certain properties of these systems need to be veri-
fied to ensure the measurements they provide adequately 
address the research questions without confounding biases. 
One area where verification has thus far been lacking is in 
measuring the latency between the execution and visual 
feedback of movements, known as motion-to-photon latency 
(Fig. 1a). The VR environment has many processing steps, 
each of which introduce latencies. These steps, shown in 
Fig. 1b, include sampling the sensors, transferring the data 
to the computer and processing it, using the data to simu-
late a virtual environment, rendering the virtual environ-
ment to images, and displaying them on the HMD. The sum 
of delays along this pipeline gives the motion-to-photon 
latency. Because of these delays, by the time current track-
ing data is displayed on the HMD, it is likely that the HMD 
and controllers will be in different positions and orienta-
tions. Latency is known to affect the end-user experience 
in VR, increasing levels of cybersickness (DiZio & Lack-
ner, 2000) and lowering user’s feeling of “presence” in the 
environment (Welch et al., 1996). Much effort has therefore 
been dedicated to reducing latency in consumer VR systems 
(Carmack, 2013). Motion prediction is commonly used in 
consumer VR (LaValle et al., 2014) to reduce the effective 
latency of the system. This works by predicting the trajec-
tory at the time the rendered images are presented to the 
HMD, rather than using the tracking data captured when 
the images are created. The effect of motion prediction is 
illustrated in Fig. 1c, where the start of the movement is 
initially delayed. However, as soon as the motion-prediction 
algorithm detects motion, it can extrapolate this to predict 
where the HMD or controller will be at the time feedback is 
presented, functionally reducing latency.

It is important to understand the latency of experimental 
equipment because it has been observed to impact users’ 
sensorimotor performance. For instance, simple self-paced 
tasks such as handwriting and tracing are degraded in the 
presence of increased latency (Kalmus et al., 1960; Smith 

et al., 1960), with delays as little as 40 ms increasing errors 
and time taken and reducing neatness (Bergeijk & David, 
1959). Similarly, performance on manual tracking tasks 
worsens when an additional delay is introduced (Foulkes 
& Miall, 2000; Langenberg et al., 1998; Miall et al., 1985; 
Miall & Jackson, 2006; Smith, 1972; Vercher & Gauthier, 
1992) with delays as small as 17 ms enough to degrade the 
amount of time participants can lock on the moving tar-
get (Smith, 1972). While some studies demonstrate par-
ticipants could adapt to these introduced delays (Foulkes 
& Miall, 2000; Miall & Jackson, 2006), temporal lags have 
been shown to disrupt the ability to adapt to visual displace-
ments of hand movements (Brudner et al., 2016; Held et al., 
1966; Held & Durlach, 1989; Honda et al., 2012; Kitazawa 
& Yin, 2002; Tanaka et al., 2011), with adaptation to prism 
displacement being reduced by delays as little as 50 ms 
(Kitazawa et al., 1995). It is therefore critical that research-
ers determine the latency of the system used in their experi-
ments, and ensure that their conclusions are not undermined 
by this potentially confounding factor.

Previous studies investigating latency in HMD VR sys-
tems have thus far focused only on movements applied to 
the HMD itself (though for latency of pass-through video 
and hand tracking in AR, see Abdlkarim et al., 2022; Gruen 
et al., 2020). Rotations applied to the Oculus Rift DK2 show 
latencies in the range of 40–85 ms (Chang et al., 2016; 
Feldstein & Ellis, 2020; Raaen & Kjellmo, 2015; Seo et al., 
2017), though a minority of studies have found latencies in 
the region of 1–26 ms, depending on the settings (Kijima & 
Miyajima, 2016; Zhao et al., 2017). Translations applied to 
the HTC Vive and HTC Vive Pro have shown latencies of 
about 22 ms (Jones et al., 2019; Niehorster et al., 2017; Xun 
et al., 2019). Estimated values for other popular headsets, 
like the Oculus Rift CV1, Oculus Rift S, and Valve Index, 
are currently absent from the literature. Estimations for con-
troller movements are entirely absent.

Several techniques have been used to assess motion-to-pho-
ton latencies. Pendulums or servo motors can be employed to 
find the difference in time between some motion feature like 
reaching the neutral point (Liang et al., 1991; Mine, 1993), 
zero velocity (Friston & Steed, 2014), or passing a threshold 
angle (Papadakis et al., 2011) or position (He et al., 2000). 
Some techniques have employed sudden movements, and 
found the difference in time between the actual movement 
onset and an indication that virtual motion had started (Bryson 
& Fisher, 1990; Feldstein & Ellis, 2020; Raaen & Kjellmo, 
2015; Seo et al., 2017; Yang et al., 2017). Others examined the 
whole movement profile by comparing the real movement and 
a virtual representation, calculating some measure of average 
latency (Adelstein et al., 1996; Becher et al., 2018; Di Luca, 
2010; Gilson & Glennerster, 2012; Scarfe & Glennerster, 
2019; Steed, 2008; Zhao et al., 2017).
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A critical issue with this variety of techniques is that they will 
produce different latency measurements if motion prediction is 
used. For sudden movements, where recent tracking data shows 
no consistent trend, the improvements from motion prediction 
are nullified. For continuous movements, like those produced 
by a pendulum, tracking data will show a consistent trend and 
motion prediction will reduce the effective latency. In the pres-
ence of motion prediction used on current HMD VR systems, 
we should expect the latency of sudden movements to be higher 
than continuous movements. A complete understanding of the 
system’s latency properties can only be gained by considering 
how latency changes over the full motion profile, as this latency 
changes dynamically over the course of a movement. The meas-
urements are also dependent on the pipeline used to produce 
the virtual environment, for example what software is used to 
simulate and render the environment (Wiesing et al., 2020). An 
approach is therefore needed that applies to typical research set-
ups and that allows accurate like-for-like comparisons between 
different VR systems.

We developed a novel latency measurement technique, where 
a 240-fps smartphone camera recorded the movement of a VR 
controller mounted in a linear guide assembly (restricting motion 
to one plane) and the screen of an HMD. Simultaneously, a tool 
developed in Unity controlled the color of the HMD screen in a 
predictable pattern and measured the virtual controller position. 
Video processing produced a file of real controller positions and 
HMD screen colors, which was then matched with a file output 
from Unity relating the virtual controller position to the HMD 
screen color. An automated frame-counting procedure was used 
to find the difference in time between real motion events and 
those events being reported to the HMDs. This technique was 
used to measure the input latency of popular immersive VR 
systems (HTC Vive, Oculus Rift CV1, Oculus Rift S, and Valve 
Index). To ensure that the latency measurements are relevant to 
typical research setups, the Unity game engine and the Unity 
Experiment Framework (Brookes et al., 2019) were used to cre-
ate the program that monitored the controller position and con-
trolled the HMD screen’s color and SteamVR (Valve Corpora-
tion, 2021) was used to ensure the input was HMD-agnostic. To 
account for the use of motion prediction, we measured latency 
at two points – at the start of the movement, where motion pre-
diction is nullified, and at the middle of the movement, where 
motion prediction can functionally reduce latency. Further, this 
technique allowed us to observe how quickly this reduction hap-
pens by assessing the latency across the whole movement.

Method

Latency measurement technique

A novel latency measurement technique was developed to 
assess the latency of the VR controllers, shown in Fig. 2. A 

custom Unity program was created to monitor the position 
of a VR controller and control the screen of the VR HMD. 
The VR controller was mounted in a bench clamp that was 
connected to a linear guide, allowing the position of the VR 
controller to be varied in a single axis, and a battery powered 
LED was secured to this assembly. The color of the HMD’s 
screen was controlled throughout, and a file was output for 
each trial with the virtual controller position and HMD 
screen color at each time-step, sampled at the HMD’s frame 
rate. A smartphone was used to record a separate video of 
each trial at 240 fps, ensuring the LED and the HMD were 
visible throughout (Fig. 2a). A trial, shown in Fig. 2b, was 
started by moving the controller assembly to either end of 
the linear rails and pressing a button on the controller, which 
turned the screen cyan for one HMD frame, blank for 50 
frames, and then cyan for one more frame on each button 
press. After this, the screen alternated between cyan and red 
every frame, apart from every tenth frame where the screen 
turned magenta. Pilot testing of detecting the HMD screen 
color showed that this combination of colors allowed the 
highest discriminability once recorded on the smartphone, 
such that frame color was never mis-classified. A series of 
sudden movements followed by a settling period were then 
applied to the VR controller assembly, moving it from one 
end of the linear rails to the other. Some techniques suddenly 
shove the device being measured with a hand (Niehorster 
et al., 2017). We wanted to ensure the movement onset was 
sudden enough to detect accurately, so our sudden move-
ments were initiated by hitting the side of the VR controller 
assembly, after a short backswing, with a blunt object (the 
handle side of a screwdriver in this case) and then pushing 
the assembly to the opposite end of the rails. Forty such 
movements were applied to the controller assembly per trial 
by the experimenter. To standardize the movements between 
systems, the movements were applied at a rate of approxi-
mately one movement cycle per 3 s (around 0.75 s to move, 
and 2.25 s to settle).

Our technique used the HMD screen color as an inter-
mediary to link the real and virtual controller positions. By 
matching the screen colors in the file output from Unity to 
the frames in the video, the real and virtual controller posi-
tions could be co-registered. The sequence of operations is 
shown in Fig. 2c. The videos were processed offline to give 
files containing the real controller position and the color of 
the HMD screens at each camera frame. The analysis took 
the file output from both the video processing and Unity for 
each trial and matched the camera frame where the HMD 
first changed to a new color to that observation in the Unity 
file. As the camera sampling rate was higher than that of the 
HMD, one HMD frame lasted multiple camera frames, so we 
were only interested in the first camera frame where a cer-
tain color was shown. This link between the real and virtual 
screen colors allowed the virtual controller position to be 
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matched to real controller positions, as detailed in the Analy-
sis section. Latency was then assessed at the start and middle 
of each movement, to mimic the typically used techniques, 
and across the full motion profile, to see how quickly motion 
prediction allows the latency to be functionally reduced.

Equipment

Desktop PC

The program used to interface with the VR systems was run 
on a desktop PC with the Windows 10 operating system. The 
computer specifications were an AMD Ryzen 2600X CPU, 
32 GB DDR4 RAM, and Nvidia GTX 1060 GPU (driver 
version 457.09), meeting at least the minimum specification 
for all HMDs tested.

VR system assembly

The latency of four VR systems was assessed: HTC Vive (1080 
x 1200px per eye, 90 Hz), Oculus Rift CV1 (1080 x 1200px 
per eye, 90-Hz refresh rate), Oculus Rift S (1280 x 1440px per 
eye, 80 Hz), and Valve Index (1440 × 1600px per eye, 80 Hz/90 
Hz/120 Hz/144 Hz). As the Valve Index features four different 
frame rates, in total seven VR setups were tested. These head-
sets were chosen as they are flagship systems from the most 
popular manufacturers of VR HMDs and dominate the share of 
devices used for gaming (Lang, 2020). The HMD and right-hand 
controller for each system were used when assessing latency. 
All the tested HMDs feature low pixel persistence where the 
screen is only illuminated for a short period at the end of each 
frame to reduce motion blur (0.33 ms for the Valve Index – 2 ms 
for the Oculus Rift). For the Oculus Rift, this means that for a 
11.1-ms frame duration, the screen is blank for 9.1 ms, and only 
illuminated for the final 2 ms. The captured videos therefore 
have frames where the HMD screen is not illuminated between 
frames where it is illuminated (as an example, Figure S1 in Sup-
plementary Materials shows the screen turning black, instead of 
another color, when the HMD frame swaps).

A bench clamp (Panavise 301, 1.2 kg) was used to hold 
the VR controller and was connected to a linear rail assem-
bly allowing 185 mm of travel which compromised two Igus 
TS-04-15-300 linear guide rails and four Igus TW-04-15 T 
linear guide blocks. This assembly allowed a common setup 
to be used for all VR systems and restricted movement of 
the controller to a single axis, which was orthogonal to the 
view of the camera, maximizing the camera’s sensitivity to 
measure controller position. An LED powered by a CR2032 
battery was secured to the vice, close to the controller.

Smartphone

A Google Pixel 4a smartphone (Android 11), mounted on 
a tripod, was used to record the videos. The videos were 
recorded at a resolution of 1280x720 pixels and a framer-
ate of 240 fps. The default camera settings for the phone 
were used when recording the videos, beside brightness 
being lowered to improve contrast. Recordings were started 
remotely using volume control buttons on a pair of ear-
phones plugged into the phone via a 3.5-mm audio jack. 
To validate the framerate of the camera, a microcontroller 
(Elegoo Uno R3) was used to turn on an LED every second 
for 30 s, and a video was recorded to count how many frames 
passed between two subsequent flashes. This gave an aver-
age framerate of 239.90 fps, negligibly different than the 
nominal framerate (0.002 ms difference in frame length).

Software

VR program

A custom program was written to perform the VR elements 
of the experiment. To ensure that the latency measurements 
would be representative of typical VR experiments, the 
Unity (version 2019.4 LTS) game engine (Unity Technolo-
gies, 2021) and SteamVR plugin (version 1.14.16, Unity 
plugin version 2.6.1) (Valve Corporation, 2021) were used 
to develop the program. The SteamVR plugin ensures that 
VR input to the program is agnostic of the specific HMD 
used. Default SteamVR settings were used for each HMD. 
The Unity Experiment Framework (Brookes et al., 2019) 
was used to ease program development and output a file 
for every trial containing the screen color and virtual con-
troller position at every HMD frame. Prior to testing each 
setup (including different frame rates for the Valve Index), 
the built-in software was used to calibrate the tracking and 
set the origin and forward-facing direction (Oculus SDK 
for Oculus Rift and Oculus Rift S, SteamVR for HTC Vive 
and Valve Index).

In the program, the 3D position of the VR controller 
was monitored just before the frame is rendered, where 
SteamVR updates the controller position. The color of the 

Fig. 1  a Latency represented as a temporal difference between a real 
movement and its virtual visualization. The effect of latency is shown 
in a reaching task, where the virtual movement lags behind the real 
one. b The pipeline of operations a position sample goes through 
to be presented to the user. Each step along the pipeline has its own 
latency, and the sum of these operations gives the motion-to-photon 
latency of the system. Motion prediction can be used to predict where 
the controller will be when the frame is presented to the user, func-
tionally reducing latency. c Once a movement can be predicted reli-
ably, the virtual movement can match the real one. The effect of this 
is shown in a reaching task, where the initial portion of the movement 
is still delayed but once motion can be predicted, the virtual move-
ment matches the real one. The end of the movement may be simi-
larly affected, with the virtual motion overshooting motion offset due 
to the deceleration.

◂
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HMD screens was controlled by covering each screen’s 
rendering camera with textures representing the different 
available screen colors (black, cyan, red, magenta) and using 
culling masks to only display the required color on a given 
frame. The screen color update was triggered by SteamVR 
updating the controller position. A file was output every 
trial giving the position of the controller and the color of 

the HMD screens at every HMD frame. As Unity recom-
mends no additional computation be done in the loop once 
the controller position is updated, these data were gathered 
in the late update loop. This loop runs before the controller 
and screen are updated, meaning the reported position and 
screen colors lag the time stamp by one frame, which was 
corrected for in the analysis.



Behavior Research Methods 

1 3

Video processing

A semi-automated video processing procedure was per-
formed using Python (version 3.7.0) and the OpenCV (ver-
sion 4.2.0) image processing library (Bradski, 2000). For a 
folder of videos, this procedure searched for the position of 
the LED and color of the HMD screen within user-identified 
regions of interest (ROI) around the controller assembly 
LED and within the HMD screens. This allowed the real 
and virtual movements to be co-registered for each video 
frame. The high-level description of this data processing 
pipeline is shown in Fig. 3a.

During the processing of each folder of videos, user input 
was required to identify the extreme positions of the control-
ler assembly LED and a point in each HMD screen. A win-
dow with a slider to control the frame number was presented, 
and left mouse clicks were required at roughly the center of 
the LED in the two extreme positions. A left mouse click 
was required at a point in each HMD screen, at a point low 
enough in the screen that the ROI would include the bottom 
edge (an ROI was used to reduce video processing time and 
restrict analysis to only regions where the screen should be, 
and a point on the lower edge was required as the camera’s 
rolling shutter meant pixels at the bottom would be the first 
to illuminate). A second window with a slider to control 
the threshold (on a scale of 0–255) used when converting 
frames to black-and-white was then presented. A threshold 
value of 150 was used throughout as pilot analysis indicated 
this adequately captured the LED outline. This process was 
performed only on the first video in the supplied folder of 

videos. The user-supplied positions were used to define an 
ROI around the possible VR controller assembly LED posi-
tions by taking the line between the left and right align-
ment positions and padding in all directions by 20 pixels to 
account for the height and width of the LED, giving a rec-
tangle where the LED should always be found. An ROI was 
then defined for each HMD screen by padding the selected 
points by 20 in all directions. The same ROIs were used for 
every video inside the folder. The process of identifying the 
ROIs is shown in Fig. 3b.

The rest of the process was then automated for every 
video inside the folder, performing the same steps on each 
frame of each video. To find the position of the VR con-
troller assembly LED on each frame, the image was turned 
to black and white using the user-supplied threshold, and 
the LED ROI was then used to turn any pixels outside of 
it black, so only white pixels related to the LED should 
remain. Any contours of white pixels were then identified, 
and if multiple existed the largest was taken to be the LED. 
The position of the center of the contour (rounded to the 
nearest pixel in both dimensions) was then identified and 
stored. The steps to find the LED are shown in Fig. 3c.

To find the color of each HMD screen, the pixels inside 
each screen ROI were first converted to hue saturation value 
(HSV) coordinates, and three separate image masks (one for 
each color) were created to indicate whether the pixels in the 
ROI matched the following criteria:

As black screens had very low saturation and values 
(typically zero for each), the checks on these properties 
ensured only colored pixels were matched. Because only 
three colors were used, they were each given a wide hue 
range to ensure there was little chance of colored screens 
not being detected. If no pixels were matched in any of the 
three color masks, then the screen was classified as being 
black. If at least one mask was matched, then a check was 
performed on the mask with the most matched pixels to see 
if more than 10% of the ROI had matched pixels. If this was 
true, the screen color was classified as the mask’s color. If 
not, then the screen’s color was marked as ambiguous, and it 
was checked whether the matched pixels were concentrated 
in the top or bottom of the ROI. The ambiguous classifica-
tion was needed because the camera and HMD refresh were 
not synchronized, so some frames captured the HMD screen 
just turning on (where, due to the camera’s rolling shutter, 
the matches were concentrated in the bottom of the ROI) or 
off (where the matches were concentrated in the top of the 
ROI), leading to a low amount of the ROI pixels matching. 
Pilot testing showed that colors were harder to distinguish 
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Fig. 2  a Equipment: The experimental setup used to measure the 
input latency of VR controllers. A desktop PC ran a custom program 
that monitored the controller position and controlled the VR HMDs 
screen color. The VR controller had an LED attached that was always 
on. A smartphone recorded the VR HMD and controller setups so that 
the LED and HMD were visible. b Movement pattern: The controller 
assembly was moved to the extreme positions of linear rails and a but-
ton pressed to align the extreme positions, turning the screen cyan for 
one frame at the start and end of each alignment. Forty sudden move-
ments were then applied to the controller assembly, translating it from 
one side of the linear rails to the other, with periods between move-
ments to allow the equipment to settle. The screen color after alignment 
was alternated between cyan and red every frame, apart from every 
tenth frame where the screen turned magenta. c Data processing pipe-
line: The Unity script controlled the HMD screen color through the 
task and recorded the VR controller position and screen color at every 
HMD frame, and output this to a CSV file. While the task was being 
performed, a video was recorded of the HMD screen colors and real 
controller position. Video processing was performed on the videos to 
convert them to a CSV file containing the HMD screen color and real 
controller position at each camera frame. An analysis script used both 
output files and matched camera and HMD frames where the screen 
color was shared, allowing the real and virtual controller positions to 
be linked. The analysis script then used these matched real and virtual 
controller positions to measure the motion-to-photon latency at differ-
ent parts of the movement

◂
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when the screen was turning on or off. However, for such 
frames where a low amount of the ROI was filled due to the 
screen turning on or off, the camera’s rolling shutter guar-
anteed that the following or preceding frame respectively 
featured enough colored pixels in the ROI to be accurate. 
Therefore, marking the frame color as ambiguous and indi-
cating where pixels were concentrated allowed the screen 
color to be corrected during post hoc analysis. The steps to 
find the screen colors are shown in Fig. 3d, and the handling 
of ambiguous frames is demonstrated in supplementary 
material (Figure S1).

These steps were then repeated for every frame. A 
comma-separated variable (CSV) results file was exported 
for each video with a row for each frame containing the 
frame number, the 2D coordinates of the VR controller 
assembly LED in pixels, and the color of each HMD screen. 
A video was also exported that added this information to the 
original video so the results could be validated by adding a 
line representing the outline of the LED, a point representing 
the LED’s center, and text above each screen indicating the 
detected screen colors.

To test the performance of the video processing proce-
dure at reporting the correct color, a script was created that 
used the first video output by the video processing script of 
each setup (with the identified screen colors added to each 
frame) and selected 500 random frames from each video to 
display to the validator. For each randomly selected frame, 
the validator was presented with the previous, current, 
and next frame displayed side by side, and had to indicate 
whether the screen colors of the current frame were either 
stated correctly (text agreed with screen color), or where 
the screen color was ambiguous due to partial illumination 
whether it could be identified by looking at the previous or 
next frame if the partial illumination was at the top or bottom 

of the ROI, respectively. If the information was correct, the 
validator pressed the ‘Y’ key, and otherwise pressed the ‘N’ 
key. This process was repeated until the randomly selected 
frames for each setup had been classified. This showed that 
all screen colors presented to the validator were either cor-
rect or could be identified during analysis.

Analysis

The analysis script was written using R (version 3.5.3; R 
Core Team, 2021). The analysis script read in the CSV files 
created during the video processing, giving the real control-
ler position and HMD screen color for each camera frame, 
and the VR program, giving the virtual controller position 
and HMD screen color for each HMD frame.

The first process performed was to co-register the real and 
VR movements by aligning the camera and HMD frames 
featuring the same screen color. A reduced data set for the 
real controller movements was first created so that the virtual 
controller positions could be paired, which was then inte-
grated back into the full data set. In total, 2,107,500 camera 
frames (observations) were processed during the analysis. 
For each real result file, any missing positional data for the 
LED was spline interpolated (one observation Valve Index 
at 120Hz, 182 observation Oculus Rift S). The HMD screen 
color was corrected for any observations where the color 
was marked as ambiguous, by either using the screen color 
from the previous or next observation where the ambiguous 
color was at the top or bottom of the ROI, respectively. The 
data set at this point was the ‘full’ data set of real controller 
movements. As all the HMDs used low pixel persistence 
the camera captured black frames between the HMD screen 
being illuminated, so these were filtered out. A single screen 
color was created for each observation by checking whether 
either screen reported a non-black color. There were no cases 
where the HMD screen colors did not match each other. 
Because the HMD could be illuminated for multiple camera 
frames, only the first observation was kept where the same 
color was reported for more than one frame consecutively, as 
we are only interested in the earliest time a particular frame 
color was reported. For both files, this left only observations 
where either the alignment procedure or main task was per-
formed. The real and virtual alignment positions, to be used 
later in the analysis, were found by calculating the mean 
controller position during the two alignment procedures and 
these observations were then excluded to leave only observa-
tions from the main task. This gave the reduced data set used 
to co-register real and virtual movements.

With the pre-processing performed, the screen colors from 
the video processing and VR program then needed to be 
matched. Counters were initialized at the first observation for 
the real and VR movements and were iterated together until 
either the end of the real movement data was reached or there 

Fig. 3  a Video processing pipeline: For each VR system setup, the 
first video is used to identify the regions of interest (ROIs) in the 
video frames. After this, each frame of each video for that setup is 
probed to find the LED and screen colors. The results for each video 
are output to file. b Set ROIs: On the first video for each setup, 
four positions are manually identified by the user: (1) controller left 
extreme position, (2) controller right extreme position, (3) left screen, 
and (4) right screen. c Identify LED: On each frame, the LED is 
found by converting the image to black-and-white via a threshold, 
restricting the video to only pixels bounded by the rectangle covering 
ROIs 1 and 2, finding the largest contour in the frame and then iden-
tifying the center of the contour, which is recorded as the controller’s 
real position. d Identify colors: On each frame, the screen color is 
found by restricting the video frame to only pixels inside either ROI 3 
or 4 (to find left or right screen color, respectively) and creating three 
separate masks indicating whether the pixels are either cyan, red, or 
magenta. Checks are then performed on the masks. If no masks have 
any matches the screen color is recorded as black. If a mask does 
have a match and more than 10% of the ROI is filled then the screen 
color is recorded as the mask with the most matches, and if not is 
recorded as being ambiguous, and can be corrected for in post hoc 
analysis. This is performed for both the left and right screens

◂
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was a discrepancy between the real and VR screen colors. Dis-
crepancies between the real and VR screen colors were rare 
(two corrections Valve Index at 80 Hz, four correction Valve 
Index at 120 Hz, four corrections Valve Index at 144Hz, 12 cor-
rections Oculus Rift, two corrections Oculus Rift S). Though 
impossible to confirm, these discrepancies resembled the cam-
era either dropping or repeating a frame. Whenever a discrep-
ancy was encountered, a process was performed to realign the 
real and virtual datasets at the next matching purple frame. If 
the real dataset reached a purple frame sooner than expected 
(likely camera dropped a frame), then the virtual counter was 
moved to the next purple frame, and the counters were iterated 
again. Otherwise, this was done by moving both counters back 
to the previous congruent purple frame, and then finding the 
difference in time between this frame and the next 50 purple 
frames for both data sets. A search was then performed to find 
the pair of real and virtual purple frames that had the closest 
time difference from the previous congruent purple frame. The 
counters were then set at these frames and iterated again.

In total, these discrepancies lost four sudden latency 
measurements (two for the Valve Index at 80 Hz, one for 
the Valve Index at 144 Hz, and one for the Oculus Rift) and 
five continuous latency measurements (two for the Valve 
Index at 80 Hz, one for the Valve Index at 144 Hz, and two 
for the Oculus Rift). Further, one video of the Valve Index at 
120 Hz only featured 30 movements, reducing the number of 
sudden and continuous measurements for this video by ten. 
This process gave a link between the real and virtual frame 
numbers, which were then used to incorporate the virtual 
controller positions into the ‘full’ data set containing the 
real controller positions. This led to a data set that had real 
controller positions at every sample but only VR controller 
positions on the first frame of every screen color alternation.

Latency for sudden movements

To find the latency of the sudden movements, each move-
ment onset needed to be identified. While it is typical to use 
methods like determining when a movement passes a thresh-
old speed or percentage of peak speed to find reaction times 
(Brenner & Smeets, 2019), to ensure accurate measures of 
latency we need to know the first frame that movement started 
which requires a more precise method. A simple movement 
onset technique could be used to find the real motion onsets, 
as the resolution of the videos was relatively low (~2.12px/
mm), the real controller positions were affected little by noise 
and showed monotonic changes in position during move-
ments. To determine movement onset, the mid-point of each 
end-to-end movement was found and at each of these frames 
the direction of movement (1 for increasing position, – 1 for 
decreasing position) was defined. A backward search was 
then initiated at each mid-point, terminating when either the 
position difference to the previous frame was in the opposite 

direction to that expected (i.e., [pf − pf − 1] × direction < 0), or 
in the case where the position difference was zero, where the 
position difference to the frame before that was zero or in the 
opposite direction (i.e., [pf − pf − 2] × direction ≤ 0). This was 
then the first frame where motion thereafter was consistently 
in the same direction, while not misclassifying the controller 
as being stationary during pairs of frames where the controller 
position did not change (e.g., due to slow movements). As the 
initial motion was always sudden, any pairs of frames with 
zero position difference should be further into the movement 
and should not affect motion onset detection.

To ensure the method captured real motion onset well, a 
sample of 40 randomly selected movement starts was manu-
ally classified for each setup. An application programmed in 
R presented the validator with a graph of the cursor posi-
tion over time, restricted to the specific motion start, and 
the validator selected the data point where motion onset 
occurred. This was performed for each randomly selected 
movement for each setup, and the validator-selected points 
were compared to those automatically detected. The only 
discrepancies were for the Valve Index at 120 Hz, where one 
motion onset was automatically identified three frames later 
than the manual classification, and the HTC Vive, where one 
motion was detected six frames later than manual classifica-
tion. Assuming this rate of discrepancy was representative of 
the whole sample for that setup, it would have affected mean 
measured latency by about 0.3 and 0.6 ms, respectively.

As the spatial resolution of the VR movements was higher 
than the video, noise meant that a stationary controller led 
to non-stationary position samples, so the same technique 
could not be used here. Instead, motion onset for the VR 
movement was classified using an outlier detection tech-
nique that compared each new position sample to the median 
absolute deviation (MAD) of a window of previous samples 
(Leys et al., 2013):

where x is the new position sample, M is the median func-
tion, w is the window of previous positions, n is the element 
number in window with length N, and c is a threshold. The 
timestamp of the measured real controller onset, identified 
above, was used as a start point, and the frames featuring 
a VR movement were then iterated through forward until 
the inequality was met. This then was the first frame where 
movement deviated meaningfully from the previous sam-
ples, indicating movement had started.

Finding the optimal parameters for the outlier detection 
method involved two steps. The virtual motion start procedure 
was first run using a default pair of parameter values (w = 38, 
c = 12.5) that provided reasonable detection during pilot test-
ing. The same application used to validate real movement 

|x−M(wn)|
1.4826×M(|wn

−M(wn)|)
> c

n = {1, 2,… ,N}
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onset was used to present the validator with 40 of these virtual 
movement onsets for each setup. The validator then manu-
ally identified the motion onset. A grid search was then per-
formed where every combination of parameters in the range 
N = [10, 11, …, 40] and c = [5, 5.1, …, 20] was used to generate 
frames where motion onset would be detected, and these were 
compared to the manually classified onsets. Parameter values 
could be found that gave no misclassifications in the sample 
for the HTC Vive or the Valve Index (at all frame rates). The 
best performing values for the Oculus Rift had three misclas-
sifications, where two observations were detected two frames 
early and one observation was detected two frames late, and 
for the Oculus Rift S had two misclassifications, where two 
observations were detected three frames earlier. Assuming 
this is representative of the whole sample, mean measured 
latency would be 0.2 ms and 0.6ms lower than it should be 
for the headsets, respectively. Virtual motion onset detection 
was then re-run with the identified optimal parameters for 
each setup. This validation procedure adds confidence that the 
motion onset algorithms work well, but as described, a small 
number of the samples were not perfectly detected. This is 
likely to lead to some individual samples providing lower or 
higher values than the true latency, but should have minimal 
impact on the group averages.

The real and VR movement onset frames were then 
matched together. A fuzzy left join was performed between 
the real and VR movement onset for both screens, where 
observations were matched if the absolute frame difference 
was up to 25 frames, and the difference in frames between 
the real and VR movement onset frames gave the latency. 
In the case where multiple matches existed for a detected 
movement onset, only the smallest difference was kept. The 
distribution of these differences was then visualized in his-
togram plots. This process was performed for each result, 
and the results for each trial were then collated and plotted 
together to give the overall latency distribution of the HMD. 
Values outside of 3 standard deviations of the mean value for 
each setup were discarded, removing 19 observations (two 
observations Valve Index at 80 Hz, two observations Valve 
Index at 90 Hz, five observations Valve Index at 120 Hz, 
eight observations Valve Index at 144 Hz, two observations 
HTC Vive). As both the screen illuminating and the real 
controller starting to move have uncertainty arising from 
the sample-and-hold nature of video frames (e.g., the real 
controller could have actually started moving at any point in 
the time between the current and previous frame), this will 
on average cancel out but give a ± 4.2 ms uncertainty around 
any single value (Feldstein & Ellis, 2020).

Latency for continuous movements

To find the latency of continuous movements, the frames 
where the controller crossed threshold positions needed to 

be identified. The threshold positions were defined in rela-
tion to the alignment positions, so the real and VR positions 
were normalized by making 0 and 1 represent the two align-
ment positions. The frames where the real and VR position 
crossed the mid-point between the two alignment positions 
were then identified (i.e., the mid-point lay between the 
current and previous position). The process to match real 
and VR mid-point crossing was the same as for the sudden 
movements. Values outside of 3 standard deviations of the 
mean value for each setup were discarded, removing two 
observations (one observation Valve Index at 144 Hz, one 
observation HTC Vive).

Latency over the full movement trajectory

To understand how the latency developed after the sud-
den start, the complete real and virtual motions were 
compared. The first comparison was to find the latency 
at which each real controller position could be displayed 
on the screen of the HMD. To do this, all movements 
were aligned at motion onset and the positions were 
normalized about the two threshold positions as in the 
continuous movements, but also modified so all move-
ments acted in a positive direction (i.e., any movements 
where controller position decreased were reversed). At 
each time point from the motion onset, the normalized 
real controller position was compared to the normalized 
virtual controller positions to find the next time the HMD 
screen was on that could have reported this movement. 
This was done by projecting the normalized real con-
troller position forward in time until it intersected a line 
between two normalized virtual controller positions, and 
then finding the next frame that the HMD screen turned 
on. The difference between these two frames was then 
classed as the minimum possible latency of that control-
ler position given the constraints of the HMD frame rate. 
This was repeated for each normalized real controller 
position. This gives a measure of the latency for each real 
position sample, but because only the time that the HMD 
screen turns on has uncertainty due to the sample-and-
hold behavior, the measure will on average over-report 
latency by half a camera frame’s duration (i.e., 2.1 ms). 
To also understand how this latency impacts the presen-
tation of the controller position on screen, the difference 
in normalized position between the real and virtual con-
troller positions was also calculated for each time step. 
This then gave the positional error that was induced by 
the latency of the system. Both measures allow the time 
course of the motion prediction to be assessed, as the 
latency and positional error should drop from movement 
onset, so the time when latency and positional error sta-
bilize should indicate how long the motion prediction 
takes to “warm up”.
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Results

The novel latency measurement technique was used to assess 
the properties of the controller position input of four HMDs 
(Oculus Rift, Oculus Rift S, HTC Vive, Valve Index) in two 
movement conditions – Sudden Movement, where move-
ment onset is detected, and Continuous Movement, where 
the controller was moved smoothly after the sudden motion 
onset, shown in Fig. 4a.

The time between a sudden movement being applied to 
the controller assembly and the movement being reported on 
the screen of the different HMDs is shown in the left panel 
of Fig. 4b. This indicates that the HMD with the lowest 
latency was the Oculus Rift, and the HMD with the high-
est latency was the Valve Index operating at 80 Hz. The 
Valve Index operating at 144 Hz was only marginally better 
than the HTC Vive (90 Hz) and worse than the Oculus Rift 
(90 Hz) and Rift S (80 Hz), despite having a much higher 
refresh rate than these HMDs. The measured latency was 
consistent between recordings for all HMDs, with the high-
est between-video standard deviation being 1.75 ms for the 
Oculus Rift S.

While moving the controller suddenly ensures that 
the measured latency is not affected by motion predic-
tion, movements tend to be executed smoothly, and as 
such, we expected lower latencies later in the movement, 
where accurate motion prediction was possible. The time 
between the movement mid-point being crossed by the 
controller assembly and the crossing being reported on 
the screen of the HMD is shown in the right panel of 
Fig. 4b. It is clear from the comparison between Sud-
den and Continuous Movement conditions that motion 
prediction allows the base latency of the system to be 
ameliorated. Both the Oculus Rift and HTC Vive have 
near-zero latency once motion prediction is functioning, 
while the Valve Index, with the worst continuous latency, 
has mean latencies below 13 ms across all refresh rates. 
Again, the latencies were consistent between videos, with 
the highest between-video standard deviation being 0.75 
ms for the Valve Index at 120 Hz.

A linear model (R2 = 0.89, F(13, 5,535) = 3,424.05, p 
< 0.001) was fit to the sudden and continuous latency data 
with effects of HMD setup and type of latency measure-
ment. The model showed significant main effects of HMD 
setup (F(6, 5,535) = 1,202.99, p < 0.001), indicating the 
measured latency depended on the HMD setup, and meas-
urement type (F(1, 5,535) = 35,813.28, p < 0.001), with 
sudden latencies being significantly higher than continuous 
latencies, as well as a significant interaction between HMD 
setup and latency type (F(1, 5,535) = 246.91, p < 0.001). 
Post hoc comparisons using Bonferroni–Holm correction 
showed that all HMD setups showed significantly different 
latencies for sudden movements (ps < 0.003), and that all 

HMD setups showed significantly different latencies for 
continuous movements (ps < 0.001) except for compari-
sons between the different Valve Index frame rates which 
were all non-significant (ps > 0.073). Further, all HMD 
setups showed a significant decrease in latency between 
sudden and continuous movements (ps < 0.001).

As the sudden and continuous latency measurements 
only capture a snapshot of the latency properties, it is 
unclear how the latency develops over time. To understand 
this, the real and virtual motions were compared to under-
stand how soon after motion onset the latency could be 
reduced by motion prediction. This comparison was per-
formed for all HMD setups but only visualized for the Ocu-
lus Rift and the Valve Index at 90 Hz, as these HMDs had 
the lowest and highest latency for that frame rate, respec-
tively. A comparison of the movements for the two HMDs 
is shown in Fig. 5a. This shows there is an initial delay for 
the virtual controller to move, after which the virtual con-
troller over-compensates to catch up to the real one before 
stabilizing. The systems also show overshooting behavior 
upon a sudden stop, shown in Figure S3 in the supplemen-
tary materials, but the current experiment was not designed 
to assess this in detail. Note that Fig. 5a shows, on average, 
that movements start earlier than the sudden latency meas-
urements would suggest (e.g., the Valve Index position at 
29 ms is non-zero). This is due to finding the mean posi-
tion of a small number of movements that have initiated 
and a larger number that have not, in accordance with the 
histograms reported in Fig. 4b.

The real controller position at each time point was 
compared to the next time point that the HMD could 
reflect this position to give a measure of the latency 
over the entire movement (Fig. 5b). This confirms the 
HMDs have high latency initially before reaching a pla-
teau, which is reduced slowly through the rest of the 
movement. Note, however, that the shape of the latency 
curve will depend on the movement performed. We fit an 
exponential distribution to the latency values during the 
first 100 ms of the movement to determine how quickly 
motion prediction would reach its ‘continuous’ latency. 
Specifically, this was where the difference in fitted val-
ues first fell below a standard deviation of the fitted 
residuals (where noise begins to outweigh signal), which 
indicated the latency stabilized at low levels within the 
first 33 ms (Oculus Rift) to 54 ms (HTC Vive) of the 
movement. We also tested a different method, when the 
latency falls within an arbitrary threshold of 2 ms from 
the asymptotic value, which found similar values (25 ms 
Oculus Rift to 58 ms Valve Index at 80 Hz). The latency 
over the first 100 ms of motion is shown for all sys-
tems in Fig. 6. As detailed in the Methodology section, 
this procedure will over-estimate latency by 2.1 ms on 
average because the real controller position is used as a 
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reference point, meaning the measurement uncertainty 
only affects the virtual controller position.

While the latency can be interpreted literally as a temporal 
offset in positions, i.e., the virtual controller lags behind the 
real one, it may also be thought of as a positional offset, i.e., 
the virtual controller is always offset relative to the real one 
(Adelstein et al., 2003). To understand the implications of 
this, the real normalized controller position was taken from 
the virtual one at each time step, shown in Fig. 5c. The low 

continuous latency of the Oculus Rift results in the average 
positional offset being negligible. While the Valve Index has 
a higher average positional offset, this is only 0.013 normal-
ized units (~ 2.4 mm) when the latency has stabilized. These 
are, however, average values – the motion prediction will not 
work perfectly. Therefore, while the average temporal latency 
and positional offset are near-zero for the Oculus Rift, at any 
given time step these values are likely to be non-zero and 
will fluctuate.

Fig. 4  a The latency at the start (Sudden) and middle (Continuous) of 
the movement was measured. Note that the real controller positions 
were sampled every camera frame, whereas virtual controller posi-
tions could only be sampled every HMD frame. b Histograms of the 
measured latency for the different HMDs in the Sudden Movement 
(left panel) and Continuous Movement (right panel) conditions. The 
mean and standard deviation for each HMD and frame rate combina-

tion is shown beneath the histogram. The histogram bin widths were 
4.17 ms, to match the camera frame rate, centered on a latency of 0 
ms. Some of the variability present in the measurements is due to the 
stochasticity between the event occurring (the movement onset or the 
mid-point crossing), and when the camera captures a new frame or 
the HMD displays a new frame, as illustrated in Figure S2 in supple-
mentary materials
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Discussion

While recent low-cost consumer VR HMDs have been rap-
idly adopted to study sensorimotor behavior, these tools are 
not designed to be scientific instruments, and as such, require 

verification to ensure the measurements they make are fit for 
purpose. Temporal latencies in the visual feedback of move-
ment are known to degrade sensorimotor performance, but 
existing investigations test only HMD movements and use 
inconsistent software and hardware, making comparisons 

Fig. 5  Latency properties of the Oculus Rift and Valve Index at 90 
Hz during a movement. Points show the mean value while the lines 
show individual movements. a Each movement was plotted rela-
tive to motion onset. Inset panels show a closer view of the motion 
onset. b The minimum latency that each real position could be dis-
played on the HMD was found. This was done for each sample after 

motion onset by projecting the real controller position forward in time 
until a greater virtual controller position was found, and then find-
ing the next frame where the HMD was illuminated. c The difference 
between the virtual and real normalized positions was found at each 
time step to show the effect latency has on what is displayed by the 
HMD
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impossible and giving little idea of what latencies a typical 
research pipeline would show. We have developed a technique 
that allows researchers to measure the latencies throughout a 
movement and determine whether their experiment can be con-
ducted in light of any technical limitations that might exist in 
VR hardware. We used this technique to measure the motion-
to-photon latency of current popular HMD controllers (HTC 
Vive, Oculus Rift, Oculus Rift S, Valve Index). We found that 
(i) all of these HMDs show low levels of latency at the start of 

a movement (21–42 ms); (ii) the latency stabilizes near these 
lower values early in the movement (25–58 ms from motion 
onset); and reduces further later in the movement once built-in 
motion prediction algorithms can be employed (2–13 ms).

Unity and SteamVR timings

It is clear from the difference in latency between the sud-
den and continuous sections of the movement that motion 

Fig. 6  The minimum latency at which real controller positions could 
be displayed, as a function of the time from motion onset. The points 
show the average latency, the red curve shows the fit of an expo-

nential function, and the dashed lines show the time at which the 
observed latency fell within 2 ms of the exponential fit’s asymptotic 
latency
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prediction allows the latency to be functionally reduced. 
Using the Unity Profiler tool, which allows the user to see 
what functions were called on a frame and how long they 
took, the timeline of a frame being generated to being dis-
played on the HMD can be understood. A high-level over-
view of this timeline is shown in Fig. 7a. Simulations are first 
run on the CPU, shown in Fig. 7b, which includes running 
physics simulations and any user-defined logic in the Fixed 
Update, Update, and Late Update loops. Unity then waits 
until the end of the frame, just before rendering the frame, 
to allow SteamVR to update the tracking data (position and 
rotation) of any tracked objects. After this is done, the frame 
is offloaded to the GPU to be rendered to images, and then 
presented for display. When the rendered frame is presented, 
it is sent to the HMD and prepared to be shown. As low-
persistence displays are used, the screens are illuminated for 
between 0.5 and 2 ms (depending on system) at the end of the 
refresh cycle. These operations are aligned with the vertical-
synchronization of the HMDs, which maintains regular frame 
rates. The simulation, render, and presentation stages each 
take a frame to complete.

Based on this high-level overview, we should therefore 
expect the motion prediction to be predicting roughly two 
frames ahead, as the tracking data are updated at the end of the 
first frame of a three-frame process (Fig. 7a). This is ratified 
by the SteamVR Unity plugin source code, making explicit 
that the predictions made are two frames ahead (SteamVR_
Action_Pose.cs). That the latency is mostly ameliorated by 
motion prediction for the HTC Vive, Oculus Rift, and Ocu-
lus Rift S suggests that the majority of the latency therefore 
comes during the rendering and presentation stages for these 
systems. Even after motion prediction, the Valve Index how-
ever has a significant amount of latency remaining, which is 
consistent across frame rates. We surmise that the Valve Index 
has additional latency prior to the positions being sampled by 
SteamVR, or after display information is sent to the HMD by 
the graphics card. This is because there were no changes to 
computer or software, no issues in the SteamVR frame tim-
ing overlay, the Unity Profiler showed no difference in frame 
timelines during development across systems, and the Index’s 
remaining latency did not depend on the frame rate.

Because the equipment tracking data are updated in the 
Before Render loop, any physics operations or logic involv-
ing the position or rotation of the controller in the Fixed 
Update or Update loops will be working with the tracking 
data of the previous frame. While logic could be run in the 
Before Render loop, it is not advised by Unity as any addi-
tional work there will increase the visual latency. To dem-
onstrate the effect of this, the Unity program was modified 
to turn the screen on for one frame when motion onset was 
detected (by implementing an online version of the motion 
onset detection used), and the left and right screen colors 

Fig. 7  Unity + SteamVR frame processing operations. a Frame time-
line: For a given frame to be shown to the user, it first must be simu-
lated, rendered, sent to the HMD and then displayed. The tracking data 
(position and rotation) of tracked objects like the HMD and controllers 
are updated at the end of the simulation stage. b Simulation flow: Inside 
the simulation stage, loops are called sequentially. First the Fixed Update 
loop operates, which handles physics operations, followed by the opera-
tion of the Update loop. Typically, logic for experiments (including game 
state changes, feedback, and interactions driven by controller movements) 
will be driven either by the Fixed Update or Update Loops. A Late Update 
loop operates, then there is a wait until the simulations are about to be 
rendered, where the Before Render loop runs, which is where the tracking 
data is updated. c Effect of loop used: The latency measurement tech-
nique was modified to detect virtual motion onset online using the same 
outlier detection algorithm, and the screens flashed to indicate movement 
had started. However, the screens were controlled in different loops, one 
in the Update Loop and one in the Before Render loop. As the tracking 
data are updated in the Before Render loop this reports motion earlier, 
whereas the Update loop captures motion onset one frame later, leading to 
a 1 HMD frame latency. The implication is using the position or rotation 
of the controller or HMD to drive logic will incur a 1 frame latency. The 
data shows one video for the Oculus Rift S
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were updated in the Update and Before Render loops inde-
pendently. Figure 7c shows that when the Update loop uses 
the position to drive logic it comes with an additional head-
set frame of latency. In an experimental context, this means 
that logic-based feedback (such as a target exploding when 
hit, text being displayed, or a sound playing) will be delayed 
by one frame.

In the past, the complexity of the scene being simulated 
and rendered may have also contributed to the observed 
latency. If completion of a step in Fig. 7a immediately ini-
tiated the next step, then the time taken to perform these 
operations would add to the latency. However, this can lead 
to a visual artifact where parts of multiple frames are shown 
simultaneously on the display (Feldstein & Ellis, 2020). 
Modern VR systems, and often computers more generally, 
utilize vertical-synchronization (VSync) to alleviate this 
problem, which presents a single rendered image to the 
display at fixed intervals. These VSync intervals are then 
used to synchronize each element of the pipeline, with the 
simulation and rendering steps each having a set amount 
of time to complete in. For simple scenes, most of the time 
per frame is actually spent waiting for the VSync interval, 
as shown in Figure S4 in the Supplementary Materials. As 
long as the scene is not overly complex, such that the simula-
tion or rendering steps overrun their allowed time, then the 
latency should not depend on the complexity of the scene 
being shown.

Implications for sensorimotor experiments

For any movement with changes in direction, speed, or 
acceleration, the performance of the motion prediction algo-
rithms, and hence the observed latency, will be dictated by 
how quickly changes in movement properties are being per-
formed. If we consider the best method proposed in early 
research for the Oculus Rift (LaValle et al., 2014), the accel-
eration is assumed to be constant over the prediction interval 
(these principles will likely hold even if more sophisticated 
methods are used). Therefore, when the real controller 
motion is accelerating, the reported position will be under-
estimated, and when the real controller motion is decelerat-
ing, the reported position will be overestimated. However, 
the rate at which these changes occur in the experiment will 
dictate how successfully the movement will be represented 
(i.e., motion prediction will be less successful when changes 
occur very quickly). For an example of a typical sensorimo-
tor reaching task, the data from Wei and Körding (2009) 
was collapsed across trials and participants to produce an 
average hand-position over time, aligned at motion onset 
as identified by the Teasdale method (1993). The points at 
which the latency became asymptotically low was marked 
for the best (Oculus Rift) and worst (Valve Index at 80Hz) 
performing systems, which indicated that across all tested 

systems participants would have moved by less than 2 mm 
when latency reached low levels. In typical point-to-point 
movement tasks then, it is likely that the majority of the 
movement would be presented with low latency by a modern 
VR system (Fig. 8).

Manual tracking tasks present useful case studies for 
considering the consequences of predictable and unpre-
dictable movements on behavior in VR. If the pattern 
being tracked is predictable, motion prediction should be 
able to ameliorate the latency through most of the move-
ment. For example, in Smith (1972), participants were 
tasked with tracking a cursor moving along either a cir-
cular (20-cm diameter) or octagonal (19-cm square with 
short flattened corners) pattern at low speeds (120° per 
second), which should allow cursor motion to be predicted 
reasonably well. The study found that introduced delays 
degraded participant’s ability to stay on the target in a 
log-linear fashion, with even a 17-ms delay degrading 
performance slightly relative to no delay. Therefore, it is 
likely that a small degradation in performance will be pre-
sent when using off-the-shelf VR to study manual tracking 
relative to equipment with no delays (though this may be 
negligibly small). However, other manual tracking tasks 
employ unpredictable signals, such as the complex sig-
nals generated through combining different sine wave fre-
quencies (e.g., Foulkes & Miall, 2000), requiring repeated 

Fig. 8  Data from Wei and Körding (2009), with lines indicating when 
the Oculus Rift (90 Hz) and Valve Index (80 Hz) would reach low 
levels of latency. The points and line show the average hand position 
in the x-direction across participants and trials, resampled to a fixed 
frame rate and aligned at motion onset, as identified according to 
Teasdale et al. (1993)
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changes of direction. If these changes in direction are per-
formed quickly, the motion-prediction algorithms would 
likely recognize the change in direction late and overshoot 
the stationary position slightly, effectively adding noise 
and increasing latency during the direction change. The 
extent of this overshooting behavior will depend on the 
speed of direction changes, and future work should sys-
tematically assess the performance of systems across a 
range of movement frequencies. As this latency will be 
intermittent, and the range of additional latencies tested 
on these tasks is larger than the base latency for these 
systems (Foulkes & Miall, 2000; Miall & Jackson, 2006), 
it is unclear what effect this sort of overshooting behavior 
might have on tracking behavior. It is therefore important 
that researchers establish (and report) the nature of the 
impact of these delays on their experimental task.

Performance on another widely used paradigm in senso-
rimotor research, visuomotor adaptation, is also known to be 
degraded when delays are introduced. Kitazawa et al. (1995) 
had participants reach from a button to a target on a screen 
in front of them, with vision during the motion precluded 
and only displayed when the target was reached (terminal 
feedback). Prism goggles were used to displace vision to 
either the left or right, inducing motor adaptation to the dis-
placement. Both the rate at which participants corrected the 
displacement while wearing goggles, and the initial error 
once the goggles were removed (indicating the amount of 
adaptation that occurred) were significantly degraded when 
the terminal feedback was delayed by 50 ms or more, but 
not significantly when the feedback was delayed by 10 or 20 
ms. However, it should be noted that these experiments were 
designed to assess the effect of delays over a large range 
(up to 10,000 ms) rather than focusing on the small delays 
we saw in our study and were therefore likely underpow-
ered to detect differences at 10 and 20 ms if they did exist. 
Given that point-to-point reaches tend to be fairly smooth, 
where motion prediction should perform well, it is likely that 
both online and terminal feedback in visuomotor adaptation 
studies would be delivered with little latency. This implies 
that there should be little degradation of motor adaptation 
because of the delays of the VR equipment, though it is 
possible a more highly powered study would find learning 
degradation at small delays.

Understanding the effects of small delays on adaptation 
would require further study. While other studies have inves-
tigated the effect of delays on adaptation, they often impose 
delays that are much larger than the base latencies of the VR 
systems considered (Brudner et al., 2016; Held et al., 1966; 
Schween & Hegele, 2017; Tanaka et al., 2011). Moreover, 
some setups have substantial base delays of ~ 60 ms (Honda 
et al., 2012), while others have utilized motion prediction 
algorithms (similar to those used in the VR systems stud-
ied here) to overcome their base latencies (Brudner et al., 

2016; McKenna et al., 2017). This indicates that it is critical 
to know the latency inherent to the system being used, as 
the amount of adaptation observed will differ depending on 
whether a low or high latency setup was used.

Comparison with other methods

The technique developed for this study was designed to 
overcome shortcomings of extant latency measurement 
methods. Many of the previously employed methods only 
give an idea of the latency at set points in a movement 
trajectory, usually either the start (Bryson & Fisher, 1990; 
Feldstein & Ellis, 2020; Raaen & Kjellmo, 2015; Seo et al., 
2017; Yang et al., 2017), middle (Liang et al., 1991; Mine, 
1993) or at some threshold point (Friston & Steed, 2014; 
He et al., 2000; Papadakis et al., 2011). We demonstrated 
that measures at a single point in the movement were not 
sufficient to capture the latency properties of current off 
the shelf VR systems because of motion prediction. Fur-
ther, previous work that does compare the full real and 
virtual movement trajectory employ techniques such as 
cross-correlation to produce a single measure of latency 
(Adelstein et al., 1996; Becher et al., 2018; Di Luca, 2010; 
Gilson & Glennerster, 2012; Scarfe & Glennerster, 2019; 
Steed, 2008; Zhao et al., 2017). Again, this will not cap-
ture the latency properties of a system that uses motion 
prediction well, as these measures will likely be weighted 
heavily towards the ‘continuous’ latency. Instead, we have 
developed a technique that can provide a measure of the 
latency through the whole movement to demonstrate the 
effect of motion prediction.

Furthermore, we wanted our technique to be user-friendly 
and accessible to any researcher wanting to measure their 
own system. Many previously developed techniques that 
assess full motion profiles use electrical hardware that 
are not easily deployed in many sensorimotor laboratories 
– such as rotary encoders, motors, photodiodes, amplifiers 
and oscilloscopes (Adelstein et al., 1996; Becher et al., 2018; 
Di Luca, 2010; Zhao et al., 2017). The advantage of our 
technique is that all of the mechanical hardware required 
can be bought or fabricated relatively cheaply, and the only 
additional electrical hardware used is a smart phone capa-
ble of recording at 240 fps or above. While existing tech-
niques use a high-speed camera to measure latency (Gilson 
& Glennerster, 2012; Steed, 2008), it requires the virtual 
representation be visible to the camera. This would be diffi-
cult for HMDs, as any representation will likely be too small 
to be measured accurately, with additional warping due to 
the lenses. Our method does not attempt to represent the 
virtual motion parametrically, but rather uses the color of the 
HMD’s screen to co-register the real movements, captured 
by the camera, and the virtual movement, written to file with 
the corresponding screen color.
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The presented technique could be expanded upon by 
assessing the response of the systems to movements at dif-
ferent frequencies. While the current technique allows the 
effect of motion prediction to be characterized during simple 
movements, it is unclear how fast participants would have to 
move for the motion prediction to perform badly, for exam-
ple when making changes of direction in a manual track-
ing task. This could be assessed by linearly actuating the 
controller at known frequencies, and assessing the gain and 
latency response of the system (e.g., Adelstein et al., 1996). 
Knowing the system’s response across a frequency range, 
and comparing that to the frequencies with which people 
can move their arms, would fully provide further insight into 
the types of movements that can be reliably measured using 
current VR systems.

In addition, the precision of our latency estimates could 
be further improved. The camera we used has a high frame 
rate for a commercial smartphone, but one could employ a 
dedicated high-speed camera that records at 1000 FPS or 
greater, which would reduce the uncertainty around obser-
vations. Higher precision estimates of latencies may also be 
possible by filtering the data (with a suitably high cut-off fre-
quency, see Schreven et al. (2015)) and using an interpola-
tion algorithm (Brenner & Smeets, 2019), but care needs to 
be taken as poorly tuned parameters for either process may 
detrimentally adjust the data, potentially missing impor-
tant features like the jump in the virtual controller position 
shown in Fig. 5a around motion onset.

Conclusions

We have created a novel technique to measure the 
motion-to-photon latency of controller movements. We 
tested the technique using four popular VR HMDs – the 
HTC Vive, Oculus Rift, Oculus Rift S, and Valve Index. 
Measurements of latency were made at the start of the 
movement, where all latencies were between 21 and 42 
ms on average, and at the middle of the movement, where 
all latencies were 2–13 ms on average. Measurements 
of latency through the whole movement showed the 
motion-prediction algorithms reduce this latency within 
the first 25–58 ms of the movement. There are likely to 
be a number of experimental tasks and research ques-
tions where these latencies (and the variability thereof) 
are not problematic. Conversely, there will be tasks that 
are adversely affected by these temporal delays and the 
fact that the latencies vary throughout the movement. It 
is therefore incumbent on researchers to determine the 
latencies associated with the equipment they are using, 
report these latencies, and ensure that conclusions drawn 
from their experimental results are not undermined by 
this potentially confounding variable. The technique we 

report within this manuscript (and the associated soft-
ware that we have made freely available) will enable 
researchers to make these measurements. In turn, this 
should enable the potential of VR systems in research 
to be realized.
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