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Machine learning predicts mortality based 
on analysis of ventilation parameters of critically 
ill patients: multi-centre validation
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Alfonso Muriel3,5, Bin Du6, Arnaud W. Thille7, Fernando Ríos8, Marco González9, Lorenzo del-Sorbo10, 
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Salvatore M. Maggiore15, Andrew Bersten16, Malte Kelm17, Raphael Romano Bruno17, Pravin Amin18, 

Nahit Cakar19, Gee Young Suh20, Fekri Abroug21, Manuel Jibaja22, Dimitros Matamis23, Amine Ali Zeggwagh24, 

Yuda Sutherasan25, Antonio Anzueto26, Bernhard Wernly3, Andrés Esteban2, Christian Jung17*  and 

Venet Osmani1 

Abstract 

Background: Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill 

patients. It influences acid–base balance and can also cause prognostically relevant biotrauma by generating forces 

and liberating reactive oxygen species, negatively affecting outcomes. In this work we evaluate the use of a Recurrent 

Neural Network (RNN) modelling to predict outcomes of mechanically ventilated patients, using standard mechanical 

ventilation parameters.

Methods: We performed our analysis on VENTILA dataset, an observational, prospective, international, multi-centre 

study, performed to investigate the effect of baseline characteristics and management changes over time on the all-

cause mortality rate in mechanically ventilated patients in ICU. Our cohort includes 12,596 adult patients older than 

18, associated with 12,755 distinct admissions in ICUs across 37 countries and receiving invasive and non-invasive 

mechanical ventilation. We carry out four different analysis. Initially we select typical mechanical ventilation param-

eters and evaluate the machine learning model on both, the overall cohort and a subgroup of patients admitted with 

respiratory disorders. Furthermore, we carry out sensitivity analysis to evaluate whether inclusion of variables related 

to the function of other organs, improve the predictive performance of the model for both the overall cohort as well 

as the subgroup of patients with respiratory disorders.

Results: Predictive performance of RNN-based model was higher with Area Under the Receiver Operating Charac-

teristic (ROC) Curve (AUC) of 0.72 (± 0.01) and Average Precision (AP) of 0.57 (± 0.01) in comparison to RF and LR for 

the overall patient dataset. Higher predictive performance was recorded in the subgroup of patients admitted with 

respiratory disorders with AUC of 0.75 (± 0.02) and AP of 0.65 (± 0.03). Inclusion of function of other organs further 
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Background

In the field of medicine, the use of computer-based 

algorithms for aiding diagnostic as well as therapeu-

tic decisions has become a highly popular matter of 

often controversial discussions, whereas the question 

whether Artificial Intelligence (AI) might replace physi-

cians someday arises time and again [1]. Even though it 

seems unlikely that AI will ever fully replace professional 

health care workers, it is advantageous to use computing 

power to analyse "big data" for the benefit of the patients. 

To solve complex mathematical problems, Deep Learn-

ing (DL) methods based on recurrent neural networks 

are used nowadays, especially in problems with tem-

poral dependencies. In RNN weighted input values get 

summated and repeatedly updated to generate an out-

put which best reflects the outcome of interest [2]. Fur-

thermore, a memory function is generated by recurrent 

feedback mechanisms. The Long Short-Term Memory 

model (LSTM) by Hochreiter and Schmidhuber solves 

complex tasks by a constant error flow (“constant error 

carousels”) within memory cells with an opening and 

closing gate function, thereby enabling a quasi-sustained 

short-term memory [3]. Since their introduction, RNNs 

and especially LSTMs have been used for various tasks 

like handwriting recognition or speech recognition and 

in diverse healthcare applications [4]. Machine Learning 

(ML) already influences daily life more than we might be 

aware and it is indispensable for the technology industry.

In critical care medicine, the concept of ML for analys-

ing complex and often highly heterogeneous patient col-

lectives seems reasonable under various circumstances 

[5]. Different studies have evaluated the use of ML for 

the treatment of sepsis, assessing patient prognosis and/

or risk for prolonged clinical courses and several other 

applications [6]. Regarding assessment of patients on 

mechanical ventilation and/ or prognostication of ICU-

patients by AI, various studies were conducted that dem-

onstrated that ML can be used as a prognostication tool 

for ICU-mortality [7, 8]. Parreco et al. were able to reli-

ably identify patients at risk for tracheostomy and pro-

longed MV in their study on 20,262 ICU stays out of the 

MIMIC-III database [9]. Chen et  al. were able to detect 

ventilator-associated pneumonia in patients on MV by 

using ML for the analysis of sensor arrays on exhaled 

breath samples [10]. Different other studies with prom-

ising results have been conducted in this field, which 

makes a future use of ML in clinical daily routine on the 

ICU likely.

Objectives

We aim to investigate performance of these methods in 

a multi-centre cohort of patients in mechanical ventila-

tion. In this investigation we rely on the VENTILA study 

group, a prospective, observational, international multi-

centre cohort study that enrols patients on mechanical 

ventilation during a 28-day follow-up period. It com-

prises a large patient collective, generating a large amount 

of data and consequently rendering it suitable for the use 

of machine-learning methods. Mechanical ventilation is a 

complex and central treatment process in the care of crit-

ically ill patients. Not only represents a key element for 

treating respiratory insufficiency, but also significantly 

influences acid–base balance and can also cause prog-

nostically relevant biotrauma by generating forces and 

liberating reactive oxygen species [11, 12]. It therefore 

represents a general outcome-relevant process for ICU 

patients. We aimed to evaluate the use of a LSTM-based 

model on a subgroup of mechanically ventilated critically 

ill patients out of the VENTILA study group to predict 

the outcome by using six standard mechanical ventilation 

parameters in our model. We follow STROBE guidelines 

[13] for reporting observational studies and provide the 

checklist of prediction model development and valida-

tion as a supplementary material.

Methods

Setting and data sources

VENTILA cohort dataset is a combination of four obser-

vational, prospective, international multi-center studies 

[14–16], performed to investigate the effect of baseline 

characteristics and management changes over time on 

the all-cause mortality rate in mechanically ventilated 

patients in ICU. VENTILA cohort includes adult patients 

older than 18, admitted to ICU receiving invasive 

improved the performance to AUC of 0.79 (± 0.01) and AP 0.68 (± 0.02) for the overall patient dataset and AUC of 0.79 

(± 0.01) and AP 0.72 (± 0.02) for the subgroup with respiratory disorders.

Conclusion: The RNN-based model demonstrated better performance than RF and LR in patients in mechanical 

ventilation and its subgroup admitted with respiratory disorders. Clinical studies are needed to evaluate whether it 

impacts decision-making and patient outcomes.

Trial registration: NCT02731898 (https:// clini caltr ials. gov/ ct2/ show/ NCT02 731898), prospectively registered on April 8, 

2016.

Keywords: Critical care medicine, Machine learning, ICU, Risk stratification, Mechanical ventilation

https://clinicaltrials.gov/ct2/show/NCT02731898
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(endotracheal tube or tracheostomy) and non-invasive 

(bilevel positive airway pressure (BIPAP) or continu-

ous positive airway pressure (CPAP) with nasal or facial 

mask) mechanical ventilation for at least 12 and 1  h, 

respectively. Data recorded for all the patients included 

basic demographics, cause of requiring mechanical venti-

lation, the occurrence of complications, ICU and hospital 

discharge outcome and length of stay. Furthermore, daily 

collected data, resulting in a single average value, are 

recorded for variables such as arterial gases, mechanical 

ventilation parameters and variables related to the func-

tion of other organs. All the patients in this cohort study 

were followed for mortality and length-of-stay outcomes 

during the period of receiving mechanical ventilation, 

ICU stay, up to 28 days over one month period in 1998, 

2004, 2010, and 2016. Only the investigative group mem-

bers and research coordinators at each site were aware of 

the purpose and the precise timing of the study.

We evaluate our method on a sub-sample of VEN-

TILA dataset containing data associated with 12,755 dis-

tinct hospital admissions for 12,596 adult patients (aged 

18  years or above) admitted during one-month sample 

periods (in 2004, 2010 and 2016) from participating ICUs 

across 37 countries.

Study subjects

We retrospectively evaluated the model on the overall 

VENTILA dataset (n = 12,755) as well as a sub-group of 

VENTILA patients that were admitted with respiratory 

disorders, specifically COPD, Asthma, interstitial lung 

disorders, ARDS or Pneumonia (n = 2674). Mortality 

rate in this subgroup was 36% (n = 960), while the overall 

morality was 31% (n = 3935).

Statistical analysis and variable selection

We use mean and standard deviation to express continu-

ous variables, while categorical variables are expressed as 

a percentage. No strong linear correlations were found 

between input variables and the target outcome, as 

shown in Fig. 1.

We carry out four different analysis. Initially we 

selected six mechanical ventilation parameters as input 

to our model, namely PaO2_FiO2, peak Pressure, plateau 

Pressure, applied PEEP, driving pressure and tidal Vol-

ume/PBW, as well as age and BMI. We derive the model 

based on these variables for both: (1) patients in the over-

all dataset and (2) a subgroup of patients admitted with 

respiratory disorders.

Furthermore, we carry out a sensitivity analyses to 

evaluate whether inclusion of variables related to the 

function of other organs, such as such as kidneys (creati-

nine) and liver (bilirubin) improves the predictive perfor-

mance of the model. This analysis is carried out for both: 

the overall dataset as well as on the subgroup of patients 

with respiratory disorders.

Dataset pre‑processing and missing values handling

Datasets were prepared for the analysis in several steps. 

Initially, outliers and noisy measurements were removed 

from the data by defining clinically valid intervals for each 

variable and considering out of interval values as missing 

values. Secondly, the Fill-Forward imputation methods 

were applied on each ICU-stay by forward propagating 

available values to use the nearest valid measurements. 

Since one of the most common reasons for missingness in 

ICU data is different frequency of measurements, using 

the nearest measured value becomes a suitable imputa-

tion strategy. Furthermore, imputation of variables com-

pletely missing during each ICU-stay was done using 

median of the variables in the training set. Finally, the 

data was normalized and scaled to have zero mean and 

unit variance such that variables with different scales can 

contribute equally to the analysis. The variable with the 

least missing values was ph (5.71%), while the highest was 

driving pressure (51.54%). The rest of the variables were 

as follows, PaCO2 (6.03%), appliedPEEP (7.97%), Creati-

nine (8.15%), PaO2_FiO2 (10.6%), tidalVolume (12.35%), 

tidalvolume/PBW (12.35%), peakPressure (17.4%), Biliru-

bin (25.94%), plateauPressure (51.33%).

Predictive performance metrics

We assess the performance of our models using a range 

of performance metrics, including area under the ROC 

curve (AUC), area under the precision-recall curve 

(AUPRC) (also known as average precision) as well as 

Fig. 1 Linear correlation of variables and the outcome (indicated by 

Discharge ICU). Note the correlation scale is in the interval − 0.2 to 

0.2
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positive predictive value (PPV), negative predictive value 

(NPV). We use Mathews correlation coefficient (MCC) 

[17] to compare quality of binary classifications between 

the different algorithms [18]. Lastly, we also investigate 

how well our model is calibrated, by plotting observed 

survival probability versus the survival probability pre-

dicted by our model using the calibration curve.

Machine learning model

Our model uses ventilation parameters as an input to 

predict the likelihood of the patient dying. We restricted 

the analysis to include ventilation parameters only in 

order to evaluate their predictive power, while the rest 

of the variables from this dataset were excluded from 

the analysis. Patients were included if they had at the 

variables documented at least once, while the remaining 

patients were excluded.

In terms of machine learning algorithms we chose to 

evaluate Logistic Regression (LR) as the baseline model, 

Random Forest (RF), an ensemble of decision trees that 

has shown great performance in predicting clinical 

outcomes [19, 20] and the Long Short-Term Memory 

(LSTM) neural network [3], a type of Recurrent Neural 

Network (RNN). As RF and LR are unable to process 

sequences directly, we expanded each sequence into a 

single vector that was then fed to RF and LR. While there 

is some information loss in terms of timing of measure-

ments, this approach attempts to minimise the loss, ren-

dering the comparison as fair as possible between the 

algorithms.

The proposed LSTM network consist of one layer with 

512 units, tanh activation function and Xavier normal 

weight initializer. Each patient record is classified in two 

possible outcomes using a SoftMax function in the out-

put layer. We have also evaluated the Sigmoid function, 

but without discernible difference in the performance. 

Model derivation (training) is carried out for 150 epochs 

with batch size of 64 using binary cross entropy as loss 

function and Adam optimizer with learning rate 0.001. 

To ensure robustness and generalizability of the model 

we use a dropout layer with 0.5 and a custom L1 regulari-

zation layer with parameter of 0.0005. We use Dropout 

[21] to force the neural network to learn a more robust 

internal representation such that our model can gen-

eralise outcome predictions on data of future patients, 

while we use L1 regularisation method to reduce model 

complexity and susceptibility to overfitting, increasing 

generalisability.

The performance of each model was evaluated using 

stratified five-fold cross-validation with 10 times repeti-

tion. First, we split the data randomly into model deriva-

tion set (80%) and model validation set (20%). Then we 

built the model and tuned the hyper-parameters based 

on the validation set. We repeat five-fold cross-validation 

10 times on the tuned model to reduce possible bias and 

evaluate generalisability, where for each run we calculate 

mean and standard deviation. The LSTM model is imple-

mented using PyTorch [22] open source machine learn-

ing framework and we also used the scikit-learn software 

library for the non-RNN models implementation.

Results

The overall dataset contained 12,755 ICU stays with 

complete data on ventilation parameters included in 

this study, where 3935 ICU stays were recorded as dead 

(30.85%). The respiratory disorders subgroup contained 

2674 ICU stays with 960 ICU stays recorded as dead. The 

most common diagnosis for this subgroup was pneu-

monia (n = 1368) followed by COPD (n = 527), ARDS 

(n = 501), CPD_nonCOPD (n = 180) and asthma (n = 98). 

Survivors are compared to non-survivors for the over-

all patient dataset (Table 1(a)) as well as the subgroup of 

patients with respiratory disorders (Table 1(b)).

We compared our LSTM-based model with both ran-

dom forrest and logistic regression methods. Predic-

tive performance of LSTM-based model was higher 

with AUC of 0.72 and Average Precision (AP) of 0.57 in 

comparison to RF and LR for the overall patient dataset. 

Higher predictive performance of AUC of 0.75 and AP of 

0.65 was recorded in the subgroup of patients admitted 

with respiratory disorders, as shown in Fig. 2a, b.

Other performance measures, such as PPV, NPV and 

MCC are detailed in Table  2(a) and (b), where LSTM-

based model outperforms both RF and LR in the majority 

of performance metrics.

Sensitivity analysis

We also performed a sensitivity analysis to evaluate 

whether inclusion of function of other organs, such as 

kidney and liver could improve predictive performance 

of the model. This analysis was carried out for the overall 

dataset as well as for the subgroup of patients admitted 

with respiratory disorders, where we included creatinine 

and bilirubin variables as well as pH and PaCO2, in addi-

tion to the variables used for the main analysis. These 

variables were chosen based on the review of literature as 

well as suggestion from the clinicians.

As it can be seen from Fig. 3a, b, the inclusion of vari-

ables related to kidney and liver function increased pre-

dictive performance significantly with AUC of 0.79 and 

AP 0.68 for the overall patient dataset and AUC of 0.79 

and AP 0.72, for the subgroup of patients with respira-

tory disorders. As shown in Table  3(a) and (b) LSTM 

based model outperforms RF and LR in the majority of 

performance metrics.
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Variable importance and model interpretability

A common criticism of LSTM-based models in particu-

lar and neural-network models in general, is that they 

are regarded as black-box models [23, 24]. We sought 

to address this issue by conducting a model interpret-

ability analysis, to understand how the model ranked the 

importance of variables when predicting mortality out-

comes. We used the Integrated Gradients (IG) method 

whose objective is to illustrate the relationship between a 

model’s prediction outcome and its’ input variables [25]. 

IG method explains outcomes of the LSTM models based 

on the gradients of the prediction outcomes with respect 

to input variables. By computing attribution of each vari-

ables, it ranks all the variables based on their importance. 

The attribution values measure the effect of each feature 

relative to the prediction for a baseline, which in our case 

was set to zero. As a result, the top three ranked variables 

of the LSTM model were creatinine, PaO2_FiO2, and pH 

(for the overall patient dataset) and pH, appliedPEEP, and 

Bilirubin (for the subgroup of patients with respiratory 

disorders). A graphical representation of the variables for 

each model and their ranking is provided in Fig. 4.

Predictive model calibration

While the ability of the model to discriminate between 

patients at higher risk of having an event from those at 

lower risk is an important aspect, alone it is not suffi-

cient. As such, we also consider model calibration, which 

measures how similar is the predicted absolute risk to the 

true observed risk in groups of patients. Poorly calibrated 

models will underestimate or overestimate the outcome 

of interest. As such we assess our model calibration by 

comparing predicted and observed risk of mortality at 

the whole patient population (mean calibration) as well 

as a subgroup of patients with respiratory disorders. As 

it can be seen in Fig. 5, all models achieved a very good 

calibration in predicting mortality risk for both the over-

all patient dataset and the subgroup of patients with res-

piratory disorders, even though models based on neural 

networks are typically poorly calibrated, as reported in 

the literature [26].

Discussion

In this study a recurrent neural network-based model 

outperformed random forest and logistic regression 

models regarding outcome prognostication in a large 

cohort of mechanically ventilated, critically ill patients 

of the VENTILA study group when using six common 

ventilation parameters, extended by age and body mass 

index (BMI). Predictive performance was even increased 

when serum bilirubin (as a marker of intact liver func-

tion), serum creatinine (as a marker of unscathed kid-

ney function), as well as pH and PaCO2 (as indicators 

of general metabolic and respiratory performance) were 

included.

Table 1 (a) Baseline demographics of survivors versus non-

survivors for all patients, (b) Baseline demographics of survivors 

versus non-survivors for patients admitted with respiratory 

disorders

Variables Survivors Non‑survivors p‑value

(a) Overall cohort

Female sex n (%) 3298 (37) 1452 (37)

Age 58.87 ± 17.55 63.65 ± 16.16 < 0.01

Weight 75.36 ± 19.56 74.42 ± 19.32 0.01

PBW 62.17 ± 9.29 61.76 ± 9.31 0.02

BMI 26.56 ± 6.37 26.42 ± 6.29 0.25

Creatinine 1.38 ± 1.38 1.87 ± 1.66 < 0.01

Bilirubin 1.51 ± 3.39 2.55 ± 5.32 < 0.01

pH 7.40 ± 0.09 7.36 ± 0.12 < 0.01

PaCO2 39.96 ± 10.20 40.41 ± 11.81 0.15

PaO2_FiO2 257.99 ± 106.03 220.47 ± 107.66 < 0.01

peakPressure 23.98 ± 7.41 26.50 ± 7.89 < 0.01

plateauPressure 19.40 ± 5.65 21.03 ± 6.46 < 0.01

drivingPressure 12.64 ± 5.37 13.83 ± 6.13 < 0.01

appliedPEEP 6.66 ± 3.13 7.19 ± 3.60 < 0.01

tidalVolume 509.42 ± 118.72 498.82 ± 115.99 < 0.01

tidalvolume/PBW 8.30 ± 1.99 8.21 ± 2.13 < 0.01

SAPS_II 42.71 ± 17.04 55.08 ± 19.05 < 0.01

Propensity test 0.63 ± 0.03 0.63 ± 0.03 < 0.01

LOS in ICU 13.02 ± 13.45 11.70 ± 14.27 < 0.01

MV_days 8.41 ± 8.56 9.08 ± 10.10 < 0.01

(b) Cohort admitted with respiratory disorders

Female sex n (%) 653 (38) 340 (35)

Age 61.16 ± 17.19 63.94 ± 15.47 < 0.01

Weight 74.58 ± 23.13 71.80 ± 21.28 < 0.01

PBW 61.06 ± 9.33 61.32 ± 9.36 0.49

BMI 26.64 ± 7.80 25.58 ± 6.94 < 0.01

Creatinine 1.27 ± 1.14 1.75 ± 1.58 < 0.01

Bilirubin 1.44 ± 2.99 2.13 ± 4.66 0.01

pH 7.39 ± 0.09 7.35 ± 0.12 < 0.01

PaCO2 44.62 ± 13.13 45.14 ± 13.88 0.12

PaO2_FiO2 218.65 ± 94.10 178.84 ± 92.50 < 0.01

peakPressure 26.49 ± 8.13 29.07 ± 8.27 < 0.01

plateauPressure 21.41 ± 6.18 23.03 ± 6.75 < 0.01

drivingPressure 13.77 ± 5.80 14.70 ± 6.73 < 0.01

appliedPEEP 7.52 ± 3.77 8.27 ± 4.02 < 0.01

tidalVolume 478.62 ± 122.74 481.34 ± 121.99 < 0.01

tidalvolume/PBW 7.95 ± 2.15 7.97 ± 2.09 < 0.01

SAPS_II 43.37 ± 16.27 51.02 ± 18.30 < 0.01

Propensity test 0.64 ± 0.03 0.64 ± 0.03 < 0.01

LOS in ICU 15.72 ± 15.93 13.78 ± 15.74 < 0.01

MV_days 10.20 ± 10.51 10.48 ± 10.77 0.52
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pH, as the expression and common endpoint of both 

the metabolic and respiratory situation, was a relevant 

and potent predictor of outcome in both subgroups. In 

both subgroups, biomarkers for organ failure (bilirubin 

and creatinine, respectively) were relevant for the out-

come of the patients evaluated. Also, in the subgroup of 

Fig. 2 Panel a. Predictive performance (AUC and AUPRC) of our LSTM-based model versus Random Forrest (RF) and Logistic Regression (LR) for 

the overall patient dataset using six standard mechanical ventilation parameters. Panel b. Predictive performance of our LSTM-based model versus 

Random Forrest (RF) and Logistic Regression (LR) for the subgroup of patients admitted with respiratory disorders using six standard mechanical 

ventilation parameters. Confidence intervals are shown in grey for both panels

Table 2 (a) Performance of the models for the overall patient dataset using six standard mechanical ventilation parameters, (b) 

Performance of the models for the subgroup of patients admitted with respiratory disorders using six standard mechanical ventilation 

parameters

Highest performance is shown in bold

AUC AP PPV NPV MCC

(a) Overall cohort

LR 0.65 ± 0.01 0.46 ± 0.01 0.50 ± 0.02 0.74 ± 0.01 0.21 ± 0.01

RF 0.69 ± 0.01 0.52 ± 0.01 0.51 ± 0.02 0.76 ± 0.01 0.26 ± 0.01

LSTM 0.72 ± 0.01 0.57 ± 0.01 0.52 ± 0.03 0.79 ± 0.01 0.31 ± 0.02

(b) Cohort admitted with respiratory disorders

LR 0.67 ± 0.02 0.54 ± 0.03 0.54 ± 0.03 0.74 ± 0.01 0.28 ± 0.03

RF 0.71 ± 0.02 0.60 ± 0.02 0.54 ± 0.04 0.76 ± 0.02 0.31 ± 0.06

LSTM 0.75 ± 0.02 0.65 ± 0.03 0.59 ± 0.03 0.79 ± 0.01 0.37 ± 0.03
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primarily pulmonary patients the classical ventilation 

parameters were not the singularly decisive parameters 

for the outcome, although the respiratory parameters 

were present in a relatively high granularity. Ultimately, 

however, this is not surprising, as even in critical patients 

with initial respiratory problems, a systemic cascade of 

Fig. 3 Panel a. Predictive performance (AUC and AUPRC) of our LSTM-based model versus Random Forrest (RF) and Logistic Regression (LR) for 

the overall patient dataset, including also variables related to kidney and liver function. Panel b. Predictive performance of our LSTM-based model 

versus Random Forrest (RF) and Logistic Regression (LR) for the subgroup of patients admitted with respiratory disorders, including also variables 

related to kidney and liver function. Confidence intervals are shown in grey for both panels

Table 3 (a) Performance of the models for the overall patient dataset, by also including variables related to kidney and liver function, 

(b) Performance of the models for the subgroup of patients admitted with respiratory disorders, by also including variables related to 

kidney and liver function

Highest performance is shown in bold

AUC AP PPV NPV MCC

(a) Overall cohort

LR 0.72 ± 0.02 0.57 ± 0.03 0.58 ± 0.03 0.78 ± 0.01 0.34 ± 0.03

RF 0.76 ± 0.02 0.63 ± 0.02 0.59 ± 0.04 0.80 ± 0.01 0.38 ± 0.03

LSTM 0.79 ± 0.02 0.68 ± 0.02 0.59 ± 0.04 0.83 ± 0.01 0.42 ± 0.04

(b) Cohort admitted with respiratory disorders

LR 0.73 ± 0.01 0.61 ± 0.01 0.58 ± 0.03 0.77 ± 0.02 0.35 ± 0.03

RF 0.78 ± 0.02 0.69 ± 0.04 0.61 ± 0.05 0.80 ± 0.02 0.41 ± 0.06

LSTM 0.79 ± 0.01 0.72 ± 0.02 0.63 ± 0.04 0.80 ± 0.01 0.43 ± 0.03
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inflammation and stress is set in motion that transcends 

the underlying pulmonological starting point.

Machine learning is a promising approach for mul-

tiple applications in modern medicine. Especially in 

critical care, studies with a vast number of patients are 

commonly not available for certain disease entities. 

Computer-based approaches expand our possibilities by 

facilitating the use of highly complex models with lots 

Fig. 4 Variable importance ranking for each LSTM model: a) All patients, and b) patients admitted with respiratory disorders
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of different parameters and can therefore aid in complex 

clinical decision-making [1, 6, 27–29]. Of course, the cat 

bites its tail here, as ML benefits especially from large 

databases with significant patient numbers to exclude 

noisy data. Albeit the motto "the more, the better" cer-

tainly applies here, Shillan et  al. were able to show that 

even for study sizes with 1000–10,000 individuals, satis-

factory forecasts with AUCs around 0.83 can be achieved 

[30]. As demonstrated in our study, the use of additional 

variables can improve test performance and enable high 

prognostic accuracy in comparatively medium-sized 

patient collectives.

An association between the invasiveness of mechanical 

ventilation and/or oxygenation indices (especially the P/F 

value or Horowitz index) and mortality has been shown 

repeatedly in the past [14]. Different ventilatory param-

eters were found to be associated with mortality in previ-

ous studies. High driving pressures and tidal volumes, as 

well as low oxygenation indices were shown to be asso-

ciated with higher mortality in mechanically ventilated 

patients, especially in individuals with acute respiratory 

distress syndrome (ARDS) in multiple previous studies 

[31–36]. It therefore seemed reasonable to combine vari-

ous key ventilation parameters as mortality predictors 

in our ML model. Albeit mortality has decreased over 

time, higher age is a known predictor of worse outcome 

in mechanically ventilated patients, whereas low BMI-

values were associated with decreased survival in the 

past [37, 38]. Hence it seemed rational to additionally 

incorporate such common, but outcome-relevant gen-

eral patient characteristics into the model. As pulmonary 

performance is already indirectly covered by ventilation 

settings, inclusion of further non-ventilator associated, 

but vital organ function parameters seemed reason-

able (namely serum creatinine and bilirubin). Although 

affected by ventilation strategies and certainly also kid-

ney function, blood pH as a marker of metabolic integ-

rity and partial pressure of carbon dioxide (paCO2) as an 

indicator of satisfactory ventilation were also included 

in our model and yielded an even higher predictive per-

formance. It should be mentioned that several chal-

lenges could have affected the performance of the model, 

including the heterogeneity of data, given the multi-cen-

tre nature of the dataset spanning across diverse ICUs 

and countries; consequently, the heterogeneity of data 

collection protocols; and the averaging of ventilation 

parameters into a single daily value.

As already stated in the past, ML algorithms often lack 

transparency compared with conventional statistical 

analyses as they are not as reproducible for most external 

readers [30]. Nevertheless, considering the possibilities 

of our time, it seems reasonable trying to integrate them 

into our clinical practice in order to reflect our decisions 

in a sober light, based on different algorithms irrespective 

of gut feeling or other personal bias. Replacing medical 

specialists with artificial intelligence is certainly not the 

right way to go. Nevertheless, it seems rational, to reflect 

and analyse complex situations independently based on 

measurable (hard) criteria and therefore be able to make 

even better decisions for our patients in future.

Theoretically, and in this context, we consider our 

study to be theses-generating, an algorithm could not 

only serve to predict the outcome based on ventila-

tion parameters. Rather, an attempt could be made to 

explore an optimal ventilation strategy on the basis of 

large data sets. An algorithm would also be conceiv-

able, which as a (nearly) closed loop suggests ventilation 

parameters adapted to the individual situation, based on 

ventilation parameters, but also biomarkers and possibly 

other clinical and radiological variables, to the clinician. 

Fig. 5 Calibration plots for each LSTM model: All patients (left) and patients admitted with respiratory disorders (right)



Page 10 of 12Mamandipoor et al. BMC Med Inform Decis Mak          (2021) 21:152 

However, this is in any case beyond our data and analy-

sis. Ultimately, our analysis can also be seen as a "word of 

caution" in this context: the high value of biomarkers (bil-

irubin and creatinine) underlines the relevance of a holis-

tic approach. Therefore, despite all the enthusiasm for 

digital revolutions, it is important never to forget clinical 

relevance and practicability. In addition to these rather 

pragmatic considerations, ethical considerations regard-

ing the use of AI in everyday clinical practice are also 

highly relevant. Algorithms, especially those that have a 

relatively direct influence on therapy, must be subjected 

to a critical, evidence-based evaluation—i.e. randomized 

clinical studies—in analogy to medical production.

Limitations

Firstly, this is a retrospective study lacking a randomi-

sation process, prospective screening, and inclusion of 

patients and a control group, therefore this study can only 

be thesis-generating. Secondly no specific protocol for 

the collection of predictive variables (e.g., specific times-

pan and/or clinical situations when to document MV 

parameters) was applied, which could further dispose of 

the study to selection bias as well as imputation strat-

egy for the missing data. Lastly, it should be noted that 

LR and RF algorithms have not been designed to pro-

cess the sequences directly, in contrast to LSTM, which 

may explain the difference in performance between these 

algorithms.

Conclusion

The result of our analysis has shown that the RNN-based 

model demonstrated better performance than RF and 

LR in patients in mechanical ventilation and its sub-

group admitted with respiratory disorders. However, 

it is necessary to validate our results in further studies. 

We speculate that a dataset with higher granularity—for 

example, more closely timed records—could lead to an 

even higher predictive power of AI. The next step would 

then be to develop algorithms that not only seek to pre-

dict outcome, but also suggest alternative ventilation 

parameters based on prior data, and, for example, seek to 

ensure even better use and application of evidence-based 

treatment strategies such as low driving pressure ventila-

tion. If, in a next step, these suggestions—for example, in 

randomized trials—are associated with a survival benefit 

for our patients, then a further step would be the devel-

opment of "closed loop" ventilation systems that seek to 

optimize the ventilation of critically ill patients on the 

basis of collected parameters and within evidence-based 

limits. However, this is currently to be classified as a the-

oretical possibility and we recall that the strict standards 

of evidence-based medicine must also be applied to AI—

any algorithms must also prove their efficacy and safety 

in randomized trials. Medical ethics and legal issues must 

also be evaluated and discussed with all stakeholders at 

an early stage—how much control are physicians willing 

and able to relinquish, how much automated treatment 

are patients prepared to receive? These are interesting 

issues that currently remain unresolved and as a conse-

quence we consider our study to be thesis generating.
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