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Abstract
This article considers an inverse problem for a Cosserat rod where we are given only the position of the centreline of the
rod and must solve for external forces and torques as well as the orientation of the cross sections of the centreline. We
formulate the inverse problem as an optimal control problem using the position of the centreline as an objective function with
the external force and torque as control variables, with meaningful regularisation of the orientations. A monolithic, implicit
numerical scheme is proposed in the sense that primal and adjoint equations are solved in a fully-coupled manner and all the
nonlinear coefficients of the governing partial differential equations are updated to the current state variables. The forward
formulation, determining rod configuration from external forces and torques, is first validated by a numerical benchmark; the
solvability and stability of the inverse problem are then tested using data from forward simulations. The proposed optimal
control method is motivated by reconstruction of the orientations of a rod’s cross sections, with its centreline being captured
through imaging protocols. As a case study, we take the locomotion of the nematode, Caenorhabditis elegans. In this study
we take laboratory data for its centreline and infer its cross-section orientation (muscle locations) with the control force and
torque being interpreted as the reaction force, activated by C. elegans’ muscles, from the surrounding fluids. This method
thus combines the mathematical modelling and laboratory data to study the locomotion of C. elegans, which gives us insights
into the potential anatomical orientation of the worm beyond what can be observed through the laboratory data. The paper is
completed with several additional remarks explaining the theoretical and technical details of the model.
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1 Introduction

The beam and rod theories have been developed to model
a typical three dimensional solid structure which is much
longer in one dimension than the other two dimensions. The
classical Euler-Bernoulli beam theory considers the exten-
sion and compression of a rod or beam and allows loads of
stretching, compressing or bending [6,24], which is gener-
ally suitable for modelling a thin rod with small deformation.
The Timoshenko-Ehrenfest beam theory was developed to
take into account shear deformation induced by rotational
bending effects, making it suitable formodelling thick beams
with larger deformation [19,23]. The Kirchhoff-Love and
Cosserat rod theories were developed to model rods with
finite deformation, with the former allowing bending and
twisting while ignoring stretching, compressing and shear-
ing deformation [21,56]; and the latter allowing all types of
loads and deformation [2,18,29,74,75]. This paper is to for-
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mulate an optimal control problem based upon the special
Cosserat theory of rods. Cosserat rod theory is geometrically
exact for modelling bending and torsion as well as extension
and shear, which is considered as a geometrically nonlin-
ear generalisation of the Timoshenko-Ehrenfest beam (while
Kirchhoff-Love is a geometrically nonlineaer generalisation
of Euler-Bernoulli beam) [2,74], and has been adopted to
model the locomotion of Caenorhabditis elegans (C. ele-
gans) in recent years [31,68].

Optimal control is a branch of mathematical optimisation
which seeks to optimise an objective function of a dynamical
system, usually described by partial differential equations,
through controlling meaningful variables of the system [78].
Optimal control theory has a wide range of applications from
classical control of solid structures [45,60,64,77,84] to opti-
mal flow control [33,43,44,61,65] including recent control
formulation for fluid-structure interaction systems [13,14,62,
80–82]. The objective can be a desired deformed configura-
tion of an elastic solid controlled by a set of load parameters
[45], drag force reduction of a flow system by shape optimi-
sation [33,61,65] or active turbulence control at the boundary
layer [15,22,46,50,59,61]; it could also be velocity tracking
by controlling a body force [3,36,38,40,43,44,55,57,58,66]
or boundary force [3,4,26,28,37,38,41]; the objective may
also be reducing vorticity [1,3,66] or matching a turbulence
kinetic energy [3,57,58]. Velocity-tracking type of optimal
control has a rigorous mathematical theory for its solution
existence [1,26,37,39] and stability of its numerical algo-
rithm [39,41,43,44].

In the context of optimal control of a rod or beam, the solu-
tion existence of optimal control of the longitudinal vibration
of a viscoelastic rod by either a contact force or distributed
force is discussed in [73], and the mean mechanical energy
minimised by a boundary force is studied, using the methods
of the calculus of variations [30], maximum principle [70]
and Ritz method [51]; minimisation of the mean square devi-
ation of the Timoshenko beam is investigated by controlling
a distributed force [71] or by the angular acceleration [83],
and singularity of its solution is discussed in [69]; optimal
control of transverse vibration of Euler-Bernoulli beam is
introduced in [79]. We will consider displacement tracking
of the Cosserat rod in this paper, which, to the best of our
knowledge, has not been studied before. Due to their long,
thin nature, accurately capturing the rotation vectors of a rod
is a challenging task whereas there are several well studied
approaches for reconstructing the centreline [8,27,32]. To
investigate the applicability of our method we will consider
a case study on the nematode, C. elegans: We shall apply
this optimal control formulation to the reconstruction of the
locomotion of C. elegans based upon laboratory data [72].

Locomotion – the ability of an organism to move from
one place to another – is achieved by animals through
a variety of methods [9,16,35]. C. elegans is a transpar-

ent nematode of about 1mm long [11,76], whose planar
undulatory locomotion has been widely studied [17,48] by
laboratory experiments [8,25,47,54] or mathematical mod-
elling [31,63,68]. In its natural habitat, this nematode moves
in three dimensional environments. However, such loco-
motion has only recently begun to be recorded [52,72].
Of particular interest is a recent modelling study of a roll
manoeuvre modelled as a torsional turn [10]. One key chal-
lenge with interpretation of 3D video footage of locomotion
is that the images (and hence the centreline reconstructions)
lack information linking the body shape to the local, anatom-
ically meaningful frame of the body (its left, right, ventral
and dorsal directions (see Figure 4), and information about
internal torsion or twist along the body).

In this paper, we propose a method to combine laboratory
data of the motion of C. elegans’ centreline and mathemati-
cal modelling to reconstruct the whole picture of C. elegans
locomotion: how does the worm wriggle and wiggle locally
through its body (how does its anatomical frame evolve)?
The centreline data of C. elegans can be constructed using
videos from three different perspectives[72]. However, it is
challenging to construct the local frames (information about
the internal torsion or twist along the body), which is the
motivation to develop the proposed method in this paper. We
point out that the proposed optimal control formulation is
general and not limited to C. elegans but for simplicity we
restrict the example formulation to neglect inertial terms [17]
(consistent with C. elegans being a low Reynolds number
swimmer).

The contributions of this paper are highlighted as follows:
amonolithic optimal controlmethod is developed based upon
the special Cosserat theory of rods; an incompressibility con-
dition is derived and integrated into the forward as well as the
control problem; the formulation is implicit and the primal
and adjoint equations are solved in a fully-coupled manner;
this new optimal control method is applied to a challenging
inverse problem: reconstruction of C. elegans locomotion
based on its centreline from laboratory data; implementation
in the open-source software package FreeFEM++, which is
available on the public Github site.

The paper is organised as follows. The governing partial
differential equations of the Cosserat rod are introduced in
Section 2 with a focus on expressing these control equations
in a closed component form. The optimisation problem with
the corresponding primal and adjoint equations are derived
in Section 3, followed by a monolithic optimal control for-
mulation in Section 4. Numerical experiments are carried out
in Section 5 to validate both the forward and the optimal con-
trol formulations, and the proposed optimal control method
is applied to the reconstruction of C. elegans locomotion in
Section 6. Finally, conclusions are drawn and future work are
discussed in Section 7.
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Fig. 1 A sketch of the Cosserat rod

2 Governing equations for the Cosserat rod

First, two coordinate systems or frames, as well as their
relations, are introduced in order to describe the geometry
of the Cosserat rod. Then, the mechanics of Cosserat rod
is described by the conservation of linear momentum and
angular momentum, and a set of constitutive equations is
introduced to close the system. Finally, the governing equa-
tions are expressed in terms of six unknown variables: three
components of the position vector (x, y, z) and three com-
ponents of the rotation vector (α, β, γ ). This formulation is
based on the one presented in [12]: we derive the angular
velocity and generalised curvature using a new method in
Section 2.3 and rewrite all the control equations in a matrix-
vector format; in addition, we consider dilation of the cross
section of the rod by differentiation of the reference and
current arc lengths and derivation of the incompressibility
condition in Section 2.4.

2.1 Global and local frames

In order to describe all the types of deformation of the
Cosserat rod, a global coordinate system [e1, e2, e3] is first
introduced as shown in Figure 1, which is assumed to form
a fixed right-hand orthogonal unit basis (also called the
fixed frame), to define the centreline of the rod by a three-
dimensional curve: r(s, t) = x(s, t)e1+y(s, t)e2+z(s, t)e3,
where s ∈ [a(t), b(t)] is the arc-length parameter of the curve
and t denotes the time; a local coordinate system (themoving
frame) [d1(s, t),d2(s, t),d3(s, t)] (orthogonal unit basis) is
also introduced everywhere at the centreline to describe the
motion of the rod’s cross section, and it is assumed that
d3(s, t) is always perpendicular (not necessarily coinciding
with the tangential ∂sr(s, t) of the centreline) to the cross
section to facilitate the expressions of the moment of inertia

Fig. 2 Three rotations of the coordinate system

and constitutive relations. This local coordinate system can
be constructed by the following three successive rotations
from the global coordinate system.

Remark 1 The arc length s is a current configuration,which is
generally not a constant especially when considering the case
of large extension or compression [31]. We introduce a ref-
erence or initial configuration s̃ = s0 ∈ [a0, b0] to compute
the strain (equations (9) and (10)), and consider s = s(s̃, t)
as a function of s̃ and time t . Let us also introduce the defor-
mation scalar j(s̃, t) = ds(s̃, t)/ds̃ for the convenience of
notation in the following sections.

Step 1:Rotate the e1−e3 plane clockwise around the e2 axis
by an angle γ , so that the e3 axis sits on the d2 − d3 plane
as shown in Figure 2 (left), i.e.: perform a rotation operation
[e1, e2, e3]RT

y (γ ) with

Ry =
⎡
⎣

cos γ 0 sin γ

0 1 0
− sin γ 0 cos γ

⎤
⎦ .

Step 2:Rotate the e2−e3 plane clockwise around the e1 axis
by an angle β, so that the e3 axis overlaps with the d3 axis
as shown in Figure 2 (middle), i.e.: perform another rotation
operation [e1, e2, e3]RT

y (γ )RT
x (β) with

Rx =
⎡
⎣
1 0 0
0 cosβ − sin β

0 sin β cosβ

⎤
⎦ .

Step 3: Rotate the e1 − e2 plane clockwise around e3 axis by
an angle α, so that the [e1, e2, e3] overlaps with [d1,d2,d3]
as shown in Figure 2 (right), i.e.: perform the final rotation
operation [e1, e2, e3]RT

y (γ )RT
x (β)RT

z (α) with

Rz =
⎡
⎣
cosα − sin α 0
sin α cosα 0
0 0 1

⎤
⎦ .
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The overall rotation matrix can be expressed as:

Q = RzRxRy

=
⎡
⎣
cosα cos γ − sin α sin β sin γ − sin α cosβ cosα sin γ + sin α sin β cos γ

sin α cos γ + cosα sin β sin γ cosα cosβ sin α sin γ − cosα sin β cos γ

− cosβ sin γ sin β cosβ cos γ

⎤
⎦ (1)

where all the three angles α, β and γ are functions of the arc
length s and time t :α = α(s, t),β = β(s, t) andγ = γ (s, t).
Therefore, the local coordinate system can be obtained by

[d1(s, t),d2(s, t),d3(s, t)] = [e1, e2, e3]QT . (2)

The components of any vector v in these two coordinates
system have the following relations: if v is expanded in the
global frame as v = ∑3

i=1 v
g
i ei and the local frame as v =∑3

i=1 vlidi , then (noticing thatQ is an orthogonal unitmatrix)

v = [e1, e2, e3]

⎛
⎝

v
g
1

v
g
2

v
g
3

⎞
⎠ = [d1,d2,d3]Q

⎛
⎝

v
g
1

v
g
2

v
g
3

⎞
⎠ , (3)

which implies

⎛
⎝

vl1
vl2
vl3

⎞
⎠ = Q

⎛
⎝

v
g
1

v
g
2

v
g
3

⎞
⎠ . (4)

In the rest of this article, we use the superscript ‘g’ to
indicate the components of a vector expanded in the global
frame and ‘l’ in the local frame.

2.2 Conservation laws

The governing equations of the Cosserat rod are based on
the conservation of linear momentum and conservation of
angular momentum as follows [2]:

ρ(s)A(s, t)∂t tr(s, t) = ∂sn(s, t) + f(s, t), (5)

∂th(s, t) = ∂sm(s, t) + ∂sr(s, t) × n(s, t) + l(s, t), (6)

where n andm are the internal force and torque respectively,
f and l are the external force and torque densities (per unit
reference length) respectively, ρ(s) and A(s, t) are the den-
sity and area of the cross section respectively, and h is the
angular momentum (per unit reference length).

In equations (5) and (6), it is convenient to express all the
vectors in the local frame except r(s, t). Therefore, we first
express these vectors in the local frame, and then transform
them to the global frame using (4), which will finally be

substituted into (5) and (6) in order to obtain an equation
system in its component form.

The angular momentum h = ∑3
i=1 h

l
idi can be expressed

as:

⎛
⎜⎜⎝
hl1

hl2

hl3

⎞
⎟⎟⎠ = I(s)

⎛
⎜⎜⎝

ωl
1

ωl
2

ωl
3

⎞
⎟⎟⎠ =

⎡
⎢⎢⎢⎣

I11 0 0

0 I22 0

0 0 I33

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎝

ωl
1

ωl
2

ωl
3

⎞
⎟⎟⎠ (7)

with ω = ∑3
i=1 ωl

idi denoting the generalised angular
velocity, and I(s) denoting the moment of inertia (per unit
reference length). Let (ξ, η, ζ ) denote the coordinates in the
local frame, then I(s) can be computed as follows, noticing
that d3 is perpendicular to the cross section:

I11 =
∫
A(s)

ρη2dξdη, I22 =
∫
A(s)

ρξ2dξdη,

I33 =
∫
A(s)

ρ
(
ξ2 + η2

)
dξdη. (8)

In order to close the equation system (5) and (6), constitu-
tive relations of n andm have to be established in terms of the
unknown variables. In the local frame, we adopt a linear rela-
tion between the internal force n(s, t) and strain ε(s, t), and
linear relation between internal torque m and the curvature
κ(s, t) [12,31] as follows. Let

n(s, t) =
3∑

i=1

ngi (s, t)ei , ε(s, t) := ∂s̃r(s, t)

=
3∑

i=1

ε
g
i (s, t)ei , (9)

and

n(s, t) =
3∑

i=1

nli (s, t)di (s, t), ε(s, t) := ∂s̃r(s, t)

=
3∑

i=1

εli (s, t)di (s, t), (10)

a linear relation, in the local frame, between n(s, t) and
ε(s, t) can be expressed as
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⎛
⎜⎜⎝
nl1

nl2

nl3

⎞
⎟⎟⎠ = K

⎛
⎜⎜⎝

εl1

εl2

εl3 − 1

⎞
⎟⎟⎠ =

⎡
⎢⎢⎢⎣

K11 0 0

0 K22 0

0 0 K33

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎝

εl1

εl2

εl3 − 1

⎞
⎟⎟⎠ ,

(11)

where

K11 = K22 = kGA(s, t), K33 = E A(s, t). (12)

E andG are the Young’s and shear moduli respectively, k is a
numerical factor depending on the shape of the cross section
at s [34], and A(s, t) is the area of the rod’s cross section.
We assume A(s, t) is a function of space s and time t , and
an incompressibility assumption will be used to determine
A(s, t) in Section 2.4. Using the transformation (4) between
the local and global coordinates, (11) can be expressed as

⎛
⎝
ng1
ng2
ng3

⎞
⎠ = QTKQ

⎛
⎝

ε
g
1

ε
g
2

ε
g
3

⎞
⎠− QT

⎛
⎝

0
0
K33

⎞
⎠

= j(s̃, t)QTKQ∂s

⎛
⎝
x(s, t)
y(s, t)
z(s, t)

⎞
⎠− QT

⎛
⎝

0
0
K33

⎞
⎠ .

(13)

Similarly, let

m(s, t) =
3∑

i=1

ml
i (s, t)di (s, t), κ(s, t) =

3∑
i=1

κ li (s, t)di (s, t).

(14)

Then, a linear relation, in the local frame, between m(s, t)
and κ(s, t) can be expressed as

⎛
⎝
ml

1
ml

2
ml

3

⎞
⎠ = J

⎛
⎝

κ l1
κ l2
κ l3

⎞
⎠ =

⎡
⎣
J11 0 0
0 J22 0
0 0 J33

⎤
⎦
⎛
⎝

κ l1
κ l2
κ l3

⎞
⎠ , (15)

where

J11 =
∫
A(s)

Eη2dξdη, J22 =
∫
A(s)

Eξ2dξdη,

J33 =
∫
A(s)

G
(
ξ2 + η2

)
dξdη (16)

Remark 2 For the main context of this paper, we consider
a circular cross section (with the exception of a rectangular
cross section that is used in numerical test 5.1 for validation
against a published result), and constant density ρ, Young’s
modulus E and shearmodulusG. In which case, I11 = I22 =
ρA2/4π , I33 = ρA2/2π , J11 = J22 = E A2/4π and J33 =
GA2/2π .

Fig. 3 Rotation of vector v with
angular velocity ω.
r = ‖v‖ sin θ and ‖∂tv‖ = r‖ω‖

In the spirit of expressing all the unknown variables in
terms of (x, y, z) and (α, β, γ ), we further express the angu-
lar velocity ω and curvature κ in terms of rotation angles
(α, β, γ ) in the following section.

2.3 Expressions of angular velocity and curvature in
terms of the angles of rotation

For any fixed-length vector function, say, of t ,

v · v = c ⇒ (∂tv) · v = 0,

with constant c. This suggests that ∂tv is always perpendic-
ular to v. If vector v rotates according to an angular velocity
ω as shown in Figure 3, we have

∂tv = ω × v. (17)

Since d1, d2 and d3 are all unit vectors, we can apply the
above property (17) to these three vectors and have

i=3∑
i=1

di × ∂tdi =
i=3∑
i=1

di × (ω × di ) =
i=3∑
i=1

ω (di · di )

−
i=3∑
i=1

di (ω · di ) = 2ω. (18)

Following the same argument, we also have:

i=3∑
i=1

di × ∂sdi = 2κ . (19)

Now, let QT = [
q1,q2,q3

]
with qTi = (qi1, qi2, qi3),

i = 1, 2, 3, being the row vectors of Q, then from (2) we
have

di = [e1, e2, e3]

⎛
⎝
qi1
qi2
qi3

⎞
⎠ ,

i = 1, 2, 3, (20)
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and

∂tdi = [e1, e2, e3] ∂t

⎛
⎝
qi1
qi2
qi3

⎞
⎠

= [d1,d2,d3]Q∂t

⎛
⎝
qi1
qi2
qi3

⎞
⎠ , i = 1, 2, 3. (21)

Using the fact that for any two vectors u = ∑3
i=1 u

l
idi and

v = ∑3
i=1 vlidi ,

u × v = [d1,d2,d3]

⎡
⎣

0 −ul3 ul2
ul3 0 −ul1

−ul2 ul1 0

⎤
⎦
⎛
⎝

vl1
vl2
vl3

⎞
⎠ , (22)

we can compute the cross product in (18):

d1 × ∂tq1 = [d1,d2,d3]

⎡
⎣
0 0 0
0 0 −1
0 1 0

⎤
⎦Q∂t

⎛
⎝
q11
q12
q13

⎞
⎠ = [d1,d2,d3]

⎛
⎝

0
−q3 · ∂tq1
q2 · ∂tq1

⎞
⎠ , (23)

d2 × ∂tq2 = [d1,d2,d3]

⎡
⎣

0 0 1
0 0 0

−1 0 0

⎤
⎦Q∂t

⎛
⎝
q21
q22
q23

⎞
⎠ = [d1,d2,d3]

⎛
⎝

q3 · ∂tq2
0

−q1 · ∂tq2

⎞
⎠ , (24)

d3 × ∂tq3 = [d1,d2,d3]

⎡
⎣
0 −1 0
1 0 0
0 0 0

⎤
⎦Q∂t

⎛
⎝
q31
q32
q33

⎞
⎠ = [d1,d2,d3]

⎛
⎝

−q2 · ∂tq3
q1 · ∂tq3

0

⎞
⎠ . (25)

Finally using (18) and (23) to (25), the angular velocity
ω, in the local frame, can be expressed as:

⎛
⎝

ωl
1

ωl
2

ωl
3

⎞
⎠ = 1

2

⎛
⎝
q3 · ∂tq2 − q2 · ∂tq3
q1 · ∂tq3 − q3 · ∂tq1
q2 · ∂tq1 − q1 · ∂tq2

⎞
⎠ =

⎛
⎝
q3 · ∂tq2
q1 · ∂tq3
q2 · ∂tq1

⎞
⎠ , (26)

noticing that for i �= j (i, j = 1, 2, 3)

qi · q j = 0 ⇒ ∂tqi · q j + qi · ∂tq j = 0.

A further calculation based on (1) and (26) expresses rota-
tion angles in the local frame as follows:

⎛
⎝

ωl
1

ωl
2

ωl
3

⎞
⎠ = A∂t

⎛
⎝

α

β

γ

⎞
⎠ , A =

⎡
⎣

0 − cosα sin α cosβ

0 − sin α − cosα cosβ

−1 0 − sin β

⎤
⎦ .

(27)

Using the same procedure, the curvature at a point along the
centreline can be expressed in the local frame as:

⎛
⎝

κ l1
κ l2
κ l3

⎞
⎠ = A∂s

⎛
⎝

α

β

γ

⎞
⎠ . (28)

Substituting equation (13) into equation (5), we express
the conservation of linear momentum in its component form
as follows.

ρ(s)A(s, t)∂t t

⎛
⎝
x
y
z

⎞
⎠

= ∂s

⎛
⎝ j(s̃, t)QTKQ∂s

⎛
⎝
x
y
z

⎞
⎠− QT

⎛
⎝

0
0
K33

⎞
⎠
⎞
⎠

+
⎛
⎝

f g1
f g2
f g3

⎞
⎠ , (29)

with f(s, t) = ∑3
i=1 f gi ei .

Transforming the local coordinates in (27), (28), (7) and
(15) into global coordinates by (4), then substituting them
into equation (6), we express the conservation of angular
momentum equation in its component form as follows:

∂t

⎛
⎝QT IA∂t

⎛
⎝

α

β

γ

⎞
⎠
⎞
⎠ = ∂s

⎛
⎝QT JA∂s

⎛
⎝

α

β

γ

⎞
⎠
⎞
⎠

+
⎡
⎣

0 −∂s z ∂s y
∂s z 0 −∂s x

−∂s y ∂s x 0

⎤
⎦
⎛
⎝ j(s̃, t)QTKQ∂s

⎛
⎝
x
y
z

⎞
⎠− QT

⎛
⎝

0
0
K33

⎞
⎠
⎞
⎠

+
⎛
⎝
lg1
lg2
lg3

⎞
⎠ , (30)

with l(s, t) = ∑3
i=1 l

g
i ei .

Remark 3 It can be seen from (2) that di ≡ qi (i = 1, 2, 3)
if we choose e1 = (1, 0, 0)T , e2 = (0, 1, 0)T and e3 =
(0, 0, 1)T . This observation will be adopted in Section 5 for
numerical implementation.

2.4 Incompressibility assumption

We assume the rod is incompressible and derive a condition
for its cross section A(s, t) in this section. An incompressible
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material requires the total volume to be constant, i.e.:

d

dt

∫ b(t)

a(t)
A(s, t)ds = d

dt

∫ b0

a0
A(s(s̃, t), t) j(s̃, t)ds̃ = 0,

(31)

from which we get

d A(s, t)

dt
j(s̃, t) + A(s, t)

d j(s̃, t)

dt
= 0. (32)

This equation can be solved by separation of variables as
follows:

d A

A
= −d j

j
= 0. (33)

Considering the initial condition j(s̃, 0) = 1 and A(s̃, 0) =
A0, and noticing that A and j are both positive, the solution
of (33) can be expressed as:

ln(A) = −ln( j) + ln(A0) ⇒ A(s, t) = A0

j(s̃, t)
. (34)

2.5 Finite element weak form

Equations (29) and (30) can be solved either on the reference
configuration s̃ (total Lagrangian formulation) or the current
configuration s (updatedLagrangian formulation). These two
formulations can be transformed from one to another using
equation (34), and we introduce these two formulations in
this section. Let

x =
⎛
⎝
x
y
z

⎞
⎠ , α =

⎛
⎝

α

β

γ

⎞
⎠ , B(x) =

⎡
⎣

0 −∂s z ∂s y
∂s z 0 −∂s x

−∂s y ∂s x 0

⎤
⎦ ,

(35)

then the weak form of (29) and (30) on the current configu-
ration [a(t), b(t)] can be expressed as

∫ b

a
ρA(s, t)δxT ∂t txds +

∫ b

a
∂sδxT

[
jQTKQ∂sx − K33q3

]
ds

+
∫ b

a
δαT ∂t

[
QT IA∂tα

]
ds +

∫ b

a
∂sδα

T
[
QT JA∂sα

]
ds

=
∫ b

a
δαTB

[
jQTKQ∂sx − K33q3

]
ds

+
∫ b

a
δαT lds +

∫ b

a
δxT fds

(36)

with δx and δα denoting the test functions corresponding to
x and α respectively. Let

K 0
11 = K 0

22 = kGA0, K 0
33 = E A0,

K0 = diag
(
K 0
11, K

0
22, K

0
33

)
, (37)

I 011 = I 022 = ρA2
0/4π, I 033 = ρA2

0/2π,

I0 = diag
(
I 011, I

0
22, I

0
33

)
, (38)

and

J 011 = J 022 = E A2
0/4π, J 033 = GA2

0/2π,

J0 = diag
(
J 011, J

0
22, J

0
33

)
. (39)

Then, (36) can rewritten, in the reference configuration s̃, as:

∫ b0

a0
ρA0δxT ∂t txds̃ +

∫ b0

a0
∂s̃δx

T
[
QTK0Q∂s̃x − K 0

33q3
]
ds̃

+
∫ b0

a0
jδαT ∂t

[
j−2QT I0A∂tα

]
ds̃

+
∫ b0

a0
j−3∂s̃δα

T
[
QT J0A∂s̃α

]
ds̃

=
∫ b0

a0
j−1δαTB

[
QTK0Q∂s̃x − K33q3

]
ds̃

+
∫ b0

a0
jδαT lds̃ +

∫ b0

a0
jδxT fds̃.

(40)

Remark 4 It is convenient to solve a forward problem on s̃
with updating the deformation scaler j based on a fixed-
point iteration for example, while it is convenient to solve a
backward problem on s (see Section 3) because we already
have the current mesh s and j can be computed directly.

3 The optimal control problem

In this section, we formulate an optimal control problem
based on the Cosserat rod model described in the previ-
ous section. The motivation is to reconstruct the full rod
configuration by computing (α, β, γ ) from observed data
(xg, yg, zg). This is an inverse problem which we formu-
late as a control problem. In case of low Reynolds number
rods, we neglect the inertia terms and consider the following
optimisation problem: reducing the discrepancy between the
centreline x and an objective position given by the observed
data xg = (xg, yg, zg), by optimisation of the external force
f and torque l in (29) and (30).
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Problem 1 (piecewise-in-time control)Given the state vari-
ables xn−1 and αn−1 at the previous time tn−1 (n = 1, 2, . . .),
and an objective position vector xg(tn) of the worm’s centre-
line at current time tn ,

minimise
fn ,ln∈L2([a,b])

J (xn,αn, fn, ln) = λg

2

∫ b

a

∣∣xn − xg(tn)
∣∣2

+ λ f

2

∫ b

a
|fn|2 + λl

2

∫ b

a
|ln|2

+ λd

2

∫ b

a
|∂sxn − d3(αn)|2 + 1

2

∫ b

a

∣∣∣Λ1/2
κ A∂sαn

∣∣∣2

+ 1

2

∫ b

a

∣∣∣∣Λ1/2
ω A

(αn − αn−1)

Δt

∣∣∣∣
2

,

(41)

subject to

∂s

[
QT (αn)K0Q(αn)∂sxn − j−1K33q3(αn)

]
+ fn = 0,

(42)

and

∂s

[
QT (αn)JA(αn)∂sαn

]
+ B(xn)

[
QT (αn)K0Q(αn)∂sxn

− j−1K33q3(αn)
]

+ ln = 0. (43)

In the above, Λκ = diag
(
λκ1 , λκ2 , λκ3

)
and Λω =

diag
(
λω1, λω2 , λω3

)
are two diagonal matrices. The first

term in (41) is the real objective to be minimised, and we
choose λg = 109 ∼ 1/

∫ b
a |xg|2, so that the first term

would not become infinitely small during the process of min-
imisation. All the other terms are regularisation terms with
regularisation parameters λ f , λl , λd , Λκ and Λω. Too large
regularisation parameters could make it difficult to achieve
the real objective, while too small ones may cause conver-
gence issues for the numerical scheme. These regularisation
terms have different mathematical and computational pur-
poses (see Section 3.4 for biological meanings of each term):
generally speaking, we want to add reasonable constraints
so that the control problem is solvable and a unique solution
can be obtained; the second (λ f −term) and the third term
(λl−term) are constraints of the control variables so that they
would not go to infinity; the term λd is used to disallow arbi-
trary rotation angles and ensure the problem is solvable; the
regularisation parameter of the last two terms Λκ−term and
Λω−term in (41) are diagonal matrices, whose elements are
parameters to control the three components of generalised
curvature and angular velocity correspondingly.

Remark 5 Because we lack data to control the rotation angle
α, we set a control of the variation of α, with respect to space

(Λκ−term) and time (Λω−term), in the last two terms in
(41), which is necessary for the solution existence and for
the convergence of our numerical method as formulated in
Problem 2 in Section 4.

We introduce the Lagrange multipliers (or adjoint vari-
ables) x̂, α̂ to eliminate the constraints of Problem 1 (drop-
ping the subscript ‘n’ for simplicity).

L
(
x,α, f, l, x̂, α̂

) = J (x, f, l)

−
∫ b

a
x̂T

[
∂s

(
QTK0Q∂sx − j−1K33q3

)
+ f

]

−
∫ b

a
α̂
T
[
∂s

(
QT JA∂sα

)

+B
(
QTK0Q∂sx − j−1K33q3

)
+ l

]

+ x̂(b)T
[
x(b) − xg(b)

]− x̂(a)T
[
x(a) − xg(a)

]

+ α̂(b)Tm(b) − α̂(a)Tm(a).

(44)

The following boundary conditions are also included in the
above functional L:

x(a) − xg(a) = x(b) − xg(b) = 0, (45)

and

m(a) = m(b) = 0. (46)

Remark 6 We find that the proposed optimal control formu-
lation is solvable with either a Dirichlet boundary condition
α(a) = αa (first component of rotation α) or the regularisa-
tion Λω−term in (41). We do not have the Dirichlet data for
all frames unfortunately, but we notice from the last term in
(41) thatα0 must be given. Therefore, we solve the first frame
using Dirichlet boundary condition α(a) = 0 instead of
Λω−term, and from the second frame we use the Λω−term.

Remark 7 The solvability of Problem1 is generally a difficult
question, and there is one case we are sure is unsolvable:
suppose the rod undergoes a pure twist induced only by the
third component of the torque l in (43), in which case there is
no way to determine the frames only using the data from the
centreline. In all other cases (ll3 = 0), the deformation of the
centreline is coupled with the frames and hopefully we can
detect the frames through this coupling by solving Problem
1.We shall validate this idea in numerical test 5.2. Luckily, it
is parsimonious to assume ll3 = 0whenmodellingC. elegans
because its longitudinal body wall muscles which may not
generate ll3 torque.
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After integration by parts, L can be further expressed as
follows:

L
(
x,α, f, l, x̂, α̂

) = J (x, f, l)

+
∫ b

a
∂s x̂T

(
QTK0Q∂sx − j−1K33q3

)
−
∫ b

a
x̂T f

+
∫ b

a
∂s α̂

T
(
QT JA

)
∂sα

−
∫ b

a
α̂
TB

(
QTK0Q∂sx − j−1K33q3

)

−
∫ b

a
α̂
T l

+ x̂(b)T
[
x(b) − xg(b)

]− x̂(a)T
[
x(a) − xg(a)

]

− x̂(b)Tn(b) + x̂(a)Tn(a).

(47)

The following Karush-Kuhn-Tucker (KKT) conditions
are the first-order necessary conditions to minimise (47).

δL(·) [(x̂, α̂) ; (δx̂, δα̂)] = 0, (48)

δL(·) [(x,α) ; (δx, δα)] = 0, (49)

δL(·) [(f, l) ; (δf, δl)] = 0, (50)

with

δL(·)[p;q] = d

dε
L (p + εq)

∣∣∣∣
ε=0

(51)

being the GOateaux derivative with respect to variable p along
the direction q [67]. If q is an arbitrary direction from p, it
is usually expressed as q = δp (variation of p) [7], in which
case it is convenient to abbreviate δL(p)[p; δp] as δL(p).

Let L2 ([a, b]) be the square integrable functions in
domain [a, b] with inner product (u, v) = ∫ b

a uv and the
induced norm ‖u‖ = (u, u)1/2, ∀u, v ∈ L2([a, b]). For vec-
tor function u ∈ L2([a, b])d (d = 6 for three components
of the position vector and three components of the rotation
vector), the norm is defined component-wise as ‖u‖2 =∑d

i=1 ‖ui‖2. Let H1([a, b]) = {
u : u, ∂su ∈ L2([a, b])d},

and H1
D([a, b]) be the subspace of H1([a, b]) whose func-

tions satisfy the Dirichlet boundary condition in (45), in
particular H1

0 ([a, b]), the homogeneous Dirichlet boundary
conditions. The above optimality conditions: (48) to (50),
lead to the following partial differential equations (in weak
forms).

3.1 Primal equation

The optimality condition (48) gives the primal equation in
its weak form as follows. Find (x,α) ∈ H1

D , such that

∀ (δx̂, δα̂) ∈ H1
0 :

∫ b

a
∂sδx̂

T
(
QTK0Q

)
∂sx +

∫ b

a
∂sδα̂

T
(
QT JA

)
∂sα

−
∫ b

a
δα̂

T
(
BQTK0Q

)
∂sx

=
∫ b

a
δx̂T f +

∫ b

a
δα̂

T l +
∫ b

a
j−1K33∂sδx̂

Tq3

−
∫ b

a
j−1K33δα̂

TBq3.

(52)

3.2 Adjoint equation

The optimality condition (49) gives the adjoint equation in
its weak form as follows (neglecting the variation of the
matrix Q A, B and vector q3). Find

(
x̂, α̂

) ∈ H1
0 , such that

∀ (δx, δα) ∈ H1
0 :

∫ b

a
∂s x̂T

(
QTK0Q

)
∂sδx +

∫ b

a
∂s α̂

T
(
QT JA

)
∂sδα

−
∫ b

a
α̂
T
(
BQTK0Q

)
∂sδx + λg

∫ b

a
δxT

(
x − xg

)

+
∫ b

a
δαTATΛκA∂sα

+ 1

Δt2

∫ b

a
δαTATΛωA (α − αn−1)

+ λd

∫ b

a
∂sδxT (∂sx − d3(α))

+ λd

∫ b

a
δdT3 (∂sx − d3(α)) = 0.

(53)

Remark 8 We have implemented the adjoint equation with
consideration of variation of q3, and we found that our opti-
mal control algorithm in Section 4 struggled to converge. It
is worth investigating the reason for this convergence issue,
and testing the case in which the variation of all these terms
is included in the future.

3.3 Optimality equation

The optimality condition (50) gives the relation between the
control force and adjoint variable:

λ f

∫ b

a
δfT f + λl

∫ b

a
δlT l =

∫ b

a
δfT x̂ +

∫ b

a
δlT α̂. (54)

3.4 Relation to C. elegans locomotion problem

Our locomotion dataset, obtained from a 3D microscopic
set up [72] contains many different trajectories of centreline

123



418 Computational Mechanics (2023) 71:409–432

Fig. 4 A sketch of C. elegans. DNC: dorsal nerve cord; VNC: ventral
nerve cord

positions xg over time which will be used in Problem 1. The
controls, the forces and the torques, can be interpreted as the
reaction force from the surrounding fluids, which is initially
activated by the worm’s muscles.

The muscles generating locomotion in C. elegans, are
called body wall muscles (see Figure 4) because they are
tethered to the ‘wall’ (or cuticle) of the animal, acting lon-
gitudinally to contract or relax the local side of the body.
As C. elegans contains 95 body wall muscles that span the
entire body length, we consider the action of the muscles
continuously along the body. The directionality of the mus-
cle contraction at every point along the animal is determined
by α, β and γ which themselves are unknowns as part of the
control problem. To represent this muscle action, we only
allow d3 close to the tangential direction of the body and
also restrict the twisting movement of the worm as captured
by the λd−term.

The regularisations given by Λκ−term and Λω−term are
also biologically motivated. For example, it is known from
the anatomy that the left and right muscle quadrants do not
receive distinct neural connections along the body and tail
(i.e. the posterior two thirds of the body which lie beyond
the neck of the animal). This results in the majority of bend-
ing occurring in the dorsal-ventral directions and less in the
left-right directions with the exception of the head and tail.
We therefore adjust the magnitude of λκ1 and λκ2 to favour
solutions that havemore bending around d1 than d2. The lon-
gitudinalmuscles also restrict the twistingmotion of the body
which can be considered by setting a larger λκ3 . These addi-
tional adjustments of constraints may result in a frame that
more closely matches the anatomically meaningful frame of
the animal as it moves around in 3D. Λω−term models the
internal friction, which can also be different in three local
directions based on the worm’s anatomy.

For the forward simulations of biological worms, the Neu-
mann boundary condition is usually adopted at both ends of
the rod. For the backward simulations, we can fully use the
information from the data and adopt appropriate Dirichlet
boundary conditions as considered above in (45).

Remark 9 We have the data xg of the worm’s centreline for
every time frame, which means the mesh (arc length) s(s̃, tn)
is known at the current time frame tn . Therefore, we can
directly compute the deformation scaler j = ∂s̃ s(s̃, tn). This
is generally not true for a forward problem, which usually
requires j to be iteratively computed.

4 Amonolithic optimal control formulation

Substituting the optimality condition (54), specifically its
strong form f = x̂/λ f and f = α̂/λl , into equation (52),
we have a monolithic scheme to solve the optimisation Prob-
lem 1 as follows.

∫ b

a
∂sδx̂

T
(
QTK0Q

)
∂sx +

∫ b

a
∂sδα̂

T
(
QT JA

)
∂sα

−
∫ b

a
δα̂

T
(
BQTK0Q

)
∂sx

+
∫ b

a
∂s x̂T

(
QTK0Q

)
∂sδx +

∫ b

a
∂s α̂

T
(
QT JA

)
∂sδα

−
∫ b

a
α̂
T
(
BQTK0Q

)
∂sδx + λg

∫ b

a
δxT

(
x − xg

)

+
∫ b

a
δαTATΛκA∂sα + 1

Δt2

∫ b

a
δαTATΛωA (α − αn−1)

+ λd

∫ b

a
∂sδxT (∂sx − d3(α)) + λd

∫ b

a
δdT3 (∂sx − d3(α))

=
∫ b

a

1

λ f
δx̂T x̂ +

∫ b

a

1

λl
δα̂

T
α̂ +

∫ b

a
j−1K33∂sδx̂

T q3

−
∫ b

a
j−1K33δα̂

TBq3.

(55)

The above equation is highly non-linear and coupled between
the state variables x,α and adjoint variables x̂, α̂. For the
coefficient matrices Q, A and B, we use the fixed-point iter-
ations to compute Q(αk

n) → Q(αn), A(αk
n) → A(αn) and

B(xkn) → B(xn) as k → +∞, starting from α0
n = αn−1 and

x0n = xn−1. In addition, δd3(α) is also linearised as δd3(αk)

based on the fixed-point iteration. We use Newton’s method
to linearise the non-linear term d3(α) as follows. From (1)
and Remark 3, d3 = [− cosβ sin γ, sin β, cosβ cos γ

]T , we
compute the variation of d3 with respect to α along δα:

δd3 (α) = δβdβ(β, γ ) + δγdγ (β, γ ), (56)

with

dβ(β, γ ) = [
sin β sin γ, cosβ,− sin β cos γ

]T
, (57)
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and

dγ (β, γ ) = [− cosβ cos γ, 0,− cos β sin γ
]T

. (58)

The first order Taylor approximation of d3(α) at αk is
expressed as:

d3(α) ≈ d3(αk) + δd3
[
αk;α − αk

]
. (59)

Substituting (57) and (58) into (59), we then can linearise
d3(α) as follows:

d3(α) ≈ d3(αk) +
(
β − βk

)
dβ(βk, γ k)

+
(
γ − γ k

)
dγ (βk, γ k). (60)

Finally, by substituting (56) with β = βk and γ = γ k

and (60) into equation (55), and denoting Q
(
αk
n

) = Qk ,
A
(
αk
n

) = Ak , B(xkn) = Bk , dβ(βk, γ k) = dkβ and

dγ (βk, γ k) = dkγ , we have the following (Problem 2) mono-
lithic formulation to solve Problem 1.

Problem 2 Given the state variables (xn−1,αn−1) at the pre-
vious time tn−1 (n = 1, 2, . . .), and an objective position
vector xg(tn) at the current time tn , compute

(
xk,αk

) →
(x,α) ∈ H1

D ,
(
x̂, α̂

) ∈ H1
0 iteratively from

(
x0,α0

) =
(xn−1,αn−1), such that ∀ (δx, δα) ∈ H1

0 and ∀ (δx̂, δα̂) ∈
H1
0 :

∫ b

a
∂sδx̂

T
(
QT

k K0Qk

)
∂sx + ∂sδα̂

T
(
QT

k JAk

)
∂sα

+
∫ b

a
∂s x̂T

(
QT

k K0Qk

)
∂sδx + ∂s α̂

T
(
QT

k JAk

)
∂sδα

−
∫ b

a
α̂
T
(
BkQT

k K0Qk

)
∂sδx + δα̂

T
(
BkQT

k K0Qk

)
∂sx

+ λg

∫ b

a
δxT x − 1

λ f

∫ b

a
δx̂T x̂ − 1

λl

∫ b

a
δα̂

T
α̂

+
∫ b

a
∂sδα

TAT
k ΛκAk∂sα + 1

Δt2

∫ b

a
δαTAT

k ΛωAkα

+ λd

∫ b

a
∂sδxT ∂sx + λd

∫ b

a

(
δβdkβ + δγdkγ

)T
∂sx

− ∂sδxT
(
βdkβ + γdkγ

)

− λd

∫ b

a

(
δβdkβ + δγdkγ

)T (
βdkβ + γdkγ

)

= λg

∫ b

a
δxT xg +

∫ b

a
j−1K33∂sδx̂

Tq3

−
∫ b

a
j−1K33δα̂

TBkqk3

+ λd

∫ b

a
∂sδxT

(
dk3 − βkdkβ − γ kdkγ

)

+ λd

∫ b

a

(
δβdkβ + δγdkγ

)
dk3

− λd

∫ b

a

(
δβdkβ + δγdkγ

)T (
βkdkβ + γ kdkγ

)

+ 1

Δt2

∫ b

a
δαTAT

k ΛωAkαn−1. (61)

Remark 10 For the above fixed-point iteration, a relaxation
parameter 0 ≤ w ≤ 1 is introduced to stabilise the algorithm:
instead of directly updating

(
xk,αk

)
after solving (61), a

weighted w
(
xk,αk

)+ (1− w)
(
xk−1,αk−1

)
is adopted. We

use w = 0.5 for all our simulations.

5 Numerical tests

We first validate the formulation (40) for simulation of a for-
ward problem with a time discretisation scheme introduced
in Appendix A, and then apply the optimal control formula-
tion (61) to data from a forward simulation, in which case we
have the ground truth rotations of the local frames and a quan-
titative comparison can be performed. Finally, we apply the
optimal control method to data from laboratory experiments
and infer the frames of rotation. All the numerical tests are
implemented using open-source library FreeFem++ [42]. For
code and results, see Data Availability in declarations section
below.

5.1 Forward simulation of a cantilever beam

Weconsider a cantilever beamwith a dynamic load and repro-
duce the result presented in [12]. The beam’s length L = 1m
(which is a constant for this test due to a small deforma-
tion), with density ρ = 2.73× 103kg/m3, Young’s modulus
E = 7.10×1010Pa and shear modulusG = 2.69×1010Pa.
The cross section of the beam is a rectangle with width
a = 0.06m and height h = 0.04m, and the numerical
shear correction factor for this cross section is set to be
k = 0.833. The moment of inertia is I11 = ρab3/12,
I22 = ρa3b/12 and I33 = I11 + I22. The stiffness for
the torque in (15) is J11 = Eab3/12, J22 = Ea3b/12 and
J33 = G(ab3 + a3b)/12. The external force, corresponding
to f in equation (40), is expressed as:

f g1 (s, t) = f g2 (s, t) = 2 sin(πs) sin(8ω0t)kNm−1,

f g3 (s, t) = 0, (62)

with the natural frequency of the system ω0 = 207.0236s−1.
The beam is discretised by 100 segments and the total

computational time T = 0.06 is divided into 1000 steps. The
displacement and rotation at the end of the beamare plotted in
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Fig. 5 Displacement and rotation at the tip of the cantilever beam

Figure 5, which quantitatively reproduces the results (Fig. 6
and Fig. 7) in [12].

5.2 Optimal control using data from a forward
simulation

In this example, we modify the previous test of the cantilever
beam so that it has similar material properties to C. elegans
andundergoes a large deformation.As discussed inSection 3,
we also neglect the inertia terms in equation (40) to modelC.
elegans locomotion. Our motivation is to generate a dataset
to validate the proposed optimal control method. The new
beam now has an initial length L0 = 10−3m and circular
cross section with radius r0 = L0/40m [5]. The numerical
correction factor for a circular cross section is taken to be
k = 4/3 [34]. We adopt values for its Young’s modulus
E = 1.1×105Pa and shear modulus G = 5.0×104Pa [5].

Fig. 6 Diagram of a cantilever beam

Before generating the dataset by applying a complicated
external force and torque, we first apply a simple force F at
the end of the beam, as shown in Figure 6, to validate the
approach against the analytical solution based on the Timo-
shenko beam theory [34]:

y = − F

kAG
s − FL0

2J11
s2 + F

6J11
s3. (63)
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Fig. 7 Deflection of a cantilever beam under a concentrated force at
the end of the beam. F = 5× 10−9N for the case of 5% deflection and
F = 10−8N for 10% deflection

The rod is discretised by 100 segments (for which the mesh
has converged), and we compute the deflection of the rod by
solving the primal equation (52). It can be seen from Figure 7
that the result of the Cosserat model agrees very well with the
prediction of the Timoshenko theory for up to 10% deflection
of the rod.

The first test of the proposed control algorithm is to use a
dataset generated by a distributed force along the rod:

f l2 = −Fmax

(
e4z/L0 − 1

)
/3, f l1 = f l3 = 0, (64)

with Fmax = 10−4. The beam undergoes a large deforma-
tion as shown in Figure 8 (left); meanwhile a curvature κ l1
(see formula (28)) is also generated along the rod. Using the
proposed control formulation in Section 4 and control param-
eters of λ f = 1, λl = 10−10, λd = 10−6, λκ3 = 10−10

(λκ1 = λκ2 = 0) and Λω = 0, both the position and the
curvature can be recovered accurately as shown in Figure
8. Note that all the other components of the position vec-
tor and generalised curvature are zero although they are not
presented here. Before moving to other test cases, let us test
the convergence of the objective ‖x − xg‖, the output cur-
vature ‖κ l − κ l

f ‖ (κ l
f is from the forward simulation), the

tangential direction ‖∂sx−d3‖ as well as the algorithm itself
measured by the relative error of (x,α) between the current
and previous fixed-point iterations, with regards to the con-
trol parameters λ f , λl and λd .

The main findings are summarised as follows: (1) If we
only use f (notice that this does not mean λl = 0; we have
to remove l term in (61)) as the control, the proposed algo-
rithm struggles to converge no matter how we play with the

other parameters. Therefore, the regularization λl− term in
(41) does play an important stabilisation role, although l = 0
whenwe generate the dataset; (2) If we plot the above conver-
gence measures as shown in Figure 9 (λ f = 1, λd = 10−6

and λκ3 = 10−20) and vary λl from magnitude 10−20 to
103, we find that these convergence curves are exactly the
same. The only difference we notice is that the magnitude of
the adjoint variable δα varies correspondingly from 10−13

to 1010 so that the control torque l = δα/λl always has a
magnitude of 10−7. Therefore, the algorithm (at least for
this test) is not sensitive to the regularisation parameter λl ,
although it is required to stabilise the algorithm as pointed out
above; (3) The proposed algorithm can converge stably with
the regularisation parameter λd varying from 101 to 10−10,
and the convergence of ‖κ l − κ l

f ‖ and ‖∂sx− d3‖ is plotted

in Figure 10 with λ f = 1, λl = 10−10 and λκ3 = 10−20;
(4) The proposed algorithm converges for a range of param-
eters λ f from 10−10 to 106. Despite the steady convergence
of the algorithm, the value of λ f must be sufficiently small
for the objectives to be sufficiently reduced. To demonstrate
this, convergence plots for the relevant quantities given two
extreme values (10−10 and 106) of λ f , are compared in Fig-
ure 11; (5) The purpose of theλκ3 parameter is to control twist
along the rod. In this test, the algorithm can converge stably
and the curvature error can be reduced sufficiently with λκ3

from 1 to 10−15.
We next consider a dataset generated by the following

force and torque, which creates both curvature and torsion
along the rod as shown in Figure 12.

f l1 = −2.2Fmax, f l2 = f l3 = 0, ll1 = 10−7, ll2 = ll3 = 0.

(65)

Again we test all the regularisation parameters systemati-
cally, and our findings are summarised as follows: (1) λl is
necessary for stability, and it can be chosen from amagnitude
of 10−30 to 10−2 (based on a test with λ f = 1, λd = 10−6

and λκ3 = 10−20); (2) the recommended value for λd ranges
between 10−10 and 103, otherwise the objective cannot be
sufficiently reduced when λd > 103, or the algorithm cannot
converge when λd < 10−10 (based on a test with λ f = 1,
λl = 10−6 and λκ3 = 10−20); (3) the proposed algorithm
can converge steadily for a range of λ f from 10−30 to 102,
and the suggested values are λ f < 1, otherwise the objective
cannot be reduced sufficiently (based on test of λl = 10−6,
λd = 10−6 and λκ3 = 10−20); (4) The algorithm converges
stably with λκ3 for magnitude of 10−15 to 1, but the recom-
mended value is > 10−25 otherwise a too large κ l3 could be
generated. A convergence of relevant quantities with a spe-
cific parameter set is plotted in Figure 13. The comparison of
the position and curvature between the forward and backward
computations are displayed in Figure 12 and 14 respectively.
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Fig. 8 Comparison of the position vector (left) and curvature (right) between forward and backward simulations for the first test case in 5.2

Fig. 9 Log-log plot of the convergence of relevant quantities as func-
tions of the number of iterations for the first test case in 5.2

It can be seen that the positions between the forward and
backward simulations match very well along the rod, and the
curvatures alsomatchwell except the endwhere theDirichlet
boundary condition is applied.

Remark 11 We find that non-trivial forward data, involving
large bend and torsion for example, is not easy to generate,
because it is not straightforward to provide or design a force
f or torque l so that the forward problem can converge easily.
While once a dataset is given, the control problem is easy

Fig. 10 Convergence of ‖κ l −κ l
f ‖ (red) and ‖∂sx−d3‖ (blue) in terms

of regularisation parameter λd for the first test case in 5.2

to converge – converging to the same position vector x and
rotation α (as the forward simulation results) even with a
different control force and torque. This can be understood
and by noting that we do not expect that the force and torque
(producing the same x and α) are unique. As an example,
we show the control force and torque for the previous test
in Figure 15, from which it can be seen that the magnitude
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Fig. 11 Comparison of convergence between two extreme values of λ f
for the first test case in 5.2

Fig. 12 Comparison of the position vector between forward and back-
ward simulations using (65) for the second test case in 5.2

is similar to the designed one in (65), but the distribution is
different.

6 Reconstruction of C. elegans locomotion
based on experimental data

We tested the proposed method on three examples of C. ele-
gans locomotion in 3D volumes [72]. The data represent
the body-midlines that were reconstructed frommicroscopy-
video footage of freely and spontaneously moving worms
that were immersed in different fluids. We present one test
case in this section and all the three tests (including the
dataset, FreeFem++ code and simulation results) can be

Fig. 13 Convergence of different measures with λ f = 10−2, λl =
10−6, λd = 10−6 and λκ = 10−20 for the second test case in 5.2

found from public GitHub repository: https://github.com/
yongxingwang. The first test case consists of a sequence of
1160 time frameswith a sampling interval of 0.04s (as inertia
is not considered in our model and the time step only appears
in the regularisation term in (41)), and each reconstructed
body centerline consists of 128 discrete three-dimensional
spatial points. These examples are of interest due to the three-
dimensional postures andmotion of the swimmer: in this clip,
the worm exhibits large bend, large torsion and moves for-
ward and backward in a three-dimensional space for about
46s. The physical body of theworm ismodelled by a cylindri-
cal Cosserat rod with a circular cross section of initial radius
2 × 10−5m, Young’s modulus E = 1.1 × 105Pa and shear
modulus E/(1 + ν)/2Pa with ν = 0.4 [5,20]. Four typical
postures of the worm are shown in Figure 16: the worm ini-
tially moves from the right to the left and starts a manoeuvre
to reverse its motion at around the 400th time frame; after
another 350 steps, the worm suddenly bends to resemble a
capital Ω (left-bottom in Figure 16) and moves to the right.

To construct the first frame, we set αa = 0 and Λω =
0; and from the second frame, we use a non-zero Λω (at
least non-zero λω3 for the sake of convergence) without any
Dirichlet data. Three components of generalised curvature
are plotted along the worm’s body for all the time frames in a
two-dimensional plane as shown in Figure 17, from which a
bending (κ l1 and κ l2) wave can be seen propagating from the
worm’s head to the tail; the twisting (κ l3) wave is not obvious
but some twisting can still be observed. The propagated wave
is consistent with the moving direction of the worm as shown
in Figure 16 and analysed in the above.
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Fig. 14 Comparison of the curvature between forward and backward simulations for the second test case in 5.2

Fig. 15 Control force (left) and
torque (right) for the second test
case in 5.2

Starting from a converged parameter set as shown in Table
1 (for the results in Figures 16 and 17), with the converged
objectives in (41) being shown in Figure 18, we vary these
parameters, study the convergence of the algorithm and com-
pare corresponding results in the following. Notice that this
set of parameters has the minimal non-zero parameters to
make sure the proposed algorithm can converge (please refer
to Remark 5 and 6 and Section 3.4 for explanations).

Parameter λ f : with other parameters frozen, the proposed
algorithm converges stably for λ f from 10−20 to 10; the
fixed-point iteration becomes slower for larger λ f . We find
that all the objectives stay the same except the control f (see
Figure 19).

Parameter λl : we then keep λ f = 10−20 and the proposed
algorithmstill converges stablywith themagnitude ofλl from
10−10 to 1. We observe that all the objectives are still almost
the same except the control l as shown in Figure 19.

Parameter λd : based on the above two tests, we realise that
the total objective function (41) is dominatedby theλd−term.
With other parameters frozen, we find that the convergence
range for λd is approximately between 10−2 and 103. A
comparison of converged objectives between Parameter-0 in
Table 1 and its variation case with λd = 10−2 (reduced from
λd = 102) is plotted in Figure 20, from which it can be seen
that (i) the real objective ‖x − xg‖/‖xg‖ is reduced by two
orders ofmagnitude, with oscillations for some frameswhich
is expected for such a small regularisation parameter; (ii) the

123



Computational Mechanics (2023) 71:409–432 425

Fig. 16 Four typical postures of C. elegans. The arrows show the local frames and the colourful one is d3 pointing from the worm’s head to tail,
with colour showing the magnitude of generalised curvature. (Color figure online)

Table 1 Parameter-0: minimal non-zero parameters for the sake of con-
vergence of the proposed algorithm

λ f λl λd Λκ Λω

10−3 10−6 102 diag (0, 0, 0) diag
(
0, 0, 10−20

)

λd−term increases as its regularisation parameter decreases
from λd = 102 to λd = 10−2. We notice that the magni-
tude of ‖∂sx−d3‖/‖d3‖ increases to 10−1 for some frames,
which means d3 detaches from the tangential ∂sx of the cen-
treline 10%.For example, Figure 21 shows framenumber 700
where the normal direction d3 of the cross section detaches
from the tangential direction ∂sx of the centreline; (iii) none
of the other objective terms show a significant change except
the control f which varies according to ‖x − xg‖/‖xg‖ as
expected.

Remark 12 The detachment of d3 from ∂sx is an impor-
tant feature of Cosserat rods. Otherwise, the Cosserat rod
approaches to the Kirchhoff rod (if the deformation scaler
j = 1, which is true for our case study system of C. elegans:
we observe that | j − 1| < 10−3 always holds numerically),
in which case it is assumed that d3 = ∂sx [31].

Remark 13 In keeping λd = 10−2 (which now cannot domi-
nate the total objective function of (41)) and varying λ f and
λl , we again can observe a variation of other objective terms
although we would not present all these tests here. However,
too small regularisation parameters can cause stability issues

as we have already seen when reducing λd from 102 to 10−2

although the algorithm still converged.

The parameter Λκ provides a constraint of the curvature
along the worm’s body, which allows us to consider the
anatomical muscle structure of C. elegans as explained in
Section 3.4. Based on Parameter-0, we now simply choose
Λκ = diag

(
0, 0, 10−20

)
to restrict the twist motion of the

worm, and the generalised curvature is plotted in Figure 23.
Comparing with Figure 17, we can see that not only does
the magnitude of κ l3 dramatically decrease, but a clear twist-
ing wave also appears along the worm. In addition, there
is also an influence on the first two components κ l1 and κ l2:
the wave propagation is clearer although the curvature mag-
nitudes are almost the same as the case of Λκ = 0. We
also notice that the reversing manoeuvre (starting at around
frame 700) becomes more distinct: κ l3 is much larger near
the worm’s head at frame 700 than elsewhere or any other
frames, as can be observed from Figure 22 and 23. Similarly,
using non-zero λκ1 or λκ2 would allow us to favour bending
in the dorsal-ventral directions which is consistent with the
C. elegans neuromusculature.

Λω is used to model the internal friction of the worm
which is necessary from the second time frame. For the sake
of convergence of our algorithm, only λω3 is required. If we
increase Λω in Parameter-0 from diag

(
0, 0, 10−20

)
to some

value less than diag (1, 1, 1), the proposed algorithm con-
verges stably and the angular velocity stays almost the same
as shown in Figure 24. However, there is a big change in the
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Fig. 17 Local curvature κ l1, κ
l
2, κ

l
3 (from top to bottom) along theC. elegans body centerline (vertical axis: 0 = head, 127 = tail) as a function of time

(horizontal axis), as computed from data (clip 1) for all the time frames. λ f = 10−3, λl = 10−6, λd = 102, Λκ = 0 and Λω = diag
(
0, 0, 10−20

)

Fig. 18 Objective terms in (41)
as a function of time, using
λ f = 10−3, λl = 10−6,
λd = 102, Λκ = 0 and
Λω = diag

(
0, 0, 10−20

)

curvature (see Figure 24 and Figure 25): wave propagation
is no longer apparent because larger Λω tends to keep the
rotation angles (along the body and overtime) the same in
time, consequently the space derivative (curvature) along the
worm’s body does not change significantly in time.

7 Conclusion and discussion

This paper presents three contributions: the forward formu-
lation of a Cosserat rod, the optimal control method and the
reconstruction of C. elegans locomotion.

The forward formulation of Cosserat rod is developed
from [12], in which the Cosserat rod is described by three
components of the position vector (x, y, z) and three compo-
nents of the rotation vector (α, β, γ ). We derive the angular
velocity and generalised curvature using a new method in
Section 2.3 and rewrite all the control equations in a matrix-
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Fig. 19 Objective terms in (41)
as a function of time; solid lines
(—) are the initial parameter set
as shown in Figure 18 and
dashed lines (- - -) are a
variation of λ f and λd in the
initial parameter set with
λ f = 10−20 and λl = 10−10

Fig. 20 Objective terms in (41)
as a function of time; solid lines
(—) are the initial parameter set
as shown in Figure 18 and
dashed lines (- - -) are a
variation of λd in the initial
parameter set with λd = 10−2

Fig. 21 Frame NO. 700 using λd = 10−2, where the normal direction
d3 of the cross section detaches from the tangential direction ∂sx of
the centreline: d3 in white colour and ∂sx is colourful showing the
magnitude of the generalised curvature. (Color figure online)

vector format; in addition, we consider dilation of the cross
section of the rod by differentiation of the reference and

Fig. 22 Frame NO. 700 using Λκ = diag
(
0, 0, 10−20

)
, where the

worm undergoes a strong twist at its head: the magnitude of κ l3 is much
larger at the worm’s head than other place along the body

current arc lengths and derivation of the incompressibility
condition in Section 2.4. We define a forward problem: to
solve for the position vector and rotation vector given exter-
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Fig. 23 Local curvature κ l1, κ
l
2, κ

l
3 (from top to bottom) along the C. elegans body centerline (vertical axis: 0 = head, 127 = tail) as a function of

time (horizontal axis), as computed from data (clip 1) for all the time frames. λ f = 10−3, λl = 10−6, λd = 102, Λκ = diag
(
0, 0, 10−20

)
and

Λω = diag
(
0, 0, 10−20

)

Fig. 24 Converged curvature
and angular velocity as a
function of time, using
λ f = 10−3, λl = 10−6,
λd = 102, Λκ = 0 and
Λω = diag

(
0, 0, 10−10

)

Fig. 25 Local curvature κ l3 along the C. elegans body centerline (vertical axis: 0 = head, 127 = tail) as a function of time (horizontal axis).
λ f = 10−3, λl = 10−6, λd = 102, Λκ = diag

(
0, 0, 10−20

)
and Λω = diag

(
0, 0, 10−10

)
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nal forces and torques. We have reproduced the numerical
examples in [12] and found that this formulation is robust
and convenient for analysis of complex dynamic behaviour
of slender rods.

A well-posed inverse problem may be solving for exter-
nal forces and torques, given both the position vector and
rotation vector. However, accessing both position and rota-
tional information may not be practical. For example, for
a biological worm moving freely in a fluid environment, it
is difficult to measure the worm’s local orientation (rota-
tion vector) while its centreline (position vector in the global
frame) can be reconstructed from video footage [72]. A com-
plementary problem that may be tackled with an analogous
approach considers a robotic worm exploring an unknown
space. Given sufficient local body sensors, the body posture
(including bending and twisting) would be reliably detected
by such a robot. However, in the absence of external location
data, the robot may lack positional information. Motivated
by these biological and engineering problems, we consider
an ill-posed inverse problemwhich solves for rotation vector,
external forces and torques given only the position vector.We
present a robust and efficient optimal control method to solve
this inverse problem: the objective is tominimise the discrep-
ancy between the position vector and a given centreline of the
Cosserat rod, and the control variables are the external forces
and torques, with regularisations of the rotation vector. The
regularisation terms provide constraints of the rotation vec-
tor so that the inverse problem is solvable. We have tested
the proposed optimal control formulation using data from
forward simulations and shown that the rotation vector can
be accurately computed with appropriate and controllable
regularisation parameters.

The proposed optimal control is applied to reconstruction
ofC. elegans locomotion based upon its centreline data from
laboratory recordings. The solvability of this challenging
inverse problem relies on meaningful regularisation terms.
The proposed approach allows us to add different terms con-
veniently to model C. elegans’ neuromusculature, and our
inverse model is demonstrated to be robust to a range of
regularisation parameters. There are five parameters (nine if
considering components ofΛκ andΛω) as shown in Table 1,
which also indicates theminimally-required non-zero param-
eters for the sake of convergence of our proposed method.

λ f and λl correspond to the control force f and torque l
respectively, which can stop ‖f‖ and ‖l‖ becoming infinite
and have the effect of stabilising the proposed method. λ f

and λl can be robustly chosen from a range of values based
on our numerical experiments, without a significant influence
on the main outputs such as the centreline x and curvature κ .

λd has a biological and anatomical grounding because it
keeps the normal direction d3 of the worm’s cross section
close to the tangential direction ∂sx of its body’s centre-
line. It also has a numerical effect of stabilising the proposed

method and differentiating the Cosserat rod and Kirchhoff
rod models: larger λd tends to force d3 to be the same as ∂sx
(approaching the Kirchhoff rod consequently).

λω3 in Λω = diag
(
λω1, λω2 , λω3

)
has a clear numerical

purpose, because our method needs it to be non-zero for con-
vergence. The other two components of Λω and all the three
components of Λκ = diag

(
λκ1, λκ2 , λκ3

)
can be zero. How-

ever, settingΛω andΛκ to non-zero values allows us tomodel
the muscular of C. elegans as pointed out in Section 3.4.

Several interesting topics have been stimulated by this
study, which are briefly summarised as follows:

The proposed optimal control formulation is based on a
combination of laboratory data and modelling of the worm’s
muscle structure. If we can collect the data of at least one
cross section’s movement of C. elegans, we can then apply a
Dirichlet boundary condition of α and use less regularisation
terms as commented in Remark 6 (λω3 can be zero then).
Measuring the movement of cross sections of a hair-thin C.
elegans in laboratory is technically difficult. However, setting
a mark and following one cross section may be possible and
would provide a possibility to validate the predictions of our
inverse model based on the above assumptions.

Having computed the local frames (rotation vectors), we
can then formulate these rotations into the objective func-
tion, and compute the external force f and torque l without
regularisation λd−, λω−, and λκ− terms. These force and
torque terms will provide us C. elegans’ muscle force quan-
titatively, which will help us to model and understand its
neuromuscular system.

One more interesting topic is modelling time evolution.
In this paper, a friction term (λω− term) is introduced to link
different time frames. An alternative approach is to introduce
a viscoelastic constitutive model as adopted in [53], which
is expected to more appropriate for modelling nematodes
locomotion [5].

Another way to formulate the underlining problem is to
apply a model for the force f , such as slender body theory
[49], then only use l as a control variable. Hopefully, this
would lead to a well-posed problem without additional reg-
ularisation terms.
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A Time discretisation

We introduce a time discretisation scheme forweak form (36)
or (40). LetM and S be the mass and stiff matrix respectively
after spacial discretisation, and F be force vector, the spatial
discretisation of (36) or (40) leads to the following algebra
partial differential system:

∂tv + Su = F, (66)

with

u =
(
x
α

)
, v = ∂t (Mu) . (67)

If the time domain is disretised as t0 = 0, t1, . . . with a time
frame of Δt = tn − tn−1, then (66) may be discretised as
follows.

vn − vn−1

Δt
+ Sn

un + un−1

2
= Fn, (68)

with

vn + vn−1

2
= Mnun − Mn−1un−1

Δt
. (69)

Rewrite (68) as

vn + vn−1

Δt
− 2vn−1

Δt
+ Sn

un + un−1

2
= Fn, (70)

and substitute (69) into (70), we have the final linear algebra
system:

[
Mn +

(
Δt

2

)2

Sn

]
un =

[
Mn−1 −

(
Δt

2

)2

Sn

]
un−1

+Δtvn−1 + Fn, (71)

with

vn−1 = 2Mn−1un−1 − 2Mn−1un−2

Δt
− vn−2 (72)

derived from (69).
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66. Pošta M, Roubíček T (2007) Optimal control of Navier-Stokes
equations by Oseen approximation. Comput Math Appl 53(3–
4):569–581

67. Rall LB (2014) Nonlinear functional analysis and applications:
proceedings of an advanced seminar conducted by theMathematics
Research Center, the University of Wisconsin, Madison, October
12-14, 1970. Elsevier

68. Ranner T (2020) A stable finite element method for low inertia
undulatory locomotion in three dimensions. Appl Numer Math
156:422–445

69. Ronzhina M, Manita L (2021) Singularity of optimal control for a
Timoshenko beam. In: Journal of Physics: Conference Series, vol.
1740, p 012068. IOP Publishing

123



432 Computational Mechanics (2023) 71:409–432

70. Sadek I, Sloss J, Adali S, Bruch J Jr (1997) Optimal boundary
control of the longitudinal vibrations of a rod using a maximum
principle. J Vib Control 3(2):235–254

71. Sadek I, Sloss J, Bruch J, Adali S (1986) Optimal control of a
Timoshenko beam by distributed forces. J Optim Theory Appl
50(3):451–461

72. Salfelder F, Yuval O, Ilett TP, Hogg DC, Ranner T, Cohen N
(2021) Markerless 3D spatio-temporal reconstruction of micro-
scopic swimmers from video. In: visual observation and analysis
of vertebrate and insect behavior 2020. Leeds

73. Seidman TI, Antman SS (2001) Optimal control of a nonlinearly
viscoelastic rod. In: Control of Nonlinear Distributed Parameter
Systems, pp 294–305. CRC Press

74. SonnevilleV,CardonaA,BrülsO (2014)Geometrically exact beam
finite element formulated on the special euclidean group se (3).
Comput Methods Appl Mech Eng 268:451–474

75. Spillmann J, TeschnerM (2007) CoRdE: Cosserat rod elements for
the dynamic simulation of one-dimensional elastic objects. In: Pro-
ceedings of the 2007 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pp 63–72

76. Strange K (2006) An overview of C. elegans biology. C. elegans
pp 1–11

77. Tian P (1997) Generalized optimal control of elastic and inelas-
tic structures subjected to earthquake excitation. University of
Missouri-Rolla, United States

78. Tröltzsch F (2010)Optimal control of partial differential equations:
theory, methods, and applications, vol. 112. American Mathemat-
ical Soc

79. Van Khang N, Phuc VD, Van Huong NT et al (2018) Optimal con-
trol of transverse vibration of Euler-Bernoulli beam with multiple
dynamic vibration absorbers using Taguchi’s method. Vietnam J
Mech 40(3):265–283

80. Wang Y (2022) A monolithic one-velocity-field optimal control
formulation for fluid-structure interaction problemswith large solid
deformation. J Fluids Struct 111:103577

81. Wang Y, Jimack PK,Walkley MA, Yang D, Thompson HM (2021)
Anoptimal controlmethod for time-dependent fluid-structure inter-
action problems. Struct Multidiscip Optim 64(4):1939–1962

82. Wick T, Wollner W (2020) Optimization with nonstationary, non-
linear monolithic fluid-structure interaction. Int J Numer Methods
Eng

83. Zelikin MI, Manita LA (2006) Optimal control for a Timoshenko
beam. Comptes Rendus Mécanique 334(5):292–297

84. Zhong WX (2006) Duality system in applied mechanics and opti-
mal control, vol 5. Springer Science & Business Media, Germany

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	A monolithic optimal control method for displacement tracking of Cosserat rod with application to reconstruction of C. elegans locomotion
	Abstract
	1 Introduction
	2 Governing equations for the Cosserat rod
	2.1 Global and local frames
	2.2 Conservation laws
	2.3 Expressions of angular velocity and curvature in terms of the angles of rotation
	2.4 Incompressibility assumption
	2.5 Finite element weak form

	3 The optimal control problem
	3.1 Primal equation
	3.2 Adjoint equation
	3.3 Optimality equation
	3.4 Relation to C. elegans locomotion problem

	4 A monolithic optimal control formulation
	5 Numerical tests
	5.1 Forward simulation of a cantilever beam 
	5.2 Optimal control using data from a forward simulation 

	6 Reconstruction of C. elegans locomotion based on experimental data
	7 Conclusion and discussion
	Acknowledgements
	A Time discretisation
	References




