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Abstract—Lifelong learning (LLL) represents the ability of an artificial intelligence system to learn successively a sequence of different

databases. In this paper we introduce the Dynamic Self-Supervised Teacher-Student Network (D-TS), representing a more general

LLL framework, where the Teacher is implemented as a dynamically expanding mixture model which automatically increases its

capacity to deal with a growing number of tasks. We propose the Knowledge Discrepancy Score (KDS) criterion for measuring the

relevance of the incoming information characterizing a new task when compared to the existing knowledge accumulated by the

Teacher module from its previous training. The KDS ensures a light Teacher architecture while also enabling to reuse the learned

knowledge whenever appropriate, accelerating the learning of given tasks. The Student module is implemented as a lightweight

probabilistic generative model. We introduce a novel self-supervised learning for the Student that allows to capture cross-domain latent

representations from the entire knowledge accumulated by the Teacher as well as from novel data. We perform several experiments

which show that D-TS can achieve the state of the art results in LLL while requiring fewer parameters than other methods.

Index Terms—Lifelong Learning, Teacher-Student framework, Self-Supervised learning, Representation Learning.

✦

1 INTRODUCTION

Lifelong learning (LLL) is an essential characteristic of all

living beings, which enables them to adapt to their environments

through learning from experiences. The lifelong learning is also

an important desired function of an artificial intelligence system,

capable of continually acquiring and assimilating novel concepts

from a dynamically changing data stream without forgetting previ-

ously learnt knowledge. In recent years, machine learning models

have surpassed human-level performance in individual tasks [1],

such as in Atari gaming [2] or in image recognition [3]. However,

LLL remains challenging to any machine learning model, usually

resulting in a significantly degraded performance on the previously

learnt tasks when successively retraining on multiple tasks. This

phenomenon is called catastrophic forgetting [4].

Many existing research studies have proposed to relieve for-

getting by using episodic memory systems [5], [6], [7], [8], [9]

or Generative Replay Mechanisms (GRMs) [10], [11], [12], [13],

[14], [15]. Episodic memory systems usually build a small buffer

which stores a subset of data samples from past tasks while

the model is regularized by a penalty term on the change of

network’ weights important to the past learnt tasks [5]. However,

episodic memory-based approaches are not scalable to an infinite

number of tasks. The GRM-based approaches developed in the

last few years exhibit several advantages over episodic memory

systems, such as not having to store the past data while being

able to provide very large amounts of generated samples. In this

paper, we mainly focus on the GRM based methods since GRMs

do not rely on real data from prior tasks which actually may

no longer be available. The first GRM-based work, proposed in

[13], employs the Generative Adversarial Network (GAN) [16] to

preserve and replay past data while a classifier is used to make

the prediction. The subsequent GRM-based studies [13], [15] are

followed by similar learning processes [13] and would focus on the

classification task. Moreover, GRM performs well on a sequence

of tasks within a single domain but would lead to degenerated
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Fig. 1. The overview of the learning procedure for the proposed lifelong
framework, which consists of three steps. First, when seeing a new task,
we perform the KDS evaluation, by employing either NLL or KFD crite-
rion, which guides us to perform either selection or expansion process
(Eq. (6)). Second, we train the Teacher module by using Eq. (7), where
we omit the GRM process when a selected expert is reused for learning
a new task. Third, we train the student module on real samples from the
current task combined with generative replay samples drawn from the
teacher module. The detailed pseudocode is provided in Section 3.7.

performance when each task is characterized by a different data

domain due to the mode collapse [17] (See empirical results in

Fig. 12a).

A natural approach to LLL is to use a mixture model, where

different mixture components would be specialized in learning

different data domains. However, existing architecture expansible

approaches [12], [18], besides focusing only on classification

tasks on a single domain, they also have two major drawbacks :

1) The expansion and selection processes in [12], [18], [19],

using Variational Autoencoders (VAEs), relies on the sample log-

likelihood of each component, which is limited when considering a
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more powerful implicit generative model [20]; 2) The approaches

from [12], [18] learn only a single latent representation space

and therefore can not capture the correlations of underlying latent

structures between different domains/tasks.

In this paper, we study a more challenging LLL setting in

which each task is defined on a different data domain. Our

learning goal is not only to capture the domain-specific underlying

factors but also to model the correlations on the factors between

multiple domains into a single embedded space. To implement

this goal, we propose a novel lifelong learning framework, called

the Dynamic Self-Supervised Teacher-Student (D-TS), where the

Teacher module is implemented by a dynamically expandable

Generating Adversarial Network (GAN) mixture model which

expands its network architecture according to the given tasks

complexity. In order to control the expansion of the Teacher and to

use the previously learnt knowledge for accelerating the learning

of new tasks, we introduce a new criterion, called the Knowledge

Discrepancy Score (KDS) that evaluates the relevance between

each learnt Teacher expert and the incoming task. Specifically, we

employ KDS to determine the novelty of an incoming task after

each task switch, guiding us to either reuse an existing expert

for learning a related task or build a new expert for learning an

entirely different task. To model the correlations on the underlying

factors between multiple domains, we develop a lightweight latent

variable generative model as the Student module and propose a

self-supervised learning approach that trains the Student module

on joint training set made up by mixing real training samples

with generative replay samples drawn from the Teacher module, as

shown in Fig. 1. In addition, we introduce a new regularized term

in the Student’s objective function, which minimizes the distance

between the posterior distribution learnt by the Student and the

conditional distribution parameterized by the identity information

of each expert. This regularized term encourages embedding

multiple knowledge sources from the Teacher into several clusters

in the latent space of the Student, which further improves the

cross-domain reconstruction and interpolation performance.

The main contributions of this paper are :

• We study a more challenging LLL setting in which we desire

to learn domain-specific representations while also inferring

the characteristics of these representations into a single latent

space.

• We propose a new LLL framework, namely the Dynamic

Self-Supervised Teacher-Student Network (D-TS), which en-

ables the Teacher to expand its network architecture in

order to learn an infinite number of tasks. Meanwhile, the

Student module in D-TS is self-supervise trained to learn

both predictive as well as generative representations across

domains.

• We propose a new criterion, called the Knowledge Discrep-

ancy Score (KDS) which controls the selection and expansion

of the Teacher module without the need to infer from each

component.

• We introduce a new conditional prior that computes corre-

lations between the latent representations of the previously

learnt databases and the domain of a newly given task,

encouraging to embed different knowledge sources (modelled

by different Teacher experts) into different clusters from the

latent space of the Student during the knowledge discovery

process.

• We analyze the forgetting behaviour of the Student when the

Teacher dynamically changes its architecture by developing

a new theoretical framework.

The rest of the paper is organized as in the following. Section 2

provides an overview of the lifelong learning area. The Dynamic

Self-Supervised Teacher-Student (D-TS) framework is described

in Section 3 and some of its applications in Section 4. The

theoretical knowledge bounds are provided in Section 5. The

experimental results are provided in Section 6 and the conclusions

of this study are drawn in Section 7.

2 RELATED RESEARCH

In this section, we provide a brief background of related works.

2.1 Knowledge distillation

Knowledge distillation (KD) aims to transfer information from a

large network, called the Teacher, to a smaller network, called

the Student. KD has been widely used for classification tasks

[21], [22], [23], [24], [25]. Some of the works also explore

training a single Student model from an ensemble of networks

to achieve higher performance with fewer computations [26],

[27], [28], [29]. KD has also been used in lifelong learning

(LLL), in the Teacher-Student (LTS) framework [30], where the

Teacher module is trained across multiple tasks while the Student

module learns both the information from a new task and that

generated by the Teacher, representing the accumulated knowledge

of previous tasks. However, LTS lacks scalability to learning an

infinite sequence of tasks given that the Teacher module does not

expand its network architecture when learning new tasks while

its information capacity is limited. The quality of the Student’s

representations is also affected, especially when the Teacher learns

a sequence of entirely different tasks. Additionally, most KD ap-

proaches focus on predictive tasks while KD remains unexplored

for generative modelling under LLL.

2.2 Dynamic architectures

Dynamic Architecture Methods (DAMs) represent a popular ap-

proach for Continual Learning (CL) consisting of dynamically

adding new network layers and hidden nodes in order to learn

novel tasks [31], [32], [33], [34], [35], [36], [37]. These ap-

proaches would usually divide the network layers into shared and

task-specific components, where the number of the latter can be

expanded for new tasks [33]. The primary drawback of these mod-

els is that most existing DAMs would only focus on classification

tasks and can not learn meaningful representations across domains

under the unsupervised learning setting. Furthermore, there were

some attempts for using mixture models to learn complex datasets

[38], [39], [40] or learn an infinite number of tasks [12], [18],

[41], [42]. However, the expansion of these models relies on

the estimation of the sample log-likelihood, which requires each

expert to have an explicit probabilistic function form. This is not

the case in the proposed D-TS model since the expansion and

selection of components in D-TS is based on the proposed KDS

criterion requiring each expert to have a sampling procedure.

2.3 Memory buffer based methods

Storing few past data samples in a small memory buffer, used to

alleviate catastrophic forgetting, was shown to achieve promising

results in CL [5], [6], [7], [8], [43], [44], [45]. However, when in-

creasing the number of tasks, the memory size and computational
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complexity burden of memory based methods would increase

indefinitely [8]. Therefore, some works propose to employ a

Generative Replay Network (GRM) [10], [11], [12], [13], [14],

[15], [40], [46]. GRMs are able to generate data which are

probabilistic consistent with the training data without employing

any memory buffers. Thus the aim of GRMs is to preserve the

knowledge of the previously learnt tasks. For instance, a typical

GRM based approach usually trains a generator (VAE or GAN)

for producing data samples after each task learning switch. These

generative replay samples are incorporated together with samples

drawn from a new task, to form a joint dataset. The generator

and a classifier are trained on this joint dataset during the current

task learning in order to assimilate knowledge from both the past

and novel data sets. However, most existing GRM based methods

are focused on the supervised learning setting [13], [15] while

learning representations under CL is addressed by very few works

[10], [11], [12]. The method from [10] is the first work to explore

learning disentangled representations across domains under CL by

using the VAE framework, where the environment-specific latent

variables are used to model generative factors from a specific

domain/task. Then a dynamic expansion mechanism is introduced

in [12] to increase the inference capacity for novel data samples.

Recently, the Teacher-Student structure is also used in the VAE

framework [11] in order to maintain the performance on previous

tasks by transferring the knowledge between its two modules.

However, these GRM based models are not suitable for learning

a long sequence of tasks due to their limited capacity and for

frequently employing generative replay processes [42], [45].

In this paper, we introduce a new theoretical framework that

not only provides insights into the forgetting behaviour of GRM

based methods but also assesses the performance change in the

Student module when modifying the Teacher architecture.

3 DYNAMIC SELF-SUPERVISED TEACHER-

STUDENT NETWORK (D-TS) FRAMEWORK

3.1 Problem definition

Let Pi and Pi be the distributions for the training set and testing

set of the i-th task, respectively. For a sequence of domains (tasks)

{T1, T2, . . . , TK}, we assume that each distribution Pi, defined

on the data space X ∈ R
d, is drawn from a domain Ti. In the

context of lifelong learning, a model M only accesses samples

drawn from Pi at the i-th task learning. Our learning goal is to

train M to capture the generative factors from a sequence of tasks

{Ti | i = 1, . . . ,K} without forgetting previously learnt latent

representations. Our model consists of a Teacher module made

up of a mixture of Generative Adversarial Networks (GAN) and

a Student module, implemented by a generative latent variable

model.

3.2 Preliminaries

In the following we describe the Generative Adversarial Network

(GAN), which is used as an expert in the proposed mixture for the

Teacher module [30]. A GAN [16] consists of two components :

a generator network Gε : Z → X and a discriminator network

Dβ : X → R. The generation process is started by drawing a

random noise vector z ∈ Z from a fixed multivariate Gaussian

distribution as the input of the generator Gε(z) which outputs a

fake image x′. The discriminator network Dρ(x), of parameters

ρ, is trained to distinguish x′ from a real image x, while the

generator is trained to generate fake images x′ that can fool the

discriminator. In this paper, we employ the Wasserstein GAN

(WGAN) [47], [48] in the Teacher module whose training is

defined by the loss function :

min
Pε

max
Dρ∈Θ

Exi∼Pi [Dρ (xi)]− Ex′∼Pε [Dρ (x
′)]

+ γEx̂∼Px̂

[(
‖∇x̂Dρ (x̂)‖2−1

)2]
,

(1)

where Pε is the distribution approximated by the generator Gε(z).
x̂ is the interpolated image produced by x̂ = axi + (1 − a)x′

where a is drawn from a uniform distribution U(0, 1) and Px̂

is the distribution of the interpolated images. The last term is

used to ensure the discriminator’s Lipschitz constraint [48], and

its weighting hyperparameter is considered as γ = 10 in the

experiments.

3.3 The knowledge discrepancy score

Before we introduce the D-TS framework, we firstly describe the

Knowledge Discrepancy Score (KDS) which is used to control

the expansion of the Teacher module. Existing mixture models

[12], [18] use the log-likelihood, evaluated by each component

with a new training set, for the expansion or selection process.

However, these mixture models require each component to have

an inference mechanism (sample log-likelihood estimation), which

does not allow for the use of explicit generative models as experts.

Additionally, the selection of experts in existing mixture models

do not consider a measure of comparison between the characteris-

tic distribution of each expert and the probabilistic representation

of the novel task. In the following, we introduce a novel approach

to evaluate the expansion and selection of components for the

mixture model using KDS, which addresses these two drawbacks.

Definition 1. The Knowledge Discrepancy Score (KDS). Given

two distributions C and Q sampled from X , let us define

a distance measure function η(·). The KDS between two

distributions is defined as :

KDSη (C,Q) = η (Φ (XC) ,Φ (XQ)) , (2)

where XC ∈ R
n×d and XQ ∈ R

n×d are two data matrices

formed by n samples drawn from C and Q, respectively, where d
is the dimension of each sample vector. Φ(·) is a mapping which

can be of arbitrary complexity. In the following, we introduce two

measures for implementing KDS.

Knowledge Fréchet Distance (KFD). A direct approach is to

evaluate the distance between two distributions in the high-

dimensional data space by using a probabilistic measure, requiring

additional computations [49], or auxiliary training [50], [51].

Recently, perceptual features extracted from deep Convolutional

Neural Networks (CNN), pre-trained on ImageNet [3], have shown

benefits in style matching [52] and transfer learning [53]. This

motivates us to measure the KDS in the feature space to reduce

the required computation complexity. In the following we propose

the Knowledge Fréchet Distance (KFD), which uses the Fréchet

distance [54] to implement η(·), evaluated on the low-dimensional

feature space, as :

KDSKFD
η (C,Q) = ‖e (Φ (XC))− e (Φ (XQ))‖

+Tr [κ(Φ (XC)) + κ(Φ (XQ))−

2 (κ (Φ (XC))κ (Φ (XQ)))
1/2

]
,

(3)
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where Φ(·) is a mapping function transforming XC into the fea-

ture matrix X′
C ∈ R

n×d′ , d′ < d by using the feature extractor,

which in our experiments is implemented by the last layer of an

Inception network, trained on ImageNet, while Tr(·) is the trace.

e(·) and κ(·) are used to calculate the mean vector and covariance

matrix for X′
S . The Knowledge Fréchet Distance (KFD) repre-

sents the generalization of the Fréchet Distance Score [55].

Negative log-likelihood (NLL). For evaluating the novelty and

similarity between the knowledge associated with each expert and

that of the incoming task we can use a measure of the knowledge

learned by the Student, which is implemented as a VAE, and

represents the depository of the knowledge from all previous tasks.

The Student is able to estimate the sample log-likelihood across

domains. A similar log-likelihood indicates that the given task is

known to the Student module. So the similarity measure function

η(·) in this case for KDS is given by :

KDSNLLη (C,Q) = |L′ (Φ (XC))− L′ (Φ (XQ))| , (4)

where Φ(·) is implemented as the identity function and

L′(XC) = (1/n)
∑n
i=1 NLOG(XC [i]) where XC [i] is the i-th

row of XC and NLOG(·) is the estimator for the negative sample

log-likelihood, implemented by the Student module (See Eq. (8)).

NLL can be computed more efficiently than KFD because it is

directly estimated by the Student module and does not require an

externally pre-trained network.

3.4 The Teacher module

Existing Teacher-Student frameworks, such as the Lifelong

Teacher-Student (LTS) [30], use a single GAN as the Teacher, but

such approaches have limitations when learning several different

datasets due to the mode collapse problem [17] (see also the

empirical results in Section 6.6). In this paper, we develop a novel

infinite mixture of GANs as a dynamically expandable experts-

based memory system for the Teacher module in order to learn a

growing number of different tasks. To ensure a compact network

architecture, we require that a certain expert learns several data

domains from tasks that have similarities with each other. We

assume that after the t-th task learning is finished, we have trained

K experts {Gε1 , . . . , GεK}. Let Pi represent the probabilistic

representation of Gεi . The dynamic expansion and selection

mechanism of the Teacher module is shown in Fig. 2, where

KDSη(·, ·) is evaluated between the knowledge accumulated by

each expert and that corresponding to the incoming task. .

Selection and expansion using KDS. From Fig. 2, after learning

the t-th task, the component selection and network expansion

procedure is performed by a non-parametric inference process

in which we firstly evaluate the Knowledge Discrepancy Score

(KDS) between the probabilistic representations of the new dataset

Pt+1, and those corresponding to the Teacher’s experts Pi,

i = 1, . . . ,K :

q =

{
0, min {KDSη (Pi,Pt+1)}i=1,...,K > hold ;

1, min {KDSη (Pi,Pt+1)}i=1,...,K ≤ hold ,
(5)

where q is the probability of performing either network expansion

or component selection for updating, and hold is a threshold. Then

the selection probability pi of each expert is updated as :

pi =





q × (1/KDSη (Pi,Pt+1))∑K
j=1 (1/KDSη (Pj ,Pt+1))

, i < K + 1 ;

1− q, i = K + 1 .

(6)

If q = 0, then the Teacher module expands its capacity, p(K+1) =
1, otherwise the Teacher module selects the most appropriate

expert for learning the new task, according to {p1, p2, . . . , pK}.

Fewer epochs would be used for updating an existing expert when

compared to training a new component added to the Teacher.

Training the infinite mixture model. After determining the selec-

tion probability, we define the Teacher’s loss function for the

following (t+ 1)-th task, as :

min
ε1,...,εS⋆

max
Dρ∈Θ

S∗∑

i=1

{
wi

(
Ext+1∼Pt+1

[Dρ (xt+1)]

−Ex′
i∼Pi [Dρ (x

′
i)]

+λEx̂∼Px̂

[(
‖∇x̂Dρ (x̂)‖2−1

)2])}
,

(7)

where S⋆ represents the number of experts, determined by S∗ =
K if the Teacher does not expand (q = 1 in (5)) at the (t + 1)-
th task learning, otherwise S⋆ = K + 1 when a new expert is

added. The regularization weight is considered in the experiments

as λ = 10. The Teacher is then trained using Eq. (7) with

the expert’s weights w sampled from a Categorical distribution

Cat(p1, . . . , pS⋆). We name D-TS-KFD when considering the

Knowledge Fréchet Distance (KFD), and D-TS-NLL for using the

Negative log-likelihood, for KDS in order to decide whether to

select a new component for the Teacher module.

3.5 The Student module

For the design of the Student we consider two crucial require-

ments : 1) A light architecture with fewer parameters than the

Teacher module; 2) A powerful inference mechanism for rep-

resentation learning. Let us consider the latent variable genera-

tive model pθ(x, z,u)=pθ(x | z,u)p(z,u), where the categorical

variable u, also called expert-variable, represents the identity

information while the continuous variable z represents the funda-

mental generative factors. The learning goal of the Student module

for a single task is that of maximizing the intractable marginal

log-likelihood log p(x)=
∫∫

log pθ(x | z,u)p(z,u) dz du by op-

timizing a lower bound (derived in Appendix A from the Supple-

mentary Material) :

log p(x) ≥ Eq(z,u|x) [log p(x | z,u)]

−DKL(q(z |x) || p(z))

−DKL(q(u |x) || p(u)) ,

(8)

where the posterior p(z,u |x) is intractable and is approximated

by the variational distribution q(z,u |x). We introduce two vari-

ational distributions, qω(z |x) and qψ(u | z) to model q(z,u |x),
where the former is implemented by a neural network of input x

and yielding the latent representation z. qψ(u | z) is implemented

by an expert-inference network whose last layer outputs the

softmax probabilities {u′
1,u

′
2, . . . ,u

′
k}, indicating the likelihood

that z is associated with one of the experts. In order to reduce the

variation of gradients [56], we adopt the Gumbel-Max trick [57],

[58], which was also used in [56], [59], [60], [61], to calculate a

differentiable relaxation for the discrete variables u :

bk =
exp ((logu′

k + gk)/T )∑k
i=1 exp ((logu

′
i + gi)/T )

, (9)

where u′
k is the probability defined by the softmax function

qψ(u | z) and b = {b1, · · · ,bk} is the continuous relaxation of

u. gk is sampled from Gumbel(0, 1) distribution, while T is the
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Fig. 2. The learning procedure for D-TS. When learning the (t + 1)-th task learning, we perform the KDS evaluation between its probabilistic
representation Pt+1, and those corresponding to the Teacher’s experts, Pi, i = 1, . . . ,K. If the minimum KDS is larger than a threshold hold, then
we add a new expert to the mixture system, otherwise, we select the expert with the minimum KDS for learning the (t + 1)-th task. The activated
experts are shown in red. The Student is trained along with the Teacher aiming to compress the knowledge from different sources (experts) into a
compact latent space.

temperature parameter controlling the smoothness. This sampling

process is implemented during both inference and generation.

Given that we use a simple fixed prior p(z) in Eq. (8), this

can not be helpful for embedding multiple knowledge sources

from the Teacher into several clusters in the Student’s latent

space. In addition, the simple fixed prior would lead to posterior

collapse, [62]. Furthermore, Eq. (8) still requires an extra network

to approximate q(u |x). To address these issues, we propose to

modify the two Kullback-Leibler (KL) terms in Eq. (8). Firstly,

we approximate q(u |x) by using the expert inference network

in which z is firstly sampled from qω(z |x) and then is used

as input to qψ(u | z). Therefore, the second KL term in Eq. (8)

is replaced by Eqω(z |x)DKL(qψ(u | z) || p(u)), where qψ(u | z)
is optimized to match the expert-variable. Secondly, we replace

the prior p(z) with a new conditional distribution p(z |u) that

dependents on u. Then the first KL term in the right-hand side

of Eq. (8) is expressed by DKL(qω(z |x) || p(z |u)). We imple-

ment p(z |u) considering the conditional Gaussian distribution

N (B(u∗
j ), I), where u∗

j ∈ R represents the index of the j-th

expert Gεj and B(·) transforms the ground truth expert-variable

u∗
j into a vector where each item is u∗

j , and I is the identity

matrix. When a single expert Gεj is used for the Student training,

the objective function for the student is defined as :

Eq(z,u |x) [log pθ(x | z,u)]−DKL(qω(z|x) || p(z |u))

− Eqω(z |x)DKL(qψ(u | z) || p(u)) .
(10)

We desire to minimize the KL divergence between qω(z |x) and

the prior p(z |u), assumed to be Gaussian functions, in order to

allow the Student to embed knowledge inferred from different

sources (experts that are assigned by the unique expert-variable

from the Teacher module) into different regions of its latent space.

-

3.6 Self-supervised learning for the Student

Existing KD approaches assume that data samples are provided by

the user during the training. However, in the context of the lifelong

learning setting, we do not have access to past samples and these

KD approaches can not be applied in our framework. In this paper,

we introduce a novel Self-Supervised Learning (SSL) approach in

which past data samples are generated by the Teacher. Then, these

pseudo samples can be used for training the Student. Additionally,

unlike existing KD approaches that transfer knowledge only at

the logit-level [63], [64], [65], the proposed SSL can transfer

statistic data representations through sampling without accessing

any real samples and labels. Moreover, the proposed SSL transfers

the knowledge from the Teacher represented by multiple source

distributions, implemented by mixtures of expert GAN models

as described in Section 3.4, to a compact Student latent space.

An ideal solution for the knowledge transfer is to minimize

the distance between the Teacher’s and Student’s probabilistic

representations. While KL divergence was used for KD [24]

before, this paper is the first work to explore KL for generative

modelling under the LLL. KL can have a tractable optimization

form, as shown in the following.

Proposition 1. Let S be the Teacher’s distribution and S(x)
be the density function of S. Let Pθ represent the Student’s

distribution. Minimizing DKL(S || Pθ) can be formulated as

maximizing the log-likelihood of pθ(x) with the expectation

of S.

DKL (S || Pθ) = Ex∼S [logS (x)− log pθ (x)] . (11)

The detailed proof is provided in Appendix B from the Supple-

mentary Material. We omit the first term from the right hand

side of Eq. (11) because we only update the Student’s parameters

during the optimization of Eq. (11). Therefore, the minimization

of DKL (S || Pθ) becomes the maximization of Ex∼S [log pθ(x)].
Since our Teacher has several experts, we implement S(x) as

the mixture density function S(x) = (1/Z)
∑K
i=1 πimεi(x),

where K is the number of experts and Z is the normalizing term.

mεi(x) is the density function for the i-th expert, parameterized

by εi. By considering πi = 1/K we ensure that each expert has

equal contribution. The mixture density function is optimized by

maximizing :

Ex∼S[log pθ(x)] =

∫
1

Z

∑K

i=1

{
πimεi (x) log pθ (x) dx

}

=
1

Z

∑K

i=1

{
πiEx∼Pi [log pθ (x)]

}
. (12)

The normalization term (1/Z) is omitted during the optimization

for the sake of simplification. The final loss function for the Stu-

dent when learning a certain task, including the loss function from

Eq. (12), and the Evidence Lower Bound (ELBO) on the current
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task, Eq. (10) (details in Appendix C from the Supplementary

Material), is given by :

LStu = Eqω,ψ(z,u |xt)

[
log

pθ (xt, z,u)

qω,ψ (z,u |xt)

]

︸ ︷︷ ︸
ELBO on the t-th task

+

∑K

i=1
πiEx̂i∼PiEqω,ψ(z,u | x̂i)

[
log

pθ (x̂i, z,u)

qω,ψ (z,u | x̂i)

]

︸ ︷︷ ︸
ELBO on the generative replay samples

,

(13)

where the random variables {x̂1, . . . , x̂K ,xt} are mutually inde-

pendent and are sampled from their corresponding distributions

{P1, . . . ,PK ,Pt} characterizing the generated data by K experts

from the Teacher module and the given new t-th task, respectively.

3.7 The training algorithm

In the following, we provide Algorithm 1, describing the process-

ing pipeline of the proposed lifelong learning strategy, summarized

in three steps :

• Step 1. Selection and expansion mechanism : When starting

learning the first task T1, the Teacher module has no experts.

In this case, we build a new expert according to the training

procedure from Step 2, otherwise we verify the Teacher’s

expansion and selection as follows : we evaluate the KDS

between each Teacher’s expert and the training set of the

current task Ti by using the criterion KFD or NLL, as

described in Section 3.4. Then we employ the threshold hold
from Eq. (5) and Eq. (6), to decide either the selection of an

expert to be updated, or initiating the expansion process for

the Teacher module.

• Step 2. Training an expert for the Teacher : If the Teacher

module performs the expansion at the current task learning

Tt, then we directly train the newly added expert on samples

from Tt, otherwise, we form a joint dataset X̂t = Xt
⋃
X′,

including the new training set Xt ∼ Tt and X′ ∼ Gεs ,

where s is the index of the selected expert. We then update

the selected expert on the dataset X̂t at Tt by using Eq. (7).

• Step 3. Student learning : During each batch learning,

we draw the same number of generative samples from each

Teacher expert. These generative samples are incorporated

with real training samples of the current task, considered in an

equal probability with that generated by each of the experts.

These will form a batch of samples for training the Student

module using Eq. (13). The Student model is initialized

each time with the parameters learnt previously, while its

parameters are randomly generated only when trained for the

first time.

4 APPLICATIONS

In the following we outline some applications of the proposed

lifelong learning framework.

4.1 Prediction tasks

In this section, we extend the D-TS framework for classification

tasks. We implement each expert from the Teacher module by

using a combination of a generator and a solver. The solver is a

neural network, which outputs the class probability, after being

trained by minimizing the cross-entropy loss :

LcTeach = Ex∼Pt,y∼PY,t
L(Tδ̂s(y | x),y) , (14)

where {Pt,PY,t} represent the distributions of data and their

labels, from the t-th task, L(·) is the cross-entropy loss and

Tδ̂s(y |x) is the solver, defined by parameters δ̂s in the selected

expert. In order to allow the Student to perform data classification

tasks, we introduce an inference model Sλ(y |x) for the Student

module, trained on images and labels sampled from the data

generated by the Teacher and by using samples from the current

database :

LcStu = Ex∼Pt,y∼PY,t
L (Sλ (y |x) ,y)

+
∑K

i=1

∑Ni

j=1

{
L
(
Sλ

(
y | x̂ji

)
, Tδi

(
y | x̂ji

))}
,

(15)

where x̂
j
i is the j-th data sample, j = 1, . . . , Ni drawn by the

i-th expert from the Teacher module, while K is the number

of experts. The first term compares the outputs predicted by the

Student against the ground-truth labels from the current task. The

second term represents the distillation loss calculated by the cross-

entropy between Softmax outputs provided by the Student module

while the target labels are produced by the Teacher. Eq. (15) is

only used to optimize Sλ (y |x) and we also introduce a loss

to optimize both Sλ (y |x) and other components of the Student

module by incorporating the variable y into Eq. (13), resulting in :

LDecStu = E
q(z,u,y|xt)

[
log

p (xt | z,u,y)

q (z,u,y | xt)

]
+

∑K

i=1

{
πiEx̂i∼PiEq(z,u,yi|x̂i)

[
log

p (x̂i | z,u,y)

q (z,u,y | x̂i)

]}
,

(16)

where we no longer specify the network parameters. The inference

model q(y |x) is modelled by the Gumble-max distribution [57]

whose parameters are sampled from the probabilistic outputs of

Sλ(y |x) in order to enable the end-to-end optimization.

4.2 Learning disentangled representations

Most artificial learning approaches aiming to describe meaningful

feature variations through generative learning are based on the

latent variable model and in VAEs would impose a penalty term

in the loss function in order to induce disentangled representations

[59], [66], [67], [68], [69], [70]. For enticing the learning of dis-

entangled representations under the lifelong learning framework,

we consider the following loss function for the Student module :

LDisStu =
∑K

i=1

{
πiEx′

i∼PiEqω,ψ(z,u |x′
i)
[log pθ (x

′
i | z,u)]

− τ
∥∥Ai − C

∥∥
}
+ Eqω,ψ(z,u |xt) [log pθ (xt | z,u)]

− τ |At − C| , (17)

where At = DKL(qω(z |xt) || p(z |u)) is the KL divergence

between two distributions estimated on the current task t. Ai =
DKL(qω(z |x

′
i) || p(z |u)) is the KL divergence estimated by

using past data. τ and C are parameters controlling the disen-

tanglement. We set τ = 4 in our experiments to avoid sacrificing

much reconstruction ability, while C is linearly increased from a

very small value 0.5 to 25.0 during the training, [69]. We omit

the KL term on q (u | z) since this term would not benefit from

disentangled representation learning.

4.3 Inter-domain interpolation

After the lifelong learning, the model M provides several latent

representations {z1, z2 . . . , zK} where each zi represents the

generative factors for images sampled from Pi. The LLL model
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TABLE 1
The performance of various models under the MSFIR lifelong learning setting.

MSE SSMI PSNR

Datasets LGM D-TS-KFD D-TS-NLL BE-Stu LTS LGM D-TS-KFD D-TS-NLL BE-Stu LTS LGM D-TS-KFD D-TS-NLL BE-Stu LTS

MNIST 19.60 26.84 28.61 33.66 73.97 0.90 0.88 0.87 0.86 0.73 22.51 21.14 20.64 20.13 17.10

SVHN 292.15 29.67 31.04 71.58 42.98 0.36 0.65 0.64 0.47 0.54 11.33 12.65 12.58 12.13 11.91

Fashion 80.95 39.35 48.96 149.26 45.64 0.17 0.72 0.66 0.47 0.72 12.65 18.38 17.01 13.57 17.77

IFashion 94.32 35.92 37.94 83.44 37.60 0.58 0.74 0.75 0.61 0.76 16.35 18.70 17.86 15.89 18.34

RMNIST 19.58 24.09 23.81 24.29 21.97 0.90 0.89 0.89 0.90 0.90 22.51 21.46 21.53 21.57 21.64

Average 101.32 31.17 34.07 72.45 44.83 0.58 0.78 0.76 0.66 0.73 17.07 18.47 17.92 16.66 17.35

Algorithm 1: D-TS-KFD training algorithm

Input: All training databases
Output: The model’s parameters

1 The total number of tasks (n) ;
2 for i < n do
3 Step 1 : Selection and expansion mechanisms ;
4 if i == 1 then
5 Build a new expert Gε1 for the teacher module ;
6 end
7 else
8 Calculate KDS between each teacher expert and Pi ;
9 Check the selection and expansion using Eq. (5), (6) ;

10 if expansion = True then
11 Build a new expert for the teacher module ;
12 end
13 else
14 Select an expert for the current task learning ;
15 end
16 end
17 Step 2 : Teacher learning;

18 X
t ∼ Pi from the training set ;

19 The index of the selected expert (s) ;
20 if expansion = False then

21 X̂
t = X

t
⋃

X
′, X′ ∼ Gεs Form a joint dataset ;

22 end
23 The total number of training steps (Bi) at Ti ;
24 w ∼ Cat(p1, . . . , pS⋆) Draw expert’s weight ;
25 for j < Bi do

26 Train the Teacher on X
t using Eq. (7) ;

27 Step 3 : Student learning ;
28 {x̂1, . . . , x̂k,xt} ∼ {P1, . . . ,Pk,Pt} ;
29 xb = {x̂1, . . . , x̂k,xt} Form a batch of samples ;
30 Train the student on xb using LStu ;
31 end
32 end

besides representing the generative factors for each domain Ti
it also captures the shared generative factors across domains.

To evaluate this property, we are interested in manipulating the

latent variable space and interpolating between images drawn

from two different domains. Let xi and xj be two images drawn

from the i-th task and j-th task, respectively. Let x̃i→j(c) =
Dec(zic + zj(1 − c)) be the interpolated image for the inter-

polation parameter c ∈ [0, 1], where Dec(·) is the decoder and

{zi, zj} are the latent representations of xi and xj , respectively.

We extend the image interpolation from [71] into exploring the

joint latent space of {T1, T2, . . . , TK}, under the LLL setting:

• Boundary conditions. x̃i→j(0) = xi and x̃i→j(1) = xj

when Dec(·) is the optimal decoder.

(a) With conditional prior. (b) Without conditional prior.

Fig. 3. Latent space projections for D-TS model.

• Monotonicity. We assume that Dec(.) is the optimal decoder.

For a given distance measure φ(·, ·) evaluating the similarity

between two images, we can define the distance between the

interpolated image and the original input :

φ(x̃i→j(c),x
i) ≤ φ(x̃i→j(c

′),xi) , (18)

where c′ > c and

φ(x̃i→j(c
′),xj) ≤ φ(x̃i→j(c),x

j) , (19)

• Smoothness. The interpolation function x̃i→j(c) is Lipschitz

continuous with a constant V .

‖x̃i→j(c), x̃i→j(c+ a)‖ ≤ V |a| . (20)

Different from [71], we aim to learn latent representations

under the LLL setting, which is more challenging because neural

network models would forget previously learnt latent representa-

tions when trained on a new task. Given the image interpolation

properties from above, we define a new criterion evaluating the

effectiveness of the model when performing image interpolation:

Ψ(x̃i→j(c),x
j), c > 0.5 , (21)

where Ψ(·) is a pre-defined criterion which can be implemented

as the image reconstruction error. If Ψ(x̃i→j(c),x
j) is small, this

means that the interpolated result x̃i→j(c) is very similar to xj ,

as c increases.

5 THEORETICAL ANALYSIS OF THE FORGETTING

BEHAVIOUR FOR THE STUDENT

In this section, we extend the theoretical analysis from [42] to

the proposed Teacher-Student framework, with the emphasis on

studying the forgetting behaviour of the Student.
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Threshold 150

Add expert Add expert

(a) KFD when learning 5 tasks.

Threshold 50

Add expert

Add expert

(b) NLL when learning 5 tasks. (c) Network expansion in D-TS.

Fig. 4. Knowledge discrepancy evaluation and the expansion of the network during the training.

5.1 Preliminary

Definition 2. Let h : X → Y be a classifier defined as h ∈ H,

where H is the classifiers’ domain and Y is an output

space, represented as {−1, 1} for binary classification, and

{1, 2, . . . , n′}, n′ > 2 for multi-class classification.

Definition 3. Let Pt−ii be the pseudo distribution of Pi formed by

samples drawn from {x,y} ∼ P
t
ε1 if Ftask(x) = i, where

Ftask(·) is the task labelling function that returns the true

task label for x. We assume that the Teacher has a single

component. Therefore, P
t
ε1 is the distribution of the joint

samples {x, y} drawn from the probabilistic representation of

the Teacher trained at the t-th task, where the label y for each

generated data x is given by the solver of the Teacher. The

superscript of Pt−ii represents that the pseudo distribution P
1
i

is refined to P
t−i
i , when the Teacher is trained for t− i times

from the (i+ 1)-th task to the t-th task through GRM.

Definition 4. (Discrepancy distance.) Let Pi and Pi be two

distributions over the space X × Y . Let L be a symmetric

and bounded loss function ∀(y, y′) ∈ Y2,L(y, y′) ≤ A′,

and L obeys the triangle inequality, where A′ is a positive

number. We define the discrepancy distance Disc(·, ·) between

two marginals, Pi and Pi as :

Disc
(
PX
i , PX

i

)
= sup

(h,h′)∈H2

∣∣∣ E
PX
i

[L (h′ (x) , h (x))]

− E
PX
i

[L (h′ (x) , h(x))]
∣∣∣,

(22)

where PX
i and PX

i are marginal distributions of Pi and Pi on X ,

respectively.

Definition 5. (Error function.) Let L be the bounded loss function

satisfying the symmetric and triangle inequality. We define the

error function for the distribution Pi as :

R (h, Pi) =
1

n

n∑

j=1

L
(
h
(
xij

)
, yij

)
, (23)

where n is the number of samples and {xij , y
i
j} is the j-th

labelled sample drawn from Pi.

5.2 Forgetting analysis when the Teacher does not

change its network architecture

In this section, we firstly analyze the forgetting behaviour of the

Student when the Teacher does not change its network architec-

ture.

Theorem 1. Let h ∈ H be the classifier of the Student. We define

the risk bound of h for a certain task (Ti) at the t-th task

learning as :

R (h, Pi) ≤R′
(
h, ht−ii ,Pt−ii

)
+Disc

(
PX
i ,Pt−ii,X

)

+ σ
(
Pi,P

t−i
i

)
,

(24)

where σ(Pi,P
t−i
i ) is the optimal combined error, given by :

σ
(
Pi,P

t−i
i

)
= R′

(
h⋆i , hi, Pi

)
+R′

(
hi, h

t−i
i ,Pt−ii

)
, (25)

and we define R′(h⋆i , hi, Pi) as :

R′
(
h⋆i , hi, Pi

)
=

1

n

n∑

j=1

L
(
h⋆i

(
xij

)
, hi(x

i
j)
)
, (26)

and ht−ii is the optimal classifier for Pt−ii , expressed by :

ht−ii = argmin
h∈H

R(h,Pt−ii ). (27)

h⋆i and hi are the true labelling function and the optimal

classifier for Pi.

The detailed proof can be seen in [42]. From Theorem 1 we can

not explicitly know how the previously learnt knowledge is lost.

In the following, we derive an analytical risk bound which can

explain what factors would explain the forgetting of the Student

while the Teacher continually learns multiple tasks.

Lemma 1. Let h ∈ H be the classifier of the Student. We define

the analytical risk bound of h for the i-th dataset at the t-th
task learning as :

R (h, Pi) ≤R′(h, ht−ii ,Pt−ii )

+
t−i−1∑

j=−1

Disc(Pji,X ,Pj+1
i,X ) + σ(Pji ,P

j+1
i ).

(28)

Proof. Firstly, we derive the risk bound between Pi and P
0
i

according to Eq. (24) :

R (h, Pi) ≤R′(h, h0
i ,P

0
i )

+ Disc(PX
i ,P0

i,X ) + σ(Pi,P
0
i )

(29)

Then we treat P0
i as the target distribution and P

1
i as the source

distribution, and derive the following risk bound :

R′(h, h0
i ,P

0
i ) ≤R′(h, h1

i ,P
1
i ) + Disc(P0

i,X ,P1
i,X )

+ σ(P0
i ,P

1
i )

(30)
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TABLE 2
The performance when learning a sequence of six tasks.

MSE SSMI PSNR

Datasets BE-Stu D-TS-KFD D-TS-NLL LGM LTS BE-Stu D-TS-KFD D-TS-NLL LGM LTS BE-Stu D-TS-KFD D-TS-NLL LGM LTS

MNIST 24.32 23.71 23.21 18.97 26.96 0.89 0.90 0.90 0.90 0.89 21.52 21.55 21.66 22.62 21.03

SVHN 85.21 31.93 30.07 229.13 61.45 0.49 0.64 0.65 0.35 0.45 11.80 12.77 13.20 11.45 13.42

Fashion 167.38 43.72 42.14 90.62 81.56 0.47 0.71 0.71 0.15 0.56 13.36 17.75 17.95 11.67 16.52

IFashion 113.90 41.62 41.18 173.60 60.84 0.62 0.74 0.74 0.38 0.66 15.10 17.57 17.19 12.58 16.62

CIFAR10 359.09 203.70 208.72 676.13 220.72 0.21 0.35 0.33 0.04 0.33 14.91 15.08 15.19 12.22 15.33

Ommiglot 275.66 179.83 182.27 273.54 147.43 0.65 0.82 0.80 0.68 0.84 16.91 18.80 18.36 17.46 19.26

Average 170.93 87.42 87.93 243.66 99.83 0.56 0.69 0.69 0.42 0.62 15.60 17.25 17.26 14.67 17.03

In the same way, we can evaluate the risk bounds until learning

the distribution P
t−i
i during lifelong learning :

R′(h, h1
i ,P

1
i ) ≤R′(h, h2

i ,P
2
i ) + Disc(P1

i,X ,P2
i,X )

+ σ(P1
i ,P

2
i )

· · ·

R′(h, ht−i−1
i ,Pt−i−1

i ) ≤R′(h, ht−ii ,Pt−ii )

+ Disc(Pt−i−1
i,X ,Pt−ii,X )

+ σ(Pt−i−1
i ,Pt−ii )

(31)

Then we consider all these inequalities, resulting in :

R (h, Pi) ≤R′(h, ht−ii ,Pt−ii )

+
t−i−1∑

j=−1

Disc(Pji,X ,Pj+1
i,X ) + σ(Pji ,P

j+1
i ).

(32)

where P
−1
i and P

0
i represent Pi and Pi, respectively. h−1

i and h0
i

are the optimal classifiers for P−1
i and P0

i , respectively.

Remark 1. We have the following observations from Lemma 1 :

• To ensure a tight bound for Ti, the discrepancy distance be-

tween the generator’s distribution and the target distribution

must be minimized optimally during each task learning .

• While learning more tasks (t is increased), the accumulated

errors (the last two terms in the right-hand side of Eq. (28))

can lead to a large gap between the target risk and the

source risk, deteriorating the generalization performance of

the Student.

Lemma 2. Based on the results from Eq. (28), the risk bound for

all t tasks is defined as :

t∑

i=1

R (h, Pi) ≤
t∑

i=1

{
R′(h, ht−ii ,Pt−ii )

+
t−i−1∑

j=−1

Disc(Pji,X ,Pj+1
i,X ) + σ(Pji ,P

j+1
i )

}
.

(33)

The proof consists of the summation of all risk bounds between

each task and the model using Eq. (28).

Remark 2. Observations from Lemma 2 :

• The information learnt from the early tasks is forgotten more

quickly than that learnt from recent tasks since learning early

tasks results in more accumulated errors, representing the last

two terms in the right-hand side of Eq. (33).

• A single generator used as Teacher can not guarantee the

optimal performance of the Student when learning several

entirely different tasks. As shown in Eq. (33), the optimal

performance is achieved when the generator’s distribution

approximates the target distribution exactly, following the

training with each task.

5.3 Forgetting analysis when the Teacher dynamically

expands its network architecture

A single generator used as Teacher would not lead to the optimal

performance for the Student when learning several different tasks,

according to the discussion from Section 5.2. This is usually

caused by the mode collapse [17] following repeat training pro-

cesses [45]. The use of an expansion mechanism leading to a

mixture of experts enhances the capacity of the Teacher to learn

multiple tasks without suffering degeneration.

Let A = {a1, · · · , an} be the set which contains the task

index for the tasks that are only used once for training. Let B =
{b1, · · · , bt−n} be the task index for these tasks that are trained

more than once (the Teacher generates the pseudo samples and is

retrained on these samples). Let C = {c1, · · · , ct−n} be the set

where each ci represents how many times bi is retrained. Let U =
{u1, · · · , ut} be the set where each ui represents the component

index of the Teacher for learning the i-th task. Let | · | represent

the number of elements in a set.

Theorem 2. The risk bound for the Student when the Teacher

changes its network architecture at the t-th task learning is

given by :

|A|∑

i=1

{R (h, Pai)}+

|B|∑

i=1

{R (h, Pbi)} ≤

|A|−1∑

i=1

{
R′(h, h1

ai ,P
1
ai) + Disc(P1

ai,X ,P−1
ai,X

) + σ(P1
ai ,P

−1
ai )

}

+R′(h, h0
t ,P

0
t ) + Disc(P0

t,X ,P−1
t,X) + σ(P0

ai ,P
−1
t )

+

|B|∑

i=1

{
R′(h, hcibi ,P

ci
bi
)

+
ci−1∑

j=−1

{
Disc(Pji,X ,Pj+1

i,X ) + σ(Pji ,P
j+1
i )

}}
. (34)
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(a) Gender change

(b) Face size

(c) Makeup

(d) Hair style

(e) Chair size

(f) Chair turning

Fig. 5. Results when varying a single latent variable from the latent space in between -3.0 and 3.0, while fixing the others, under the CelebA to
3D-Chair lifelong learning.

Proof. Firstly, we consider the risk bound for the tasks that are

trained only once, which can be derived by using Eq. (24) :

|A|∑

i=1

R (h, Pai) ≤

|A|−1∑

i=1

{
R′(h, h1

ai ,P
1
ai)

+ Disc(P1
ai,X ,P−1

ai,X
) + σ(P1

ai ,P
−1
ai )

}

+R′(h, h0
t ,P

0
t )

+ Disc(P0
t,X ,P−1

t,X) + σ(P0
ai ,P

−1
t ).

(35)

Secondly, we derive the risk bound for the tasks that are trained

more than once by using Eq. (28) :

|B|∑

i=1

R (h, Pbi) ≤

|B|∑

i=1

{
R′(h, hcibi ,P

ci
bi
) (36)

+
ci−1∑

j=−1

{
Disc(Pji,X ,Pj+1

i,X ) + σ(Pji ,P
j+1
i )

}}
.

We sum up Eq. (35) and Eq. (36) and prove Theorem 2.

Remark 3. We have the following observations from Theorem 2 :

• If the Teacher dynamically builds t components, then |B| = 0
and there are no accumulated errors. Then the discrepancy

between the target distribution and the approximation distri-

bution achieved by each component plays an important role

for the generalization performance of the Student.

• If the Teacher does not expand, Eq. (34) is the same with

Eq. (33), which has a large gap between the target risk

and source risk. As the Teacher increases the number of

components, |A| is increased and |B| is reduced, leading to

a smaller gap in Eq. (34) since additional components would

allow for each one to model a certain task only.

• The proposed expansion and selection process can achieve

a tight bound in two ways. Firstly, KDS can help choose a

Fig. 6. Interpolation results under the CelebA, CACD, 3D-Chair and
Omniglot lifelong learning.

component in which the discrepancy between the compo-

nent’s distribution and the distribution of the new task is

small, allowing to represent the knowledge associated with

the new task easily and avoid mode collapse. Secondly, when

increasing the number of components, the accumulated errors

for each component is reduced, given that each component is

used for fewer GRMs.

6 EXPERIMENTS

In the following we evaluate the Dynamic Self-Supervised

Teacher-Student Network (D-TS) in lifelong learning tasks. We

use the Adam optimization algorithm [72], with a learning rate of

0.0002 and the hyperparameter β = 0.5. The number of training

epochs for each task is set to 20. In all experiments, we consider

60,000 randomly selected images from each database for training

and 10,000 for testing, unless specified otherwise. The code is

available at: https://github.com/dtuzi123/DynamicTeacherStudent.
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(a) Expert 1. (b) Expert 2. (c) Expert 3. (d) Expert 4. (e) Real testing. (f) Reconstructions.

Fig. 7. Generation and reconstruction of images when considering D-TS-KFD under CelebA, CACD, CIFAR10, Sub-ImageNet, SVHN and MNIST
(CCCSSM) lifelong learning.

(a) Expert 1. (b) Expert 2. (c) Expert 3. (d) Real testing. (e) Reconstructions.

Fig. 8. Image generation and reconstruction from D-TS-NLL after the CCCSSM database sequence lifelong learning.

6.1 The evaluation of representation learning during

unsupervised lifelong learning

We evaluate the performance of various methods for unsuper-

vised lifelong learning. We consider five tasks, in a sequence

called MFSIR, defined by the databases: MNIST [73], Fashion

[74], SVHN [75], InverseFashion (IFashion) and Rotated MNIST

(RMNIST). The results are reported in Table 1, where we use

the threshold hold = 150 for D-TS-KFD and hold = 50 for

D-TS-NLL for expanding the model in Eq. (5). We consider

the Mean Square Error (MSE), the Structural Similarity Index

Measure (SSIM) [76], and the Peak-Signal-to-Noise Ratio (PSNR)

[76] for evaluating the image reconstruction quality.

We compare the proposed methodology with the Lifelong

Teacher-Student (LTS) [30] which uses a large network archi-

tecture, defined as a single processing module, for the Teacher,

and we consider the Lifelong Generative Modeling (LGM) [11];

we also adapt the BatchEnsemble [41] in order to train a Stu-

dent model, under the unsupervised lifelong learning setting. We

consider building an ensemble of VAEs as the Teacher module,

where the number of components is equal to the number of tasks.

Then we train a VAE as the Student module which accumulates

knowledge from both the data generated by the Teacher and the

tasks learnt during the lifelong learning. We can observe that the

models D-TS-NLL or D-TS-KFD, which employ the knowledge

distillation for D-TS, as explained in Section 3.3, by using either

NLL or KFD, as the expert selection criterion, achieve the best

result for every task.

We evaluate the performance when learning a sequence of

seven challenging tasks, defined by databases containing complex

and diverse images: MNIST, SVHN, Fashion, IFashion (Inverse

Fashion), CIFAR10 [77], Omniglot [78] and MNIST. We consider

a threshold hold = 150 for both D-TS-KFD and D-TS-NLL. The

results are provided in Table 2. The proposed method outperforms

other models in this challenging learning setting.

We also investigate the procedure for adding a new expert by

the proposed framework during LLL, by evaluating either KFD or

NLL after each task switch, and the results are shown in Figures 4a

and 4b. After learning the first task, KDS between the first expert

and the next task (SVHN database), is 230 and therefore the

Teacher module adds a new generator to learn SVHN. Then, after

learning the third task, KDS between each expert and the next task

(IFashion database) is smaller than 150, and therefore the Teacher

module reuses the third expert in order to learn IFashion. KFD and

NLL measures exhibit different characteristics. For instance, KFD

is small when two tasks share similar visual concepts while for

example the NLL score is small when two databases share similar

global structures and colour palettes. The architecture expansion of

the Teacher module is followed in Fig. 4c, where D-TS-KFD and

D-TS-NLL lead to a reasonable number of experts, each capturing

specific knowledge from the databases.

6.2 Study of the latent space of the Student

Projection of the latent variables. In order to investigate how

the information from similar knowledge sources is embedded into

the same cluster from the latent space, we project the latent

variables extracted by the Student module considering images

drawn from different domains: MNIST, SVHN, Fashion, IFashion

and RMNIST (MSFIR sequence). For this analysis, we train D-

TS under MSFIR lifelong learning and the threshold for adding

a new component is set to hold = 220 in Eq. (5). After the

training, we select a batch of 64 images for each domain. Then we

use the inference model qω(z |x) to produce the mean vector

(hyperparameter of the Gaussian distribution) for each image

and we average the results as z∗ which is used as coordinates

(z∗, z∗) for each image in Fig. 3a and 3b, when considering

and without the conditional prior, respectively. We can observe

that the Student module embeds similar domains, as they are

modelled by a certain expert from the Teacher, into the same

cluster in the latent space. We can observe the overlap between the

probabilistic representations of MNIST and RMNIST, as well as

between Fashion and IFashion, where the latent spaces are better

separated when using the conditional prior, according to Fig. 3a.

Lifelong learnt disentangled representations. In the following

experiments we evaluate the ability of the D-TS model to create

disentangled representations under the LLL, as discussed in Sec-

tion 4.2. We train D-TS-KFD under CelebA to 3D-Chair lifelong
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Threshold 150

Add Add Add 

(a) KFD measure.

Threshold 50

Add Add 

(b) NLL measure. (c) Selected number of experts.

Fig. 9. Results for the measures used for the knowledge discrepancy score for the expansion of the Teacher module under the CCCSSM lifelong
learning.

learning using the loss function from Eq. (17). After changing a

single latent variable within the range [-3.0,3.0], while fixing the

others, we obtain the disentangled results shown in Figures 5a-f.

We can observe that the Student module can capture meaningful

generative factors of images, such as changing the gender of the

person, face size, face makeup, hair style, chair size or by rotating

the object (chair) shown in the image.

Inter-domain interpolations enabled by lifelong learning. Interpo-

lations in the latent spaces was previously used for exploring

model representations [79]. Following the description from Sec-

tion 4.3 we show that the proposed model not only that it can

learn meaningful representations across domains over time, but it

can also be used to explore the inter-domain latent spaces. We train

the proposed D-TS model under the CelebA [80], CACD [81], 3D-

Chair [82] and Omniglot (CCCO) lifelong learning for exploring

their joint latent spaces. We show the interpolation results in

Fig. 6, where we can observe how a human face can be smoothly

transformed into images of multiple domains, while a chair is

transformed into a human face when its frame gradually becomes

the eyes and mouth. These results indicate that the Student mod-

ule has additional modelling abilities and can capture surprising

relationships between different latent space regions from multiple

domains.

We train the proposed D-TS model considering CelebA,

CACD, CIFAR10, Sub-ImageNet, SVHN and MNIST (CCCSSM)

database lifelong learning. After the training, we extract the latent

variables z1 and z2 from two images belonging to different do-

mains x1 ∼ Ti, x2 ∼ Tj , respectively, using the Student module.

We consider 1000 such image pairs from different domains. Then

we generate the interpolated reconstructions :

x′ ∼ p(x | z1 ∗ 0.2 + z2 ∗ 0.8,u). (37)

The results when reconstructing the interpolated images in the

latent space, by evaluating MSE, are provided in Table 3,

where ’D-TS-KFD-Without’ represents D-TS-KFD without us-

ing the regularized variable u in the KL divergence term

DKL(qω(z |x) || p(z |u)) from Eq. (10) (p(z |u) = N (0, I) is

fixed). These results indicate that D-TS-KFD can provide smaller

reconstruction errors than other baselines such as LTS, which

demonstrates that D-TS-KFD can learn a smooth latent space for

multiple domains under LLL.

TABLE 3
MSE of the reconstructed interpolated images using Eq. (37).

Interpolation D-TS-KFD D-TS-KFD-Without LTS

CelebA → CACD 208.53 249.51 440.11

CACD → CelebA 179.14 198.05 409.43

CIFAR10 → Sub-ImageNet 234.32 230.74 346.77

Sub-ImageNet →CIFAR10 221.35 218.82 316.61

Average 210.84 224.28 378.23

Task 1 Task 2 Task 3 Task 4

(a) Risks for D-TS-KFD and baseline. (b) Varying the threshold ‘hold’.

Fig. 10. Risk bound evaluation and the performance of the Student in D-
TS-KFD, when changing the threshold hold, from Eq. (5), in D-TS-hold.

6.3 Lifelong learning of databases with complex im-

ages

For this experiment, we train various models on CelebA,

CACD, CIFAR10, Sub-ImageNet, SVHN and MNIST (CCCSSM)

database sequence lifelong learning. These databases contain a

variety of rather complex images showing human faces as well as

natural images among others. We evaluate the Mean Square Error

(MSE), Structural Similarity Index Measure (SSMI) and PSNR

results for the reconstructed images from the six datasets, and the

results are provided in Table 4. From this table we can observe that

the proposed framework performs better on these complex image

datasets, when compared to other methods by a large margin. The

proposed D-TS-NLL, employing the NLL criterion for deciding

whether to add or not a new expert, performs better than D-TS-

KFD, which uses the KFD criterion, for the lifelong learning of

sequences of complex and simple image databases. The visual

results after learning the CCCSSM sequence of databases, when

using either D-TS-KFD or D-TS-NLL, are provided in Fig. 7 and

Fig. 8, respectively, where we can observe that each expert is

able to capture information which is different from that associated
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TABLE 4
Image reconstruction errors when learning CCCSSM sequence of datasets, containing complex images.

MSE SSMI PSNR

Datasets LGM D-TS-KFD D-TS-NLL BE-Stu LTS LGM D-TS-KFD D-TS-NLL BE-Stu LTS LGM D-TS-KFD D-TS-NLL BE-Stu LTS

CelebA 703.62 137.67 141.47 153.25 215.43 0.05 0.55 0.56 0.54 0.40 12.18 18.42 18.81 19.00 16.37

CACD 979.18 160.66 123.49 265.80 246.99 0.03 0.58 0.65 0.45 0.44 10.86 18.15 19.39 16.80 16.12

CIFAR10 515.66 161.05 150.78 306.72 215.42 0.08 0.42 0.44 0.23 0.33 13.35 16.23 16.82 15.81 15.32

Sub-ImageNet 551.39 172.56 154.41 303.50 230.55 0.08 0.41 0.45 0.24 0.33 13.14 16.00 16.82 15.88 15.08

SVHN 62.15 28.76 34.08 52.71 34.90 0.20 0.65 0.62 0.50 0.60 13.50 12.95 13.70 13.43 13.94

MNIST 22.44 31.41 28.34 25.17 25.66 0.88 0.86 0.88 0.89 0.89 21.74 20.18 20.69 21.27 21.16

Average 472.51 115.35 105.43 184.53 161.49 0.22 0.58 0.60 0.48 0.50 14.13 16.99 17.71 17.03 16.33

TABLE 5
Classification accuracy under the supervised LLL of MNIST, Fashion, SVHN and InverseFashion (IFashion) databases.

Dataset D-TS-KFD LGM [11] LGAN [13] TS-EWC [83] EWC [83] D-TS-NLL MeRGANs [84] CURL [12] BE-Stu [41]

MNIST 96.40 94.05 51.34 66.67 64.87 96.81 59.30 80.74 84.46

SVHN 65.21 47.24 48.16 55.63 54.12 68.68 55.31 68.46 62.78

Fashion 80.09 85.86 89.04 90.49 89.68 65.55 89.49 86.28 78.26

IFashion 86.68 89.08 92.15 92.30 92.76 88.48 92.17 91.48 81.94

Average 82.09 79.06 70.17 76.27 75.35 79.88 74.06 81.74 76.86

with any of the other experts. Furthermore, the Teacher module

is able to embed, when appropriate, the information associated

with two similar databases into a single expert, which accelerates

the training speed and reduces the required memory. The Teacher

module expansion, when trained with the CCCSSM sequence, is

analysed in the plots from Figures 9a-c, when considering the

threshold hold = 150 for D-TS-KFD and hold = 50 for D-TS-

NLL, in Eq. (5). From Figures 9a,c we can observe that D-TS-

KFD requires four experts for learning the CCCSSM sequence

and is able to distinguish between different visual concepts from

several tasks while assigning the relevant experts to the incoming

tasks. For instance, the first expert only learns the probabilistic

representations of CelebA and CACD, while the second learns

those of CIFAR10 and Sub-ImangeNet databases. In contrast D-

TS-NLL, as it can be seen from Fig. 9c, requires only three experts

after the LLL.

6.4 Supervised learning

We evaluate the performance of the proposed approach in su-

pervised classification tasks. The results when training for 20

epochs for the LLL of MNIST, SVHN, Fashion and IFashion,

are provided in Table 5. We observe that GRM based methods

used for comparison provide good results on the most recently

learned tasks and tend to achieve a lower performance on the

earlier tasks. In contrast, the proposed approach is able to balance

its performance across all learned tasks during the supervised LLL.

The Continual Unsupervised Representation Learning (CURL)

[12] uses a mixture model and is better in three tasks than D-

TS-KFD. For comparison, similar to the unsupervised learning

we also consider the BatchEnsemble (BE) [41] as a Teacher-

Student model in the supervised LLL setting. We first build an

ensemble model as the Teacher, based on BE, where each expert

contains a VAE and a classifier. We then train a classifier as

the Student module which accumulates the predictive knowledge

from both the Teacher and the tasks learned during the lifelong

learning. During the lifelong supervised learning, each BE expert

generates data samples and the associated classifier infers the class

labels for the generated images. Then, the paired images and their

corresponding classes are used to train the Student module in order

to overcome catastrophic forgetting. We name this supervised

model as BE-Stu. However, from the results in Table 5, BE-Stu

performs worse than D-TS in every task.

6.5 Model complexity

In the following we evaluate the complexity of the models, by

counting the number of parameters used for various unsuper-

vised lifelong learning methods when considering three sets of

databases: MFSIR - MNIST, Fashion, SVHN, IFashion and RM-

NIST; MSFICOM - MNIST, SVHN, Fashion, IFashion, CIFAR10,

Omniglot and MNIST; CCCSSM - CelebA, CACD, CIFAR10,

Sub-ImageNet, SVHN and MNIST. The results for the number of

parameters required are provided in Table 6. D-TS-Stu represents

the number of parameters for the Student module. From Table 6

it can be observed that the Student module has significantly

fewer parameters while achieving the state of the art results when

compared to other LLL methods.

6.6 Ablation study

Firstly, we consider a baseline model which uses a single GAN

for the Teacher, as in LTS [30], and does not use the selection

and dynamical expansion mechanism as proposed for D-TS model

in this paper. We evaluate the source and target risks, where the

former is evaluated for the training data and the latter for the

testing data. All risks are calculated as the average classification

errors by using the Student, across the LLL of MNIST, SVHN,

Fashion, IFashion (MSFI sequence). The results are provided

in Fig. 10a where ‘Single-Source’ represents the source risk

evaluated by the baseline and ‘D-TS-Target’ represents the target
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TABLE 6
Model complexity, evaluated as the number of parameters, for unsupervised lifelong learning models.

LLL sequence LGM [11] D-TS-KFD D-TS-NLL D-TS-Stu BE-Stu LTS [30]

MFSIR 3.3× 108 2.3× 108 2.3× 108 8.0× 107 4.7× 108 3.3× 108

MSTICOM 3.3× 108 3.1× 108 2.3× 108 8.0× 107 5.2× 108 3.3× 108

CCCSSM 3.3× 108 3.1× 108 2.3× 108 8.0× 107 5.2× 108 3.3× 108

risk calculated on all testing samples by using D-TS-KFD. We can

observe that both D-TS-KFD and the baseline achieve low source

risks but the baseline has a high target risk, which is conformed

with Theorem 2.

The results for D-TS-KFD, when varying the threshold hold ∈
{50, 150, 250, 300} in Eq. (5), are shown in the upper plot from

Fig. 10b. We can observe that a lower threshold hold leads to

more components, while a single component is considered when

hold = 300. From the bar-plot at the bottom of Fig. 10b we

can observe that the reconstruction MSE error would decrease for

hold = 50.

Fig. 11. The running time for D-TS-KFD when considering 20 epochs
for both training and updating a component, while for D-TS-KFD∗ we
consider only 5 epochs when updating a component under CelebA,
CACD, CIFAR10, Sub-ImageNet, SVHN and MNIST lifelong learning.

(a) CelebA to 3D-Chair. (b) CelebA to CACD.

Fig. 12. Images generated by WGAN when considering GRMs.

Robustness to the missing data during the training: In the follow-

ing we evaluate whether the proposed framework can handle

missing data well during the lifelong learning. We consider the

learning setting, where the model is trained under the CelebA,

CACD*, CIFAR10, Sub-ImageNet*, SVHN and MNIST lifelong

learning. We create CACD* and Sub-ImageNet* by considering

only 10,000 samples from each database, mixing them for training

with another 60,000 samples from the other database, respectively.

The average results are provided in Table 7. From these results we

can observe that the proposed D-TS-KFD framework still achieves

very good results despite having just a few training data from the

original CACD* and Sub-ImageNet*. Meanwhile, LTS [30] tends

to forget more information from the tasks learned earlier on during

the LLL.

TABLE 7
The performance on testing data, when assuming that training data are

missing for certain databases (marked with ‘*’).

MSE SSMI

Datasets D-TS-KFD LTS D-TS-KFD LTS

CelebA 185.54 312.24 0.43 0.26

CACD* 124.92 400.32 0.63 0.28

CIFAR10 164.68 330.85 0.41 0.21

Sub-ImageNet* 176.34 337.68 0.41 0.22

SVHN 31.37 40.47 0.63 0.54

MNIST 30.11 25.82 0.87 0.89

Average 118.83 241.23 0.56 0.40

Accelerating the future task learning: The proposed methodology

is efficient in reusing the learned knowledge when updating

an existing expert, based on the similarity of the accumulated

knowledge during LLL with the information from a new database.

These results indicate the ability of D-TS to accelerate the learning

of those tasks which contain similar information to what was

already learned in the past. In the following, we consider fewer

training epochs when the model reuses a selected expert of the

Teacher for learning the next task, according to Eq. (5). The results

are provided in Table 8, where D-TS-KFD* denotes using only

5 training epochs for updating an existing component, while 20

epochs are used for training a new component. We observe that

D-TS-KFD* still achieves good results while it also accelerates the

training, as shown in the bar-plots from Figure 11, where D-TS-

KFD* would reduce the time required for the full lifelong training

by D-TS-KFD, where the latter uses 20 training epochs for both

training a new component as well as when updating an existing

one. Both D-TS-KFD* and D-TS-KFD use four experts for their

Teacher models.

The mode collapse in GRM. We investigate how the mode col-

lapse occurs during lifelong learning. We consider training a

Wasserstein GAN (WGAN) [85] model on two databases, CelebA

and 3D-Chair, which do not have any common characteristics,

with the first representing human faces while the other contains

images of chairs. In order to overcome the forgetfulness of

WGAN, we use GRM [84] during the training. After the lifelong

learning, we generate images using WGAN, which are shown in
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(a) Expert 1. (b) Expert 2. (c) Expert 3.

Fig. 13. Images generated by the Teacher module, containing 3 experts, from the proposed D-TS model.

TABLE 8
The results when considering just five training epochs for updating an

existing component and the condition to expand the model is not
fulfilled in Eq. (5).

MSE SSMI

Datasets D-TS-KFD* LTS D-TS-KFD* LTS

CelebA 117.61 215.43 0.60 0.40

CACD 148.95 246.43 0.59 0.44

CIFAR10 177.95 215.42 0.40 0.33

Sub-ImageNet 190.47 230.55 0.39 0.33

SVHN 33.03 34.90 0.63 0.60

MNIST 32.00 25.66 0.86 0.89

Average 116.6 161.49 0.58 0.50

Fig. 12a. From these images we can observe that WGAN with

GRM cannot generate clear images for the two given domains,

CelebA and 3D-Chair. The reason for this is that CelebA contains

images which have completely different characteristics from those

of the 3D-Chair database. In the following, we train a single

WGAN with GRM under the CelebA and CACD lifelong learning

and the images generated by the WGAN are shown in Fig. 12b.

These generated images are of rather good quality. This shows

that WGAN is able to learn multiple similar databases. However,

existing GRM based methods cannot be applied to long sequences

of tasks, where the datasets are entirely different from each other.

The drawback outlined by this example motivated us to de-

velop a novel dynamical memory system for the Teacher module.

The proposed Knowledge Discrepancy Score (KDS) can detect

and identify the novelty of the incoming tasks and guides the

Teacher module to expand its capacity in order to learn databases

containing images with entirely different characteristics. In the fol-

lowing we train the proposed Dynamic Self-Supervised Lifelong

Teacher-Student Learning model D-TS-KFD under the CelebA,

CACD, 3D-chair and Omniglot lifelong learning. After the LLL,

our Teacher module adds two new experts to the initial one, and

the images generated by the 3 experts of the Teacher module are

shown in Fig. 13a-c. In Fig. 13a, we can observe that Expert 1

captures well the information from databases with images from

the same category (human faces) such as CelebA and CACD.

We also show the reconstructions made by the Student module

(a) Real images. (b) Images reconstructed by the stu-
dent module.

Fig. 14. Image reconstructions by the Student module from the proposed
D-TS model, after the lifelong learning of CelebA, CACD, 3D-Chair and
Omniglot.

in Fig. 14. We can observe that the Student module is also able to

provide high-quality reconstructions across domains. These results

indicate that the proposed Lifelong D-TS provides better results

than Generative Reply Mechanism (GRM) methods.

7 CONCLUSION AND FUTURE WORK

A novel Dynamic Self-Supervised Teacher-Student Network (D-

TS) learning framework, capable of continually learning data

representations without forgetting, is proposed in this paper. The

model is made up of a Teacher module, which is allowed to expand

its architecture with new components, and a Student module. The

Knowledge Discrepancy Score (KDS) criterion is proposed for

comparing the probabilistic representations of incoming data with

the information already acquired by the Teacher. For implementing

KDS we consider two measures : the Knowledge Frécher Distance

(KFD) and the Negative Log-likelihood (NLL). A new component

(expert) is added to the Teacher module when KDS is above a

certain threshold, when learning a new database. Otherwise, the

most efficient and flexible component is selected by the KDS

from the mixture of experts forming the Teacher, in order to

be updated with the information from the new database. The

selection mechanism contributes to reusing the learned knowledge

for accelerating the future task learning. In the experimental

results we show that D-TS can train a compressed Student module
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which outperforms other methods in various multi-task applica-

tions while also requiring fewer parameters to train. Our future

work will extend the proposed D-TS framework to the Task-

Free Continual Learning (TFCL) where the task information is

not provided during the training. TFCL represents a more realistic

continual learning setting which has not been sufficiently explored.

APPENDIX A

THE DERIVATION OF THE LOG-LIKELIHOOD

In the following we provide the detailed derivation of the log-

likelihood from Eq. (8) of the paper, where we consider the

independence between the continuous z and the expert u variables.

log p(x) ≥Eq(z,u|x)

[
log

p(x, z,u)

q(z,u|x)

]

=Eq(z|x)q(u|x)

[
log

p(x|z,u)p(z)p(u)

q(z|x)q(u|x)

]

=Eq(z|x)q(u|x) [log p(x|z,u)] +

Eq(z|x)q(u|x)

[
log

p(z)

q(z|x)

]
+ Eq(z|x)q(u|x)

[
log

p(u)

q(u|x)

]

=Eq(z|x)q(u|z) [log p(x|z,u)]−DKL(q(z|x)||p(z))

−DKL(q(u|x)||p(u))
(38)

The expert-variable u is defined by the specific experts from

the mixture, or by the new task, and is used as the ground-truth

label for training the expert-inference network defined by Eq. (11).

APPENDIX B

PROOF OF PROPOSITION 1

In order to provide a general proof for the lower bound on

DKL(S||Pθ), we first consider a simple Student module pθ(x) =
pθ(x|z)pθ(z) which has a latent variable vector z. Then, we

consider the KL divergence between pθ(z|x) and q(z|x), [86]:

DKL(q(z|x)||pθ(z|x)) = Eq(z|x)[log q(z|x)− log pθ(z|x)],
(39)

we apply the Bayes rule to pθ(z|x) and the above equation can be

rewritten as:

DKL(q(z|x)||pθ(z|x)) = Eq(z|x)[log q(z|x)− log pθ(x|z)

− log p(z)] + log pθ(x).
(40)

Then, by rewriting the expression from above, log pθ(x) is

expressed as:

log pθ(x) = Eq(z|x)[log pθ(x|z)]−DKL(q(z|x)||p(z))

+DKL(q(z|x)||pθ(z|x))
(41)

Through Proposition 1, we aim to maximize Ex∼S [log pθ(x)]
which becomes:

Ex∼S [log pθ(x)] =

∫
S(x)

{
Eq(z|x)[log pθ(x|z)]

−DKL(q(z|x)||p(z)) +DKL(q(z|x)||pθ(z|x))} dx
(42)

where S(x) is the density function of S. We move the last term of

the right-hand side to the left-hand side:

Ex∼S [log pθ(x)]−

∫
S(x) {DKL(q(z|x)||pθ(z|x))} dx =

∫
S(x)

{
Eq(z|x)[log pθ(x|z)]]−DKL(q(z|x)||p(z))

}
dx

(43)

From the fact that DKL(·, ·) ≥ 0 we conclude that the right

hand side is a lower bound on Ex∼Q [log pθ(x)] and the gap to

Ex∼S [log pθ(x)] is equal to ES[DKL(q(z|x)||pθ(z|x))].

Extension to two types of latent variables, continuous and discrete.

In the following, we consider that the Student module has two

types of latent variables, z and u, representing continuous and

discrete variables, and we have :

pθ(x) = pθ(x|z,u)p(z,u) (44)

and we consider the following KL divergence:

DKL(q(z,u|x)||pθ(z,u|x)) = Eq(z,u|x)[log q(z,u|x)

− log pθ(z,u|x)]
(45)

By considering the Bayes rule we have :

pθ(z,u|x) =
pθ(x|z,u)p(z,u)

pθ(x)
(46)

and after replacing in (45) we obtain :

DKL(q(z,u|x)||pθ(z,u|x)) = Eq(z,u|x)[log q(z,u|x)

− log pθ(x, z,u)] + log pθ(x)
(47)

We rewrite the above equation by moving terms from the right-

hand side to the left-hand side :

log pθ(x) = Eq(z,u|x)[log pθ(x, z,u)− log q(z,u|x)]

+DKL(q(z,u|x)||pθ(z,u|x))
(48)

Then we consider Ex∼S [log pθ(x)], similar to (42) :

Ex∼S [log pθ(x)] =

∫
S(x)

{
Eq(z,u|x)[log p(x, z,u)

− log q(z,u|x)] +DKL(q(z,u|x)||p(z,u|x))} dx
(49)

We move the last term from the right hand side to the left hand

side:

Ex∼S [log pθ(x)]−

∫
S(x) {DKL(q(z,u|x)||p(z,u|x))} dx =

∫
S(x)

{
Eq(z,u|x)[log pθ(x, z,u)− log q(z,u|x)]

}
dx

(50)

where the right hand side is a lower bound on Ex∼S [log pθ(x)]
and the gap to Ex∼S [log pθ(x)] is equal to

ES [DKL(q(z,u|x)||pθ(z,u|x))]. Eventually, we can maximize

this lower bound to approximate Ex∼S [log pθ(x)]:

Ex∼S [log pθ(x)] ≥ ES

{
Eq(z,u|x)

[
log

pθ(x, z,u)

q(z,u|x)

]}

�

(51)

We should note that S is treated as a mixture distribution since

the Teacher module has several experts.

APPENDIX C

THE OBJECTIVE FUNCTION FOR THE STUDENT MOD-

ULE

The Kullback–Leibler (KL) divergence measures the distance

between two distributions. In the proposed framework, the Teacher

module can have several experts. We assume that at the t-th task

learning, the Teacher module has K experts and the information

recorded by these experts is represented by the distributions

P1, . . . ,PK . As demonstrated in Proposition 1, the minimization
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of the KL divergence between the probabilistic representations of

the Teacher and Student, defined by S and Pθ , respectively, is

expressed by maximizing ES{log pθ(x)} :

ES{log pθ(x)} =
1

Z

K∑

i=1

∫
πimεi (x) log pθ (x) dx

=
1

Z

K∑

i=1

πiEx∼Pi [log pθ (x)],

(52)

where mεi(x) is the density function for Pi, where εi are

the parameters of the i-th expert, and the optimization problem

consists of maximizing each EPi [log pθ (x)]:

EPi [log pθ (x)] =

∫
mεi (x) log pθ (x) dx (53)

From the proof of Proposition 1, provided in Appendix B,

we show how to approximate EPi(x) [log pθ (x)] by maximizing a

lower bound, after considering the relationship (51), we have :
∫

mεi (x) log pθ(x)dx ≥
∫

mεi (x)

(
Eq(z,u|x)

[
log

p(x, z,u)

q(z,u|x)

])
dx

(54)

The intractable optimization problem DKL(S||Pθ) can be

addressed by maximizing the summation of tractable lower bounds

of each EPi [log pθ (x̂i)] (the knowledge distillation term):

∑k

i=1
πiEPi log pθ (x̂i) ≥(∑k

i=1
πiEx̂i∼PiEq(z,u|x̂i)

[
log

p (x̂i, z,u)

q (z,u|x̂i)

])
,

(55)

where x̂i are samples drawn from Pi. Eventually, the Student

training objective function involves the knowledge distillation

term as well as the ELBO on the data samples from the given

data associated with the t-th task learning :

LStu
∆
=

(∑k

i=1
πiEx̂i∼PiEq(z,u|x̂i)

[
log

p (x̂i, z,u)

q (z,u|x̂i)

])

︸ ︷︷ ︸
Knowledge distillation optimization

+ Eq(z,u|xt)

[
log

p (xt, z,u)

q (z,u|xt)

]

︸ ︷︷ ︸
ELBO on the t-th task

.

(56)
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