
sensors

Article

An Efficient Anomaly Recognition Framework Using an
Attention Residual LSTM in Surveillance Videos

Waseem Ullah, Amin Ullah , Tanveer Hussain, Zulfiqar Ahmad Khan and Sung Wook Baik *

����������
�������

Citation: Ullah, W.; Ullah, A.;

Hussain, T.; Khan, Z.A.; Baik, S.W.

An Efficient Anomaly Recognition

Framework Using an Attention

Residual LSTM in Surveillance

Videos. Sensors 2021, 21, 2811.

https://doi.org/10.3390/s21082811

Academic Editors: Stefanos Kollias

and Antonio Fernández-Caballero

Received: 25 February 2021

Accepted: 12 April 2021

Published: 16 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Sejong University, Seoul 143-747, Korea; waseem@sju.ac.kr (W.U.); qamin3797@sju.ac.kr (A.U.);
tanveer@sju.ac.kr (T.H.); zulfiqar@sju.ac.kr (Z.A.K.)
* Correspondence: sbaik@sejong.ac.kr

Abstract: Video anomaly recognition in smart cities is an important computer vision task that plays
a vital role in smart surveillance and public safety but is challenging due to its diverse, complex,
and infrequent occurrence in real-time surveillance environments. Various deep learning models use
significant amounts of training data without generalization abilities and with huge time complexity.
To overcome these problems, in the current work, we present an efficient light-weight convolutional
neural network (CNN)-based anomaly recognition framework that is functional in a surveillance
environment with reduced time complexity. We extract spatial CNN features from a series of video
frames and feed them to the proposed residual attention-based long short-term memory (LSTM)
network, which can precisely recognize anomalous activity in surveillance videos. The representative
CNN features with the residual blocks concept in LSTM for sequence learning prove to be effective
for anomaly detection and recognition, validating our model’s effective usage in smart cities video
surveillance. Extensive experiments on the real-world benchmark UCF-Crime dataset validate the
effectiveness of the proposed model within complex surveillance environments and demonstrate that
our proposed model outperforms state-of-the-art models with a 1.77%, 0.76%, and 8.62% increase in
accuracy on the UCF-Crime, UMN and Avenue datasets, respectively.

Keywords: anomaly detection; video surveillance system; abnormal activity recognition; attention
mechanism; LSTM; residual LSTM; deep learning; smart surveillance; crime recognition

1. Introduction

In the 21st century, one of the leading causes of lost lives and property is the surge in
the crime rate, as compared to other issues [1]. An intelligent video surveillance system
is a most preferred solution for the quick and early detection of such unusual events.
Anomalous event recognition in surveillance videos demands much attention due to its
vast applications in many domains, including crime prevention, automated intelligent
visual monitoring, and traffic security [2]. To avoid any mishap and ensure public safety,
for the past few decades, a vast amount of surveillance cameras have been deployed in
private and public places for effective real-time monitoring. However, most of these cameras
provide only passive recording services and lack monitoring capabilities. The volume of
these videos increases each minute, making understanding and analyzing them effortful for
human experts. Similarly, surveillance analysts must wait for hours to capture or witness
anomalous events for instant reporting. Due to the rareness of real-world anomalous events,
video anomaly recognition has previously been investigated as a one-class classification
problem [3–5], i.e., the model is trained on normal videos, and in the test set, a video
is classified as anomalous when abnormal patterns are encountered. It is not feasible to
accumulate all the usual events of real-world surveillance in a single dataset. Hence, various
normal behaviors might stray from normal events in the training set and eventually generate
false alarms.

Recognizing anomalies in surveillance videos is an extremely hard and challenging
task, for reasons including a subjective definition of anomaly, an inadequate amount of
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annotated data due to the infrequent occurrence of anomalous events, the lower resolution
of surveillance videos, and the large number of intra/inter class variations. In the literature,
various stochastic and discriminative techniques using low-level features are proposed [6,7].
However, the performance of these techniques is influenced by the hyper-parameter
settings. Unfortunately, it is impractical and problematic to get the optimal solution for all
the given videos. As a result, the demand for these methods declined, replaced by demand
for various deep learning-based methods [8–10] due to their sophisticated performance. In
recent years, various models were proposed using both usual and unusual events to learn
anomalous patterns [11–13]: these models are trained on both usual and unusual videos.
Frame level annotation is a considerably expensive and time-consuming process; therefore,
to overcome this limitation, weakly supervised learning techniques for video level labels
are generally applied in anomalous event detection [11–13].

For the past two decades, a massive amount of research has been carried out on
video abnormal event recognition [14–17]. Depending on whether the labels of the classes
are available or not, the baseline anomalous event detection techniques in real-world
environments can be classified into the subsequent three policies. The preliminary policy is
a supervised approach, which involves usual and unusual events equally; these methods
learn predictive patterns for both usual and unusual events and check which model is best
suited to the given data. However, this policy is impractical, as the unusual events are
unbounded and unexpectable in the surveillance environment, and it is almost unworkable
to accumulate all of the types of unusual events. Furthermore, the supervised-based
techniques can only be used on specific regions/scenes since they are applying previous
knowledge and basic data to design inadequate distributions. Therefore, the attention of
mainstream research is diverted towards the second strategy, which is semi-supervised
learning [18,19]. The third policy is the unsupervised approach, which checks for earlier
undetected patterns in the raw video without appropriate labels and requires minimum
human supervision. These types of techniques detect abnormal events mostly by the
characteristics and properties of the data [6,20]. The main drawback of these techniques is
that they neglect the global information that needs to be considered in future research.

Existing deep feature-based models comprise autoencoders and ranking-based tech-
niques, accomplishing quite reasonable results but produce higher false alarms and the
accuracy of these techniques is not promising for recognizing abnormal activities. Con-
sequently, the performance of most of the existing techniques for anomaly detection is
inadequate for handling complex surveillance environments. To overcome these problems,
in the current work, we introduce a light-weight model to recognize anomalies in real-
world surveillance videos. Our model learns visual features from a sequence of consecutive
video frames of incorporating them in the spatiotemporal information for surveillance
videos. The summarized key contributions of our work follow:

• We propose a light-weight model for anomaly detection, functional for a real-world
surveillance network. We adopted a pretrained model and extracted frame-wise
features, followed by a sequential learning mechanism for the precise recognition of
anomalous activity.

• We employed the residual attention-based long short-term memory (LSTM) concept,
which can effectively learn temporal context information and precisely recognize
anomalous activity. Moreover, using a residual attention-based LSTM saves more than
10% of learnable parameters as compared to the usual LSTM network size.

• Our proposed model is tested using the challenging University of Central Florida
UCF-Crime dataset, outperforming the baseline methods in terms of accuracy with
reduced number of model parameters and size compared to existing anomaly activity
recognition models.

The rest of this manuscript is structured as follows: Section 2 gives a brief overview of
the existing techniques of anomaly detection and recognition in the literature. Section 3
is a detailed explanation about the materials and methods that are used for abnormal
activity recognition. The model implementation and experimental results, along with the
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evaluation of the proposed model are discussed in Section 4, followed by the conclusion of
the current work in Section 5.

2. Related Work

The anomaly detection and recognition problems in the surveillance environment are
extensively studied in the existing literature. In the current section, the existing anomaly
detection techniques are summarized in two broad categories; traditional feature-based
techniques and deep learning-based techniques for anomalous event recognition are dis-
cussed in detail in subsequent sections.

2.1. Traditional Feature-Based Techniques

Previously, low-level feature-based methods were extensively applied for anomaly
detection. These methods are mainly based on three phases: (1) feature extraction, where
the low-level pattens are extracted from the training set; (2) learning from the features to
distinguish the distribution of encoding regular patterns or normal events; and (3) iden-
tifying the outliers or isolated clusters as anomalous events. For the feature extraction
phase, earlier approaches mostly employ low-level trajectories, image coordinates, and
regular patterns [21,22]. However, these techniques do not perfectly provide appropriate
performances in crowded or complex occurrences with multiple shadows and occlusions,
as trajectory-based features mostly fail in such cases. To handle the problems of the tra-
jectory features, the researchers introduced the alternative feature procedures known as
low-level spatiotemporal features, including a histogram of oriented gradients and a his-
togram of oriented flow, broadly utilized for anomaly detection [23,24]. Taking advantage
of spatiotemporal features, Zhang et al. [25] used the Markov random field for modeling
the usual events. Kim and Grauman [26] proposed a system that used a Markov random
field model to detect unusual events in videos. To learn the normal patterns of each event
at a local node, they captured the distribution of the continual optical flow observation
and atomic motion patterns using a mixture of probabilistic principal component analyz-
ers. Another study proposed detecting the frequently occurring local histograms by an
exponential distribution of the optical flow [27]. The authors in [28] proposed a Gaussian
mixture model-based technique to integrate dynamic textures. Dictionary learning and
sparse coding is a famous technique used to encode normal patterns and detect abnormal
events [6,29,30]. The core idea of these techniques is that the usual patterns are characterized
on the basis of a dictionary, which is used to encode the normal patterns in the training set.
Consequently, the patterns are considered usual/normal when their reconstruction error is
low, while the pattern is seen as abnormal/unusual when its reconstruction error is high.
The main drawback of these methods is that optimizing the sparse coefficients is generally
time consuming.

2.2. Deep Feature-Based Techniques

In the current era, deep feature-based models have achieved great success in numerous
domains of nonlinear high dimensional data, such as activity recognition [31] and video
summarization [32], among many others [33,34]. Most of the previous literature is based
on semi-supervised anomaly detection techniques in which the model is trained on normal
data. Liu et al. [18] proposed a framework that used a convolutional neural network (CNN)
as an encoder to encode the video frames, and ConvLSTM was applied to detect anomalous
events. Their encoder efficiently encodes the changes in motion for detecting anomalies
in a surveillance environment. Similarly, Parab et al. [35] introduced a system based on
a CNN and LSTM to detect unusual situations at an automated teller machine. In this
model, the frame-level features are extracted from the videos and then fed to a bidirectional
LSTM to classify abnormal events at an automated teller machine. In our pioneering
work, we used deep CNN features from a series of frames and passed them through a
multilayer bidirectional LSTM to learn the spatiotemporal information of the input video
and detect abnormal events [36]. Luo et al. [18] suggested a convolutional LSTM with an
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autoencoder-based model for anomaly detection in videos. Additionally, they extended
his work using a stacked recurrent neural network (RNN) with an autoencoder to detect
anomalies. Hasan et al. [37] recommended a system for anomaly detection established
on a convolutional autoencoder, followed by a RNN. Liu et al. [14] introduced a system
in which the fusion of a temporal and spatial detector is presented to detect anomalies
in videos. In this model, the discriminant saliency detector and a set of dynamic texture
features are modeled as normal events from the training data. Liu et al. [14] introduced
a model for future frame prediction for anomaly detection that prevents the identity
mapping and also increases its functioning in anomaly detection. Additionally, generative
models are one of the popular techniques that are utilized to detect abnormalities in videos.
Sabokroul et al. [38] suggested generative adversarial networks (GANs) to detect anomalies
in the surveillance environment. In this model, they use GANs with discriminator and
generator methods to learn the normal distribution. Deng et al. [39] introduced a model
called the “Spatio-Temporal Autoencoder”, where they applied a deep neural network
to extract both temporal and spatial features from videos. Furthermore, they introduced
weight-reducing projection loss to predict future frames effectively and learn motion
features in videos. Cheng et al. [40] introduced a clustering-based deep autoencoder to
produce efficient information within usual events. Spatiotemporal feature regularity is
learned using two modules. In the first module, the spatial autoencoder manages the last
individual video frame, and the second module is a temporal autoencoder, which operates
and constructs the RGB difference from the rest of the frames. To detect anomalies in videos,
supervised learning-based techniques have been well studied over the past few years.
Recently, weakly supervised-based state-of-the-art techniques for video labeling have been
recommended in studies [12,41], where the detection of anomalous events is performed
using C3D [42] and multi-instance learning (MIL) [43,44]. Sultani et al. [12] proposed a
framework based on weak video labels using deep features and the MIL approach to
detect anomalous events. This paradigm is trained on both normal and abnormal videos
by generating two different bags for usual and unusual events, and the MIL method
was applied to detect anomalous event scores in the videos. Tan et al. [45] introduced an
anomaly detection technique which efficiently used sparse components and hyperspectral
image pixel decomposition into lower ranks. Furthermore, they used a spatial constraint
for lower ranks, which uses a single or multiple local window technique to represent
and smooth the coefficients for effective anomaly detection. Following the ranked-based
technique [46], an abnormal event detection framework was introduced by using MIL with
a graph-based technique to represent the normal and abnormal events. Zhu et al. [13]
proposed a temporal augmented network with MIL by incorporating an attention block and
achieved state-of-the-art performance for normal and abnormal event detection. Kuldeep
et al. [47] suggested a system known as “DEARESt” anomaly recognition. This system is
based on two flow feature networks: one uses CNN-based features while the other uses
motion features separately. In our pioneering work, we used deep CNN features from the
series of frames and passed them through a multilayer bidirectional LSTM to learn the
spatiotemporal information of the input video and detect the abnormal events [36].

3. Materials and Methods

In this section, we discuss the overall structure of our proposed model and its key
elements which are presented in Figure 1. The proposed system is divided into three key
phases: the surveillance video frames are passed from the pretrained light-weight CNN
model to extract features; we generate a feature vector from a series of 30 frames of the video;
and this feature vector is fed to the residual LSTM to recognize anomalous activities in a real-
world environment. Each phase of the model is discussed in detail in subsequent sections.
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3.1. Feature Extraction Using Light-Weight CNN

The core concept at backend of MobileNet paradigms is to supplant huge and costly
convolutional layers with depth-wise distinguishable convolutional blocks. These convolu-
tional blocks consist of two key elements: (1) a depth-wise convolutional layer that uses
3 × 3 filters for a given input, and (2) point-wise convolutional layers that incorporate a
1 × 1 filter that functions to merge these filtered values and extract the learned features. The
MobileNet model is light-weight and considerably faster than a conventional convolution-
based model and achieves approximately the same results. The MobileNetV1 has 3 × 3
convolution and 13 depth-wise distinguishable convolutional blocks [48]. MobileNetV2
contains one extra expansion layer in each block with a filter size of 1 × 1 for point-wise
and depth-wise convolutional layers [49]. The core objective of this layer is to increase the
amount of channels in the data rather than moving to the depth-wise convolution. As a
result, this layer generates more output channels than the given input channels. Unlike
V1, the point-wise layers of MobileNetV2 are part of the projection layer: this layer is
responsible for projecting data with huge amount of channels into tensors, along with a
small amount of channels (Figure 2). The main function of the bottleneck residual block is
that it provides the end result of these blocks; the residual block is modified, using convo-
lutions to build a bottleneck. This block is valuable for reducing the number of parameters
and matrix multiplications. As usual, every layer of MobileNetV2 contains ReLU6 and
batch normalization, which is used as an activation function. The results of the projection
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layer are generated without using the activation function, but the overall composition
of the MobileNet involves 17 bottleneck residual blocks and regular 1 × 1 convolution,
followed by a global average pooling and classification layer. The top of MobileNetV2 is
the global average pooling layer, which is helpful in reducing the problem of overfitting.
The MobileNetV2 model is pretrained on the challenging ImageNet dataset, which consists
of 1000 classes and approximately 1.4 M images, and we use these weights in our model.
We exclude the topmost layer of the MobileNetV2, which is ideal for feature extraction. We
extracted features from a 30-frame sequence; these features are further passed through our
proposed residual attention-based LSTM to recognize anomalous activities.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 18 
 

 

convolutions to build a bottleneck. This block is valuable for reducing the number of pa-

rameters and matrix multiplications. As usual, every layer of MobileNetV2 contains 

ReLU6 and batch normalization, which is used as an activation function. The results of 

the projection layer are generated without using the activation function, but the overall 

composition of the MobileNet involves 17 bottleneck residual blocks and regular 1 × 1 

convolution, followed by a global average pooling and classification layer. The top of Mo-

bileNetV2 is the global average pooling layer, which is helpful in reducing the problem of 

overfitting. The MobileNetV2 model is pretrained on the challenging ImageNet dataset, 

which consists of 1000 classes and approximately 1.4 M images, and we use these weights 

in our model. We exclude the topmost layer of the MobileNetV2, which is ideal for feature 

extraction. We extracted features from a 30-frame sequence; these features are further 

passed through our proposed residual attention-based LSTM to recognize anomalous ac-

tivities.  

 

Figure 2. Representation of typical, depth-wise, and pointwise convolution, where I, M, and N 

represent image, dimensions, and number of channels,respectively. 
Figure 2. Representation of typical, depth-wise, and pointwise convolution, where I, M, and N
represent image, dimensions, and number of channels, respectively.

3.2. Sequential Learning Techniques

LSTM was introduced to resolve the vanishing or exploding gradients issue in re-
current neural networks, and involves internal memory cells that are controlled by an
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input and forget gate network. The cell state is altered by the forget gate ranked under
the cell state and also modified by the input gate. Additionally, the main purpose of the
forget gate in the LSTM is to decide how much information from the previous memory
should be passed into the next time step. Similarly, the input gate first regulates how much
new information should be entered into the memory cell and then a vector is formed
applying the tan h function, which provides output. Depending on these gates, LSTM can
handle the short- and long-term dependency of the sequential information [50]. The LSTM
formulation is expressed as follows:
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baseline research [55] used encoder and decoder with attention mechanisms to enhance the
performance of their video captioning model. They employed decoder for word generation
that inputs video features corresponding to their next word, which is based on the words
previously produced by the model. This technique effectively generates video captions
using two type of inputs, including natural language processing 1D feature vector and video
frames 2D data. Inspired by [55], we also used self-attention layer with residual LSTM, that
functions for both short- and long-term dependencies by utilizing latent correlation among
features at various positions. This self-attention layer produces context-aware vector and
temporal order representation for sequential features. In contrast to the video captioning
model, in our case, we have only one input, which is feature vector from the video frames
sequence that we input to residual attention-based LSTM that requires a single block of
features for sequence learning.
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probabilities attained from the Softmax classification layer. The extracted deep features of
the 30-frame sequence are used to recognize that the sequence contains either abnormal
activities or normal events, which are passed from the residual attention-based LSTM,
and final predictions are performed using the SoftMax layer. Several experiments were
performed to select the best hyperparameter settings, and finally we choose Adam as an
optimizer, with a learning rate of 0.01, and categorical cross-entropy as a loss function. The
batch size was 32 and the number of epochs was 200 for training the model. We stopped
the training process when the loss no longer decreased.
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4. Results

We experimentally assessed our proposed model using the benchmark anomaly de-
tection UCF-Crime dataset [56]. To test the performance of the proposed paradigm, we
experimentally evaluated it across numerous metrics, including the confusion matrix, F1
score, recall, precision, class-wise accuracy, area under curve (AUC), and receiver operating
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characteristic (ROC) curve. The performance of our model is compared with recent abnor-
mal activity recognition techniques. The proposed model is implemented using Keras and
backend TensorFlow with Python 3.6 on a Windows 10 platform and Corei5-6600 setup
with 16-GB RAM, equipped with a 12-GB GeForce-Titan-X graphics processing unit (GPU).

4.1. Datasets

In this work, the performance of the proposed model is extensively evaluated on
various benchmark datasets, i.e., the University of Minnesota UMN dataset [57], Avenue
dataset [58], and UCF-Crime dataset [56]. The UCF-Crime dataset consists of 1900 long
untrimmed videos for 13 real-world anomalous events including fighting, stealing, shoot-
ing, shoplifting, robbery, road accident, arson, abuse, arrest, assault, burglary, vandalism
and explosion. The UCF-Crime dataset is an almost balanced dataset that contains 800
normal and 810 anomalous event videos in the training set. The rest of the videos of the
dataset include 150 normal and 140 anomalous events that are temporally annotated to test
the performance of the model. The challenging part of the UCF-Crime dataset is that it only
contains temporal annotation for the testing set. We follow a former research strategy [47]
to determine the training, testing, and validation ratio. The UMN dataset consists of 11
video sequences of various scenes of abnormal activities and is an extensively utilized
dataset. This dataset has in total 4144, 2144, and 1453 frames of three scenes, plaza, indoor,
and lawn, respectively. The Avenue dataset consists of 16 training and 21 testing videos
and contains in total 30,652 frames. This dataset has 47 abnormal events, and the resolution
of each frame is 360 × 640 pixels.

4.2. Evaluation Methods

In this portion, to measure the performance and effectiveness of the proposed model,
we used evaluation parameters often used for abnormal activity detection [6,12,59], such
as the AUC and the receiver operating characteristic curve. We also evaluate our proposed
model using the recall, F1 score, and precision. We applied these evaluation parameters
on test videos and counted the total number of false negative (FN), true positive (TP), and
false positive (FP) results.

4.3. Results

In this portion, broad experiments are carried out to test the performance of our
proposed model utilizing the UCF-Crime dataset. We perform experiments using the
LSTM, bidirectional LSTM (BD-LSTM), and residual LSTM. We tried several variants of
the LSTM in our experimental analysis before reaching the final choice of the proposed
residual attention-based LSTM model, which has shown tremendous performance for the
investigated problem of anomaly recognition. The proposed residual attention-based LSTM
model achieved quite promising results as compared with baseline techniques, which are
presented in Table 1. Some of the visual results of our proposed model for anomalous
activity recognition are shown in Figure 4. Figure 4a–c show the accurate prediction results
of the proposed model, and Figure 4d shows the incorrect prediction results. The prediction
results of the UCF-Crime dataset of the residual LSTM are as follows: for each class, results
are represented as a confusion matrix, provided in Figure 5. The training graph and loss
and the class-wise accuracy of the proposed model are shown in Figures 6–8, and the
precision, F1 score, and recall are demonstrated in Table 1. The ROC and AUC curves
of the proposed model are displayed in Figure 9. We calculated the time complexities of
MobileNetV2, an attention-based LSTM, and our overall proposed model (Figure 10), and
the floating point operations per second (FLOPS) of these models, which are converted
from Giga FLOPs to Mega FLOPs, are 3.1, 615, and 618.1 (Table 2).
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Table 1. Performance evaluation of the proposed deep models using convolutional neural network (CNN) features and best
results are represented in bold.

Model Dataset Recall (%) Precision (%) F1 Score (%) AUC (%)

Mobile Net V2 +LSTM
UCF-Crime

dataset

86 74 77 88

Mobile Net V2 +BD-LSTM 79 84 76 87

Mobile Net V2 + residual LSTM 91 78 82 95

Our Proposed Model 78 87 81 96

Mobile Net V2 +LSTM

UMN

87 77 81 86

Mobile Net V2 +BD-LSTM 88 81 84 88

Mobile Net V2 + residual LSTM 94 95 94 96

Our Proposed Model 98 98 98 98

Mobile Net V2 +LSTM

Avenue

91 93 92 91

Mobile Net V2 +BD-LSTM 94 95 94 94

Mobile Net V2 + residual LSTM 93 94 94 94

Our Proposed Model 98 99 99 98
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Table 2. Efficiency comparison of the proposed model with state-of-the-art techniques in terms of model size, parameters,
FLOPS, and time complexity using UCF-Crime dataset and best results are represented in bold.

Model Time Complexity (Seconds) Model Size (MB) Parameters (Millions) FLOPs (Mega)

VGG-16 (2014) [60] - 528 138

VGG-19 (2014) [60] - 549 143

FlowNet (2017) [61] - 638.5 162.49

DEARESt (2018) [47] - 1187.5 305.49

Our Proposed Model 0.263 12.8 3.3 618.3

4.4. Comparison with the State-of-the-Art Techniques

In this section, the performance of our proposed anomaly recognition model is com-
pared with state-of-the-art techniques by using the UCF-Crime dataset. The authors of [47]
checked various deep learning models, i.e., VGG-16, VGG-19, FlowNet, and DEARESt,
respectively. The DEARESt model provides the best performance among these methods. In
the modern era, deep learning models are becoming deeper and deeper, and also require
huge amounts of storage; they also have increased computational complexity and stringent
installation protocols over the edge node. In anomaly recognition, a delay in response
can cost human lives and property; therefore, efficient model selection is a very important
aspect for any anomaly recognition system. Our decision to use the light-weight CNN
model MobileNetV2 is due to its small storage size, a smaller number of learned param-
eters, and its fast processing time, with a performance equivalent to heavy-weight CNN
models [12,47,60]. The efficiency of the proposed model is compared with these existing
techniques in terms of model size, time complexity, and the number of parameters, as
shown in Table 2. We achieved overall accuracies of 78.43%, 98.20%, and 98.80%, which
is increased by 1.77%, 0.76%, and 8.62% when compared to existing state-of-the-art tech-
niques, with fewer parameters and a reduced model, as shown in Table 3. The proposed
model can process a sequence of 30 frames in 0.263 s, which is comparatively lower than
the recent existing techniques [47,62,63]. The sizes of existing models are much bigger, and
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their recognition performance is relatively low as compared to our proposed model, as
shown in Table 2.

Table 3. Performance of the proposed model with state-of-the-art techniques and the best results are
represented in bold.

Model
Accuracy (%)

UCF-Crime [56] UMN [57] Avenue [58]

VGG-16 (2014) [60] 72.66 - -

VGG-19 (2014) [60] 71.66 - -

FlowNet (2017) [61] 71.33 - -

DEARESt (2018 )[47] 76.66 - -

Nandedkar and Bansod (2019) [62] - 96.99 -

Kyung Joo Cheoi (2020) [64] - 96.50 90.18

Al-Dhamari et al. (2020) [63] - 97.44 -

Our Proposed Model 78.43 98.20 98.80

4.5. Discussion

The main objective of this paper is to utilize a light-weight CNN model to detect and
recognize anomalies efficiently. For many computer vision applications, CNN models are
becoming deeper and deeper, making their applicability over edge devices questionable. To
overcome these problems and achieve light-weight functionality, we utilize MobileNetV2
for feature extraction, followed by a residual attention-based LSTM for anomalous sequence
recognition. MobileNetV2 is used to extract efficient features from input videos, improving
the performance of the proposed attention-based LSTM. We use standard training and
testing sets provided in the existing literature to test and compare the performance of the
proposed model against rivals. Additionally, we tried several variants of LSTM in our
experimental analysis, such as LSTM, BD-LSTM, and residual LSTM, before reaching our
final decision to use the proposed residual LSTM model, which has shown tremendous
performance for the investigated problem of anomaly recognition, as reported in Table 1.
Moreover, the efficiency comparison of the proposed model in terms of time complexity,
model size, and parameters utilization showed that it outclasses the existing models, as
shown in Table 2. Table 3 shows the performance comparison of the proposed model with
recent state-of-the-art techniques [47,60–64] using various benchmark datasets in terms
of accuracy. The proposed model outperformed the existing techniques by increasing
the accuracy by 1.77%, 0.76%, and 8.62% margins for the UCF-Crime, UMN, and Avenue
datasets, respectively.

5. Conclusions

Smart surveillance systems are gaining attention among computer vision experts; they
are mainly deployed for monitoring purposes. However, deep models are data-thirsty and
demand heavy processing systems for effective analysis. In contrast, surveillance systems
require quick countermeasures and responses against any abnormal events, detected
automatically using computer vision systems. In the current study, we introduced a light-
weight efficient model to recognize anomalies in smart cities with state-of-the-art accuracy
by utilizing various challenging benchmark datasets. Our proposed model extracts deep
CNN spatial features from a sequence of frames; then, it uses a residual attention-based
LSTM to recognize anomalous events in a surveillance system. The usage of light-weight
CNN features with a residual attention-based LSTM provides a high-level adaptability
to smart surveillance environments. We validated our proposed model using various
evaluation parameters. The proposed model is proven to have a higher accuracy than
existing anomaly recognition methods. The experimental results of our proposed model



Sensors 2021, 21, 2811 15 of 17

reveal better accuracies with increase of 1.77%, 0.76%, and 8.62% in accuracy for the
UCF-Crime, UMN, and Avenue datasets, respectively, and considerable improvements in
reducing false alarm rates compared to the abnormal activity recognition literature.

In future works, we aim to investigate other deep learning models, 3D models, graph
neural networks, and multi-instance learning formulations to enhance the system per-
formance. Additionally, we intend to develop a generative technique appropriate for
recognizing more classes of anomalies.
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