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Abstract: Earth observation (EO) data can provide large scale, high-resolution, and transferable 

methodologies to quantify the sprawl and vertical development of cities and are required to inform 

disaster risk reduction strategies for current and future populations. We synthesize the evolution of 

Bishkek, Kyrgyzstan, which experiences high seismic hazard, and derive new datasets relevant for 

seismic risk modeling. First, the urban sprawl of Bishkek (1979–2021) was quantified using built-up 

area land cover classifications. Second, a change detection methodology was applied to a declassi-

fied KeyHole Hexagon (KH-9) and Sentinel-2 satellite image to detect areas of redevelopment 

within Bishkek. Finally, vertical development was quantified using multi-temporal high-resolution 

stereo and tri-stereo satellite imagery, which were used in a deep learning workflow to extract build-

ings footprints and assign building heights. Our results revealed urban growth of 139 km2 (92%) 

and redevelopment of ~26% (59 km2) of the city (1979–2021). The trends of urban growth were not 

reflected in all the open access global settlement footprint products that were evaluated. Building 

polygons that were extracted using a deep learning workflow applied to high-resolution tri-stereo 

(Pleiades) satellite imagery were most accurate (F1 score = 0.70) compared to stereo (WorldView-2) 

imagery (F1 score = 0.61). Similarly, building heights extracted using a Pleiades-derived digital ele-

vation model were most comparable to independent measurements obtained using ICESat-2 altim-

etry data and field-measurements (normalized absolute median deviation < 1 m). Across different 

areas of the city, our analysis suggested rates of building growth in the region of 2000–10,700 build-

ings per year, which when combined with a trend of urban growth towards active faults highlights 

the importance of up-to-date building stock exposure data in areas of seismic hazard. Deep learning 

methodologies applied to high-resolution imagery are a valuable monitoring tool for building stock, 

especially where country-level or open-source datasets are lacking or incomplete. 
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1. Introduction 

By 2050, an estimated 68% of the world’s population will reside in urban areas [1]. 

Urbanization concentrates exposure to disaster risk and increases socioeconomic inequal-

ities due to unregulated sprawling development into hazardous areas [2–4]. These ine-

qualities are further perpetuated by a lack of data relating to the exposure and vulnera-

bility to disaster events and reported losses following disasters in lower-income countries 

[5], which also impedes progress towards United Nations Sustainable Development Goals 

(SDGs) [6]. Earth Observation (EO) satellite capabilities increasingly support progress to-

wards sustainable development using programs of global data collection, such as Land-

sat, that span over 50 years [7]. EO data are now embedded in the processes of under-

standing natural hazards and their interactions [8], measuring and monitoring urban 
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growth and intersection with hazards [9], informing disaster risk reduction strategies 

[10,11], and responding to disaster events [12,13]. 

Disaster risk reduction strategies require an understanding of the exposure and vul-

nerability of people and assets to hazards [14]. For example, details of building structure 

including age, construction method and material, and height, are key information for 

modeling disaster risk in seismically active regions [4,15–17]. The automatic mapping of 

2D urban growth using satellite data and image classification techniques is now wide-

spread, e.g., [18,19]; however, retrieving the building-level 3D structure of a city generally 

requires expensive aerial imagery or light detection and ranging (LiDAR) surveys [20,21] 

or high-resolution digital elevation models (DEMs) [22]. Recently, approaches that can 

derive aggregated building height maps over 30–90 m grids have been developed, though 

they are best suited to buildings less than ~20–30 m tall [23,24]. Other approaches use 

shadow-based height estimation; however, this does not work well in densely urbanized 

areas with overlapping shadows [25,26]. Nonetheless, these approaches represent a valu-

able mechanism to drive the transition towards 4D city mapping, where timely updates 

could be envisaged. 

Open-source mapping datasets such as OpenStreetMap are a valuable source of 

mapped building footprints for use in exposure datasets or post-disaster humanitarian 

mapping [27]; however, data are of varying completeness globally with a mapping bias 

towards regions of high Human Development Index [28]. Deep learning methodologies 

are capable of classifying building rooftop-derived footprints in high-resolution satellite 

imagery [29,30], and studies have shown that building heights can be retrieved (average 

errors ~4–>10 m) from photogrammetrically constructed digital elevation models [16,31]. 

However, application of these methods is still limited both geographically and in the spa-

tial and temporal extent of specific case studies. 

Cities such as Bishkek (Kyrgyzstan) and Almaty (Kazakhstan) in the Tien Shan 

Mountain range, Central Asia, are exposed to high seismic risk [16,32–34] (Figure 1a). A 

future earthquake in Bishkek could lead to thousands of fatalities and require hundreds 

of millions of dollars in rebuilding costs [33,35]. Bishkek is expanding horizontally to-

wards active faults and vertically through high-rise developments. Therefore, modeling 

the impact of future earthquakes on cities near active faults requires up-to-date exposure 

datasets. One necessary component is details of building structures, including age, height, 

construction material, and resident population [15,35,36]. 

 

Figure 1. (a) Location of Bishkek in relation to adjacent active faults overlaid on hillshaded digital 

elevation model. Faults are from the Kyrgyz Institute of Seismology digitized by the Active 
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Tectonics, Quantitative Structural Geology and Geomorphology Research Group [37]. Anticlines 

are from Styron [38]. (b) Analysis extents capturing Bishkek’s designated districts (gray shading) 

based on the spatial availability of each data source shown by colored polygons (colored lines for 

ICESat-2). The hashed blue polygon shows the intersecting WorldView-2 and Pleiades extents. 

In this study, we develop methodologies to quantify urban evolution using satellite 

data from 1979–2021. Our objectives are to: (1) quantify urban growth and redevelopment 

1979–2021 by developing a methodology to classify built-up area in a 1979 declassified 

KH-9 Hexagon satellite image; (2) use a deep learning methodology and sub-meter reso-

lution satellite imagery to extract and accurately assess building footprints for three time 

periods (2013, 2019, and 2021); (3) accurately assess stereo and tri-stereo-derived DSMs 

and use them to assign building heights; and (4) evaluate the methodological capabilities 

and limitations. 

2. Materials and Methods 

2.1. Urban Growth 

2.1.1. KH-9 Classification 

KH-9 satellite imagery was collected by United States reconnaissance programs 

(1973–1980) at 6–9 m ground resolution and has been used in a range of applications [39–

41]. A pair of KH-9 satellite images (21 June 1979) (Table S1) were downloaded from USGS 

EarthExplorer [42]. To our knowledge, no studies have applied image classification tech-

niques to semi-automatically extract built-up areas from KH-9 imagery. 

To classify built-up areas in a 21 June 1979 KH-9 image (Figure 2a), the imagery was 

first used to generate a digital surface model (DSM) in Agisoft Metashape v1.7.2 [43] with 

predefined camera parameters obtained by Dehecq [41] and 11 ground control points ob-

tained from Google Earth on static features. The DSM was used to orthorectify and georef-

erence the imagery, which was output at a resolution of 4 m. The image was classified into 

built-up and non-built-up areas using an object-based image analysis (OBIA) segmenta-

tion workflow. First, we segmented the orthorectified image using Orfeo ToolBox’s large-

scale mean shift segmentation algorithm [44]. A spatial radius of 5 pixels, a spectral range 

radius of 20, and a minimum segment size of 50 pixels [44] were used, following manual 

inspection to capture built-up areas and minimize segmented polygons in homogenous 

agricultural fields. Second, WhiteBox Tools v.1.4.0 Patch Shape Tools was used to add spa-

tial variables of polygon ‘compactness ratio’, ‘linearity index’, and ‘shape complexity in-

dex’ [45,46]. Third, 200 built-up and 200 non-built-up polygons were digitized as training 

data (Figure S1), which were used to extract segmented polygons corresponding to built-

up (n = 1859), and non-built-up areas (n = 682). Fourth, SAGA’s parallelepiped supervised 

classification was used to classify the segmented polygons into built-up or non-built-up 

classes [47]. Finally, the classification was resampled to 10 m to match the Sentinel-2 clas-

sification and applied a slope filter of 5 degrees to remove misclassification on steep slopes 

using the 30 m Copernicus DSM resampled to 100 m. Isolated patches less than 50 pixels 

(5000 m2) were also reclassified into the dominant surrounding classification. 
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Figure 2. Study methodology. (a) Built-up area classification and change detection. (b) Extraction of 

building footprints and heights using high-resolution satellite imagery. 

2.1.2. Sentinel-2 Classification 

Cloud-free Sentinel-2 imagery from 10 June 2016, 8 June 2017, 23 June 2018, 13 June 

2019, 14 June 2020, and 27 June 2021 were classified into Corine 2018 land-cover classes 

using a pretrained U-net deep learning model with a reported overall accuracy of 82% 

[48] (Figure 2b). The model used all 13 Sentinel-2 bands at 10 m resolution (resampled 

where required) [48]. The ‘Urban fabric’ and ‘Industrial commercial and transport units’ 

classes were merged to form a ‘built-up’ area class. 

2.1.3. Other Land-Cover Datasets 

Three global classifications of built-up area were evaluated alongside our KH9 and 

Sentinel-2 classifications (Figure S1). (1) The global human settlement (GHS) classification 

(30 m resolution, R2018A) classified built-up areas over four epochs (1975, 1975–1990, 

1990–2000, and 2000–2014) using Landsat data [49,50]. (2) The world settlement footprint 

(WSF) (10 m resolution) was available for 2015 and 2019. The 2015 dataset was derived 

using Sentinel-1 and Landsat data [18], whereas the 2019 dataset was derived using Sen-

tinel-1 and Sentinel-2 data [51]. (3) The WSF evolution (WSF-Evo) dataset was derived 

using Landsat data at 30 m resolution and provides an annual built-up area classification 

(1985–2015) [51]. 

2.1.4. Urban Redevelopment 

Redevelopment of existing built-up areas in Bishkek was evaluated using the 1979 

KH-9 and 2021 Sentinel-2 data for areas falling within the initial 1979 built-up area classi-

fication (Figure 2b). Therefore, capturing buildings present in the 1979 built-up classifica-

tion that were demolished, and new ones which were built, was visible as an increase in 
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the spectral reflectance of the area. Whitebox Tools v.1.4.0 Histogram Match tool was used 

to match Sentinel-2 band 3 (green) to the single-band KH-9 data and normalized the out-

puts in the range 0–1. The KH-9 image was downsampled to match the 10 m resolution of 

Sentinel-2. The normalized KH-9 data were subtracted from the normalized Sentinel-2 

data and extracted the mean digital number (DN) change in 20 polygons, which were 

digitized in areas where the land cover remained consistent 1979–2021 based on visual 

inspection (Figure S2a). We used this analysis to conservatively mask changes between 

values of −0.1–0.1 as ‘unchanged’. The remaining negative values (−1–−0.1) represent a 

DN decrease, which was associated with vegetation growth. These were reclassified into 

a ‘vegetated’ class. Conversely, positive values (0.1–1) represent a DN increase. These 

were associated with built-up area redevelopment and were reclassified into a ‘built-up’ 

class. A low DN could be associated with low-reflectivity buildings with tiled roofs, e.g., 

[52], rather than vegetation. Therefore, the validity of these assumptions was tested by 

extracting the normalized difference vegetation index (NDVI) values for the two classes 

using 2021 Sentinel-2 imagery: 

NDVI(��) =
Band NIR (8) − Band Red(4)

Band NIR (8) + Band Red(4)
 (1)

2.1.5. Land-Cover Accuracy Assessment 

KH-9 and Sentinel-2 built-up area classifications were assessed for accuracy using a 

random distribution of points within built-up (n = 250) and non-built-up (n = 250) classes 

for each classification (Figure S2). Error matrixes using the validation points were used to 

report classification confidence intervals [53,54]. We applied an additional constraint to 

the KH-9 classification to mask the classification to built-up areas classified in 2021. Our 

urban redevelopment analysis (Section 2.1.4) was assessed for accuracy at 10 m spatial 

resolution using 250 random points in each class: ‘unchanged’, ‘vegetated’, and ‘built-up’. 

Google Satellite Basemap (extracted in 2021 with images dated 2021 (Table S1)) was used 

as a reference dataset alongside the KH-9 and Sentinel-2 satellite imagery. 

2.2. Digital Elevation Model Generation and Analysis 

High-resolution satellite imagery from Pleiades and WorldView-2 satellites were 

used to produce DSMs and orthorectified satellite images for building footprint and 

height extraction (Figure 2b). We used a stereo WorldView-2 acquisition from 10 October 

2019 (0.5 m panchromatic, 2 m multi-spectral) and a tri-stereo Pleiades acquisition from 2 

November 2013 (0.7 m panchromatic, 2.5 m multi-spectral) (Figure 1b) delivered with ra-

tional polynomial coefficients (RPCs) (Table S1). Agisoft Metashape v1.8.0 [55] was used 

to process the imagery to derive DSMs and orthorectified imagery, e.g. [56]. (1) The pan-

chromatic imagery was aligned in one chunk to produce a sparse point cloud; (2) outliers 

were removed from the sparse cloud using Metashape’s gradual selection tools to reduce 

the root mean square reprojection error to ≤0.5 pix; (3) the panchromatic imagery was used 

to derive a dense point cloud using ‘high’ quality settings and no depth filtering, which 

was used to interpolate a 1.5 m resolution DSM; (4) this DSM was used to orthorectify 

both the most nadir panchromatic and multi-spectral satellite images. The Pleiades and 

WorldView-2 multi-spectral imagery was pansharpened to 0.5 m resolution using the 

Gram–Schmidt algorithm and the respective sensor model and band weights (Pleiades or 

WorldView-2) in ArcGIS Pro 2.8 [57]. 

Two additional DSMs were derived using 3.7 m resolution PlanetScope (PS) imagery 

[58] to determine whether these DSMs were able to resolve buildings in Bishkek. We used 

the red, green, and blue bands from 43 level 1B images from the PSB.SD instruments 

onboard the SuperDove satellite constellation acquired March to April 2021 (Table S1) and 

followed the same processing workflow described in Metashape, with an additional filter 

applied to the dense point cloud to minimize noise. The PlanetScope imagery has a near-

nadir viewing geometry; therefore, many overlapping images are required to generate a 
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DSM [59]. We removed dense cloud points that were present in less than three depth maps 

to create DSM ‘v1′, and points present in less than six depth maps to create a DSM ‘v2′, 

both output at 9 m resolution. 

All DSMs were coregistered to the 12 m resolution TanDEM-X DSM [60] following 

the x, y, z shift correction of Nuth and Kääb [61]. Ice, Cloud, and land Elevation Satellite 

(ICESat-2) altimetry data were used to validate the vertical accuracy of the DSMs (Figure 

1b). We downloaded all ATL03 ICESat-2 data [62,63] over Bishkek up to 8 April 2021 using 

OpenAltimetry [64]. Data spanned 14 November 2018 to 9 November 2020 and included 

tracks 0272, 0310, 0714, 0752, 1156, 1194. Only ‘high’ confidence photons were used, which 

were gridded at 5 m resolution and removed cells with fewer than two photons, a range 

greater than 1 m, and a vertical difference from the TanDEM-X of >80 m to avoid removing 

points on tall buildings. Accuracy statistics were reported over slopes <10°, e.g., [65], 

which captures our city area of interest (AOI), and outliers ≥20 m were removed (≥50 m 

for PlanetScope). Error metrics included root mean square error (RMSE) and normalized 

absolute median deviation (NMAD), of which the latter is considered more resilient to 

outliers [66]. 

2.3. Extracted Building Characteristics and Accuracy Assessment 

2.3.1. Building Polygons 

Building footprints were extracted from the orthorectified pansharpened 

WorldView-2 and Pleiades satellite imagery using a Deep Learning workflow applied in 

ArcGIS Pro 2.8. We also applied the workflow to a ~0.5 m resolution Google Satellite base-

map. Here, we masked building detections from the Google Satellite Basemap classifica-

tions to the Sentinel-2 2021 built-up area classification. For each dataset, the deep learning 

workflow involved manually digitizing building polygons within randomly selected 200 

m square cells covering built-up areas. All buildings intersecting each cell were digitized, 

with a total of ~2000 building polygons used for each dataset. Additionally, we digitized 

a further 1000 validation buildings for each dataset following the same random cell selec-

tion method. Training data were exported with a tile size of 400 × 400 pixels and a stride 

of 200 pixels. A Region-based Convolutional Neural Network Mask R-CNN deep learning 

model was trained to detect buildings in the high-resolution satellite imagery. Mask R-

CNN is an instance segmentation model that provides a segmentation mask and output 

polygon for each instance of a building detection. Mask R-CNN was chosen owing to its 

efficient building extraction capabilities applied to high-resolution satellite imagery 

[30,67,68]. We trained the Mask R-CNN to 20 epochs using an unfrozen ResNet-50 back-

bone model and 20% of the data used for validation. Buildings were detected from the 

satellite imagery using the trained Mask R-CNN models with 100-pixel padding. We first 

ran the deep learning model using the initial 2000 buildings for each dataset and subse-

quently digitized a further 500 buildings through manual inspection of buildings that 

were not detected by the first run. Then, 2500 buildings were used to train the final deep 

learning model for each dataset. Buildings less than 5 m2 were removed. We report com-

monly used accuracy assessment metrics for binary classification including precision, re-

call, and the F1 score for buildings with an intersection over union (IoU) of ≥0.5: 

��������� =
���� ��������

(���� �������� � ����� ��������)
  (2)

������ =
���� ��������

(���� �������� +  ����� ��������)
 (3)

�1 ����� =
(��������� ×  ������)

�
(��������� +  ������)

2 �
  

(4)

For comparison with open access data, we used OpenStreetMap [69] and GlobalM-

LBuildingFootprints datasets (https://github.com/microsoft/GlobalMLBuildingFootprints 
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(accessed on 19 May 2022)) of building polygons intersecting our AOI. OpenStreetMap 

data is of unknown date, whereas the GlobalMLBuildingFootprints specified that it was 

derived from a basemap mosaic containing imagery from 2014–2021 (we estimated the 

date was 2016 for our study area). 

2.3.2. Building Heights 

Building heights were assigned to the building polygons using relative heights ob-

tained through differencing digital surface models (DSMs) output from Metashape and 

digital terrain models (DTMs) (i.e., with surface features such as vegetation and buildings 

removed) generated using LAStools (v.200509) [70]. To generate DTMs, we used the ‘las-

ground_new’ tool to with a 50 m step size (‘-metro’), the ‘ultra_fine’ flag and 0.5 m ‘bulge’ 

to remove buildings and vegetation. Relative heights were obtained by subtracting DTMs 

from DSMs. We assigned heights to building polygons using a mean of all intersecting 

pixels where the following criteria were met: (1) the building height was ≥2 m; (2) ≥80% 

of the building polygon featured valid height pixels; and (3) the polygons did not intersect 

with the occurrence of water obtained from Pekel et al. [71]. These criteria were designed 

to remove misclassifications. Furthermore, we applied internal buffers of −1 m, −2 m, and 

−3 m to the building polygons and used the same criteria to assign building heights. In-

ternal buffers removed edge effects around building polygons caused by irregularities in 

the extracted footprint or vegetation overlapping with the building roof that could bias 

the extracted building height. The number of building stories was estimated using a sam-

ple of 300 buildings where we counted vertical window occurrence in Google Street View 

imagery (dated 2015). A linear relationship was derived between the building height and 

number of stories, which incorporated variation due to variable roof heights (Figure S3). 

2.3.3. Building Height Validation 

We used 11 field-measured building heights and ICESat-2 altimetry data as an inde-

pendent check of our DSM-DTM-derived building heights. They were obtained using a 

laser range finder (TruPulse 360R) in June 2019 for buildings 16–57 m tall (Table S2). 

Buildings common to both the Pleiades (2013) and WorldView-2 (2019) datasets, 

which were separated by six years, were extracted using a polygon IoU threshold of 0.8 

to ensure robust comparisons. Where our gridded ICESat-2 pixels (Section 2.3) intersected 

with these buildings, the elevation value was assigned to produce three independent 

height measurements for cross-comparison. 

3. Results 

3.1. Urban Growth 

We observed a near doubling in built-up area of 139 km2 (92%) (1979–2021), from 153 

± 11 km2 in 1979 to 293 ± 22 km2 in 2021 (Figure 3). This occurred alongside a doubling of 

the population over the same period to 1.06 million in 2021 (Figure 2d). Much of Bishkek’s 

expansion was to the south of the city into previously agricultural areas (Figure 2). This is 

also the case for the most recent expansion 2016–2021, which occurred largely on the 

southeast and southwest edge of the city (Figure 3b). The WSF Evolution dataset most 

closely matched our analysis using Sentinel-2 data; however, the built-up area in 1991 (140 

km2) was smaller than our 1979 classification (153 ± 11 km2). The WFS Evolution classifi-

cation in 1985 was also an outlier to the trend (Figure 3d). 

The GHS built-up area tracked lower than all other classifications, and the northeast 

of the city was missing until the 2000–2014 timestamp (Figures 3d and S1a). The KH-9, 

WSF-Evo, and Sentinel-2 classifications appeared consistent in the areas classified as built-

up and the areas excluded (e.g., greenspace areas in Figure S4). Our accuracy assessment 

applied to the KH-9 and Sentinel-2 classifications (2016 and 2021) showed overall accura-

cies of 83 % (KH-9), 93% (Sentinel-2 2016), and 94% (Sentinel-2 2021) (Tables S3–S5). 
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Figure 3. Built-up area change in Bishkek. (a) 1979 KH-9 built-up area classification. (b) Difference 

in built-up area 1979–2016–2021 with Bishkek’s districts overlaid. (c) Landcover classification of the 

2021 Sentinel-2 image. (d) Change in built-up area through time for the same AOI (a–c). 95% confi-

dence intervals are shown for the KH-9 and Sentinel-2 ‘S2′ classifications (2016 and 2021). Popula-

tion estimates (blue line) are from Macrotrends [72] and United Nations Statistics Division [73] 
(blue squares). 

3.2. Urban Redevelopment 

Areas of built-up redevelopment were clustered in the southwest and east of the city 

(Figure 4a). Some of these areas correspond to the ‘Industrial commercial and transport 

units’ class (Figure 2c), where developments produced an increase in DN value (Figure 

4b). Conversely, areas of the city in the southeast showed a DN decrease, which corre-

sponded to increased vegetation around building structures that remained unchanged 

1979–2021 (Figure 4a,c). The classified areas for built-up redevelopment, vegetated, and 

unchanged were 59 km2, 58 km2, and 108 km2, respectively (Table S6). Our accuracy as-

sessment suggested an overall accuracy of 76.4% for this land-cover change assessment, 

suggesting that DN change within built-up areas was a reasonable proxy for areas of re-

development or vegetation growth (Table S6). 
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Figure 4. Redevelopment within Bishkek (1979–2021). (a) Digital number change 1979–2021 from 

the difference of KH-9 and Sentinel-2 imagery (Section 2.1.4). Pie charts show the proportional DN 

change aggregated to a 1 km2 grid for areas ≥50% built-up. Inset shows a violin and boxplot of Sen-

tinel-2 NDVI values for negative DN change (vegetated) and positive DN change (built-up redevel-

opment) classes. (b) Example of redevelopment of an area in central Bishkek where the building 

layout noticeably changes. (c) Example increased vegetation (trees) around buildings in south Bish-

kek. Extents of (b,c) are shown on panel (a). 

3.3. Building Classification 

Within the respective data extents (Figure 1b), we extracted 205,056 buildings from 

the 2013 Pleiades imagery, 67,091 from the 2019 WorldView-2 imagery, and 429,001 from 

the 2021 Google Satellite Basemap imagery. OpenStreetMap buildings within the same 

AOI as the Google Satellite Basemap detections totaled 160,141. We extracted all building 

detections falling within the intersecting WorldView-2, Pleiades, and Google Satellite 

Basemap imagery extents (83 km2) (Figure 1b) to enable a comparison across all datasets 

through time. Buildings totaled 49,502 for the Pleiades imagery (2013), 61,102 for the 

WorldView-2 imagery (2019), 65,349 for the Google Satellite Basemap imagery (2021), 
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63,597 for GlobalMLBuildingFootprints (dated ~2016 for Bishkek, see Section 2.3.1), and 

33,283 for OpenStreetMap (unknown date). The number of buildings within the intersect-

ing AOI therefore increased by 11,600, as observed by the Pleiades (2013) and WorldView-

2 (2019) datasets, and 15,847, as observed using the Pleiades and Google Satellite Basemap 

(2021). Within the larger Pleiades AOI (Figure 1b), there was a 42% (85,658) increase in 

buildings 2013–2021 observed from the 2013 Pleiades data (205,056 buildings) and 2021 

Google Satellite Basemap (290,714 buildings). Buildings from the GlobalMLBuildingFoot-

prints dataset within the Pleiades AOI totaled 275,462, which was therefore in the range 

of the Pleiades and Google Satellite Basemap-derived estimates. 

Leninsk District had the most buildings overall and by square kilometer (1351 build-

ings/ km2) (Figure 5, Table 1). Oktiabrskii District had the largest buildings on average 

(208 ± 461 m2), which corresponded with the presence of industrial/commercial areas (Fig-

ure 3c) and the larger observed building size in these areas (mean of 176 m2) (Figure 5d). 

Table 1. Summary of buildings by district extracted from the 2021 Google Satellite Basemap im-

agery. 

District District Size (km2) Number of Buildings Buildings per km2 

Mean Building Size (m2) 

(One Standard Devia-

tion) 

500 m Grid Cell Build-

ing Coverage (%) (One 

Standard Deviation) 

Leninskii District 54 72,714 1351 137 (239) 19 (6) 

Oktiabrskii District 35 23,714 670 208 (461) 15 (9) 

Pervomaiskii District 42 48,773 1150 137 (250) 18 (7) 

Sverlovskii District 35 45,155 1274 146 (368) 19 (7) 

 

Figure 5. (a–d) Spatial characteristics of buildings extracted from the Google Satellite Basemap im-

agery (2021) aggregated to 500 m grid cells. Labels in (a) show Pervomaiskii District (P), Sverlovskii 

District (S), Leninskii District (L), and Oktiabrskii District (O). Median sizes of buildings (b) were 
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classified as equal count (quantile) in each class. Land-cover classes in (d) were extracted from Fig-

ure 3c. 

The Pleiades classification featured the highest precision, recall, and F1 score (0.72, 

0.68, and 0.70, respectively) (Table 2), followed by Google Satellite Basemap (0.70, 0.64, 

0.67) and WorldView-2 (0.64, 0.59, 0.61). Examples of detections and validation data are 

shown in Figure 6. 

Table 2. Validation of the building detection deep leaning classification (see Section 2.3.1). 

Metric Pleiades (2013) WorldView-2 (2019) 
Google Satellite 

Basemap (2021) 

Number of buildings (Mask R-CNN) 1090 1024 967 

Number of buildings (validation) 1163 1113 1064 

TP (overlap) 781 652 676 

FP (no overlap) 309 372 291 

FN (reference not overlapping Mask R-CNN) 374 461 388 

Total area reference (m2) 151,961 194,427 141,164 

Total area Mask R-CNN 142,930 189,880 140,597 

Total area overlap (m2)  110,223 149,066 108,072 

True overlapping area (%) 72.53 76.67 76.56 

Precision 0.72 0.64 0.70 

Recall 0.68 0.59 0.64 

F1 0.70 0.61 0.67 

 

Figure 6. (a–f) Examples of building detections (blue) and validation (green) within 200 m analysis 

windows for Pleiades, WorldView-2, and Google Satellite Basemap imagery (Section 2.3.1). The top 
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row (a,c,e) shows examples of low-rise residential areas, and the bottom row (b,d,f) shows examples 

of medium/high-rise buildings). 

3.4. Building Characteristics 

High-resolution DSMs were used to assign heights to building polygons following 

the workflow outlined in Section 2.3.2. The Pleiades and WorldView-2 DSMs had compa-

rable errors (NMAD = 0.62 and 0.51, respectively) (Figure 7). Within the same intersecting 

AOI extents (Figure 1b), data gaps were greatest in the WorldView-2 DSM, which featured 

91% coverage, compared to 99% for the Pleiades DSM. 

 

Figure 7. (a–d) Elevation accuracy statistics for DSMs compared to ICESat-2 data over their respec-

tive AOIs (Figure 1b). 

Mean and one standard deviation of elevation values were assigned to individual 

building polygons using internal polygon buffers of ranging from zero to three meters 

(Figure 8). The standard deviation of building height was observed to decrease with in-

creasing buffer size. For example, standard deviation decreased from 0.9 m to 0.6 m in the 

Pleiades dataset for building polygons with no buffer and a buffer of −2 m, respectively 

(Figure 8b). The most stringent internal buffer (−3 m) did not lead to further improvement 

and notably reduced the number of buildings with valid heights assigned (following Sec-

tion 2.3.2). We therefore used building heights extracted with a buffer of −2 m (Figure 8). 
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Figure 8. (a) Mean building heights for the dataset of Pleiades and WorldView-2 detections. (b) One 

standard deviation of building height for Pleiades and WorldView-2 detections. Boxplot annotation 

(a,b) shows mean values. Building counts (n) are shown for each dataset buffer. 

Independent Pleiades and WorldView-2 derived building heights (MAE = 0.79 m) 

and absolute elevations (DSM elevation values) (MAE = 0.50 m) (Figure 9a,b) showed 

close agreement. Similarly, comparing DSM-derived elevation values to ICESat-2 altime-

try data revealed that the DSM elevation values were systematically lower than the ICE-

Sat-2 data by ~2 m (median values of −1.9 m and −1.6 m for Pleiades and WorldView-2, 

respectively) (Figure 9c). NMAD values from the DSM and ICESat-2 comparison were 

0.67 m for Pleiades and 0.68 m for WorldView-2, whereas MAE values were closer to 2 m 

(Figure 9c). The building height MAE 1.74 m (Pleiades) and 1.78 m (WorldView-2) for 

buildings observed in the field were comparable to those obtained in the ICESat-2 com-

parison (1.86 m—Pleiades and 1.72 m—WorldView-2) (Figure 9c). The NMAD was lowest 

for the Pleiades-derived building heights for both the ICESat-2 (0.67 m) and field compar-

isons (0.43 m) (Figure 9c,d). We show the distribution of Pleiades-derived building 

heights, which covered most of Bishkek’s districts in Figure 10. The tallest buildings are 

clustered in the center of Bishkek and the southeast. 

 

Figure 9. Comparison of Pleiades and WorldView-2 derived building heights (a) and absolute ele-

vations (b) for buildings common to both datasets n = 2795. (c) Building height difference compared 
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to ICESat-2 data. (d) Comparison of DSM-derived building heights and field measurements. Two 

methods of extracting the building height are shown using the mean (left) or 90th Percentile (right) 

of elevation values within the building polygon. 

 

Figure 10. Building detections from the Pleiades data with respective heights. 

4. Discussion 

Our analysis focused on deriving information relevant to updating city exposure da-

tasets, particularly where both horizontal and vertical urban growth creates dynamic dis-

aster risk. Historically, earth observation based urban growth assessments produce obser-

vations of 2D urban sprawl from image classifications applied to optical satellite imagery 

archives, such as those from the Landsat series [7]. Notably, these datasets do not show 

urban areas that undergo redevelopment through time, where low-rise buildings are re-

placed with taller vertical structures to accommodate urbanizing populations and eco-

nomic activity (e.g., Figure 4). Therefore, these datasets cannot be used to assign building 

ages without first considering areas of redevelopment. 

4.1. Urban Change Mapping 

Our analysis revealed a ~139 km2 expansion of Bishkek (1979–2021) alongside a dou-

bling of the city’s population. Much of this expansion was to the south of the city, where 

urban areas are in closer proximity to the Issyk-Ata fault (Figure 3b). This trend was also 

observed by earlier land-cover change assessments of Wieland et al. [15] and Omura-

kunova et al. [52]. This region of southern Bishkek potentially features the greatest 
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earthquake hazard, and Erdik et al. [33] suggested casualties could reach 34,000. Bindi et 

al. [74] suggested lower casualties (16,600). Damages from an earthquake close to Bishkek 

would clearly be high, having also increased over the last decade with urban growth (Fig-

ure 3d) [35]. We found that the WSF-Evo dataset [51] most closely matched our analysis 

of urban growth, though the match was best in recent years. 

Modern satellite sensors featuring near infrared and red bands can effectively moni-

tor vegetation presence and change. Similarly, with multi-temporal high-resolution DSMs 

as used in our study, difference maps clearly highlight new buildings (e.g., Figure 11). 

However, our use of single-band KH-9 data offers a valuable historical perspective on 

urban redevelopment and vegetation growth at a resolution unavailable from multi-spec-

tral sensors in the 1970s (e.g., ~80 m Landsat Multispectral Scanner). 

 

Figure 11. (a) Elevation difference between Pleiades and WorldView-2 DSMs with building poly-

gons overlaid. (b) Corresponding WorldView-2 ortho image. Indicative elevation change values are 

shown in brackets for selected features. 

We observed redevelopment of built-up areas concentrated in the east and southwest 

of the city (Figure 4). Some of these redevelopments fell within the ‘Industrial commercial 

and transport units’ class (Figure 3c) and were linked to commercial developments (e.g., 

Figure 4b). Greenspace distribution in cities is becoming increasingly valued for a range 

of societal and environmental benefits [75–77]. Against a backdrop of urban sprawl and 

redevelopment, our analysis identified urban greening, which could otherwise be masked 

within a general trend of urbanization and greenspace depletion, e.g., [52]. This analysis 

also offers a simple method of updating exposure datasets where ages are assigned to 

built-up areas, e.g., [15], since ~26% of Bishkek’s built-up area classified in 1979 was ob-

served to have redeveloped. 

4.2. Building Detection and Bishkek’s Expansion 

Our deep learning building detection workflow was of comparable accuracy to other 

studies. Tiede et al. [67] observed an F1 score of 0.78, compared to 0.70 in our study (Plei-

ades dataset—Table 2). However, their study was concerned with the total number of 

buildings detected for population estimation, rather than the correct spatial intersection 

of detections and validation data. Zhao et al. [30] observed an overall score (mean for 

detections over four cities) of 0.71 as part of the DeepGlobe Building Extraction Challenge. 

Similarly, Li et al. [29] achieved an F1 score of 0.70 using WorldView-3 multispectral im-

agery. Despite comparable DSM accuracy between Pleiades and WorldView-2 (Figure 9), 
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the lower building detection performance for WorldView-2 data (Table 2) is potentially 

linked to larger data gaps (e.g., Figure 12) and greater image orthorectification errors due 

to the stereo viewing geometry compared to tri-stereo for Pleiades (Table S7). Tri-stereo 

satellite image acquisitions improves data coverage and reduces DSM uncertainty [65], 

which is important in cities where medium- and high-rise buildings would otherwise ob-

scure the ground as viewed from the satellite. Due to their larger pixel size, the 12 m Tan-

DEM-X and 9 m PlanetScope DSM were not able to resolve individual buildings (Figure 

12c), and the PlanetScope DSM also featured the highest vertical error (~8.5 m RMSE) 

(Figure 7b). The TanDEM-X has been used to derive average building heights aggregated 

to a 90 m grid, e.g., [24]; whereas the vertical error in PlanetScope DSMs produced using 

RPCs (without ground control points) likely precludes such applications despite ad-

vantages of higher resolution and high revisit frequency. 

 

Figure 12. Example hillshaded DSMs for Pleiades (a) and WorldView-2 (b) over central Bishkek. (c) 

Example DSM elevation profile through seven buildings shown on panels (a,b). Profile runs south 
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to north. The building footprints are shown by an arrow and horizontal line. The horizontal line is 

shown at the peak elevation values for each building and does not reflect the true building height, 

which was not known. 

Within the Pleiades AOI, we observed a 42% (85,658) increase in buildings 2013–2021 

to a total of 290,714 buildings in 2021 (~10,700/year). Bishkek’s population increased ~20% 

(~180,000) over the same time period (Figure 3d). Wieland et al. [15] derived an empirical 

estimate of 112,293 buildings in 2009, though over a smaller area of Bishkek. Additionally, 

Erdik et al. [33] reported a total of 77,150 buildings in Bishkek (with an undefined spatial 

extent) in 2005, of which the majority (75,000) were stated to be private apartment houses. 

Comparing the 2005 data to our 2021 Google Satellite Basemap estimate would equate to 

a construction of 13,300 buildings per year. Notably, within the smaller WorldView-2 AOI 

(Figure 1b), the increase in buildings was smaller at 11,600 (2013–2019) and 15,847 (2013–

2021), or ~2000 buildings per year. Though our accuracy assessment revealed similar 

scores between classifications (Table 2), deep learning building extraction using high-res-

olution satellite imagery still presents issues, particularly regarding the underestimation 

of closely built or adjoining buildings [67], which may deliberately be marked as a single 

building at the training stage [78]. The prevalence of partially complete (i.e., with a roof 

but unoccupiable) or unoccupied buildings is also not considered. 

Automated workflows are required to utilize a vastly increasing dataset of high-res-

olution imagery and to produce dynamic city inventories. For Bishkek, seismic risk mod-

els require up-to-date exposure data, since the expansion trajectory does not appear to be 

slowing. The median distance of built-up areas from active faults has reduced from 9.7 to 

8.8 km, and there is an additional 83 km2 of built-up area (1979–2021) within 10 km of 

active faults (Figure 13). 

 

Figure 13. Violin plot of built-up area proximity to active faults (Figure 1) in 1979 and 2021. 

5. Conclusions 

In this study, we assessed the growth of Bishkek through time, including deriving a 

workflow to classify built-up area and areas of redevelopment in a 1979 KH-9 Hexagon 

satellite image. We used high-resolution stereo and tri-stereo satellite imagery to derive 

building polygons and their heights, which were validated using ICESat-2 altimetry data. 

Bishkek expanded by ~139 km2 (92%) (1979–2021), particularly towards active faults lo-

cated at the south of the city and ~26% (59 km2) of Bishkek’s built-up area classified in 

1979 was observed to have redeveloped by 2021. We found that building polygons ex-

tracted using a deep learning workflow applied to high-resolution tri-stereo (Pleiades) 

satellite imagery were most accurate (F1 score = 0.70) compared to stereo (WorldView-2) 

imagery (F1 score = 0.61), and that building heights extracted using a Pleiades-derived 
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digital elevation model were most comparable to independent measurements (normal-

ized absolute median deviation < 1 m). Across different areas of the city, our analysis sug-

gested rates of building growth in the region of 2000–10,700 buildings per year. The hori-

zonal and vertical expansion of Bishkek demonstrates the importance of up-to-date expo-

sure data, which are required to produce seismic risk models. Our analysis highlighted 

the capabilities and limitations of using earth-observation data to update estimates of 

building stock, where country-level or open access datasets are lacking or incomplete. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/rs14225790/s1, Figure S1: Bishkek’s urban growth quantified by 

global datasets including the Global Human Settlement (a), World Settlement Footprint (b), and 

World Settlement Evolution (c); Figure S2. (a) Reference polygons used as training data for the KH-

9 built-up classification. Accuracy assessment points are also shown for the KH-9 built-up classifi-

cation, and the KH-9 classification masked to the built-up area classified using 2021 Sentinel-2 im-

agery. (b) Stable areas used to quantify DN values for masking out areas of insignificant change 

when investigating areas of the city that underwent redevelopment or vegetation growth. Accuracy 

assessment points are also shown for the DN change analysis. Accuracy assessment points for the 

deep learning classification applied to Sentinel-2 imagery from 2016 (c) and 2021 (d); Figure S3. 

Relationship between the number of building stories and building height for a sample of 300 build-

ings in Bishkek. Building stories were derived by counting vertical window occurrence in Google 

Street View (imagery from 2015). Building heights were assigned using 2013 Pleiades data (Figure 

10); Figure S4. Examples of built-up area classification for the KH-9 analysis (a,b), World Settlement 

Footprint (c,d), and Sentinel-2 2021 (e–f). Panels in the left column (a,c,e) and right column (b,d,f) 

show the same area for each classification; Table S1. Optical satellite image IDs used in this study; 

Table S2. Comparison between field-measured building heights and those derived from the DSM-

DTM difference for Pleiades and WorldView-2 data; Table S3. KH9 1979 accuracy assessment 

(masked to Sentinel-2 2021 built-up extent) using 500 validation points. The validation points were 

used to report area-adjusted classification confidence intervals and producers, users, and overall 

accuracy percentages; see [53,54]. Briefly, these error-adjusted metrics use the validation points to 

weight the classified areas accounting for omission or commission within each class. Confidence 

intervals are the same where the number of classes equals two, since errors are dependent. Overall 

accuracy is the correctly mapped proportion of the area. Producer’s accuracy is the proportion of 

the area in a class according to the reference (ground truth) information that is also mapped as that 

class. User accuracy is the proportion of the area mapped as a class that belonged to that class ac-

cording to the reference information; Table S4. Sentinel-2 2016 accuracy assessment; Table S5. Sen-

tinel-2 2021 accuracy assessment; Table S6. KH9 1979 land-cover change accuracy assessment; Table 

S7. Acquisition information for tri-stereo (Pleiades) and stereo (WorldView-2) imagery. 
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