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Tuning between continuous time crystals and many-body scars in long-range XYZ

spin chains

Kieran Bull,1 Andrew Hallam,1 Zlatko Papić,1 and Ivar Martin2

1School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
2Material Science Division, Argonne National Laboratory, Argonne, IL 08540, USA

Persistent oscillatory dynamics in non-equilibrium many-body systems is a tantalizing manifesta-
tion of ergodicity breakdown that continues to attract much attention. Recent works have focused
on two classes of such systems: discrete time crystals and quantum many-body scars (QMBS).
While both systems host oscillatory dynamics, its origin is expected to be fundamentally different:
discrete time crystal is a phase of matter which spontaneously breaks the Z2 symmetry of the exter-
nal periodic drive, while QMBS span a subspace of non-thermalizing eigenstates forming an su(2)
algebra representation. Here we ask a basic question: is there a physical system that allows to tune
between these two dynamical phenomena? In contrast to much previous work, we investigate the
possibility of a continuous time crystal (CTC) in undriven, energy-conserving systems exhibiting
prethermalization. We introduce a long-range XYZ spin model and show that it encompasses both a
CTC phase as well as QMBS. We map out the dynamical phase diagram using numerical simulations
based on exact diagonalization and time-dependent variational principle in the thermodynamic limit.
We identify a regime where QMBS and CTC order co-exist, and we discuss experimental protocols
that reveal their similarities as well as key differences.

Introduction.— The basic tenet of thermodynamics
is that when a substance contains many constituents, its
macroscopic behavior can be efficiently described by just
a few variables such as pressure, volume, and tempera-
ture. Microscopic details typically only enter the mecha-
nism of dissipation, which accounts for the energy trans-
fer from the large to the microscopic scale (heating). As a
rule of thumb, the higher the temperature, the faster the
relaxation of any non-generic state that possesses some
ordering, such as magnetization, unless the latter is ex-
plicitly conserved by the system’s Hamiltonian.

It thus came as a surprise when Rydberg atom ex-
periments [1] revealed long-lived oscillations of an order
parameter in a very high energy density initial state.
The oscillations were subsequently understood to be due
to quantum many-body scars (QMBSs): a dynamically-
decoupled subspace within the many-body Hilbert space,
spanned by non-thermalizing eigenstates, which are not
protected by a symmetry [2, 3]. The Rydberg atom
system evades the generic expectations for rapid relax-
ation stated above as QMBS form “towers” with (nearly)
equidistant energy spacings. Superpositions of tower
states undergo periodic evolution, thus avoiding the de-
phasing that afflicts generic states. These QMBS towers
can be understood semiclassically [4–8], based on an anal-
ogy with quantum scars of a single particle in a stadium
billiard [9]. Importantly, this behavior was shown to oc-
cur also in higher dimensions [10–12] and in the presence
of certain kinds of perturbations [13–15] including disor-
der [16]. More generally, QMBS subspaces are now un-
derstood to originate from a (restricted) spectrum gener-
ating algebra (RSGA) [17–19], which has been shown to
arise in a number of non-integrable lattice models [17, 20–
29]. As the system remains non-integrable, this class of
phenomena represents a weak violation of the Eigenstate

Thermalization Hypothesis (ETH) [30, 31].

A seemingly distinct way of evading the ETH is the
formation of a continuous time crystal (CTC) [32]. In a
CTC phase, the system is in a prethermal state that cor-
responds to a near-ground state in the rotating frame,
while being at a very high energy-density in the lab
frame [33]. Being at a low temperature in the rotat-
ing frame, the system has an option of developing an
order parameter, thus spontaneously breaking symmetry
which may be unique to the rotating frame. Eventually,
the system is expected to fully thermalize; however, if
both the pretermalization time scale and the thermal-
ization time scale (corresponding to full equilibration in
the lab frame) increase with the system size, the result
would be a long lived – quasistatic – ordering in the rotat-
ing frame, manifesting as a “rotating” order parameter
in the lab frame.

In this paper we address the question: are CTC and
QMBS distinct mechanisms of ETH breaking? The two
a priori appear different: QMBSs reveal themselves for
very special initial states, while CTC, being a phase
of matter, is supposed to be characterized by an order
parameter, with the same order parameter configura-
tion (defined down to physically small but microscopi-
cally large volume) possibly originating from very dif-
ferent microscopic states. Nevertheless, one might won-
der if underlying the CTC there are scar-like towers of
states that violate the ETH. Below we introduce a long-
range XYZ spin model, experimentally motivated by sys-
tems of trapped ions and polar molecules, which real-
izes both QMBS as well as CTC route for evading the
ETH. For sufficiently long-range interactions, our simu-
lations using infinite matrix product state methods re-
veal signatures of spontaneous symmetry breaking in the
thermodynamic limit and the formation of CTC. For
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weakly anisotropic couplings and irrespective of interac-
tion range, we demonstrate the existence of QMBS. The
phase diagram shows that even though there are regimes
where CTC and QMBS co-exist, these are two distinct
ph enomena. We discuss experimental protocols that can
distinguish between them.

The model.— We focus on disorder-free systems,
in which a discrete version of a time crystal (DTC)
with spontaneously broken Z2 Ising symmetry has been
demonstrated in numerics [34] and experiment [35]. By
contrast, we consider an undriven XYZ spin model, with
anisotropic long-range couplings and in the magnetic field
along the z-axis, given by the Hamiltonian:

H =
1

N
∑

i>j

∑

ν=x,y,z

Jν
|i− j|ασ

ν
i σ

ν
j + hz

∑

i

σz
i , (1)

where σν
i are the standard Pauli matrices on site i, and

α controls the power-law decay of the interactions. We
assume a 1D chain with open boundary conditions and
divide the interaction couplings Jν with the Kac norm,
N , [36] which ensures the energy density is intensive.

Before we study the model in Eq. (1) for α>1, we
note that the α=0 limit is a fully connected Lipkin-
Meshkov-Glick (LMG) model [37, 38], which can be de-
scribed by only a few collective variables if initial states
satisfy permutation symmetry [39–41]. The paramag-
netic state (Jν≪|hz|) can be identified with a CTC
(Ref. [42] used a term “mean-field time crystal” to
distinguish this special type of CTC). In the Ising
limit, the thermalization time is estimated as τth∼Nβ/d,
where β=min(d−α, (1+d)/2) [43]. Thus for d=1 and
α<1/2, thermalization time (∼N1−α) is much longer
than prethermalization or order parameter melting time,
∼N1/2 [44, 45], both diverging with system size.

Continuous time crystal.— The possibility of a
CTC in generic models away from the LMG limit was
raised in Ref. [32]. When hz ≫ Jν and for short-range
interactions, there is a U(1) charge, well-conserved over
exponentially long times [33, 46]. The conditions for
breaking continuous U(1) symmetry are stringent: for
short-range interactions, true long range order is only
possible in d≥3 (a classical Kosterlitz-Thouless transition
can occur in d=2). In d=1, a phase transition requires
long-range interactions. Our investigation below will fo-
cus on α > d=1, for which bounds derived in Ref. [34]
imply the existence of energy prethermalization.

For large hz, sufficiently long-range interactions and
low temperatures, Fig. 1 shows that a prethermal CTC
phase emerges in the model given by Eq. (1). Provided
hz is sufficiently large, the dynamics in the model is de-
scribed – up to a timescale exponential in hz/|Jx − Jy| –
by an effective Hamiltonian Heff = D + hz

∑

i σ
z
i where

D is given by [32]

D =
∑

j>i

1

2
(Jx + Jy)

(

σx
i σ

x
j

|i− j|α +
σy
i σ

y
j

|i− j|α

)

+ Jz
σz
i σ

z
j

|i− j|α .

(2)
This effective Hamiltonian has an emergent U(1) symme-
try which is spontaneously broken at low (effective) tem-
peratures for long-range interactions (α.2.5) [47]. To
avoid the challenges of observing spontaneous symmetry
breaking in finite volume, in Fig. 1 we use time-dependent
variational principle (TDVP) for infinite matrix product
states [48] to directly study the properties of the sys-
tem in the thermodynamic limit. The power-law inter-
actions in Eq. (1) were approximated as a sum of expo-
nential functions and we used bond dimension χ = 128
and timestep δt = 0.025 (see [36] for further details).
We will restrict to states with an infinitely-repeating

2-site unit cell,

|ψ(0)〉 =
⊗

i

|+〉2i−1 (cosφ |+〉2i + i sinφ |−〉2i) , (3)

where φ=0 corresponds to spins polarized along the x-
axis. The CTC order parameter is defined as 〈σ+〉 ≡
(1/2)

∑

i |〈σ+
i 〉|, i.e., we average the absolute expectation

value of σ+≡(σx + iσy)/2 over the sites in the unit cell.
The absolute value of σ+ is chosen in order to avoid can-
cellations due to different relative phases for 〈σ+

i 〉 on dif-
ferent sites of the 2-site unit-cell. We confirm that for
α.2.5 the order parameter 〈σ+〉 acquires a finite expec-
tation value in the ground state of D. The local hz field
drives rotations in the xy-plane, causing the order param-
eter to oscillate periodically – the anticipated hallmark of
the CTC phase. Fig. 1 illustrates this by the dynamics of
D(t) ≡ 〈ψ(t)|D|ψ(t)〉 (normalized by the value at t = 0),
the von Neumann bipartite entanglement entropy SE(t)
and the order parameter 〈σ+(t)〉.

Fig. 1 (a)-(c) are for the x-polarized (φ=0) initial state.
As hz is increased, the CTC phase is stabilized: D is well
conserved, while 〈σ+(t)〉 remains constant. For interme-
diate hz, D does not decay to zero as typically seen in
periodically driven systems [34]. This is due to the fact
that hz is a parameter in our Hamiltonian, rather than
a driving frequency which pushes the system to infinite
temperature. The fact that 〈σ+(t)〉 remains approxi-
mately constant implies periodic oscillations in σx(t) and
σy(t) with a period T ≈ 2π/hz. Due to the asymmetry
between Jx and Jy couplings, 〈σ+(t)〉 is not exactly con-
served over time even in the prethermal phase, instead it
oscillates between maxima (minima) when pointing along
the x- or y-axis. This is also the cause of the small oscil-
lations observed in D on the prethermal plateau. As our
chosen initial state |ψ(0)〉 is close to the ground state of
Heff (but mid-spectrum for H), the growth of SE(t) is
strongly suppressed for large hz.
At high temperatures, the effective Hamiltonian transi-

tions out of the CTC phase to a trivial disordered phase.
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(a) (b) (c)

(d) (e)
(f)

FIG. 1. Signatures of a continuous time crystal. (a) Expectation value of the prethermal Hamiltonian, Eq. (2), in the
time evolved state. The quantity is normalized by its value at time t=0. (b) Order parameter 〈σ+(t)〉 defined in the text.
(c) Entanglement entropy SE(t). All plots are for the infinite long-range XYZ model in Eq. (1) with α = 1.13, Jx= − 0.4,
Jy= − 2.0, Jz= − 1. The value of the field hz is indicated in panels (a), (b), (c), while hz=1 in panels (d), (e) and (f). The
initial state is given by Eq. (3) with φ=0 in (a), (b), (c), and φ = {0, π/6, π/4, π/3, π/2} in panels (d), (e) and (f).

The impact of energy density on the dynamics can be
seen by varying φ in Eq. (3) to increase the energy den-
sity of the initial state. Dynamics for various choices
of φ can be seen in Fig. 1 (d)-(f). These states are
spread through the spectrum of Heff , with D(0)/N ≈
{−0.35,−0.26,−0.15 − 0.05, 0.05} respectively. For all
these states, D is well conserved, thus we remain in a
prethermal phase. However, the increase in energy den-
sity means that the prethermal Gibbs state eventually
becomes a high-temperature state and CTC order is lost.
This is accompanied by 〈σ+(t)〉 decaying to zero and
faster growth of SE(t).

Many-body scars via “tunnels-to-towers”.—

Close to the isotropic point, Jx=Jy=Jz, we find QMBS
arise in the model (1) due to an approximate “tunnels to
towers” mechanism [19]. The field term in the Hamilto-
nian in Eq. (1), Z =

∑

j σ
z
j , possesses a spectrum gener-

ating algebra with respect to the raising operator of the
standard su(2) representation, [Z, σ+] = 2σ+. This triv-
ially guarantees the eigenstates of Z are equidistant ‘tow-
ers’. Taking Z, one can form a Hamiltonian by adding
some additional term, specially chosen so as to preserve
only a single tower of eigenstates of Z as eigenstates of
the full Hamiltonian, while generically mixing other tow-
ers such that the resulting model is non-integrable [19].
The preserved tower of eigenstates are found to be QMBS
eigenstates. For example, they have subthermal entan-

glement entropy and coherent dynamics in all observables
can be witnessed by preparing initial states with domi-
nant support on the scarred subspace. Previous construc-
tions of scarred Hamiltonians of this form have preserved
a single tower of eigenstates exactly, in the sense that
they remain exact eigenstates of the full Hamiltonian and
therefore remain equidistant in energy. Sufficiently close
to the isotropic point of the Hamiltonian in Eq. (1), these
conditions are satisfied approximately (in [36] we quantify
this). In this sense, a set of QMBS eigenstates are found
in the spectrum of the Hamiltonian, which are approxi-
mately equidistant in energy and resemble some subset
of exact eigenstates of Z. These QMBS eigenstates re-
quire weakly broken su(2) symmetry and their presence
is largely independent of α.

In Fig. 2 we demonstrate the existence of QMBS eigen-
states by exact diagonalization of a N=16 site chain. We
consider couplings close to the isotropic point, Jx=−0.8,
Jy=−1, Jz=−0.95. In Figs. 2(a)-(b) We plot the over-
lap of eigenstates with the x-polarized state [φ=0 in
Eq. (3)], for both long-range (α=1.13) and short-range
(α=3) models. In both cases, we see a top band of scarred
eigenstates and note they resemble the large spin su(2)
basis states in the z-direction, |S=N/2,m〉. These are
precisely the eigenstates of Z which are approximately
preserved as eigenstates of the full Hamiltonian. We
note that in sectors with smaller total-S the towers of
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(a) (b)

(d)(c)

FIG. 2. Quantum many-body scars near the isotropic limit
of the model in Eq. (1), with Jx=− 0.8, Jy=− 1, Jz=− 0.95,
hz = 3 and system size N = 16. The initial state |ψ(0)〉 is x-
polarized [φ=0 in Eq. (3)]. Top row: Eigenstate overlap with
|ψ(0)〉 for both long-range (a) and short-range (b) models.
In both cases, the top band of eigenstates are the QMBS
eigenstates, which are well approximated by maximal spin
su(2) basis states in the z-direction, denoted by diamonds.
(c): Quantum fidelity revivals from the initial state | |ψ(0)〉,
for both long and short range model. (d): Finite-size scaling
of the fidelity density − ln(f0)/N , where f0 is the height of
the first fidelity revival. The fidelity density was obtained
using finite-TDVP with varying system size, bond dimension
χ = 300 and timestep δt = 0.02.

Z eigenstates no longer accurately describe the eigen-
states of the full Hamiltonian (e.g., for the Néel state
in the x-direction there are no visible towers). As the
x-polarized state has dominant support on the QMBS
eigenstates which are approximately equidistant in en-
ergy, it follows that initializing the system in this state
results in a periodic trajectory in the Hilbert space and
revivals in the many-body wavefunction, demonstrated
by the revivals in quantum fidelity, f(t) = |ψ(0)|ψ(t)〉|2,
in Fig. 2(c). We confirm that the non-ergodicity in the
dynamics from such initial states persists in the ther-
modynamic limit by performing finite-size scaling of the
fidelity density − ln(f0)/N , where f0 is the amplitude of
the first fidelity revival. The fidelity density in Fig. 2(d)
is found to converge to a value much smaller than ln 2,
expected for a random initial state in a thermalizing sys-
tem. The extrapolated value is of the same order for both
long- and short-range models, indicating the persistence
of ergodicity breaking due to QMBS.

Dynamical phase diagram.— Fig. 3 is a schematic
summary of our numerical investigation of the phase di-
agram as a function of α, anisotropy that leads to U(1)
symmetry breaking, JU(1)≡|Jx − Jy|, and SU(2) symme-
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FIG. 3. Schematic illustration of the dynamical phase dia-
gram of the model in Eq. (1) as a function of U(1) symmetry
breaking JU(1), SU(2) symmetry breaking JSU(2) and interac-
tion range α. Within the prethermal regime (yellow), CTC
phase emerges for small α and small JU(1) (green). QMBS
(red) are independent of α but require small JSU(2). We also
indicated the solvable LMG limit (α=0) shown in grey.

try breaking in the rotating frame, JSU(2)≡|(Jx+Jy)/2−
Jz| (see [36] for numerical data). The field hz is assumed
to be fixed to some large value, hz ≫ Jν , and the remain-
ing dependence on Jν and α is sketched. We the discuss
three main regions of this phase diagram below: (i) the
prethermal regime, (ii) CTC phase, and (iii) QMBS.

(i) The static prethermal theorem [33] shows that a
Hamiltonian of the form H = H0+hN , with N possess-
ing an integer spectrum, in the limit of large h can be
brought into a form D+V+hN through a series of uni-
tary rotations, whereD commutes withN and V is an ex-
ponentially small correction in h. Thus, for exponentially
long times in h, the dynamics is governed by an effective
prethermal HamiltonianHeff = D+hN , which has a U(1)
symmetry generated by N . In [36] we explicitly perform
the unitary rotation to first order, finding the correction
terms in V contain an inverse power law dependence on
α, similar to the original Hamiltonian, with the overall
prefactors J2

U(1)/hz, JU(1)JSU(2)/hz. It follows that the
prethermal phase is robust, provided JU(1), JSU(2) ≪ hz.
Moreover, for fixed hz, the prethermal region of the phase
diagram takes the shape of an elliptic cylinder as the first-
order correction terms have stronger dependence on JU(1)

than on JSU(2), see Fig. 3.

(ii) The CTC phase must be a subset of the prethermal
region where the emergent U(1) symmetry of the effec-
tive Hamiltonian is spontaneously broken. Due to the
Mermin-Wagner theorem, in 1D this can only happen if
the interactions are sufficiently long-ranged [34, 47]. Con-
sistent with this, we observe a transition when α∼2.5
from a trivial U(1)-preserving phase to a CTC phase.
Thus, we expect the prethermal CTC phase to exists
within the bounded cylindrical region depicted in Fig. 3.

(iii) The robustness of QMBS is determined by how
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well the interacting terms approximately preserve a sin-
gle tower of eigenstates of Z, which is solely dependent
on the model’s proximity to the fully isotropic point,
Jx=Jy=Jz. At the isotropic point the model possesses
SU(2) symmetry irrespective of α, hence the QMBS re-
gion has no α-dependence and it is bounded by two
planes perpendicular to the JSU(2) axis. The boundary
is sharp as the QMBS behavior diminishes exponentially
with JSU(2) [36].

Conclusions.— We introduced a long-range inter-
acting XYZ spin model that realizes two types of weak
ergodicity breaking phenomena – a CTC phase as well
as QMBS states, allowing to controllably tune between
them by varying the interaction couplings. Perhaps the
most interesting implication of our study, as indicated
in Fig. 3, is that when both JU(1) and JSU(2) are small,
the model simultaneously hosts QMBS and CTC, raising
many interesting questions about their distinction. Our
results suggest that the two phenomena can be distin-
guished by probing the quench dynamics from different
initial states. QMBS occur for initial states that have a
large overlap with the large-S spin sector (such as the
x-polarized state), regardless of energy density. The life-
time of the scarring revivals is exponentially sensitive to
JSU(2). Moreover, QMBS place stronger constraints on
the dynamics, leading to the wave function fidelity re-
vivals, in addition to the oscillations of a local order pa-
rameter. In contrast, the CTC manifests for initial states
that have low energy density with respect to D, but not
necessarily large support on a large-S spin sector. Hence,
CTC will persist for other initial states, such as the 2-
site unit cell states in Eq. (3), as long as those are below
critical energy density with respect to D. The CTC os-
cillations depend weakly on JSU(2) but their lifetime is
exponentially long in JU(1)/hz. In future work, it would
be interesting to analyze the behavior of CTC for initial
states beyond period-2, e.g., the spiral states recently
used in Ref. [49], as well as possible realizations of CTC
and QMBS in local models in higher dimensions.

Acknowledgements.— We thank Alessio Lerose for
useful discussions. K.B., A.H., and Z.P. acknowledge
support by EPSRC Grants No. EP/R020612/ 1 and and
No. EP/M50807X/1, and by the Leverhulme Trust Re-
search Leadership Award No. RL-2019-015. I.M. was
supported by the US Department of Energy, Office of
Science, Basic Energy Sciences, Materials Sciences and
Engineering Division. Statement of compliance with EP-
SRC policy framework on research data: This publica-
tion is theoretical work that does not require supporting
research data.

[1] Hannes Bernien, Sylvain Schwartz, Alexander Keesling,
Harry Levine, Ahmed Omran, Hannes Pichler, Soon-

won Choi, Alexander S. Zibrov, Manuel Endres, Markus
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and Z. Papić, “Weak ergodicity breaking from quantum
many-body scars,” Nature Physics 14, 745–749 (2018).

[5] Wen Wei Ho, Soonwon Choi, Hannes Pichler, and
Mikhail D. Lukin, “Periodic orbits, entanglement, and
quantum many-body scars in constrained models: Matrix
product state approach,” Phys. Rev. Lett. 122, 040603
(2019).

[6] Soonwon Choi, Christopher J. Turner, Hannes Pich-
ler, Wen Wei Ho, Alexios A. Michailidis, Zlatko Papić,
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construction of scarred many-body dynamics in 1d lattice
models,” Phys. Rev. Lett. 123, 030601 (2019).

[24] Naoyuki Shibata, Nobuyuki Yoshioka, and Hosho Kat-
sura, “Onsager’s scars in disordered spin chains,” Phys.
Rev. Lett. 124, 180604 (2020).

[25] Sanjay Moudgalya, Edward O’Brien, B. Andrei Bernevig,
Paul Fendley, and Nicolas Regnault, “Large classes
of quantum scarred Hamiltonians from matrix product
states,” Phys. Rev. B 102, 085120 (2020).

[26] K. Pakrouski, P. N. Pallegar, F. K. Popov, and I. R.
Klebanov, “Many-body scars as a group invariant sector
of Hilbert space,” Phys. Rev. Lett. 125, 230602 (2020).

[27] Jie Ren, Chenguang Liang, and Chen Fang, “Quasi-
symmetry groups and many-body scar dynamics,” arXiv
preprint arXiv:2007.10380 (2020).

[28] Federica Maria Surace, Giuliano Giudici, and Marcello
Dalmonte, “Weak-ergodicity-breaking via lattice super-
symmetry,” Quantum 4, 339 (2020).

[29] Yoshihito Kuno, Tomonari Mizoguchi, and Yasuhiro
Hatsugai, “Flat band quantum scar,” Phys. Rev. B 102,
241115 (2020).

[30] J. M. Deutsch, “Quantum statistical mechanics in a
closed system,” Phys. Rev. A 43, 2046–2049 (1991).

[31] Mark Srednicki, “Chaos and quantum thermalization,”
Phys. Rev. E 50, 888–901 (1994).

[32] Dominic V. Else, Bela Bauer, and Chetan Nayak,
“Prethermal phases of matter protected by time-
translation symmetry,” Phys. Rev. X 7, 011026 (2017).

[33] Dmitry Abanin, Wojciech De Roeck, Wen Wei Ho,
and François Huveneers, “A rigorous theory of many-
body prethermalization for periodically driven and closed
quantum systems,” Communications in Mathematical
Physics 354, 809–827 (2017).

[34] Francisco Machado, Dominic V. Else, Gregory D.
Kahanamoku-Meyer, Chetan Nayak, and Norman Y.
Yao, “Long-range prethermal phases of nonequilibrium
matter,” Phys. Rev. X 10, 011043 (2020).

[35] A. Kyprianidis, F. Machado, W. Morong, P. Becker, K. S.
Collins, D. V. Else, L. Feng, P. W. Hess, C. Nayak,
G. Pagano, N. Y. Yao, and C. Monroe, “Observation of

a prethermal discrete time crystal,” Science 372, 1192–
1196 (2021).

[36] “Supplemental online material,”.
[37] H.J. Lipkin, N. Meshkov, and A.J. Glick, “Validity of

many-body approximation methods for a solvable model:
(i). exact solutions and perturbation theory,” Nuclear
Physics 62, 188–198 (1965).

[38] N. Meshkov, A.J. Glick, and H.J. Lipkin, “Validity of
many-body approximation methods for a solvable model:
(ii). linearization procedures,” Nuclear Physics 62, 199–
210 (1965).

[39] Bruno Sciolla and Giulio Biroli, “Quantum quenches
and off-equilibrium dynamical transition in the infinite-
dimensional bose-hubbard model,” Phys. Rev. Lett. 105,
220401 (2010).

[40] Bruno Sciolla and Giulio Biroli, “Quantum quenches, dy-
namical transitions, and off-equilibrium quantum criti-
cality,” Phys. Rev. B 88, 201110 (2013).

[41] Alessio Lerose and Silvia Pappalardi, “Bridging entan-
glement dynamics and chaos in semiclassical systems,”
Phys. Rev. A 102, 032404 (2020).

[42] Dominic V. Else, Christopher Monroe, Chetan Nayak,
and Norman Y. Yao, “Discrete time crystals,” (2019),
arXiv:1905.13232 [cond-mat.str-el].

[43] Takashi Mori, “Prethermalization in the transverse-field
ising chain with long-range interactions,” Journal of
Physics A: Mathematical and Theoretical 52, 054001
(2019).

[44] P. W. Anderson, “An approximate quantum theory of the
antiferromagnetic ground state,” Phys. Rev. 86, 694–701
(1952).

[45] Hal Tasaki, “Long-range order, “tower” of states, and
symmetry breaking in lattice quantum systems,” Journal
of Statistical Physics 174, 735–761 (2019).

[46] Tomotaka Kuwahara, Takashi Mori, and Keiji Saito,
“Floquet–magnus theory and generic transient dynam-
ics in periodically driven many-body quantum systems,”
Annals of Physics 367, 96–124 (2016).

[47] Mohammad F. Maghrebi, Zhe-Xuan Gong, and
Alexey V. Gorshkov, “Continuous symmetry breaking in
1d long-range interacting quantum systems,” Phys. Rev.
Lett. 119, 023001 (2017).

[48] Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne,
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1School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom,
2Material Science Division, Argonne National Laboratory, Argonne, IL 08540, USA

In this Supplementary Material, we derive the first order corrections to the prethermal Hamiltonian and give some background

on the towers-to-tunnel construction of quantum many-body scars. We provide further details on the numerical simulations

used in the main text, including the extensive numerical investigation of the phase diagram.

FIRST-ORDER CORRECTION TO THE

PRETHERMAL HAMILTONIAN

The static prethermal theorem [33] shows that a
Hamiltonian of the formH = H0+νN , whereN has inte-
ger spectrum, can be transformed into a formD+V +νN ,
where D commutes with N and V is an exponentially
small correction in ν. This implies that for exponen-
tially long times dynamics is governed by an effective
prethermal Hamiltonian Heff = D + νN , which has a
U(1) symmetry generated by N . Here we apply this con-
struction to the long-range Hamiltonian introduced in
the main text and examine the leading order correction
to the prethermal behavior.

The construction of Heff proceeds recursively via a se-
quence of unitary rotations. Here we explicitly evaluate
the rotation to first order. We make use of the same
notation introduced in the main text, JU(1) ≡ Jx − Jy
and JSU(2) ≡ (Jx + Jy)/2− Jz. Our starting point is the
Hamiltonian H:

H =
∑

i>j

Jx
|i− j|ασ

x
i σ

x
j +

Jy
|i− j|ασ

y
i σ

y
j +

Jz
|i− j|ασ

z
i σ

z
j

︸ ︷︷ ︸

H0

+ hz
∑

i

σz
i

︸ ︷︷ ︸

νN

, (S1)

where we have denoted the field term by νN . Following
Ref. [33], we define

Dn =
1

T

∫ T

0

eitνNHne
−itνNdt, (S2)

Vn = Hn −Dn, (S3)

An = − i

T

∫ T

0

∫ t

0

eisνNVne
−isνNdsdt, (S4)

where T = 2π/ν. These allow us obtain the nth order
Hamiltonian from

νN +Hn+1 = e−An(νN +Hn)e
An . (S5)

For our particular model, we have

D0 =
∑

i>j

(JSU(2) + Jz)
σx
i σ

x
j + σy

i σ
y
j

|i− j|α + Jz
σz
i σ

z
j

|i− j|α , (S6)

V0 =
JU(1)

2

∑

i>j

σx
i σ

x
j − σy

i σ
y
j

|i− j|α , (S7)

A0 = − i

2

JU(1)

4hz

∑

i>j

σx
i σ

y
j + σy

i σ
x
j

|i− j|α . (S8)

These indeed obey the relation H0 = D0+V0 and, more-
over, [A0, νN ] = V0. At zeroth order, V0 is the non com-
muting term responsible for the breaking of the emer-
gent U(1) symmetry at late times (for large ν = hz ≫ J ,
where J is the largest of Jx, Jy, Jz couplings) and it has
a coefficient proportional to JU(1). Therefore, we expect
JU(1) to have a significant impact on the lifetime of the
prethermal phase.

To determine the impact of JU(1), JSU(2) on the lifetime
of the prethermal phase, we must construct higher order
correction terms. From the recursion relation Eq. (S5):

νN +H1 = e−A0(νN +H0)e
A0

≈ (1−A0)(νN +H0)(1 +A0)

= νN +D0 + V0 + [νN,A0]
︸ ︷︷ ︸

−V0

+[H0, A0]

− νA0NA0 −A0H0A0. (S9)

Thus we find H1 takes the following form:

H1 = D0 + [H0, A0]
︸ ︷︷ ︸

∝1/hz

− νA0NA0
︸ ︷︷ ︸

∝1/hz

−A0H0A0
︸ ︷︷ ︸

∝1/h2
z

. (S10)
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Explicitly,

H1 =D0

+
J2
U(1)

4hz

∑

n,m,n 6=m

σz
m

|n−m|2α

+
JU(1)

4hz

∑

i,n,m
i 6=n
n 6=m

(Jx − Jz)σ
x
nσ

z
mσ

x
i − (Jy − Jz)σ

y
nσ

z
mσ

y
i

|i−m|α|n−m|α

+
J2
U(1)

64hz

∑

i,n,m,u,v
n 6=m
u 6=v

(σx
nσ

y
m + σy

nσ
x
m)σz

i (σ
x
uσ

y
v + σy

uσ
x
v )

|n−m|α|u− v|α

+O(1/h2z). (S11)

This can be refactored into commuting and non-
commuting parts:

H1 = D1 + V1 (S12)

where [D1, N ] = 0, [V1, N ] 6= 0. For the commuting part
D1, one finds:

D1 = D0

+
J2
U(1)

4hz









∑

n,m
n 6=m

σz
m

|n−m|2α +
∑

i,n,m
i 6=n,m
n 6=m

σ+
n σ

z
mσ

−
i + σ−

n σ
z
mσ

+
i

|i−m|α|n−m|α









+
J2
U(1)

64hz

∑

i,n,m,u,v
n 6=m
u 6=v

σ+
n σ

+
mσ

z
i σ

−
u σ

−
v + σ−

n σ
−
mσ

z
i σ

+
u σ

+
v

|n−m|α|u− v|α .

(S13)

For the non-commuting error term V1, one finds:

V1 =
JU(1)

2hz
JSU(2)

∑

i,n,m
i 6=n,m
n 6=m

σ+
n σ

z
mσ

+
i + σ−

n σ
z
mσ

−
i

|i−m|α|n−m|α

−
J2
U(1)

64hz

∑

i,n,m,u,v
n 6=m
u 6=v

σ+
n σ

+
mσ

z
i σ

+
u σ

+
v + σ−

n σ
−
mσ

z
i σ

−
u σ

−
v

|n−m|α|u− v|α .

(S14)

Crucially, we see the coefficients present in V1 – the
non-commuting error term responsible for destroying the
emergent U(1) symmetry with respect to N at late times
– are proportional to JU(1)JSU(2), J

2
U(1), implying an

increase in these quantities results in a shorter-lived
prethermal phase.

QUANTUM MANY-BODY SCARS FROM

“TUNNELS-TO-TOWERS”

Many-body quantum scarring is a mechanism for weak
violation of the ETH, which suppresses thermalization
from certain initial states in non-integrable systems.
While generic non-integrable many-body systems ther-
malize to a Gibbs state whose temperature is determined
by the energy density of the initial state, scarred systems
may instead undergo periodic dynamics when quenched
from special initial states. The periodicity of the dy-
namics is due to the initial state having large support on
special, “scarred” eigenstates, which have approximately
the same energy spacing.
In exact scarred models [21, 24, 50], the energy spac-

ing between scarred eigenstates is precisely equal. There-
fore, initial states which are an arbitrary superposition
of the scarred eigenstates will display perfect oscillations
in local observables due to a perfectly reviving wave-
function fidelity, f(t) = |〈ψ(t)|ψ(0)〉|2. However, there
may not exist a particularly simple initial state that is
a superposition of scarred eigenstates, e.g., as in in the
Affleck-Kennedy-Lieb-Tasaki (AKLT) model [17, 18, 51].
In contrast, approximate scarred models [4, 23, 52–54]
host non-thermal eigenstates which are only approxi-
mately equidistant in energy. This can still result in
nearly periodic dynamics and suppressed thermalization
from special initial states, with local observables exhibit-
ing decaying oscillations. This scenario is believed to
have been observed in experiment [1], where oscillations
of the number of domain walls have been detected in a
51-atom Rydberg simulator prepared in a product (Néel)
state of atoms.
In models that exhibit equidistant energy eigenstates,

either exact or approximate, the Hamiltonian H is typi-
cally found to possess an underlying structure analogous
to a spectrum generating algebra (SGA):

[H,Q+] = ωQ+, (S15)

where Q+ is some raising operator. If a Hamiltonian
possesses the SGA in Eq. (S15), it trivially follows that
for every eigenstate that is not annihilated by Q+, there
exists a tower of equidistant eigenstates with energy sep-
aration ω. For example, take an eigenstate |E〉, such that
H|E〉 = E|E〉. Then we have

HQ+|E〉 = (Q+H + ωQ+)|E〉 = (E + ω)Q+|E〉.(S16)
More non-trivially, Eq. (S15) may be satisfied only

when we restrict to a subspace of the Hilbert space – this
is known as a “restricted” SGA (RSGA) [18, 51]. For
an eigenstate |ψ0〉, H|ψ0〉 = E0|ψ0〉, typically a ground
state of H, we then have

[H,Q+]|ψ0〉 = ωQ+|ψ0〉, [[H,Q+], Q+] = 0. (S17)

The above properties guarantee the presence of a single
tower of equidistant eigenstates, |ψn〉 ≡ (Q+)n|ψ0〉. If
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the HamiltonianH is non-integrable, but engineered such
that the states |ψn〉 are non thermal, the latter states are
exact scarred eigenstates.

There exists a specific construction dubbed “tunnels-
to-towers” [19], which produces non-integrable Hamilto-
nians possessing an RSGA for which the tower of equidis-
tant eigenstates are non-thermal. The construction relies
on an operator V , which possess an SGA with respect to
some raising operator Q+. One then forms a Hamilto-
nian H = H0 + V , where H0 is specifically chosen to
annihilate a single tower of eigenstates of V , while acting
like a generic, non-integrable Hamiltonian on all other
towers, thus preserving a single tower of eigenstates of V
as eigenstates of the full Hamiltonian H. Formally, this
is summarised as

[V,Q+] = ωQ+, V |ψ0〉 = E0|ψ0〉, H0|ψn〉 = 0,

where the last condition is valid for all n. In Ref. 19,
V was chosen to be some generator of a non-Abelian (or
q-deformed) symmetry group, thus the SGA emerges due
to the root structure of the symmetry group’s associated
Lie algebra.

Now, consider lifting the restriction thatH0 completely
annihilates a single tower of eigenstates of V . One can
engineer approximate scarred models if the action of H0

on the states |ψn〉, which satisfy V |ψn〉 = (E0+nω)|ψn〉,
is sufficiently close to a projector:

H0|ψn〉 = ǫ0|ψn〉+ δn|ψ⊥
n 〉, δn ≪ 1. (S18)

From this, we have

〈ψn|H|ψn〉 = ǫ0 + E0 + nω, (S19)

〈ψn|H2|ψn〉 − 〈ψn|H|ψn〉2 = δn〈ψn|(H0 + V )|ψ⊥
n 〉 = |δn|2.

(S20)

Here |ψn〉 are exact, equidistant eigenstates of V , and
H0 only weakly mixes these states with the rest of the
Hilbert space. Thus, the full Hamiltonian H=H0 + V
will contain scarred eigenstates which are approximately
equidistant in energy and are well approximated by the
original tower |ψn〉.

QUANTUM MANY-BODY SCARS IN THE

LONG-RANGE XYZ MODEL

The model given in Eq. (1) of the main text is non
integrable. However, close to the isotropic point (Jx =
Jy = Jz), this model satisfies the conditions of the ap-
proximate version of “tunnels to towers” construction in
Eq. (S18)), with V being the Zeeman term responsible for
the spectrum generating algebra, while H0 acts trivially

on the following set of states |n〉:

|n〉 ≡ |S =
N

2
,−S + n〉

=
1

√
(
N
n

) (Q+)n|000...〉, Q+ =
∑

n

σ+
n . (S21)

Thus, near the isotropic point, the Hamiltonian contains
a set of N scarred eigenstates that are approximately
described by the states |n〉. The extent to which the
eigenstates of H are characterized by |n〉 is dependent on
δn, Eq. (S18), which is exactly zero when Jx = Jy = Jz.
Thus the anisotropy directly controls the robustness of
the scars.

FIG. S1. Order parameters for phase identification are com-
puted from the dynamics data shown here. Left: τf quantifies
the robustness of scarring (longer time implies more long-lived

oscillations) and it is determined by fitting e−t/τf to the first
five peaks in quantum fidelity time series, f(t). Right: τU(1) is
determined from the distance between trajectories generated
by the original Hamiltonian H and the effective prethermal
Hamiltonian with U(1) symmetry, Heff . τU(1) is the time for
which the distance between these two evolutions, d(t), exceeds
0.5, see Eq. (S23).

KAC NORMALIZATION OF THE

HAMILTONIAN

In the Hamiltonian defined in Eq. (1) of the main text,
the long-range interactions were rescaled by a factor 1

N
where N is the so-called Kac norm, defined as

N =
1

N − 1

∑

i 6=j

1

|i− j|α . (S22)

The Kac norm ensures that the energy-density of the
system remains intensive for arbitrary α and makes the
it possible to consistently compare the dynamics of the
system at different system sizes. All the results in the
main text include this normalization factor.
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FIG. S2. Numerical results for phase diagram slices. Color scale in the left column indicates τf (quality of scarring), whereas
the color scale in the right column indicates τU(1) (quality of prethermal). With Kac norm included, we see essentially no α
dependence on τU(1), thus verifying prethermal theorem holds for a long-range model with 2-local terms.
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NUMERICAL STUDY OF THE PHASE

DIAGRAM

In the main text we presented a sketch of the dynam-
ical phase diagram of the model in Eq. (1) as a func-
tion of interaction range and anisotropy in the couplings.
Here we present results of the numerical analysis behind
the sketch, in particular the estimates of the prethermal
phase and the quantum many-body scarring regime. To
probe these two parts of the phase diagram, we require
suitable order parameters for characterizing the relevant
physics. To this end, we introduce two timescales: the
scarred timescale τf and the prethermal U(1) timescale
τU(1). We do not explicitly estimate the continuous time
crystal regime, as for the present purpose it suffices to
know that this phase will be a subset of the prethermal
regime, corresponding to sufficiently small α such that
spontaneous symmetry breaking is possible (we have es-
timated this critical αc ≈ 2.5 using independent matrix
product state calculations in the infinite-size limit, find-
ing agreement with Ref. [47]). Note that τf → ∞ as
JSU(2) → 0 and τU(1) → ∞ as JU(1) → 0. Thus, we ex-
pect the two timescales to provide an appropriate bound-
ary in phase space for the scarred region and the prether-
mal region, respectively.

To estimate τf , we propose to fit an exponential decay
e−t/τf to the first five peaks of the quantum fidelity f(t),
yielding the revival decay time τf . To probe the lifetime
of the prethermal phase, we consider the following dis-
tance d(t) between the trajectories induced by the bare
Hamiltonian and that of the effective prethermal Hamil-
tonian:

d(t) = |(e−iHt − e−iHeff t)|ψ(t = 0)〉|, (S23)

where |ψ(t = 0)〉 is the polarized state in the x-direction.
The effective Hamiltonian Heff in the rotating frame was
defined in the main text. We denote τU(1) as the time
when d(t) increases above a certain cutoff, which we take
to be dcut = 0.5. In practice, we find this quantity is
oscillatory, so τU(1) is the time for which the moving av-
erage of d(t) exceeds dcut. Fig. S1 shows an example time
series for one point in the phase space, and how the above
criteria are applied to extract τf and τU(1).

Fig S2 shows the numerical results for the extracted
quantities τf , τU(1), across various slices through the
phase diagram. These results confirm the sketch pre-
sented in the main text. We notice some subtle features
that were neglected in the sketch: the scarred region (τf)
has some JU(1) dependence, and the prethermal region
has somewhat stronger JSU(2) dependence than depicted
in the sketch.

FIG. S3. The order parameter 〈S+
1 S

−

N 〉 fxor Jx = Jy =
1.2, Jz = 1, N = 40 as a function of temperature T and
interaction length scale α for the thermal Gibbs state of D.

TEMPERATURE AND α DEPENDENCE OF

TIME-CRYSTAL PHASE

It is well known that the ground state of the long-range
XXZ model exhibits spontaneous symmetry breaking for
sufficiently small α [47], however we are not aware of
any investigation of the stability of this phase at finite
temperatures. In order to study the robustness of the
U(1) symmetry breaking, we created a thermofield dou-
ble (TFD) representation of the thermal Gibbs state of
D,

ρβ → 1√
Z

∑

n

e−βEn/2 |n〉 ⊗ |n〉 , (S24)

where En are the energy eigenvalues of D and |n〉 are
its eigenvectors. The TFD state can be calculated using
matrix-product state methods by evolving in imaginary
time from the infinite temperature state |ψ(β = 0)〉 =
⊗∑d

i=1 |i〉 ⊗ |i〉 in steps of δβ.
In Fig. S3 the U(1) symmetry breaking order param-

eter 〈S+
1 S

−
N 〉 is shown for thermal states at N = 40 and

Jx = Jy = 1.2, Jz = 1 as a function of temperature
and α. For α < 2.5 there is a well-defined low temper-
ature U(1) symmetry breaking phase which vanishes as
α increases to αc ≈ 3 and the model transitions to the
symmetry-preserving XY-phase, familiar from the near-
est neighbour XXZ model.

TIME CRYSTAL: ABSENCE OF FIDELITY

REVIVALS

Whenever there is a periodic trajectory of the wave-
function in a Hilbert space, quantified by revivals in the
the wavefunction fidelity f(t) = |〈ψ(t)|ψ(0)〉|2 (as seen
with QMBS), it necessarily follows that any observable
will show coherent oscillations. Therefore, in the over-
lapping region of QMBS and CTC in the phase diagram
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given in the main text, one may question whether oscilla-
tions in the order parameter of the spontaneously broken
symmetry (which we claim indicates a CTC) may sim-
ply be a consequence of the wavefunction revivals and
therefore of ’scarred origin’. We demonstrate the two
effects are distinct, even in the overlapping region, by
considering the two-site unit cell initial state given in
the main text in Eq. (3) for intermediate φ = π/6, for
which we have shown the existence of a CTC. This ini-
tial state does not possess SU(2) symmetry, and there-
fore we do not expect it to have support on the scarred
eigenstates or exhibit wavefunction revivals, indicating
the presence of CTC-like behavior in the spontaneous-
symmetry-breaking order parameter should not be of a
’scarred origin’. We demonstrate this is the case for a
finite system in Fig S4.

FIG. S4. Abscence of fidelity revivals (left) or support on
scarred eigenstates (right) for the two-site unit cell initial
state at φ = π/6. This indicates that the coherent oscilla-
tions in a CTC order parameter are not a trivial consequence
of fidelity revivals, and the CTC behavior emerges from a
mechanism distinct from QMBS. The dynamics were found
for the long-range XYZ model at system size N = 14 with
α = 1.13, Jx=− 0.4, Jy=− 2.0, Jz=− 1, hz = 1.0.

IMPLEMENTATION OF TIME-DEPENDENT

VARIATIONAL PRINCIPLE

The dynamics results in the main text were ob-
tained using the time-dependent variational principle
(TDVP) over matrix-product states (MPS) using the
mixed canonical gauge, as described in Ref. [55]. MPS
methods cannot exactly describe power-law decaying in-
teractions, instead the power-law can be approximated
as a sum of exponential terms,

1

|i− j|α =

Ne∑

n

fne
−λn(|i−j|. (S25)

We chose to approximate the power-law using Ne = 8
exponential function for all data presented in this work.
While the Hamiltonian can be represented as a matrix-
product operator, the time-evolution due to each of these
exponential interactions can be more efficiently calcu-
lated using the method presented in Ref. [56].
MPS methods capture the exact dynamics of the sys-

tem provided that the entanglement entropy is not too
large. Unfortunately, the entanglement entropy typi-
cally grows linearly after a quench, as we see in Fig. 1
of the main text. In Fig. S5 we present dynamics of
〈D(t)〉/〈D(0)〉 and 〈σ+(t)〉 at several bond dimensions
up to χ = 128. At small bond-dimension both of these
quantities appear to decay. However, by increasing χ, we
see this decay is an artifact of small bond dimension and
the prethermal time crystal becomes robust at large χ.

FIG. S5. (a) Convergence with bond dimension χ of the ex-
pectation value of the prethermal Hamiltonian D in the time-
evolved state. The quantity is normalized by its value at time
t=0. (b) Order parameter 〈σ+(t)〉 as defined in the main
text. All plots are for the infinite long-range XYZ model
with α = 1.13, Jx=−0.4, Jy=−2.0, Jz=−1, hz = 0.75. The
initial state is given by Eq. (3) with φ=0.
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