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Transfer Learning for the Behavior Prediction of

Microwave Structures
Jiteng Ma, Student Member, IEEE, Shuping Dang, Member, IEEE, Peizheng Li, Gavin Watkins,

Kevin Morris, Member, IEEE, and Mark Beach, Senior Member, IEEE

Abstract—Microwave structures behavior prediction is an
important research topic in radio frequency (RF) design. In
recent years, deep-learning-based techniques have been widely
implemented to study microwaves, and they are envisaged to
revolutionize this arduous and time-consuming work. However,
empirical data collection and neural network training are two
significant challenges of applying deep learning techniques to
practical RF modeling and design problems. To this end, this
letter investigates a transfer-learning-based approach to improve
the accuracy and efficiency of predicting microwave structure
behaviors. Through experimental comparisons, we validate that
the proposed approach can reduce the amount of data required
for training while shortening the neural network training time
for the behavior prediction of microwave structures.

Index Terms—Transfer learning, deep neural network, mi-
crowave structure, behavior prediction.

I. INTRODUCTION

DEEP learning has been widely acknowledged as an effec-

tive paradigm for the behavior prediction and design of

microwave structures due to the ability to discover complicated

and non-linear relationships [1], [2]. To model electromagnetic

(EM) behaviors of microwave structures, radio frequency (RF)

engineers often analyze the wave propagation characteristics

based on Maxwell’s equations through the electronic design

automation (EDA) software. Deep learning has been well

explored in the microwave structure modeling to get the RF

designers away from complicated and tedious simulation and

optimization process [3], [4].

However, training a qualified deep learning model requires a

massive amount of empirical data. In addition, both modeling

structures through the EDA software and conducting EM

simulation are time-consuming. Also, the behavior modeling

of microwave structures often depends on massive variables,

including the operation frequency, material, and components

geometries. A single neural network can hardly cover all

these variables. As a result, the training data for the behavior

modeling of microwave structures require to be recollected,

and the model needs to be completely retrained from scratch

once any of these parameters change [5]. Space mapping

is a well-known technique to deal with these variations
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Fig. 1. Implementation block diagram of the proposed neural network model.

by exploiting the knowledge of the coarse model [6], [7].

However, the performance of space mapping depends on the

empirical knowledge of the course model, which increases the

complexity of the microwave behavior prediction model.

To address these challenges, we introduce transfer learning

to improve the efficiency of microwave structures behavior

prediction. Motivated by insufficient training data, transfer

learning has been applied to applications of bioinformat-

ics, robotics, and communications [8], [9]. Recently, transfer

learning has also been successfully used to model the non-

linear features of power amplifiers [10], [11]. We carry out

extensive experiments to make comprehensive comparisons in

operation frequency and structure size and examine its scal-

ability. Systematic simulation results presented in this letter

show that transfer learning is able to significantly improve the

neural network accuracy in predicting microwave structures’

behaviors. It is also revealed that the source task is beneficial

for a target task since fewer data and shorter time are required

for training. We subsequently validate that the performance of

transfer learning depends on the relevancy of the source and

target tasks by comparing two different transfer learning tasks.

II. DEEP-LEARNING-BASED ON TRANSFER LEARNING

A. Deep Learning Model and Data Collection

Convolutional neural network (CNN) models have been

validated to be influential in the field of image processing since

image pixels are highly correlated to the neighboring [12],

[13], [14]. Sharing a similar mathematical nature to image

processing, CNN models can be used for precisely predicting

the response for microwave structure geometries [15].

The diagram of the CNN model in this letter is illustrated in

Fig. 1. The first convolutional block contains five convolutional

layers to capture the spacial information of input structures.

Each layer uses a 3×3 kernel and applies the ReLU activation
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function. The dense block with two fully connected layers

rearranges the output from the convolutional block. A dropout

layer with ratio of 20% is introduced to the proposed model

to prevent the model from overfitting [14]. The aforemen-

tioned neural network topology and its hyperparameters are

all fine-tuned results using domain knowledge. By the CNN

model, empirically, any number of convolutional layers and

fully connected layers should work. The deeper network in

generally performs better [16]. In this paper, a fine-tuned

five convolutional layers CNN is chosen for having a decent

microwave structure behavior prediction, while the network is

not too large to run out of the GPU memory.

Inspired by the universal mesh solution suited for any

given structure in EDA software, we characterize the mi-

crowave structures by dividing them into multiple square cells

and describe them with binary matrices. Consequently, the

topological resolution of input depends on the number of

cells covering the structure area. As shown in Fig. 1, the

design space is split into 35 squaring cells, which can be

quantified by 7× 5 binary matrices. The microwave structures

are randomly generated within the design space. Totally, there

are 2
35

= 3.4 × 10
10 possible structures. The outputs are

the estimated complex scattering parameters (S-parameters)

vectors. A CNN model is developed to predict any structure’s

S-parameter behavior quickly and precisely. The structure is

connected with three fixed 50Ω connectors and labeled by the

Keysight ADS software. This characterizing method can be

easily tailored and extended to application scenarios requiring

higher design resolutions and different number of ports.

B. Transfer Learning for Microwave Behavior Prediction

Transfer learning can initiate the learning process for a new

target task by transferring knowledge from a previously well-

learned source task. The more related the source task is to the

target task, the better performance the transferred model can

produce [17]. For most microwave behavior modeling tasks,

existing learning-based approaches generally follow specific

templates corresponding to different frequencies or sizes [4],

[18]. These parameter-varying tasks share the identical nature

and similar input-output patterns. This sets the foundation of

applying transfer learning for microwave behavior prediction.

The dataset with 𝑈 groups of the input features and out-

put labels are denoted as X = [x1, x2, . . . , x𝑈] and Y =

[y1, y2, . . . , y𝑈], respectively. The training process is defined

to solve the following optimization problem:

min
𝜔,𝑧

𝑈∑︁

𝑖=1

L( 𝑓𝜔,𝑧 (X𝑖),Y𝑖), (1)

where L(·) is the loss function, and 𝑓𝜔,𝑧 (·) is the predicting

model. The structures behavior prediction can be treated as a

regression problem, where we choose the mean absolute error

(MAE) as the loss function, which is explicitly given by

L(x, y) =

∑𝑁

𝑖=1
|𝑥𝑖 − 𝑦𝑖 |

𝑁
. (2)

The output a𝑖+1 from fully connected layer 𝑖 + 1 is equal to

a𝑖+1 = A(𝝎𝑇
𝑖 · a𝑖 + 𝑧𝑖), 𝑖 = 1, 2, . . . , 𝑚, 𝑚 + 1, . . . , 𝑛 (3)

Source Task

35mm

49mm

Target Task 1

35mm

49mm

Target Task 2

30mm

42mm

Task 1 Task 2

[S] @1.7GHz [S] @1.5GHz [S] @1.5GHz

Task 3

Fig. 2. Transfer learning process across different frequencies.

where A(·) is the activation function; 𝝎𝑖 and 𝑧𝑖 are the

weight and bias vectors in layer 𝑖. In the convolutional layers,

𝝎 represents the kernel, and the dot product operation in

(3) is replaced by the cross-correlation operation. To apply

transfer learning, the first step is to develop a well-trained

model for the source task, by which we can fix the parameters

[𝝎𝑖 , 𝑧𝑖], 1 ≤ 𝑖 ≤ 𝑚, are fixed. This model is then retrained with

the target task dataset. The first 𝑚 layers are called fixed layers,

while the rest layers are called adaptation layers. In this way,

the knowledge extracted from the source task is transferred to

the model designed for the target task through the fixed layers

and the initial network parameters [𝝎𝑖 , 𝑧𝑖], 𝑚 < 𝑖 ≤ 𝑛, in the

adaptation layers.

III. PERFORMANCE EVALUATION AND DISCUSSION

To comprehensively evaluate the performance of transfer

learning for the behavior prediction of microwave structures,

we designed and carried out three transfer tasks. As shown in

Fig. 2, task 1 is designed to transfer knowledge between two

adjacent frequencies; task 2 leverages the knowledge to train a

microwave simulation model with a different structure size; in

task 3, both frequencies and sizes are set to be different from

the source task. To label these randomly generated structures,

we simulate the S-parameter response of the 40,000 structures

using EM simulation tools with the size of 49 mm × 35 mm ,

and 14,000 structures of 42 mm × 30 mm. Among them, 70%

of the data was used for training, while the rest for testing.

The computing platform comprises an Intel i9-9900X CPU @

3.50 GHz and an Nvidia RTX2080 GPU with 12 GB memory.

A. Transfer Knowledge to Different Frequencies

As shown in Fig. 2, the source task refers to the prediction

of the microwave structures’ S-parameter response at the

operation frequency of 1.7 GHz. The target task is to predict

the response at the operation frequency of 1.5 GHz.

Fig. 3 shows the experimental results corresponding to

different numbers of fixed layers. Transfer learning performs

accurately and efficiently when the first two convolutional

layers are fixed for the target training process. Thus, we choose

to fix the first two layers in the following experiments. Fig. 4

compares the MAE rates and training time for cases with

different amounts of training data. The results signify that the

model entailing transferred knowledge is less impacted when

the number of datasets is reduced. In contrast, the network
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Fig. 4. MAE and training time with different amounts of training data.

without prior knowledge (learning from scratch) significantly

suffers from data reduction. Specifically, using only 30% of

the training data to train the model, the MAE testing result

decreases by 20%, which is still better than the model trained

by full training data. In comparison, the model without source

knowledge drops by 63%. Even performing fine tuning for the

learning from scratch model with a triple of training time, the

MAE rate is still higher than the transfer learning model.

B. Transfer Knowledge to Different Template Sizes

The source knowledge extracted from one model with a

specific size is also supposed to be constructive to train

other models of different sizes. Following this rationale, the

knowledge from task 1 can be leveraged for training networks

and simulating microwave structures with different sizes in

task 2. As shown in Fig. 2, we transfer the template from

49 mm × 35 mm to 42 mm × 30 mm. Task 3 is implemented to

make comparisons between two different transfer tasks. Based

on the results from task 1, 14,000 (30%) dataset are labeled by

the S-parameter response of the 42 mm × 30 mm structures.

The results for the 42 mm × 30 mm structure are compared

in Fig. 5. Tasks 2 and 3 achieve lower MAE rates than the

network trained from scratch. Similar to the results in task 1,

training a model with source knowledge significantly improves

the performance of the target task. Compared with a fine-

tuning model with much longer training time, the MAE rate

is still 50% poorer than the model derived from task 2.

The comparison between the two transfer tasks shows that

task 2 achieves an 18% lower MAE rate than task 3 within

the same training time. This comparison substantiates that in

the context of the behavior prediction of microwave structures,

the more related the target task is to the source task, the more
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advantageous performance will be yielded by the proposed

transfer-learning-based approach.

In order to examine the feasibility of transfer learning

in practice, two microstrip line structure prototypes were

fabricated on an ISOLA substrate of 0.762 mm thickness with

a dielectric constant of 2.8 to evaluate the prediction results

from the transferring models. Fig. 6 shows the fabricated pro-

totypes and the measurement results from the vector network

analyzer. Our model achieves a relatively small MAE of 3.7%

between the prediction yielded by the transfer learning model

and fabrication validation, which proves the effectiveness and

accuracy of our proposed transfer-learning-based approach.

From experimental results, it is clear that source knowledge

can be leveraged for facilitating model training for the target

task, as the source task and target task share similarities.

Consequently, only part of the neural network needs to be

trained to develop high-performance models for similar tasks

of microwave structure behavior prediction.

IV. CONCLUSION

In summary, we proposed a transfer-learning-based CNN

model to predict microwave structures’ behaviors. This model

is generic and thus can be tailored or extended to multiple ap-

plication scenarios. The proposed model significantly reduces

the training time and the amount of training data compared to a

learning from scratch model. Through extensive experimental

results, we also validated that the performance yielded by

transfer learning depends on the similarity between the source

task and the target task. The research outcomes in this letter

well answered several key questions pertaining to automatic

RF behavior prediction and opened up a new possibility for

reaching a compromise between accuracy and efficiency.
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