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Abstract
Lithium-ion batteries (LiBs) are well-known power sources due to their higher power and energy densities, longer cycle life and lower self-discharge

rate features. Hence, these batteries have been widely used in various portable electronic devices, electric vehicles and energy storage systems. The

primary challenge in applying a Lithium-ion battery (LiB) system is to guarantee its operation safety under both normal and abnormal operating condi-

tions. To achieve this, temperature management of batteries should be placed as a priority for the purpose of achieving better lifetime performance and

preventing thermal failures. In this paper, fibre Bragg Grating (FBG) sensor technology coupling with machine learning (ML) has been explored for bat-

tery temperature monitoring. The results based on linear and nonlinear models have confirmed that the novel methods can estimate temperature var-

iations reliably and accurately.
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Introduction

Lithium-ion batteries (LiBs) are one of the most promising

energy storage techniques in power systems and mobile facili-

ties by virtue of its higher power and energy densities, longer

cycle life and lower self-discharge rate qualities (Kang et al.,

2014). These features are highly suitable for various types of

portable electronics devices, electrical vehicles (EV), energy

storage applications, aircrafts and even aerospace applications

(Li et al., 2020, 2021). However, the extensive applications are

usually operated under a wide range of extreme environments,

like high-altitude/latitude, elevated temperatures and high

charge/discharge rates (Richardson, 2016). This is likely to

cause a series of issues in battery thermal management.
For instance, when the environment temperature is below

0�C, the depth of discharge (DoD) and the power output of

the battery decrease significantly (Xie et al., 2022). However,

operating at high temperatures (40�C) will also accelerate the

chemical or mechanical reaction happening between electro-

lyte and the electrodes (Amine et al., 2005). In this case, solid

electrolyte interphase (SEI) will be formed, which leads to the

impedance increase at the anode and active lithium reduction

in the battery (Liu et al., 2020). Furthermore, the decomposi-

tion of electrolyte results in active lithium loss. The aforemen-

tioned aging mechanisms lead to capacity fade (Liu et al.,

2020). If the generated heat cannot be sufficiently dissipated,

the battery internal temperature goes beyond the acceptable

scope rapidly and then results in a great many exothermic

events within the battery, such as fires, venting and electrolyte

leakage (Feng et al., 2015; Liao et al., 2019). Moreover, the

nonuniform thermal distribution inside the battery will result

in the issues of inconsistent electrochemical processes and

thus decrease the battery pack cycle life (Olabi et al., 2022). In

this sense, maintaining the operating temperature of battery

under safe and optimal conditions is extremely important. It

is necessary to monitor and predict temperature variations

through a reliable and effective method.
The conventional ways to detect the thermal features are

to use flexible thin-film thermocouples (TFTCs) (Li et al.,

2013) or micro-thin-film resistance temperature detectors

(RTD) (Lee et al., 2011) attached to the surface or embedded

into battery cores. These methods suffer from various limita-

tions, such as vulnerability corroded by internal/external envi-

ronment, complex to operate and low accuracy of detection

(Lee et al., 2011). In contrast, electrochemical impedance

spectroscopy (EIS) (Barsoukov and Macdonald, 2005) exhi-

bits the advantages that no temperature sensors are required,

thermal measurements are short and the measured battery

cells are non-destructive while indicating the internal and

external temperature of LiBs. At the same time, the sensorless

methods also face the challenges of State of Charge (SoC)

and ageing dependence on the impedance, measuring para-

meters crosstalk interference and operation frequency selec-

tion (Raijmakers et al., 2019). Johnson noise thermometry

(JNT) method (Edler and Seefeld, 2015) is an appropriate
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candidate for measuring temperate that the applications
working in a harsh environment (e.g. nuclear reactors).
Nonetheless, there are relatively large errors in measuring the
surface temperature of a battery pack when it is coupled with
a giant magnetoresistance (GMR) sensor and a K-type ther-

mocouple (Raijmakers et al., 2019).
In recent years, the methods for battery temperature moni-

toring based on various optical fibre sensing techniques have
been explored (Han et al., 2021). For instance, with the assis-
tance of optical fibre sensors, Yu et al. (2022) used the
Rayleigh scattering approach to decode the internal tempera-
ture and strain evolution of a pouch battery cell. Wei et al.
(2022) presented a method for real-time temperature distribu-
tion measurement by implanting the distributed fibre optical
sensor (DFOS) into a battery cell. The configured smart cell
can achieve a real-time distributed sensing of the temperature
matrix with a high spatial resolution of 2.6 mm. Yang et al.
(2022) proposed a distributed thermometry method using
optical frequency domain reflectometry (OFDR). The tech-
nique was demonstrated on a three-cell pouch-type battery
pack. The experimental results indicated that the sensor can
simultaneously measure temperature distribution of multiple
battery cells.

Particularly, fibre Bragg grating (FBG) sensors have been
extensively investigated and used in monitoring battery ther-
mal variations because the Bragg wavelength favourably
shifts linearly with temperature under certain conditions (Han
et al., 2021; Wei et al., 2021). Additionally, FBG sensor is
superior to conventional thermal sensors in terms of its elec-
tricity immunity, high sensitivity, multiplexing, and the possi-
bility of the integration inside the batteries. (Nascimento
et al., 2017; Raijmakers et al., 2019).

Yang et al. (2013) initiated the investigation of optical
fibre Bragg grating (FBG) sensors in LiBs to measure exter-
nal temperature variations under normal (discharged at vari-
ous current) and abnormal conditions (overcharge and
external short-circuit). The results showed the FBG sensors
have faster thermal response in comparison with the thermo-

couples. Moreover, this method can be also employed to
detect temperature distribution of battery stack. Following
this research, a number of experiments have been conducted
in terms of the technical reliability and measurement com-
plexity. For instance, Meyer et al. (2015) investigated the
advantages of FBGs for enhanced battery safety by several
different experiments. First, with the FBG sensor network,
the temperature of each cell was recorded during fast charg-
ing, which showed FBG sensors can detect the maximum
temperature more accurately than the thermistors. Second,
the characteristic volume behaviour of LiBs was detected pre-
cisely by FBG sensors, although the sensors did not show a
clearly detectable aging under nominal and accelerated condi-
tions. In addition, it was found that the sensitivity of the
FBG strain sensor is much higher (around 50 times) than the
sensitivity of the temperature sensor. These results show that
the FBG sensor application offers an alternative approach to
avoid thermal runaway. Likewise, Nascimento et al. (2017)
made a comparative study using FBG sensors and thermo-
couples to monitor battery thermal variations in real-time at
three different battery locations (top, middle and bottom)
under both constant current charge and various discharge

rates (0.53 C, 2.67 C and 8.25 C) conditions. They found the
responses of the two types of sensors under lower C-rates are
closer to each other, whereas FBG sensors under abuse condi-
tions (higher discharge rate) showed rapid response to the
heat generation in all locations.

Furthermore, FBG sensors for permanent and immedi-
ate monitoring of the internal temperature were also stud-
ied. For instance, Schwartz et al. (2015) explored to use a
single FBG sensor embedded directly into the electrode
stack of lithium-ion pouch cells, which detected both
mechanical strain from lithium-ion insert into the electrodes
and thermal strain from temperature variations under nor-
mal charge-discharge conditions. At the same time, another
FBG sensor without experiencing the mechanical strain was
loosely attached to the top of cell surface as a temperature
reference sensor to decouple the intercalation mechanical
strain from the embedded FBG signal. The research showed
signals obtained from the internal sensors were stronger
(over four times) than those detected from external sensors
of the pouch. Similarly, Novais et al. (2016) conducted
research on measuring internal and external temperature
variations through four FBG sensors during different C-
rates. In their experiment, two FBG sensors were inserted
between two separators layers, that is, at the centre of the
electrochemically active site and near the tab-electrode con-
nection. Meanwhile, another two external sensors were
placed on the surface of the pouch cell, parallel to the above
internal sensors. The study also indicated the observed
external temperature variations were significantly lower
than the internal temperature (e.g. 1:58C6 0:18C and
4:08C6 0:18C for external and internal, in order). Apart
from this, they found that the external sensor’s signal was
slightly delayed compared with the internal signal. Fleming
et al. (2018) and Fortier et al. (2017) also reported the tem-
perature differences between internal and surface of LiBs,
with about 108C during discharge and 38C during charge
phase, respectively. More importantly, they found that utiliz-
ing FBG sensor to monitor battery internal thermal character-

istics has a negligible impact upon the battery performance.
However, the aforementioned studies were conducted

under ambient temperatures. Considering the wide range of
practical working environments of battery-driven facilities
(e.g. EVs), Nascimento et al. (2019) further proposed an
FBG-based sensor network for monitoring the surface tem-
perature of LiB in a smartphone under dry, temperate and
cold environments, at constant charge and different discharge
rates (1.32 C, 2.67 C and 5.77 C). In this experiment, it is
interesting to note that five different spots of battery surface
were monitored both in situ and in operando only using a sin-
gle optical fibre. The results confirmed that the FBG sensor
network is a precise and useful tool that can be employed to
monitor the temperature variations of LiBs. More specifically,
the thermal mapping demonstrated that the detected highest
temperature was at the top of the battery (near of the electro-
des), followed by the top-middle position. The temperature at
the middle-bottom was slightly higher than that at the middle.
The lowest temperature in all cases was detected at the bot-
tom of the battery. These findings offered strong evidence for
an effective cooling system design. Zhang et al. (2022) pro-
posed a novel data-driven-based FBG sensor temperature
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calibration method that can achieve desirable estimation

results under a wide range of environments. These make the

FBG-based temperature monitoring methods more friendly

to use in more real-life applications.
In summary, it can be concluded that the existing FBG

sensor-based battery temperature measurement studies have

demonstrated the great potential of FGB sensors in LiB tem-

perature management, given their advantages such as rapid

response and precise measurement under both normal and

abnormal conditions. However, the aforementioned research

on FBG-based temperature monitoring methods is still at a

nascent stage. Using FBG sensors attached to the surface of

battery or inserted into battery cell alone is not sufficient to

monitor the battery states in full. Battery temperature estima-

tion models still play a key role in keeping battery safety.

Among the common battery thermal estimation models

(Jiang et al., 2022; Karimi et al., 2022; Mahamud and Park,

2022), machine learning (ML) can be utilized to efficiently

estimate the temperature variations of LiBs (Liu et al., 2018)

as ML does not need the knowledge or data of the internal

characteristics of the batteries (Li et al., 2022) and is able to

learn the linear and/or nonlinear system dynamics.
In this paper, we explore to combine the wavelength of

FBG sensors and battery working parameters with ML to

monitor LiB surface temperature. In detail, multiple sensor

signals, terminal voltage, battery current and surface tem-

perature are obtained from a lab experimental setup. Then, a

linear method and a nonlinear data-driven method are devel-

oped. The input terms with the maximum contributions are

selected first by a fast recursive algorithm (FRA; Li et al.,

2005). Then two data-driven models are constructed, and

temperature estimation has been achieved by FRA-linear and

FRA-nonlinear models separately. Finally, based on the

experimental results, the battery thermal estimation perfor-

mance under two different models is compared.
The remainder of the paper is organized as follows. Section

‘Preliminaries’ provides the details of the FBG sensor, linear/

nonlinear modelling methods and the FRA. The experimental

setup, the two-stage data-driven methods, and the estimation

results are detailed in section ‘Simulation results and discus-

sion’. Finally, section ‘Conclusion and future work’ concludes

the paper and the future research is also discussed.

Preliminaries

FBG sensor

FBG sensor is an optical filtering device which enables a par-

ticular wavelength of the light spectrum to be reflected back

while the remaining part is transmitted nearly without being

affected (Raijmakers et al., 2019). The wavelength of the

reflected signal is named as the Bragg wavelength lB, which

has the following relationship (Morey et al., 1990)

lB = 2nLG ð1Þ

where n is the effective index of the refraction and LG is the

grating pitch between the grating planes.

Linear model

The linear model assumes that the linear relationship between
the independent input variables Xi and a single dependent
variable Y (Ravishanker et al., 2021). Linear models are

among the most popular models in analysing the experimen-
tal data. The general function for a linear model is

Y =b0 +
P

biXi + ei ð2Þ

where b is linear parameter estimates to be computed and e

represents the error terms.

Nonlinear model

A nonlinear model describes nonlinear relationship between
the dependent variable Y as a function of a combination of
nonlinear parameters and independent variables Xi. The para-
meters can take the forms of an exponential, trigonometric,
power or any other nonlinear function (MathWorks, 2022).

In order to estimate the nonlinear parameters, an iterative
algorithm is generally used

Y = f Xi,bð Þ+ ei ð3Þ

where b is linear parameter estimates to be computed and e

represents the error terms.

FRA

FRA (Li et al., 2005) can solve the least-squares problem

recursively without the need for matrix deposition and
transformation. Therefore, the method is efficient in con-
structing both model structure and calculate model para-
meters. In this work, the FRA is used to select the most

relevant inputs and determine the parameters for linear and
nonlinear models.

First, the FRA is introduced by defining a recursive matrix
Mk and a residual matrix Rk

Mk =PT
k Pk , k � 1, . . . , n

Rk = I� PkM
�1
k PT

k , R0 = I

(
ð4Þ

where Pk 2 <N 3 k contains the first k selected regressors (or
model terms) out of the full regression matrix.

Second, suppose pi, i= 1, . . . , nf g in P are linearly inde-

pendent mutually, we combine the definition in (4), the recur-
sive matrix Rk , k = 1, . . . , n, therefore has the following
properties

RT
k =Rk , Rkð Þ2 =Rk ð5Þ

RkRj =RjRk =Rk , k ø j ð6Þ

Rkpi = 0,8i 2 1, . . . , kf g ð7Þ

Rk + 1 =Rk �
Rk pk + 1pT

k + 1
RT

k

pT
k + 1

Rk pk + 1
, k = 0, 1, . . . , n� 1 ð8Þ

Suppose Ek is the square error after selecting k terms (Liu
et al., 2018), and it can be expressed as
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Ek = yTRky ð9Þ

From equations (8) and (9), the Ek + 1 can be expressed

after adding the (k + 1)th item

Ek + 1 = yTRk + 1y=Ek � yTRk pk + 1pT
k + 1

RT
k y

pT
k + 1

Rk pk + 1

E0 = yT y

)
ð10Þ

Moreover, defining

p
kð Þ

i ¼
D

Rkpi, p
0ð Þ

i ¼
D
R0pi = pi

i= 1, . . . , n, k = 0, 1, . . . , n
ð11Þ

From equations (5)–(7), equation (11) can become as

DEk + 1 =�
yT p

kð Þ
k + 1ð Þ2

p
kð Þ

k + 1ð ÞT p
kð Þ

k + 1

� � , k = 0, . . . , n� 1 ð12Þ

Equation (12) shows the net contribution of term pk + 1 to
the cost function when it is included in the model.

In order to simplify the computational complexity, two
new quantities are defined

ak, i ¼D p
k�1ð Þ

k

� �T

pk�1
k a1, i ¼D pT

1 pi

ak, y ¼D p
k�1ð Þ

k

� �T

y a1, y ¼D p0
1

� �T
y= pT

1 y

i= k, . . . , n, k = 1, 2, . . . , n

9>>>>=
>>>>;

ð13Þ

Based on equations (5)–(7) and equation (11), the follow-
ing equation can be produced

ak, i = pT
k pi �

Pk�1
j= 1 aj, kaj, i

� �
aj, j

k = 1, . . . , n, i= k, . . . , n

ð14Þ

ak, y = pT
k y�

Pk�1

j= 1
aj, k , aj, yð Þ

aj, j
, k = 1, . . . , n ð15Þ

From equation (15), we can get

yT p
kð Þ

i = yT pi �
Pk

j= 1
aj, yaj, ið Þ

aj, j

ð16Þ

Similarly, from equation (14), it can be derived

p
kð Þ

i

� �T

p
kð Þ

i = pið ÞT pi �
Pk

j= 1

a2
j, i

aj, j

� �
ð17Þ

Finally, by substituting equations (16) and (17) into equa-
tion (12), the net contribution of pk + 1, k = 0, 1, . . . , n� 1 to
the cost function can be shown explicitly as following

DEk + 1 =�
yT pk + 1�

Pk

j= 1

aj, yaj, k + 1
aj, j

� �� �2

pk + 1ð ÞT pk + 1�
Pk

j= 1

a2
j, k + 1

aj, j

� � ð18Þ

Equation (18) gives the fast algorithm for explicitly com-
puting the net contribution of a selected model term. After
selecting the model terms, the model parameter can be com-
puted recursively using

ŵj = aj, y �
Pk

i= j+ 1

ŵiaj, i

 !
=aj, j, j= k, k � 1, . . . , 1 ð19Þ

Simulation results and discussion

Experimental setup

A schematic diagram of the experimental setup for thermal

monitoring of the LiB is shown in Figure 1. In the work, a

commercial cylindrical LiB cell (18650 LiFePO4, 3.2 V,

1:6 Ah) was used. On the preset of the experiment, three

FBG sensors were glued to the cell surface. Each of the two

adjacent sensors had a slightly different orientation (the angle

of the adjacent two sensors is about 458). The central wave-

length for each FBG sensor is 1534, 1539 and 1544 nm,

respectively. The sensors signal was obtained by a Micron-

Optics SM-130 interrogator. In addition, one thermocouple

sensor was also attached to the cell whose position is closed

to the FBG sensors, to detect the battery shell temperature

(T), thus making it as a reference temperature. For the model-

ling purpose, in this study, the temperature gradient on the

surface of the battery where the sensors are collocated is

assumed to be uniform. The terminal voltage (V) and battery

current (I) of the cell were measured by a NEWARE BTS

4000 battery test system. All the equipment was set at a 1 Hz

sampling frequency for data measurements.
The whole process of the experiment was conducted under

an ambient temperature. The tested cell was operated at the

cycle of a constant-current constant-voltage (CC-CV) charg-

ing process and a constant-current (CC) discharging process.

Specifically, the cell was charged under a CC of 1:6 A until

the terminal voltage reached 3:6 V upper cut-off voltage.

Then, the cell was charged under CV until the current

decreased by near 75 mA. Between the charging and dischar-

ging phases, 10 minutes were also set as a resting time. After

that, the cell was discharged under CC of 1:6 A until the

lower 2:0 V cut-off voltage was reached. There were 30 com-

plete charging and discharging cycles in total. The six data

Figure 1. Schematic diagram for thermal monitoring of the lithium-ion

battery.
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measurements (FBG1, FBG2, FBG3, current, voltage and

temperature) for the next modelling structure were obtained

during the charging–discharging cycles.

Data collection

In the work, cycles of (11� 15) contained (42, 592 3 6) data

points including data of FBG1, FBG2, FBG3, current, voltage

and temperature are used for model training, while another
(42, 592 3 6) data points from the cycles of (16� 20) were

used for model validation, as shown in Figure 2. It is evident

that the measured peak wavelength shifts from the FBG sen-

sors agree well with the temperature data measured via the

thermocouple. In addition, both of the FBG wavelength shifts

and battery temperature have a close relationship with the

changes of battery charge/discharge current and terminal

voltage.

Data-driven models

Considering the necessity of higher accuracy and working

efficiency for battery temperature estimation, a two-part

data-driven method is developed in this paper, as shown in
Figure 3. The first part is based on the FRA, which is mainly

used to select the proper model terms for the purpose of

reducing the computational cost and avoiding the over-fitting

problems (Liu et al., 2018); FRA is capable of ranking the

significance of the signals from the FBG sensors based on

their correlations with the temperature measured by the ther-

mal couple. Another function of FRA is to construct the lin-

ear and nonlinear models for battery external temperature

estimation. The linear and nonlinear models can build linear
and nonlinear relationships between the FBG wavelength

shifts and the temperature as well as the choosing battery

model working parameters. The detailed procedure to

determine the significant terms and corresponding weights of

linear/nonlinear models are shown as follows:

1. Generating the candidate model term pool which
contains the aforementioned measurements: FBG1,
FBG2, FBG3, current (I), voltage (V) and temperature.

2. Calculating the net contribution of model terms and
choosing the most significant one using equation (18).

3. The procedure is repeated until no more significant
cost function reduction can be achieved.

4. After selecting the appropriate model terms, calculate
the model parameters using equation (19).

Based on the first part of calculation results, the linear and
nonlinear data-driven methods can be constructed

respectively.
In order to evaluate the performance of the two models,

two different performance metrics are introduced. The first is

the mean squared error (MSE) for the temperature estima-
tion. It is defined as

MSE= 1
n

Pn
i= 1

Yi � Ŷ i

� �2 ð20Þ

where Yi is the temperature measured by the thermocouple

and Ŷi are the estimation values based on the linear/nonlinear
models. n denotes the number of data samples used for model

training/testing.
The second metric is the mean absolute error (MAE),

which is calculated as the sum of absolute errors between the
observed temperature and predicted temperature divided by

the total number of samples used for model training or model

testing

MAE=

Pn

i= 1

Yi�Ŷ ij j
n

ð21Þ

where Yi is the true value and Ŷi is the prediction. n is the num-

ber of data samples used for modelling.

FRA-linear model. In the linear model, the term pool is

Xl term pool = FBG1,FBG2,FBG3, I ,V½ �T ð22Þ

While the model terms selected by FRA in the first stage is

Xl = FBG2,FBG1,V ,FBG3½ �T ð23Þ

Ytrain is the battery surface temperature detected by a

thermocouple.
It is worth noting that the time spent on training using

FRA for the linear model is 0.1094 seconds. Table 1 illustrates

the training results and testing error using the FRA-linear
model. It is shown that the MSE for both the training and

testing is only 0:0460 and 0:0514, respectively. The MAE for

both the training and testing are 0:1684 and 0:1866 in order.
Figure 4 illustrates the temperature estimated by the FRA-

linear model. The blue line is the battery surface temperature
measured by the thermocouple, and the yellow line is the

Figure 2. Training and testing data in the project, cycles 11–20.

Training data: cycles 11–15; testing data: cycles 16–20.
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estimated battery temperature by the linear model. Obviously,

the surface temperature prediction evolves smoothly around

the actual values. This is essential in some practical applica-

tions (e.g. electric vehicles) because the relatively large errors

may lead the battery thermal management system to delay

taking further actions, thus resulting in a thermal runaway in

a brief period. A higher level of compliance between the actual

temperature and estimated temperature in Figure 4 leads to

small values of MSE and MAE.
The resultant linear model with the linear terms and its

identified relevant parameters is provided as follows

Ylinear =� 3:0885 3 10�7 + 47:873 FBG2ð Þ � 63:238 FBG1ð Þ

�0:36283 Vð Þ+ 14:882 FBG3ð Þ ð24Þ

Equation (24) describes the linear relationship between the

independent input variables Xl and the temperature T .

FRA-nonlinear model. For the nonlinear model, the candidate
nonlinear terms are

Xnl term pool = ½FBG2
1,FBG2

2,FBG2
3, I

2,V 2,FBG3
1,FBG3

2,FBG3
3, I

3,V 3

FBG1 3 FBG2,FBG1 3 FBG3,FBG2 3 FBG3

FBG1 3 I ,FBG1 3 V ,FBG2 3 I ,FBG2 3 V

FBG3 3 I ,FBG3 3 V , I 3 V �T

ð25Þ

In the first stage, the terms with the largest contribution

for the nonlinear model are selected by FRA, as shown below

Xnl = FBG3
2,FBG2

2,FBG3
1, I

2, I 3 V , I3,V 3,V 2,FBG3
3

� �T ð26Þ

Ytrain is the battery surface temperature detected by a thermo-

couple. The training and testing performances using the FRA-

nonlinear model are illustrated in Figure 5. The blue line

shows the changes in battery surface temperature read by a

thermocouple, whereas the yellow line illustrates the varia-

tions of estimated temperature under the nonlinear model.
Furthermore, the training time spent on the FRA-non-

linear model is only 0:0938 seconds. Table 2 provides the error

details of both the training and testing results by the FRA-

nonlinear model. Especially, the MSE of training and testing

are 0:0289 and 0:0317, respectively. And, the MAE of training

and testing results are 0:0317 and 0:1447, respectively. The

resultant nonlinear model with nonlinear terms and its identi-

fied related parameters is given as

Ynonlinear = 9:207 3 10�6 FBG3
2

� �
� 0:020111 FBG2

2

� �
+ 3:8523 3 10�6 FBG3

1

� �
� 0:050735 I2

� �
+ 0:094943 I3

� �
+ 0:0029075 V 3

� �
� 2:2035 3 10�8 FBG3

3

� �
ð27Þ

Equation (27) describes the nonlinear relationship between

the dependent battery temperature T as a function of a

combination of nonlinear parameters and independent vari-

ables Xnl.

Figure 3. Flowchart of FRA-linear and FRA-nonlinear models.

Table 1. The training and testing performance of the FRA-linear model.

Details Training Testing

Mean squared error (MSE) 0.0460 0.0514

Mean absolute error (MAE) 0.1684 0.1866
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Discussions. This section provides the battery temperature
simulation results based on both the FRA-Linear and FRA-

nonlinear models. It is evident that the battery surface

temperature can be accurately estimated via FBG-based data-

driven methods. It should be pointed out is that the FRA-

nonlinear model spent only 0:0938 seconds on model training

compared with 0.1094 seconds by the FRA-linear model.

Moreover, the FRA-nonlinear model showed the least train-

ing and testing errors, which is inseparable from enough valid

inputs.

From the simulation results, it is clear that the FBG2 and

its nonlinear terms are chosen by FRA in both the linear and

nonlinear models. It means that FBG2 has close relationship

with the temperature (detected by thermocouple). The chosen

FBG terms from the three different spots also indicate the

Figure 5. Testing performance using FRA-nonlinear model: (a) testing: test temperature versus estimate temperature; (b) error: test temperature–

estimate temperature.

Figure 4. Testing performance using FRA-linear model: (a) testing: test temperature versus estimate temperature; (b) error: test temperature–

estimate temperature.

Table 2. The training and testing performance used by FRA-nonlinear

model.

Details Training Testing

Mean squared error (MSE) 0.0289 0.0317

Mean absolute error (MAE) 0.0317 0.1447
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temperature distribution on the surface of battery is nonuni-

form, though the three spots are close to each other. We can

also find that FBG sensors are more sensitive to battery shell

temperature changes than the battery cell current and termi-

nal voltage.

Conclusion and future work

This paper presents the detailed work of exploring the use of

FBG sensors and ML to monitor battery temperature.

Specifically, 3 FBG sensor signals, terminal voltage, battery

current and surface temperature are obtained from a lab

experiment setup. In order to improve the accuracy and effi-

ciency of ML models, a two-stage data-driven method is

provided.
In the first stage, the inputs with the largest contributions

are selected by FRA. Then two different models (i.e. FRA-lin-

ear and FRA-nonlinear) are constructed separately. The

model testing results show that the methods of integrating

FBG sensor data and ML for battery thermal monitoring can

predict the battery shell temperature effectively and accu-

rately. For example, with the input data point of (42, 592 3 9),

the time spent on the FRA-nonlinear model training is only

0:0938 seconds; the MSE and MAE from model validation

are 0:0289 and 0:0317, respectively.
However, it should be noted that the wavelength shifts of

three FBG sensors used in the experiment are the results of

the temperature changes, strain variations and other factors.

We did not extract temperature-induced signals for model

training and testing. The experiments conducted were based

on the hypothesis that the temperature measurements on the

surface of the battery were average values. In fact, the inter-

nal and external temperature distribution of the battery or

different spots of the battery surface was nonuniform.
The future work will focus on further improvement of the

model accuracy so as to effectively and timely detect the inter-

nal changes when the temperature and strain information on

the battery surface have minor changes, thus enabling the

early fault prevention.
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