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Abstract—Uncertainty quantification plays a key role in the
development of autonomous systems, decision-making, and track-
ing over wireless sensor networks (WSNs). However, there is
a need of providing uncertainty confidence bounds, especially
for distributed machine learning-based tracking, dealing with
different volumes of data collected by sensors. This paper aims to
fill in this gap and proposes a distributed Gaussian process (DGP)
approach for point target tracking and derives upper confidence
bounds (UCBs) of the state estimates. A unique contribution of
this paper includes the derived theoretical guarantees on the
proposed approach and its maximum accuracy for tracking with
and without clutter measurements. Particularly, the developed
approaches with uncertainty bounds are generic and can provide
trustworthy solutions with an increased level of reliability. A
novel hybrid Bayesian filtering method is proposed to enhance
the DGP approach by adopting a Poisson measurement likelihood
model. The proposed approaches are validated over a WSN case
study, where sensors have limited sensing ranges. Numerical
results demonstrate the tracking accuracy and robustness of the
proposed approaches. The derived UCBs constitute a tool for
trustworthiness evaluation of DGP approaches. The simulation
results reveal that the proposed UCBs successfully encompass
the true target states with 88% and 42% higher probability in X
and Y coordinates, respectively, when compared to the confidence
interval-based method.

Index Terms—Distributed learning, target tracking, wireless
sensor networks, Gaussian process methods, uncertainty quan-
tification, upper confidence bounds, trustworthy solutions

I. INTRODUCTION

Target tracking in wireless sensor networks (WSNs) is

a fundamental task for various applications including sea
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surveillance, autonomous vehicles, and traffic monitoring. The

objective is to collect sensor measurements from one or

multiple targets to estimate their current and future states

[1]. However, the measurements may not only originate from

the targets but also from the environmental interference (e.g.

from ground and rain), which is referred to as the clutter [2].

To achieve reliable performance, a tracker should be able to

distinguish between target measurements and clutter measure-

ments, and also decide which measurement is associated with

which target, which is called the data association problem [3].

To improve the tracking performance, numerous model-

based approaches have been proposed including Kalman filter,

extended Kalman filter [4], unscented Kalman filter [5], and

particle filter [6], [7]. The posterior Cramér Rao Lower bound

(PCRLB) for tracking can be calculated with different meth-

ods, e.g. as it calculated in [8]–[12].

However, these approaches rely on well-defined motion

models, in particular, the target dynamics model and the

sensor measurement model, which can be inaccurate when

the target undergoes non-stationary evolution or mixed ma-

neuvering behaviours. The multiple-model method [13] can

capture complex behaviours by running a bank of elemental

filters, each based on a unique model in the set and generating

the overall estimates based on the results of these elemental

filters. On the downside, this framework suffers from high

computational complexity, and therefore, is not efficient when

a large number of models are involved.

Tracking with multiple models can be achieved by Gaussian

process (GP)-based model-free methods, which are powerful

non-parametric machine learning inference methods [14]. In-

stead of tracking via motion models, GP-based methods can

directly learn unknown functions which maps some system

context information (input) to the target state (output). Partic-

ularly, GP regression can provide uncertainty quantification on

the predictions. Ignoring this uncertainty can have disastrous

consequences, especially when the output of such models is

then fed into higher-level decision-making procedures. Re-

cently, GP regression has been applied to solve both point

target tracking [15]–[21] and extended target tracking [22]–

[24] problems.

Most of the existing GP-based tracking methods assume
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that the sensor measurements are collected in a centralized

manner and both training and state estimation are made upon

the aggregated measurements [25], [26]. However, due to

the nature of distributed sensing systems, collecting all the

measurements for GP training can bring a high communication

cost, which is energy inefficient. In addition, considering

a WSN with sheer amounts of sensors and measurements,

the centralized tracking framework has inevitably reached an

inherent bottleneck of scalability, which stems from the cubic

computational complexity (O(N3), where N in the number of

measurements) of the standard GP regression due to the inver-

sion and determinant calculations of the GP covariance matrix.

Therefore, transferring the centralized-based approaches into

distributed ones has become a popular choice, and multiple

approaches including distributed consensus approaches [27]

and message passing methods [28] have been proposed for tar-

get tracking. However, to the best of the authors’ knowledge,

there are rarely any studies about leveraging GP regression to

solve the tracking and data association in a distributed way

and provide theoretical performance analysis. Hence, in this

paper, the distributed Gaussian process (DGP) framework is

adopted to design a DGP-based tracking (DGPT) approach,

which is able to learn the target motion online and solve the

data association jointly in a data-driven way.

GP has also been studied in resource allocation problems

under the edge computing framework to account for efficient

decision-making and network state prediction [29], [30]. The

presented DGPT approach can also rely on edge computing

thanks to their distributed learning nature and since learning

happens near the areas of data collection. The DGP framework

has been implemented and tested on edge devices [31], and

the whole edge learning process can be implemented in other

ways as summarized in the survey [32].

The main contributions of this paper are summarized below:

• A DGPT approach is proposed for point target tracking

under the assumption that the number of measurements

follows a Poisson distribution. The proposed approach

can leverage both temporal and spatial features to learn

the hyperparameters of the DGP online, through a sliding

window of measurements.

• To solve the data association problem, different weights

are assigned to the measurements based on the marginal

likelihood of local GPs and a weighted summation is cal-

culated for DGP training. This method achieves efficient

hyperparameter learning and state prediction. We justify

that the complexity of the DGPT does not scale with the

number of measurement, but only with the length of the

sliding window and the number of active sensors.

• For the first time, this work derives theoretically upper

confidence bounds (UCBs) for the state estimation error

of the proposed DGPT. Numerical results demonstrate the

superiority of the UCBs as compared to the confidence

interval of the DGP model itself.

• With the knowledge learned from the DGP, a novel

hybrid Bayesian filtering method is proposed to com-

bine distributed machine learning and classical Bayesian

inference. The designed tracker refines DGPT’s state

estimation by introducing a Poisson likelihood model,

which elegantly sidesteps the data association challenge.

• The performance of the proposed DGP and hybrid

Bayesian filtering approaches are tested with challenging

target trajectory scenarios - from uniform motions to

highly maneuvering ones. Different levels of measure-

ment noise and clutter rates are involved to evaluate the

accuracy and robustness of the proposed approaches.

The remaining part of the paper is organized as follows.

Section II reviews the related works. Section III introduces

the fundamentals of GP regression and multiple DGP methods.

Section IV describes the proposed DGPT approach followed

by the theoretical analysis of the tracking error bound in

Section V. Section VI describes the DGP-assisted hybrid

Bayesian filtering approach. The simulation setup and results

are presented in Section VII, and the conclusions are drawn

in Section VIII. Appendices A, B, and C contain details about

the theoretical derivations.

II. RELATED WORK

A wealth of approaches for improving the scalability of the

standard GP method have been studied including centralized,

distributed, and hybrid methods [33]. In [34], [35], sparse

approximations of the original N × N covariance matrix of

GP are obtained to summarize the dependence of the whole

training data using M inducing points, which greatly reduces

the computational complexity to O(NM2). However, this type

of methods requires all the data to make predictions and thus

still works in a centralized manner.

The DGP which originates from the idea of divide-and-

conquer [36], focuses on training local GPs (which are also

referred to as local experts) based on subsets of the whole

training data or based on the partitioning of the big state vector

into state vectors with smaller dimensions [37]. After training

the local experts, a family of aggregation methods [38]–[41]

relying on the product of experts model, can be applied to

aggregate the local knowledge together by multiplying local

predictions, and then the overall prediction can be calculated.

In addition, hybrid GP variants are studied to utilize a master

GP expert to communicate with the local experts leading to a

consistent posterior predictive distribution [42]. DGP has been

applied to problems such as the received signal strength-based

location fingerprinting map construction [43].

GP regression is also applied to solve the data association

problem. In [44], GP priors are placed on the different

generative processes and the associations are modelled via

a latent association matrix and inference is carried out us-

ing an expectation-maximization algorithm. [45] extends GP-

based data association into the non-stationary process where

a different number of generative processes can be activated in

different locations in the input space. GP has been also com-

bined with state-space models to solve the tracking problem.

In [46], one-dimensional temporal GP regression models are

reformulated as linear-Gaussian state-space models, which can

be solved exactly with classical Kalman filter. The state-space

model representation is also used in spatial-temporal GPs [47]

and non-Gaussian likelihood [48] to derive computationally

efficient infinite-dimensional Kalman filtering and smoothing
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Table I: A summary of recent works on GP-assisted tracking and localization

Target type Ref Data association Centralized / Distributed Data / Model-driven

Point target

[15] No Centralized Data-driven
[16] No Centralized Data-driven (hybrid)
[18] No Centralized Data-driven (hybrid)
[19] No Centralized Data-driven (hybrid)
[20] No Distributed Date-driven
[52] No Distributed Model-driven
[27] Yes Distributed Model-driven
[43] No Distributed Data-driven
[53] No Distributed Data-driven
[25] No Centralized Data-driven (hybrid)
[26] Yes Centralized Data-driven
[54] No Centralized Date-driven (hybrid)

Group/extend target

[22] No Centralized Data-driven
[23] Yes Centralized Data-driven (hybrid)
[24] No Centralized Data-driven
[28] Yes Distributed Model-driven

methods. There are also works studying using GP to represent

the state-space model [49]. GP is used to learn the whole or

part of the state-space model and the learned functions can be

integrated into a particle filter or extended Kalman filter [50],

[51], which results in hybrid tracking approach. Moreover,

recently, different GP approaches are developed by assuming

temporal and spatial correlation in the target trajectory and

shape, and the state-space model is directly learned from the

measurements [15], [16], [22]. In Table I, we have summarized

and compared more existing relevant works in GP-assisted

target tracking and localization. From Table I, we can find

that although GP methods have been used for solving tracking

and localization problems, there are rarely works about using

GP in a distributed system and integrating data association

solutions into GP methods.

The next section presents background knowledge for the

GP methodology before presenting the distributed learning and

tracking approaches.

III. BACKGROUND KNOWLEDGE

A. Standard Gaussian Process Method

GP is a stochastic process defining a distribution over func-

tions that fit a set of points. Assume there exist correlations

among target motions, at input x ∈ R
d, the non-linear mapping

f(·) between the current input feature and the target state f(x)
can be modelled by a GP as

f(x) ∼ GP(m(x), k(x,x′)), (1)

m(x) = E [f(x)] , (2)

k(x,x′) = E [(f(x)− x) (f(x′)− x
′)] , (3)

where m(x) and k(x,x′) denote the mean and covariance

functions, respectively. The training and the test input data

are denoted by x and x
′, respectively. Popular examples of

covariance functions include the squared exponential kernel.

Namely,

k(x,x′) = σ2 exp



−

1

2

d∑

j=1

(xj − x′
j)

2

l2j



 , (4)

where lj represents the length-scale of the jth feature of the

input data. The length-scale describes how smooth a function

is which can be thought of as roughly the distance you have

to move in input space before the function value can change

significantly [14]. The output variance σ2 acts as a scaling

factor. It determines the variation of function values from their

mean.

The collected measurements can be treated as the noisy

outputs of the unknown functions (which are target states in the

tracking problem), therefore, a point target tracking problem

with noisy observations can be written as

z = f(x) + ǫ, ǫ ∼ N (0, σ2
z), (5)

where z represents the measurement and ǫ represents the i.i.d.

zero-mean Gaussian measurement noise with variance σ2
z .

Given a training data set of input-output pairs D = {X, z}
with X = [x⊺

1 ,x
⊺

2 , · · · ,x
⊺

n]
⊺

and z = [z1, z2, · · · , zn]
⊺

, define

K = k(X,X) as the covariance matrix of the training input,

and k∗ = k(X,x∗) as the covariance between the training

input X and test input x∗. To make a prediction of the target

state at a new input x∗, the predictive mean µ∗ and the

predictive variance σ2
∗ can be written as

µ∗ = m(x∗) + k
⊺

∗Σ
−1(z−m(x∗)), (6)

σ2
∗ = k(x∗,x∗)− k

⊺

∗Σ
−1

k∗, (7)

where Σ = K+ σ2
zI, with I being the identity matrix.

B. Distributed Gaussian Process Method

The computational complexity and storage cost are major

challenges for the large-scale learning problems. The computa-

tions require O(N3) time with a standard GP implementation,

where N represents the number of the training instances. Be-

sides, the standard GP also requires O(N2+Nd) of memory,

where d is the dimensionality of the data. Both facts limit the

scalability of the standard GP regression. Moreover, according

to (6) and (7), the standard GP can only make predictions

based on all the available data, which is a centralized scheme

and requires data to be shared among local GPs.

In this section, inspired by the idea of divide-and-conquer,

DGP methods are introduced to reduce not only the compu-
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tational cost but also the memory cost of the standard GP, by

first training local GPs based on subsets of the whole training

data set and then aggregating the knowledge of local GPS

to achieve more accurate high-level predictions. The overall

computational complexity and the memory cost can be reduced

to O(Nn2) and O(Mn2+Nd) (n ≪ N ), respectively, where

M represents the number of local GPs and n represents the

size of data used for training a local GP. Particularly, both

the computational complexity and storage cost can be further

reduced through parallel/distributed computing [55].

The first type of DGP methods is the product of experts

(PoEs) [37] approach. The idea is to multiply the local pre-

dictive probability distributions for overall predictions. Given

the data D(i) collected by sensor i, the PoE predicts a function

value f(x∗) at a corresponding test input x∗ according to

p(f(x∗) | x∗, D) =
∏M

i=1
pi(f(x∗) | x∗, D

(i)), (8)

where M is the number of GP experts and represents the

number of active sensors which have measurements. Since

the product of these Gaussian predictions is proportional to

a Gaussian distribution, the aggregated predictive mean and

variance can be calculated with closed form as

µPoE
∗ = (σPoE

∗ )2
M∑

i=1

σ−2
i (x∗)µi(x∗), (9)

(σPoE
∗ )−2 =

M∑

i=1

σ−2
i (x∗), (10)

where µi(x∗) and σ2
i (x∗) represent the predictive mean and

variance of GP expert i, respectively, which can be calculated

based on (6) and (7).

The PoE model provides a straightforward way to aggregate

local predictions and sidesteps the weight assignment issue in

other DGP models such as the mixture of expert model [56].

However, this model becomes overconfident when making

predictions, especially in regions without any training data.

The generalized product of experts (GPoEs) model [38] im-

proves PoE by adding weights that represent the contributions

of different experts. For instance, the weight can be calculated

as the difference in the differential entropy between the prior

distribution p(f(x∗)) and the posterior predictive distribution

p(f(x∗) | x∗, D), which can be written as

βi = 0.5
(
log σ2

∗∗ − log σ2
i (x∗)

)
, (11)

where σ2
∗∗ represents the variance of the prior distribution

p(f(x∗)) and σ2
i (x∗) denote the predictive variance of GP

expert i, which can be calculated based on (7).

Given the data D(i) collected by sensor i, the GPoE predicts

a function value f(x∗) at a test input x∗. The predictive

distribution and the closed forms of the aggregated predictive

mean and variance can be written as

p(f(x∗) | x∗, D) =

M∏

i=1

pβi

i (f(x∗) | x∗, D
(i)), (12)

µGPoE
∗ = (σGPoE

∗ )2
M∑

i=1

βiσ
−2
i (x∗)µi(x∗), (13)

(σGPoE
∗ )−2 =

M∑

i=1

βiσ
−2
i (x∗). (14)

Alternatively, the Bayesian committee machine (BCM) [39]

proposes to aggregate the experts’ predictions from another

view by imposing a conditional independence assumption that

D(i) ⊥⊥ D(j) | f(x∗) which in turn explicitly introduces a

common prior p(f(x∗) | x∗) for the experts. Therefore, the

BCM’s prediction distribution can be written as

p(f(x∗) | x∗, D) =

∏M
i=1 pi(f(x∗) | x∗, D

(i))

pM−1(f(x∗) | x∗)
, (15)

where the denominator reaches an (M−1)-fold division by the

prior, which plays the role of a correction term that helps to

recover the GP prior when leaving regions of training data. The

closed form of the aggregated predictive mean and variance

of the BCM can be calculated as

µBCM
∗ = (σBCM

∗ )2
M∑

i=1

σ−2
i (x∗)µi(x∗), (16)

(σBCM
∗ )−2 =

M∑

i=1

σ−2
i (x∗) + (1−M)σ−2

∗∗ . (17)

In [40], a robust Bayesian committee machine (RBCM)

is proposed which combines both the features of the GPoE

and BCM models. The predictive distribution and aggregated

predictive mean and variance of the RBCM can be written as

p(f(x∗) | x∗, D) =

∏M
i=1 p

βi

i (f(x∗) | x∗, D
(i))

p
∑

i
βi−1(f(x∗) | x∗)

, (18)

µRBCM
∗ = (σRBCM

∗ )2
∑M

i=1
βiσ

−2
i (x∗)µi(x∗), (19)

(σRBCM
∗ )−2 =

∑M

i=1
βiσ

−2
i (x∗) + (1−

∑M

i=1
βi)σ

−2
∗∗ . (20)

All the models discussed in this section can be applied to

infer the target states in a distributed way in the target tracking

problem. Particularly, the closed-form of posterior predictions

can be obtained and the predictions are fully tractable.

C. Hyperparameter Learning

The hyperparameters of GP need to be learned from the

data. As a standard GP, maximum likelihood estimation (MLE)

is applied to learn the hyperparameters by maximising the log

marginal likelihood which can be written as

log p(z|X, θθθ) = −
1

2
z
⊺
Σ

−1
z−

1

2
log|Σ| −

n

2
log 2π, (21)

where θθθ =
{
σ2, σ2

z , l1, · · · ld
}

represents the set of hyperpa-

rameters. lj represents the length-scale of the jth feature of the

input data, σ2 is the output variance of the kernel function,

and σ2
z is the variance of the measurement noise.
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For the DGP, assuming the local GPs are independent with

each other, the log marginal likelihood can be factorized as

log p(z|X, θθθ)

≈
∑M

i=1
log pi(z

(i)|X(i), θθθ),

=
∑M

i=1

(
−
1

2
z
(i)⊺

Σ
(i)−1

z
(i) −

1

2
log|Σ(i)| −

n

2
log 2π

)
,

(22)

where X
(i) and z

(i) represent the training input and output of

local GP i, respectively.

The reduction in computational complexity of DGP can also

be justified by looking into (22), where both the computations

of determinant and inversion are only based on a much

smaller matrix Σ
(i). In addition, as compared to (21), the

factorized marginal likelihood can potentially be maximized

in a decentralized manner like federated learning [57] since it

is a summation over local marginal likelihood functions.

The learned hyperparameters are shared by all the local

experts for automatic regularization to avoid overfitting.

IV. DGP-BASED POINT TARGET TRACKING

The previous section demonstrates that the DGP is a promis-

ing method for large-scale learning systems. In this section,

we describe the proposed DGPT approach which solves the

tracking problem in WSNs using the distributed machine

learning method, in a data-driven way. Several improvement

schemes are designed to help integrate DGP for efficient

distributed tracking and deal with clutter measurements to

achieve robust performance.

In a WSN, each sensor can collect its own measurements

and the GP regression can be applied locally to process

local data. Some sensors can be edge devices and could

provide edge learning [32]. The proposed DGPT is linked with

federated learning [58].

At each time, after training, local GP-based target state

estimations can be aggregated to reach a high-level prediction

following different aggregation methods discussed in Section

III-B. Only the predictive means and variances of local GPs are

propagated to calculate the overall prediction, without trans-

mitting all the data to a central filter (controller). Particularly,

having this aggregation process does not mean an extra central

node is necessary. The aggregation can be implemented on any

capable sensor or edge node, thus the proposed approach is

fully distributed.

A. Temporal and Spatial-Temporal GP

To make a state estimation of a target, it is reasonable to

assume that there is a temporal correlation in the motions of

the target, and this correlation within time variables in distant

past is weaker than in more recent ones. Therefore, the target

state can be formulated as a function of the time variable which

is used as the input data for training DGP and making state

estimations. In this case, we have x = t, where t represents the

Figure 1: A distributed point tracking system with 4 sensors.

The length of sliding window in this example is 5 time steps

time variable. Based on the temporal GP (TGP), the tracking

problem in (1) and (5) can be reformulated as

f(t) ∼ GP(m(t), k(t, t′)), (23)

z = f(t) + ǫ, ǫ ∼ N (0, σ2
z), (24)

where t and t′ are the training and test data, respectively.

Based on the time variables and measurements (training set),

set the test input as x∗ = t, TGP can predict the target state

at time t using (6) and (7). Moreover, TGP can also predict a

next-step state predictions by setting x∗ = t+ 1.

Inspired by [59] that uses GP regression to learn the target

state transition function, the spatial correlation can also be

involved for state prediction by including the target state of the

previous time into the input data, namely x = (rt−1, t), where

rt−1 represents the target state in t− 1. The spatial-temporal

GP (STGP)-based tracking problem can be formulated as

f(rt−1, t) ∼ GP(m(rt−1, t), k(rt−1, t; r
′
t−1, t

′)), (25)

z = f(rt−1, t) + ǫ, ǫ ∼ N (0, σ2
z). (26)

B. Sliding Window-based Tracking

Although DGP is designed for complexity reduction, train-

ing GPs distributively can still be computationally intense

when local sensors collect extensive measurements originating

from both the targets and the clutter.

Noticing the fact that the target motion can be a mixed ma-

neuvering behaviour with time-varying parameters, based on

the temporal correlation assumptions in the previous section,

measurements with weaker motion correlations in distant past

time cannot contribute to training and prediction as much as

the recent ones. Therefore to further reduce the computational

complexity, the distant measurements are abandoned in DGPT

and only the recent measurements are utilized for training,

which can be treated as using a sliding window to select valid

measurements. The sliding window is a set of time variables

which represents a number of time steps. Based on the sliding

window, a sensor without valid measurements (the times of

collecting the measurements are not in the sliding window) is

excluded from state estimation at the current time.
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When both the number of experts and target measurements

is reduced, the computational complexity of GP training

reduces and also the tracking accuracy improves. Figure 1

shows the framework of the proposed sliding window-based

DGPT approach.

C. DGP-based Data Association

The previous section discuss using sliding window to reduce

the number of measurements for training and state estimation.

In this section, we focus on dealing with a large number of

clutter measurements to improve the tracking accuracy and

also reduce the computational complexity.

To cope with the clutter and for learning the GP hy-

perparameters, a method is designed to assign weights to

different measurements based on the marginal likelihood (21).

A weighted summation over measurements collected by one

sensor is then calculated as the training data for DGP. Define

j ∈ {1, 2, · · · , Jt} as the index of measurements received by

a sensor at time t and define wj,t as the weight of the jth

measurement, the gating method can be written as

wj,t = p(zj |Xt, θθθt−1)/
∑Jt

j
p(zj |Xt, θθθt−1), (27)

z̄t =
∑Jt

j
wj,tzj , (28)

where z̄t represents the weighted summation of the mea-

surements, which will be used for hyperparameter learning.

The rationale for calculating this weighted summation is to

determine a training instance based on the likelihoods of all the

measurements (both target and clutter measurements) and the

resulting summation is expected to be close to the target mea-

surements. Particularly, since only one summation is calculated

from each local expert, the number of measurements for DGP

training is greatly reduced and therefore the computational cost

is reduced as well.

In the distributed tracking scenario, at the beginning of

each time, each sensor performs the proposed gating method

independently based on the learned hyperparameters from the

previous time and the local measurements which are inside

the sliding window. The resulting data based on (27) and

(28) is used for hyperparameter learning and state estimation

in the current time. In addition, for a new sensor that does

not have any historical measurements, average weights are

calculated according to the weights assigned by all the other

active sensors. Moreover, when the clutter rate is much higher,

the clustering scheme can be used for preprocessing and the

gating method will be applied to the cluster centers rather than

to all the measurements.

D. Hyperparameter Online Learning in DGPT

Since the target motion can be time-varying and the sliding

window is designed to keep valid measurements for training

and tracking, the hyperparameters of DGP should be learned

online to capture the non-stationary features. Hence, in the

proposed DGPT approach, MLE which is based on the factor-

ized marginal likelihood (22) is solved every time to update

the hyperparameters. This process brings extra computational

costs due to the non-convexity of (22) and requires an iterative

solving process. To accelerate the hyperparameter learning

process, optimized hyperparameters at time t is designed to

be set as the initial value of hyperparameters of MLE at t+1,

which can significantly reduce the iterations needed for MLE.

Benefiting from the proposed sliding window design, the

DGP-based data association, and the online learning proper-

ties, the DGPT can provide accurate target state estimations

with collected measurements.

E. Complexity Analysis

For the proposed DGPT approach, the main computational

complexity stems from the covariance matrix inversion, which

scales cubically in terms of the number of data at each sensor.

Based on [23], the complexity of matrix inversion for DGP is

O(J3
1,t+J3

2,t+ · · · J3
Mt,t

), where JMt,t represents the number

of data stored in the Mt
th active sensor at time t and Mt is

the number of active sensors at t. Based on (27) and (28),

the measurements collected by a sensor at time t are used to

calculate a weighted sum for DGP training. This means only

a single measurement is saved per sensor per time. Given the

length of the sliding window of time as C, the computational

complexity due to the matrix inversion can be upper bounded

as O(C3Mt).

In the DGPT approach, the hyperparameters are learned

online by solving the maximum likelihood estimation problem

as formulated in (22). Maximizing this function requires com-

puting the covariance matrix inversion iteratively. Therefore,

the computational complexity of the DGP algorithm update

scales as O(C3Mt) per iteration at time t. The prediction

step also scales as O(C3Mt). It is important to notice that the

proposed DGP-based data association helps the DGPT achieve

a low computational complexity in both DGP learning and

state prediction since the complexity does not scale with the

number of received measurements and the length of the sliding

window does not increase over time.

V. THEORETICAL PERFORMANCE ANALYSIS

Lemma 1. (Lemma 5.1 of [60]) Given a trained local GP

based on training data Dt = {Xt, zt} till t, for any input

x∗ ∈ Xt, the probability Pr(.) that the predictive mean µ(x∗)
deviates from the true function value by more than a certain

amount can be upper bounded as

Pr
{
|f(x∗)− µ(x∗)| > γ1/2σ(x∗)

}
≤ e−γ/2, (29)

where γ is a positive constant.

Lemma 1 proposes a UCB of the probability that the

deviation between the true function and the estimated mean

of the function is larger then a scaled version of the estimated

variance function. Based on this lemma, error bounds of

distributed GPs can be derived.

The following Lemma 2 represents a generalization of

Lemma 1, assume each time one estimation is made, for the

case of an infinite number of time t, e.g. t → ∞.
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Lemma 2. Define δ ∈ (0, 1), set γt = 2 log(πt/δ), for πt =
π2t2/6, based on Lemma 1, apply the union bound over t, we

have

Pr
{⋃∞

t=1
|f(xt)− µ(xt)| > γ

1/2
t σ(xt)

}

≤
∑∞

t=1
e−γt/2 =

∑∞

t=1

δ

πt
= δ. (30)

Lemma 2 further generalises the cumulative deviation of the

predictive mean from the true function value based on the GP

predictions from all n test inputs.

Theorem 1. (One-step error bound of GPoE) Consider a

distributed GP system with M local GPs, with probability at

least 1−
∑M

i=1 e
−γi/2, the deviation between the true function

value at x∗ and the aggregated estimation of the mean value

made by the GPoE method can be upper bounded as

|f(x∗)− µGPoE
∗ | ≤

∑M
i=1 γ

1/2
i σ−1

i (x∗)∑M
i=1 σ

−2
i (x∗)

. (31)

Proof: Define Ai as the event in which the prediction of the

target state from local expert i and the true target state differs

larger than a quantity, which can be written as

Ai =
{
|f(x∗)− µi(x∗)| > γ

1/2
i σi(x∗)

}
. (32)

Define the union of events {A1, A2, · · · , AM} as A. Ap-

plying the union bounds over M events, the probability of A
can be upper bounded as

Pr(A) := Pr

{⋃M

i=1
Ai

}
,

= Pr

{⋃M

i=1
|f(x∗)− µi(x∗)| > γ

1/2
i σi(x∗)

}
,

≤
M∑

i=1

e−γi/2, (33)

where µi(x∗) and σi(x∗) represent the predictive mean and

standard deviation (STD) of local GP i at x∗, respectively.

Define Ā as the complement of A, changing the direction

of the inequality gives that

Pr(Ā) = Pr

{⋂M

i=1
Āi

}
,

= Pr

{⋂M

i=1
|f(x∗)− µi(x∗)| ≤ γ

1/2
i σi(x∗)

}
,

≥ 1−
∑M

i=1
e−γi/2. (34)

According to (13) and (14), the deviation between the true

function value and the aggregated predictive mean by GPoE

can be written as
∣∣∣∣f(x∗)− µGPoE

∗

∣∣∣∣ =
∣∣∣∣f(x∗)−

∑M
i=1 βiσ

−2
i (x∗)µi(x∗)∑M

i=1 βiσ
−2
i (x∗)

∣∣∣∣,

=
|
∑M

i=1 βiσ
−2
i (x∗) (f(x∗)− µi(x∗))|∑M

i=1 βiσ
−2
i (x∗)

,

≤

∑M
i=1 βiσ

−2
i (x∗)|f(x∗)− µi(x∗)|∑M
i=1 βiσ

−2
i (x∗)

. (35)

Based on (34), with probability at least 1 −
∑M

i=1 e
−γi/2,

(35) can be upper bounded as

|f(x∗)− µGPoE
∗ | ≤

∑M
i=1 βiσ

−2
i (x∗)γ

1/2
i σi(x∗)∑M

i=1 βiσ
−2
i (x∗)

,

=

∑M
i=1 βiγ

1/2
i σ−1

i (x∗)∑M
i=1 βiσ

−2
i (x∗)

, (36)

which completes the proof.

Theorem 1 proposes a theoretical UCB for the tracking

performance. Define the highest predictive variances of a local

expert as σ2
H, the bound can be further represented as

1−
∑M

i=1
e−γi/2

≤Pr

{
|f(x∗)− µGPoE

∗ | ≤

∑M
i=1 βiγ

1/2
i σ−1

i (x∗)∑M
i=1 βiσ

−2
i (x∗)

}
,

≤Pr

{
|f(x∗)− µGPoE

∗ | ≤

∑M
i=1 βiγ

1/2
i σ−1

i (x∗)

Mσ−2
H (x∗)

∑M
i=1 βi

}
.

This bound demonstrates that, given all other local GPs fixed,

when one of the local GP makes a highly uncertain prediction

which is reflected as a larger predictive variance, the upper

bound of the deviation will increase, which means the overall

prediction is exacerbated by this poor GP expert.

Next, we derive a Theorem about the UCB of the RBCM.

Theorem 2. (One-step error bound RBCM) following Theo-

rem 1, for a distributed GP system with M local GPs, with

probability at least 1 −
∑M

i=1 e
−γi/2, the deviation between

the true function value at x∗ and the aggregated estimation

of the mean value made by the RBCM method can be upper

bounded as

|f(x∗)− µRBCM
∗ | ≤

∑M
i=1 γ

1/2
i σ−1

i (x∗)∑M
i=1 σ

−2
i (x∗)

. (37)

Proof: The detailed proof is given in Appendix A.

The UCB for the GPoE algorithm in general is not the same

as the UCB (31) for the RBCM (37). However, under certain

conditions the two upper bounds coincide.

The next Theorem 3 generalises the result further, to the

GPoE’s cumulative error bound for a number of estimations

over a wide time interval T . The cumulative error bound of

other DGPT approaches can be derived in a similar way.

Theorem 3. (Cumulative error bound) Consider a distributed

GP system with M local GPs. suppose one state estimation

is made every time, with probability at least 1−
∑M

i=1 δi, the

cumulative deviation between the true function value at each

test input and the aggregated estimation of the mean value

can be upper bounded as

T∑

t=1

|f(xt)− µGPoE(xt)| ≤
T∑

t=1

∑M
i=1 βiγ

1/2
t,i σ−1

i (xt)
∑M

i=1 βiσ
−2
i (xt)

. (38)

Proof: The detailed proof is given in Appendix B.
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VI. DGP-ASSISTED BAYESIAN FILTERING WITH

MEASUREMENT ORIGIN UNCERTAINTY

Inspired by ideas from [61]–[63], in this section, the pro-

posed DGPT is enhanced by an elegant Bayesian filtering

method which can solve the data association problem without

the need to construct explicit measurement-target assignment

hypotheses or gates. The resultant hybrid Bayesian filtering-

based tracking approach provides a novel way to merge

distributed machine learning and model-based Bayesian in-

ference. The prediction made from the DGPT is used as the

prior distribution of the target state and a Poisson measurement

likelihood model is involved for posterior state inference.

A. Measurement Likelihood Function

According to [61], the state vector of L + 1 entities that

needs to be estimated at time t is defined as

X̃t =
[
x̃
⊺

t,c, x̃
⊺

t,1, · · · , x̃
⊺

t,L

]⊺
, (39)

where x̃t,c represents the state of the clutter process and L
represents the number of targets which is assumed to be

known. In a single point tracking problem, we have L = 1
and x̃t,1 = x̃t.

The derivation of the measurement likelihood relies on the

following three assumptions:

A1: The numbers of target originated measurements in a time

scan are assumed to be Poisson distributed, with a rate λT.

A2: The numbers of clutter measurements in a time scan are

assumed to be Poisson distributed, with a clutter rate λc

A3: The clutter measurements are assumed to be uniformly

distributed in the sensing space of each sensor.

In many cases, in a time step, a high-resolution sensor is

able to generate more the one measurement from the target

and also from the environmental interference. Therefore, the

assumptions that the clutter rate λc and target rate λT of

the respected measurements follow Poisson distributions are

well justified. These assumptions are also used in [64], [65].

Then this is reflected in the first and second assumptions (A1

and A2). Assumption A3 reflects the fact that the clutter is

uniformly distributed which is one of the most common cases

in practice. The uniform distribution of the clutter in the areas

of interest also reflects the full lack of prior knowledge about

the possible locations of the environmental interference.

For a WSN, according to above assumptions and by as-

suming that the target originated measurement likelihood is a

product of Gaussian likelihoods, the collected measurements

result from superposition of multiple target measurements

with Gaussian noise and uniform clutter measurements [61].

Therefore, similarly to [62] and [63], the joint likelihood

expression of the tracking problem can be written as

p(zt|X̃t) = p((zt,1, zt,2, · · · , zt,nt
), nt|X̃t), (40)

where nt represents the number of measurements collected

from all the sensors in time t. zt denotes the measurements

collected in t.
To simplify the notation we rewrite x̃t as x̃t to represent

the case when the target state is a scalar.

Define pc(zt,j) as the clutter measurement likelihood which

is a uniform distribution, and define p(zt,j |x̃t) as the target

measurement likelihood which is Gaussian, based on the

assumptions. In addition, define φ as a partition of the mea-

surement set, the joint likelihood (40) can be written as

p(zt|X̃t) ∝
∑

φ

(
λT

λc

)nT
t(φ) nt∏

j,φ(j) 6=0

p(zt,j |x̃t)

nt∏

j,φ(j)=0

pc(zt,j),

(41)

where nT
t (φ) represents the number of target measurements

which is compatible with partition φ. φ(j) = 0 corresponds to

the clutter measurement and φ(j) 6= 0 corresponds to the target

measurement. λT is the expected number of measurements

originating from the target and λc denotes the expected number

of measurements corresponding to clutter in the sensing area.

According to Appendix A of [63], the likelihood can be further

represented as

p(zt|X̃t) ∝
∏nt

j=1
(λcpc(zt,j) + λTp(zt,j |x̃t)) . (42)

Based on Assumption A3, the clutter measurement likeli-

hood can be written as pc(zt,j) =
1

Asen
, where Asen represents

the sensing area and is considered to be the same for all

the sensors.

The measurement likelihood is expressed in two different

ways: with the Poisson likelihood model (42) or its equivalent

form (43) and with a Gaussian process as in (45).

Assuming the measurement noise follows a zero-mean

Gaussian distribution with variance σ2
z , we have p(zt,j |x̃t) ∼

N (x̃t, σ
2
z), the measurement likelihood (42) can be repre-

sented as

p(zt|X̃t) ∝
nt∏

j=1

{
λc

Asen

+ λTp (zt,j |x̃t)

}
, (43)

∝
nt∏

j=1

N
(
µ̂t,j , σ̂

2
t,j

)
, (44)

∝ N
(
µ̂t, σ̂

2
t

)
, (45)

where µ̂t,j =
λc

Asen
+ λTx̃t and σ̂2

t,j = (λTσz)
2. The derivation

from (44) to (45) holds due to the fact that the product of

Gaussian probability density functions is proportional to a

Gaussian probability density function.

Based on (9) and (10) of product of Gaussian, the mean and

the variance of (45) can be calculated as

σ̂2
t =

1
∑ni

t

j=1 σ̂
−2
t,j

=
1

∑nt

j=1 (λTσz)
−2 =

(λTσz)
2

nt
, (46)

µ̂t = σ̂2
t

nt∑

j=1

σ̂−2
t,j µ̂t,j = σ̂2

t

nt∑

j=1

(λTσz)
−2 ·

(
λc

Asen

+ λTx̃t

)
,

= σ̂2
t nt (λTσz)

−2 ·

(
λc

Asen

+ λTx̃t

)
,

=
λc

Asen

+ λTx̃t. (47)

The expressions (46) and (47) are functions of the clutter

parameter (e.g. of the clutter rate λc) and of the rate λT of the
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target originated measurement. The likelihood function could

be expressed also as a function of the clutter density, as this is

shown in [62], [63]. The clutter rate λc and the clutter density

are connected with the area of the sensor and are parameters

that can be estimated by knowing the sensor area Asen, as

shown in [66] or by theoretical methods.

B. DGP-based Posterior State Inference

As discussed in Section IV-A, notice that at time t, the

proposed DGPT approach can also provide a next-step state es-

timation distribution. This means the DGP model can be used

as a high-quality prior distribution for the state estimation in

the next time. Have this prior knowledge and by combining the

likelihood, a novel state estimation method can be designed.

Define Zt−C:t−1 as the set of measurements within the

sliding window from time t − C to t − 1. The length of the

sliding window is C time steps. Given the current time t, the

prior distribution of the target state can be written as

p(X̃t | Zt−C:t−1) ∼ N (µt−1, σ
2
t−1), (48)

where µt−1 and σ2
t−1 represent the prior mean and variance

that can be calculated using the GP regression equations (4)

and (5), respectively. According to Bayes rule, the posterior

can be written as

p(X̃t | Zt−C:t) ∝ p(zt|X̃t)p(X̃t|Zt−C:t−1). (49)

Based on the prior distribution (18), (19), and (20), which is

learned by the DGP, considering the measurement likelihood

(42), the posterior state distribution (49) can be derived. The

posterior mean and variance can be written as

µt =
µt−1σ̂

2
t + σ2

t−1

∑nt

j=1(zjλT − λTλc/Asen)

σ̂2
t + ntσ2

t−1λ
2
T

, (50)

σ2
t =

σ̂2
t σ

2
t−1

σ̂2
t + ntσ2

t−1λ
2
T

. (51)

Appendix C contains the detailed derivation of these results.

A thorough performance validation and evaluation of the de-

veloped DGPT and hybrid Bayesian filtering approaches with

the derived theoretical UCB and over several test scenarios are

presented in the next section.

VII. PERFORMANCE EVALUATION AND VALIDATION

A. Training Time of DGP

To evaluate the training time of the DGP model, in this

subsection, we define the input data as two-dimensional,

namely x = [x1, x2]
⊤, we test the running time of DGP

training based on data from the following function

f(x) = 5x2
1 + sin(12x2), (52)

where the measurements are generated by adding zero-mean

Gaussian noise with the STD as σz = 0.5 to this function.

The time required to compute the log marginal likelihood

and its gradient with respect to the kernel hyperparameters

is presented in Figure 2. This computation process acts as

the fundamental step for solving the factorized MLE (22) for

hyperparameter learning and DGP training. As a comparison,
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Figure 2: Computation time for the log-marginal likelihood

and its gradient versus the size of the training data and the

number of local GPs

we also measure the time required for training the standard

GP model, which corresponds to solving the original MLE

(21). In addition, we measure the running time of solving the

factorized MLE with varying numbers of local GPs. According

to the results, we can find that the computation time of training

DGP increases with the growing size of the training data set

and adding more local GPs can accelerate the training process.

Particularly, except in the cases of small training sets (500-

1000), the running time of DGP increases much slower than

the standard GP. Hence, DGP can handle much more data and

is more suitable for real-time distributed learning and tracking

in WSNs as compared to the standard GP. Moreover, the

computation of the factorized likelihood can be implemented

in parallel, thus each local computational unit will only need

to compute one or a few terms of (22), and the overall running

time can be further reduced.

In addition, in Figure 2, the impact of the number of local

GPs on the running time for computing the log marginal

likelihood and its gradient is also presented based on the data

set with a fixed size of 10000. We can find that having more

local GPs can help reduce the running time since according to

(21), if the smaller size of covariance matrices are generated,

solving the matrix determinant and inversion can be much

faster on these smaller matrices.

B. Simulation Setup

The tracking performance of the proposed approaches are

tested in a WSN with 250 sensors uniformly implemented in

a 1000 meters × 1000 meters area. The sensing range is 50
meters and the sampling period is one second, both of which

are identical for every sensor. The proposed algorithm can

also be implemented in a heterogeneous network easily and

can make state estimations considering the heterogeneity of

sensors, which for example, can be reflected in the posterior

predictive variance of the local sensor.

In this paper, the target states denotes the target locations,

hence two GPs are needed at one sensor for the X-coordinate

and Y -coordinate, respectively. For the GP, a zero-mean

function is used which means no extra knowledge is utilized

for tracking. Besides, the covariance function is selected to

be the squared exponential kernel which is demonstrated to
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perform well in many maneuvering models [17]. Following

Assumptions A1-A3, the clutter measurements are modelled

as a Poisson point process and are uniformly located in the

sensing region of each active sensor. Moreover, the number of

target measurements is modelled as a zero-truncated Poisson

distribution, which ensures at least one measurement can be

received by a sensor within a time step, namely, λT = 1.

The target measurement noise is modelled by the zero-mean

Gaussian distribution.

In addition, we develop a range of scenarios with varying

parameters of the clutter process, measurement noise, and

target trajectories. To test the robustness of the proposed DGPT

approach and also to account for the wireless effect of the

channel, three noise levels are involved in the simulation

with measurement uncertainty (STD) σz = 1, 2, 4 meters.

In addition, two clutter settings are simulated to test the

performance of the proposed approach, the low clutter case

sets the clutter rate as 1 and the high clutter case sets the rate to

be 5. All the results are averaged over 100 Monte Carlo (MC)

runs and the lengths of sliding windows in different trajectories

are carefully tuned to be different for optimal performance.

C. Benchmarks

Since this paper focuses on the model-free approaches, the

standard GP-based centralized tracking approach is simulated

as the benchmark. This scheme relies on solving the MLE (21)

to learn the hyperparameters, and the learning process requires

the measurements to be transmitted in the WSN. To make

fair comparisons, the standard GP-based centralized tracking

approach is trained with the same sensor measurements in

the sliding window, which means this approach uses the same

amount of data for model training and hyperparameter learning

as well as the DGPT approach.

To study the impact of different aggregation methods on

the DGPT, both RBCM and GPoE are simulated. In addition,

DGPTs based on both temporal and spatial-temporal input data

are evaluated. For the temporal case, a set of time variables

which is in the sliding window is used as the input data. For

the spatial-temporal case, both the current time and the target

state of the previous time are used as input. Notice that in the

online tracking problem, the real target state is not available

to be used as the training input. Therefore, the predictive state

acquired by the DGPT in the previous time is used instead.

D. Target Trajectories

To evaluate the proposed algorithm and the benchmarks,

four challenging scenarios are built following different models.

The trajectories and the sensors are depicted in Fig. 3.

S1: Similar to [67], the trajectory is generated based on the

NCV model in the straight line, and the abrupt velocity

change at each pre-defined turning point.

S2: The target trajectory is generated by the gradual coor-

dinated turns model (20◦/s for 10 seconds) with the

constant velocity model, which can go both left and right.

This model can represent maneuverable motions.
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200 300 400 500 600 700 800 900

X coordinate, [m]

200

400

600

800

Y
 c

o
o
rd

in
a
te

, 
[m

]

Target trajectory

Sensor location

Sensing range

(b) Trajectory S2
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Figure 3: Target trajectories

S3: The target trajectory is generated by the sharp coordinated

turns model which is more agile with higher turning rate

(30◦/s for 9 s).

S4: The target trajectory is generated by the Singer accel-

eration model. The maximum possible acceleration is

50 m/s2, the probability of non-acceleration is 0.4.

E. Normalized Root Mean Square Errors

In this section, the average normalized root mean square

errors (NRMSEs) of the proposed DGPT and the standard

GP-based tracker are evaluated. The NRMSE is defined as

NRMSE =

√√√√√
N∑
i

(f̂(xi)− f(xi))2

N

/
(f(xi)max − f(xi)min) ,

where f(xi)max and f(xi)min represent the maximum and

minimum value of the target states, respectively.

The tracking errors of the proposed DGPT approach with

temporal input feature, which are collected from different

trajectories are presented in Tables II-V. From the results,

we can find that when considering the existence of clutter

measurements, the clutter rate plays an important role in

determining the prediction error. By contrast, the proposed

DGPT approach achieves robust performance while changing

the noise level of the target measurements. Moreover, using

RBCM as the prediction aggregation method can achieve lower

NRMSEs than GPoE in most scenarios, which justifies that

adding the common prior into the aggregation process can im-

prove the tracking accuracy. Particularly, the proposed DGPT

approach performs competitively well and even outperforms

the centralized approach in some scenarios. This is due to

that in DGP, different weights can be assigned to the local

predictions during the prediction aggregation process, so the

final aggregated predictions are closer to the expert who makes

more confident predictions. In the centralized method, all the

data is aggregated before training without any difference.

The tracking errors of the proposed DGPT approach with

both temporal and spatial input features are depicted in Tables
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Table II: Updated NRMSEs for S1: TGP

Approach

Noise level Clutter rate Standard GP DGPT-RBCM DGPT-GPoE

X Y X Y X Y

1
1 0.77% 1.15% 0.93% 0.95% 1.51% 1.20%

5 2.12% 1.78% 2.10% 2.14% 2.91% 2.72%

2
1 0.79% 1.15% 0.94% 0.85% 1.60% 1.17%

5 2.02% 1.94% 2.17% 2.57% 2.97% 3.11%

3
1 0.84% 1.19% 0.98% 0.93% 1.70% 1.34%

5 2.05% 1.91% 2.25% 3.01% 2.98% 3.59%

Table III: Updated NRMSEs for S2: TGP

Approach

Noise level Clutter rate Standard GP DGPT-RBCM DGPT-GPoE

X Y X Y X Y

1
1 1.22% 1.15% 1.50% 1.63% 2.04% 1.92%

5 2.69% 2.75% 2.60% 3.00% 2.99% 3.27%

2
1 1.25% 1.19% 1.43% 1.55% 1.85% 1.78%

5 2.77% 2.85% 2.62% 3.33% 2.94% 3.65%

3
1 1.32% 1.34% 1.55% 1.79% 1.87% 2.08%

5 2.81% 2.90% 2.73% 3.50% 3.04% 3.87%

Table IV: Updated NRMSEs for S3: TGP

Approach

Noise level Clutter rate Standard GP DGPT-RBCM DGPT-GPoE

X Y X Y X Y

1
1 1.82% 1.91% 1.81% 1.63% 1.82% 1.66%

5 3.17% 3.40% 3.64% 3.23% 3.69% 3.29%

2
1 1.81% 1.95% 1.84% 1.65% 1.85% 1.68%

5 3.19% 3.42% 3.64% 3.21% 3.69% 3.27%

3
1 1.86% 1.99% 1.88% 1.70% 1.90% 1.73%

5 3.20% 3.43% 3.66% 3.23% 3.72% 3.29%

Table V: Updated NRMSEs for S4: TGP

Approach

Noise level Clutter rate Standard GP DGPT-RBCM DGPT-GPoE

X Y X Y X Y

1
1 0.98% 0.70% 0.87% 0.56% 1.13% 0.73%

5 1.64% 1.59% 2.77% 1.90% 3.88% 2.53%

2
1 0.99% 0.71% 1.04% 0.61% 1.37% 0.80%

5 1.75% 1.48% 2.83% 1.92% 3.95% 2.58%

3
1 1.05% 0.73% 1.36% 0.79% 1.97% 1.10%

5 1.87% 1.48% 3.02% 2.02% 4.21% 2.67%

Table VI: Updated NRMSEs for S1: STGP

Approach

Noise level Clutter rate Standard GP DGPT-RBCM DGPT-GPoE

X Y X Y X Y

1
1 0.73% 0.80% 0.81% 0.82% 1.27% 1.02%

5 1.93% 1.52% 2.64% 1.98% 3.31% 2.18%

2
1 0.73% 0.81% 0.84% 0.84% 1.35% 1.03%

5 1.92% 1.59% 2.68% 2.07% 3.34% 2.25%

3
1 0.80% 0.88% 0.93% 0.91% 1.59% 1.09%

5 1.95% 1.59% 2.64% 2.04% 3.24% 2.28%

VI-IX. We can find that considering spatial feature can help to

improve the tracking accuracy as compared to TGP, especially

in the more challenging scenarios where the speed of the target

keeps changing or the target keeps maneuvering (Scenarios

S2,s3, and S4). Particularly, the improvement is even more

significant in the high clutter case since adding spatial feature

can help to learn a more accurate likelihood function which

can better assign weights for measurement preprocessing.

F. Uncertainty Quantification

To visualise the derived UCB of the proposed DGPT, we

choose the probability that the UCB holds as 99.7% which

Table VII: Updated NRMSEs for S2: STGP

Approach

Noise level Clutter rate Standard GP DGPT-RBCM DGPT-GPoE

X Y X Y X Y

1
1 1.07% 1.38% 1.29% 1.67% 2.48% 2.15%

5 2.02% 2.21% 2.10% 2.44% 3.31% 2.86%

2
1 1.10% 1.40% 1.30% 1.72% 2.54% 2.13%

5 2.01% 2.19% 2.14% 2.47% 3.41% 2.82%

3
1 1.15% 1.47% 1.35% 1.71% 2.62% 2.09%

5 2.03% 2.18% 2.18% 2.46% 3.26% 2.82%

Table VIII: Updated NRMSEs for S3: STGP

Approach

Noise level Clutter rate Standard GP DGPT-RBCM DGPT-GPoE

X Y X Y X Y

1
1 3.25% 2.93% 1.42% 1.24% 1.47% 1.21%

5 2.91% 4.09% 2.41% 1.85% 2.49% 1.86%

2
1 3.43% 2.93% 1.66% 1.19% 1.66% 1.23%

5 2.83% 4.41% 2.26% 1.87% 2.56% 1.94%

3
1 3.64% 2.95% 1.44% 1.21% 1.47% 1.28%

5 2.78% 3.98% 2.35% 1.86% 2.41% 1.94%

Table IX: Updated NRMSEs for S4: STGP

Approach

Noise level Clutter rate Standard GP DGPT-RBCM DGPT-GPoE

X Y X Y X Y

1
1 1.49% 0.96% 1.46% 0.94% 1.93% 1.11%

5 2.77% 1.32% 2.75% 1.53% 2.99% 1.63%

2
1 1.48% 0.97% 1.47% 0.90% 1.93% 1.13%

5 2.81% 1.30% 2.58% 1.49% 3.00% 1.61%

3
1 1.61% 0.99% 1.51% 0.97% 2.01% 1.12%

5 2.81% 1.31% 2.64% 1.49% 2.94% 1.55%

corresponds to the 3σ confidence interval of the Gaussian

distribution. Based on theoretical analysis from Theorem 2,

the UCBs of predictions of DGPT-RBCM in both X and Y

coordinates are presented in Figures 4 and 6. The confidence

intervals of the predictive distribution of the DGPT-RBCM

in both X and Y coordinates based on (19) and (20) are

presented in Figures 5 and 7. The results in Figures 4 and 6

demonstrate that the proposed UCB can reveal the information

of where the true location of the target is since the UCB

can cover the true target location in most time steps with

a high probability. However, in Figures 5 and 7, although

the confidence intervals can quantify the uncertainties of the

predictions themselves, the intervals fail to cover the true

location of the target in most of the time steps. The derived

UCB better characterizes the presence of the target in the error

bound with 88% and 42% higher probability in X and Y
coordinates, as compared to the confidence interval of DGP.

The comparisons between the derived UCB and the confidence

interval highlight the value and informativeness of the UCB,

which can help to further refine the measurements for training

the DGP model by excluding some measurements out of the

bound and thus having the potential to further enhance the

measurement preprocessing method presented in Section IV-C.

G. Hybrid Bayesian Filtering

In this section, the performance of the proposed hybrid

Bayesian filtering approach for target tracking is evalu-

ated as compared to both the Standard GP-based tracker

and the DGPT approach. We have also compared with a
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Figure 4: UCB for DGPT-RBCM of S1 in X coordinate

Figure 5: Confidence interval for DGPT-RBCM of S1 in X

coordinate

model-based approach by using a convolutional particle fil-

ter (CPF) [68] (https://doi.org/10.15131/shef.data.3543269.v2)

[66], [69]–[71] which is one of the best versions of the particle

filters. The CPF is implemented by processing the data in a

centralized manner.

The CPF has two types of models - one constant velocity

model and 4 coordinated turn models. A grid of values for the

angular turn rate ω is chosen as

ω = {0, 0.55, 0.49,−0.55,−0.49} s−1. (53)

These values cover possible uniform motions and maneuver

within the minimum and maximum values of the turn rate.

The CPF multiple model filter is tested over all 4 considered

scenarios, by keeping the same transition probabilities matrix,

initial mode probabilities vector and grid for the angular turn

values. This means that we give the same conditions for the

CPF, for all testing scenarios.

Inspired by ideas from Gilholm and Salmond [61], [62], we

adopt the powerful Poisson likelihood model in the CPF and

in our proposed hybrid Bayesian filtering approach in order to

deal with measurement origin uncertainties and solve the data

association task.

The Poisson likelihood model for dealing with measurement

origin uncertainties leads to one of the most efficient data

association approaches which avoids combinatorial complex-

ities which are typical for multiple hypothesis target tracking

model-based approaches.

The dynamic model with a known turn rate has the follow-

Figure 6: UCB for DGPT-RBCM of S1 in Y coordinate

Figure 7: Confidence interval for DGPT-RBCM of S1 in Y

coordinate

ing system matrix:

F (ω) =




1 sinωTs/ω 0 −(1− cosωTs)/ω
0 cosωTs 0 − sinωTs

0 (1− cosωTs)/ω 1 sinωTs/ω
0 sinωTs 0 cosωTs


 ,

where Ts is the sampling interval and we set Ts = 1. The

value of ω = 0 corresponds to the nonmaneuvering (constant

velocity) model. The values ±ω correspond to the left and

right turn, respectively. The transition mode probabilities are

assumed to follow a Markov chain, with the initial mode prob-

ability as µ0 = 0.6, µ1 = 0.1, µ2 = 0.1, µ3 = 0.1, µ4 = 0.1.

The mode transition matrix is defined as


P1,1 P1,2 P1,3 P1,4 P1,5

P2,1 P2,2 P2,3 P2,4 P2,5

P3,1 P3,2 P3,3 P3,4 P3,5

P4,1 P4,2 P4,3 P4,4 P4,5

P5,1 P5,2 P5,3 P5,4 P5,5




=




0.84 0.05 0.03 0.05 0.03
0.05 0.88 0.07 0 0
0.03 0.07 0.9 0 0
0.05 0 0 0.88 0.07
0.03 0 0 0.07 0.9



.

We choose the challenging case where the clutter rate is set

as λc = 5 (high clutter case), and the measurement noise is

set to be σ2
z = 1. The normalized root mean squared errors

(NRMSEs) of the X and Y coordinates over 100 MC runs are
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(d) STD of the RMSE: Y coordinate

Figure 8: Tracking error and the STD of errors over 100 MC runs, σ2
z = 1, clutter rate=5

given in Figures A (a) and (b). The hybrid Bayesian filtering

approach outperforms both the centralized and distributed GP-

based tracking approaches by achieving the lowest NRMSEs

of both coordinates (except the NRMSE in S4, X coordinate).

In particular, we can see that a fine-tuned multiple-model

CPF achieves the lowest NRMSE values in both X and Y
coordinates.

We also present the standard deviation (STD) of averaged

RMSEs over 100 MC runs. Each of the RMSEs is the tracking

error calculated from a single independent MC run. The results

are presented in Figures A (c) and (d). The proposed hybrid

Bayesian filtering approach achieves the lowest STD of state

estimations in both coordinates as compared to other GP-based

approaches. It is also fairly stable over multiple scenarios. The

results demonstrate that by involving the Poisson likelihood

model, both the accuracy and the robustness of the proposed

DGPT can be further improved. The STDs of RMSEs from

the CPF are relatively higher in some cases, which shows the

proposed algorithm achieves higher robustness than the model-

based tracking approach. The high STDs of the RMSEs for the

CPF also mean that the estimates from the CPF are somehow

far from the true target trajectories in some areas or some runs.

VIII. CONCLUSION

In this paper, a novel DGP-based model-free learning and

tracking approach is proposed to solve distributed point track-

ing problems in WSNs with clutter measurements. The devel-

oped distributed edge learning approach overcomes the limita-

tions of standard GP-based tracking methods from a different

angle via distributed GP. Theoretical derivations are presented

for the UCB of the tracking error for two important tasks: 1)

when data have no clutter, 2) when the sensor data contain

clutter which means there is measurement origin uncertainty.

The UCBs characterize the trustworthiness of the proposed

approach. The estimates are acceptable when the derived UCB

is within certain pre-specified limits. The simulation results

reveal that the proposed UCBs successfully encompass the true

target states with 88% and 42% higher probability in X and

Y coordinates, respectively, when compared to the confidence

interval-based method. By introducing the Poisson measure-

ment likelihood, a hybrid Bayesian filtering approach is pro-

posed to merge the distributed machine learning and model-

based methods to further improve the tracking performance

and robustness. Numerical experiments demonstrate that the

proposed approaches perform competitively well and can deal

with varying motion models, noise levels, and clutter rates.

Future work will focus on sensor management challenges

in the developed distributed tracking system. The challenges

include efficiently utilizing edge computing resources to ac-

celerate DGP training and prediction. Another direction is to

consider different types of measurements such as received

signal strength and non-Gaussian measurement noises in the

distributed tracking system. The theoretical derivation of a

PCRLB is an important topic to focus on, and the validation

of the theoretical results over real case studies will also be

considered in the future.

APPENDIX A

According to (18), (19), Lemma 1 and the analysis as in

Theorem 1, the deviation of the true function value from the
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aggregated predictive mean by RBCM can be written as

|f(x∗)− µRBCM
∗ |,

=|f(x∗)−

∑M
i=1 βiσ

−2
i (x∗)µi(x∗)∑M

i=1 βiσ
−2
i (x∗) + (1−M)σ−2

∗∗

|, (54)

≈

∣∣∣∣∣f(x∗)−

∑M
i=1 βiσ

−2
i (x∗)µi(x∗)∑M

i=1 βiσ
−2
i (x∗)

∣∣∣∣∣, (55)

≤

∑M
i=1 βiγ

1/2
i σ−1

i (x∗)∑M
i=1 βiσ

−2
i (x∗)

. (56)

Equations (54)-(55) are derived when σ2
∗∗ (the variance of the

prior distribution) has a big value which corresponds to lack

of prior information or high uncertainty.

APPENDIX B

Based on Lemma 2, similar to Theorem 1, define Bi as

the event that for any t ∈ T , the cumulative prediction of the

target state from local expert i and the true target state differs

larger than a quantity, which can be written as

Bi =

{⋃T

t=1
|f(xt)− µGPoE(xt)| > γ

1/2
t,i σi(xt)

}
, (57)

where µi(xt) and σi(xt) represents the predictive mean and

the STD of the function made by local expert i at time t,
respectively.

Define the union of events {B1, B2, · · · , BM} as B. By

applying the union bounds over M events, the probability of

B can be upper bounded as

Pr(B) := Pr

{⋃M

i=1
Bi

}
≤

∑M

i=1
δi. (58)

Therefore, we have

Pr(B̄) := Pr

{⋂M

i=1
B̄i

}
,

= Pr

{⋂M

i=1

⋂T

t=1
|f(xt)− µi(xt)| ≤ γ

1/2
t,i σi(xt)

}
,

≥ 1−
∑M

i=1
δi. (59)

Therefore, with probability 1−
∑M

i=1 δi, we have

T∑

t=1

|f(xt)− µGPoE
t |

=

T∑

t=1

|f(xt)−

∑M
i=1 βt,iσ

−2
i (xt)µi(xt)∑M

i=1 βt,iσ
−2
i (xt)

|,

≤
T∑

t=1

∑M
i=1 βt,iσ

−2
i (xt)|f(xt)− µi(xt)|∑M
i=1 βt,iσ

−2
i (xt)

,

≤
T∑

t=1

∑M
i=1 βt,iγ

1/2
t,i σ−1

i (xt)
∑M

i=1 βt,iσ
−2
i (xt)

. (60)

APPENDIX C

The derivation of the expressions for the first two moments

of the posterior state distribution is presented as follows:

p(X̃t|Zt−C:t) ∝ p(zt|X̃t)p(X̃t|Zt−C:t−1), (61)

= p(zt,1|X̃t)(zt,2|X̃t) · · · (zt,nt
|X̃t)p(X̃t|Zt−C:t−1) (62)

=

nt∏

j=1

{
1√
2πσ̂2

t

exp
−(zt,j − µ̂t)

2

2σ̂2
t

}
·

1√
2πσ2

t−1

exp
−(x̃t − µt−1)

2

2σ2
t−1

, (63)

∝ exp

{
−
∑nt

j=1(z
2
t,j − 2zt,j µ̂t + µ̂2

t )

2σ̂2
t

−
x̃2
t − 2x̃tµt−1 + µ2

t−1

2σ2
t−1

}
, (64)

∝ exp





−σ2
t−1

∑nt

j=1

(
z2t,j − 2zt,j(

λc

Asen
+ λTx̃t) + ( λc

Asen
+ λTx̃t)

2
)
− σ̂2

t (x̃
2
t − 2x̃tµt−1 + µ2

t−1)

2σ̂2
t σ

2
t−1



, (65)

∝ exp





−x̃2
t (σ̂

2
t + ntσ

2
t−1λ

2
T) + 2x̃t

(
µt−1σ̂

2
t + σ2

t−1

∑nt

j=1(zjλT − λTλc/Asen)
)

2σ̂2
t σ

2
t−1



, (66)

∝ exp





−x̃2
t + 2x̃t

(
µt−1σ̂

2

t+σ2

t−1

∑nt
j=1

(zjλT−λTλc/Asen)

σ̂2

t+ntσ2

t−1
λ2

T

)

2
σ̂2

tσ
2

t−1

σ̂2

t+ntσ2

t−1
λ2

T




, (67)

∝ exp





−

(
x̃t −

µt−1σ̂
2

t+σ2

t−1

∑nt
j=1

(zjλT−λTλc/Asen)

σ̂2

t+ntσ2

t−1
λ2

T

)2

2
σ̂2

tσ
2

t−1

σ̂2

t+ntσ2

t−1
λ2

T




. (68)
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