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Circuit simulator compatible model for the ring-dot 
piezoelectric transformer 

Jack Forrester, Jonathan N. Davidson, Martin P. Foster, David A. Stone 

Abstract—A lumped-element equivalent circuit model for the 

ring-dot piezoelectric transformer (PT) is derived based on a one-

dimensional analysis of the radial vibration mode. Initially, 

equations for the magnitudes of force, vibration velocity at the 

boundaries of each section of the device are derived based on the 

piezoelectric constitutive equations and using Kirchhoff plate 

theory. Similarly, equations for the amplitudes of input and output 

currents are derived from the electric displacement field and 

Gauss’ law. From this analytical approach, an equivalent circuit 

model is developed and, using a Taylor expansion, approximated 

as the Mason equivalent circuit. A key contribution of this work is 

the development of a circuit simulator compatible model which 

can be used by electronic engineers, without in-depth knowledge 

of the underlying material science, to design ring-dot PTs for 

power conversion applications. The resulting model is verified 

against both COMSOL finite element simulations and 

experimental impedance measurements. Compared to COMSOL, 

the model estimates the resonant circuit elements to within 1% and 

the input and output capacitance are estimated to within 10%. 

Experimental results match the simulation to within 10% for most 

parameters, and 1% for resonant frequency. 

Index Terms—Piezoelectric devices, Resonant power 

conversion, Modelling 

I. I. INTRODUCTIONS

Piezoelectric transformers (PTs) are devices made with one 

or more sections of piezoelectric material in which vibration is 

used to transfer energy from the input to the output section. PTs 

are often compared with small, high frequency magnetic 

transformers PTs but they offer numerous advantages over their 

magnetic counterparts. These include high power density, high 

efficiency, and the ability to be used in adverse conditions such 

as high magnetic fields or high temperatures. These advantages, 

coupled with an integrated resonant tank circuit, mean that PTs 

are ideal for use in resonant converters,  especially for 

applications such as in MRI machines, LED lighting and in the 

oil and aerospace industry where high-temperature operation is 

unavoidable [1], [2]. These advantages explain the recent 

academic interest in piezoelectric devices [3]–[8]. 

Typically, PTs have been used in low power (<5W) step-up 

applications (e.g. Rosen PTs); however, improvements in 

piezoelectric materials in the last few decades have meant that 

high-power (5W-50W) step-down PTs are becoming more 

popular. A significant barrier to the adoption of PTs in electrical 

converter applications is the disconnect between the models and 

typical parameters (e.g. tan delta) used by materials scientists 

who typically develop materials and construction methods, and 

the circuit-based models and parameters (e.g. damping 

resistance, Q factor) used by electronic engineers who must 

integrate the model with circuit-based simulation tools. This 

paper aims to close the gap between the disciplines by using 

materials science analytical techniques to derive a circuit-

simulator compatible model for the ring-dot piezoelectric 

transformer. This approach will allow the electric engineer to 

design suitable power electronics circuitry to use the PT and, 

using appropriate inverse methods, specify the geometry and 

material properties of a PT for an application. 

Most of the work on higher power PTs has been focused on 

the multi-layer radial-mode Transoner PT, which was patented 

in 2001 by Face International Corp [9]. However, many 

alternative topologies have been proposed [10], [11]. One 

topology, a unipoled disc with concentric electrodes, commonly 

known as the ring-dot PT was patented by Jaffe and Berlincourt 

in 1961[12]. The ring-dot PT has several advantages over the 

radial-mode Transoner PT, including ease of manufacture and 

reduced density of spurious modes [13].  

Laoratanakul et al [14] published the first experimental 

results from a practical ring-dot PT. The resulting PT exhibited 

a power density of 18.5W/cm3, around 10 times higher than the 

Rosen PT but lower than the radial-mode Transoner PT. Priya 

et al [15] then improved on this by building a ring-dot device 

with a 40W/cm3 power density utilising an improved material 

and higher temperature rise. Impressively, this is the same 

power density as is often seen in radial-mode Transoner PTs 

[11]. Additionally, Priya et al proposed a multi-layer device 

based on a ring-dot electrode structure; however, this structure 

meant that heat was harder to remove from the device, thus 

leading to a lower power density than the single-disc variant. 

Guo et al [16] built and tested a lead-free ring-dot PT, showing 

promising results, but not quite with the same performance as 

PZT devices.  Půlpán [13] experimentally analysed the effect of 

different electrode patterns on the key electrical performance 

characteristics. Whilst all patterns worked, with some providing 

improved characteristics in specific quantities, the ring-dot 

pattern proved to be the best overall electrode shape. 

Fig. 1. Mason equivalent circuit model 

The electrical behaviour of any PT can be modelled using the 

simplified Mason equivalent circuit model, as shown in Fig. 1. 

Using this equivalent circuit, a PT’s electrical behaviour can be 
simulated using mathematical or circuit-simulation methods. 

For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) licence
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Although the electrical equivalent circuit parameters of a PTs 

can be measured experimentally using a variety of impedance 

spectroscopy methods [17], it is beneficial to be able to 

analytically estimate the electrical parameters of a PT from its 

physical design. This allows a PT to be designed for a specific 

electrical application and to meet specific operational 

requirements such as achieving zero-voltage switching for all 

loads in inductorless operation of half-bridge inverters, the 

criterion for which was reported in [18].  

Equivalent circuit modelling has been performed for a 

variety of PT topologies [19], [20].  Půlpán et al  [21], [22] 

developed a model of the voltage gain and electrical efficiency 

of the ring-dot PT. Ho [23] modelled the ring-dot PT using 

Hamilton’s principle, allowing him to generate equations for 
the electrical performance of the PT, including input power, 

electrical efficiency, gain and equations for each of the 

equivalent circuit parameters. However, in [21]–[23] the impact 

of the ‘gap’ section between dot and ring electrodes is not 
explicitly considered.  

This paper will present a full derivation of the lumped 

element circuit model of a galvanically isolated ring-dot PT, 

including the effect of the ‘gap’ section. This analysis uses an 

alternative method to that presented in [23], where we derive 

full equations for the impedance of the PT and its individual 

elements, by analysing the forces acting upon the PT during 

vibration, compared to approximating the equivalent circuit 

properties using Hamilton’s principal as in [23]. Based on the 

PTs impedance, a lumped-equivalent circuit analysis is 

performed to generate equations for the Mason equivalent 

circuit properties. The testing presented here proves the 

effectiveness of this type of method for analysing this PT 

topology, contrasting the opinion in [23] where it was theorised 

this method would be inaccurate for the ring-dot PT.  

Several improvements upon the modelling performed in [23] 

are presented. Firstly, in the analysis presented here, each 

section (input, output and gap) of the ring-dot PT is analysed 

individually (including the gap region), compared to an analysis 

of the PT as a whole as in [23]. Thus, some of the non-linear 

behaviour associated with each section is retained until later in 

the analysis thereby allowing the interactions between the 

different sections to be more accurately modelled. Limitations 

associated with the Mason equivalent circuit mean that effects 

of the many nonlinearities are lost in the model presented in 

[23]. Finally, the model in [23] requires significant 

mathematical analysis and piezoelectric specific knowledge 

from the reader to be able to generate Mason equivalent circuit 

component values from the dimensions of a PT and material 

properties. In contrast, fully solved equations for the lumped 

equivalent circuit properties are presented here, allowing the 

reader to simply input details about the PT (dimensions and 

material properties) and estimate the lumped equivalent circuit 

properties, with minimal mathematic effort. This is important 

for resonant converter designers, as it requires minimal 

knowledge of piezoelectric devices, to be able to generate 

equivalent circuit properties from a physical PT design, thus 

easing the design process for this PT topology.  

II. SCOPE 

 

Fig. 2. Cross-section and top-down view of Ring-Dot PT 

The model derived here is obtained from a 1D (radial axis) 

analysis of a ring-dot device, operating exclusively with radial 

motion. Whilst this is a 1D analysis, the device being analysed 

has a finite thickness; however, we will assume all parameters 

(such as stress, strain, and electric field) are constant across the 

thickness of the device. Additionally, the PT’s finite thickness 
is captured by the model using the material density. A diagram 

of this device is shown in Fig. 2. The PT is made of a single 

disc of piezoelectric material, with a ring-dot electrode on both 

top and bottom faces. It is assumed that the positive electrodes 

are on the top face of the PT (shown in Fig. 2), with the top dot 

electrode as the positive input and the top ring electrode as the 

positive output. The bottom dot and ring electrodes provide the 

negative input and output connections respectively and are 

physically and galvanically isolated from each other.  The 

electrodes are assumed to be made of a highly conductive 

material (copper, platinum, gold) with negligible thickness and 

so do not affect the vibration behaviour of the PT.  

The PT is split into 3 regions, dot (input), inner-ring (gap) 

and outer-ring (output), as shown in Fig. 3. Fig. 3 also illustrates 

the cylindrical coordinate system and PT dimensions used 

throughout this paper with the PT thickness, T, in the z axis and 

the disc and electrode radii along the r axis. Each section will 

be analysed separately based on the forces and velocities acting 

on it, thus allowing an equivalent circuit to be generated for 

each section. Then, all the three equivalent circuits will be 

combined, noting the forces and velocities are equal on the 

boundaries of sections. The whole PT equivalent circuit will 
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then be simplified to the Mason equivalent circuit form, 

providing equations for each of the electrical components based 

on the PT geometry and material. This stage is crucial as the 

circuit form can be used by electrical engineers to design power 

converters. 

We assume that the PT being analysed is polled only in the 

volume between the top and bottom dot electrodes and the top 

and bottom ring-electrodes. The non-electroded region of the 

disc – the ‘gap’ – will be assumed to be made of unpoled 

piezoelectric and hence will be assumed to act like an elastic, 

insulating material with the mechanical properties of the 

unpolled piezoelectric material. 

To facilitate this analysis, it will be assumed that the PT 

follows Kirchhoff’s thin-plate theory (CPT), which is well-

discussed in [24]–[26]. The implications of these assumptions 

are as follows: firstly, it is assumed that the PT is in perfect 

axisymmetric motion, and hence shear stress and strain are 

negligible. The PT is assumed to be thin with the radius much 

greater than thickness (𝑎 ≫ ℎ), therefore stress 𝑇𝑧 is negligible. 

Additionally, electric fields, other than in the thickness (z) 

direction will be assumed to be negligible.  

 

Fig. 3. Ring-dot PT expanded into 3 distinct sections  

III. DERIVATION 

The derivation will be handled in 3 separate parts for each of 

the sections of the device. For each section, an equation for the 

radial displacement along its length will be found. Using these 

equations, the electrical and mechanical properties of each 

section will be evaluated, allowing equations for the force on 

the outer and inner edges of the section to be found, along with 

the current flowing into/out of each section’s electrodes. Based 

on the equations for force and current, equivalent circuits will 

be found for each section.  

A. Foundation Equations 

The constitutive equations for a piezoelectric disc polled in 

the ‘z’ direction from CPT are given by [27] 𝑇𝑟in,out,gap (𝑟) =  𝑆𝑟in,out,gap + 𝜎𝑆𝜃in,out,gap(𝑠11E (1 − 𝜎2))− 𝑑31𝐸𝑧in,out,gap𝑠11E (1 − 𝜎)  

(1) 

𝑇𝜃in,out,gap(r) =  𝑆𝜃𝑖𝑛,𝑜𝑢𝑡,𝑔𝑎𝑝 + 𝜎𝑆𝑟𝑖𝑛,𝑜𝑢𝑡,𝑔𝑎𝑝(𝑠11E (1 − 𝜎2))− 𝑑31𝐸𝑧𝑖𝑛,𝑜𝑢𝑡,𝑔𝑎𝑝𝑠11E (1 − 𝜎)  

(2) 

𝐷𝑧in,out,gap(r) =  𝑑31 (𝑇𝑟in,out,gap + 𝑇𝜃in,out,gap)+ ε33T 𝐸𝑧in,out,gap  
(3) 

where 𝑇𝑟,𝜃 is the stress in the 𝑟, 𝜃 axis and the subscript 

‘in,out,gap’ denotes either in or out or gap, as the case may be, 

depending on the section being analysed, 𝑆𝑟,𝜃 is the strain, 𝐷𝑧 

is the electric displacement, 𝑑31 is the piezoelectric strain 

constant, 𝑠11E  is the elastic compliance in the radial direction,  ε33T  is the dielectric constant in the thickness direction and 𝜎 is 

Poisson’s ratio given by  𝜎 =  − 𝑠12E𝑠11E  (4) 

Electric fields 𝐸𝑧in,out,gap in the respective regions are, 𝐸𝑧in = 𝑉inℎ , 𝐸𝑧out = 𝑉outℎ , 𝐸𝑧gap = 0 (5) 

From the previous assumptions and assuming perfect 

axisymmetric motion, strains in the radial (𝑟) and azimuth (𝜃) 

direction are given by,  𝑆𝑟 =  𝜕𝑢𝑟in,out,gap (𝑟)𝜕𝑟  (6) 𝑆𝜃 =  𝑢𝑟in,out,gap(𝑟)𝑟  (7) 

where 𝑢𝑟 is radial displacement and r is the radial co-

ordinate. Finally, the equation of radial motion in each of the 

sections of the thin disc [27] is given by, 𝜕𝑇𝑟in,out,gap𝜕𝑟 + 𝑇𝑟in,out,gap − 𝑇𝜃in,out,gap𝑟  =  −𝜌𝜔2𝑢𝑟in,out,gap  
(8) 

where 𝜔 is the frequency of harmonic radial motion (rad s-1) 

and 𝜌 is the density of the piezoelectric material. Solving the 

equation of radial motion (8) for radial displacement, assuming 

harmonic excitation, gives, 𝑢𝑟in,out,gap(𝑟, 𝑡) = [𝐶1in,out,gap J1(𝛽𝑟)+  𝐶2in,out,gapY1(𝛽𝑟)]𝑒j𝜔𝑡 
(9) 
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where 𝐶1, 𝐶2 are constants, J𝑛 and Y𝑛 are nth order Bessel 

functions of the first and second kind respectively, and 𝛽 is 

defined as,  𝛽 = 𝜔√𝑠11E 𝜌(1 − 𝜎2) (10) 

B. Dot – Input section 

The dot (input) section will be analysed first since it is the 

simplest section consider and the methodology used will 

provide the framework for analysing the remaining two 

sections. Fig. 4 shows velocity 𝑣1 and force 𝐹1 acting on the 

outer edge of the dot section of the PT. 

 

Fig. 4. Dot section, highlighting force acting on the section and 

velocity on the outer edge 

1) Displacement 

Constants, 𝐶1inand 𝐶2in in (9), are found using the vibration 

velocity 𝑣1 of the PT. First, noting that at the centre of the disc (𝑟 = 0), the displacement must be finite, substituting 𝑟 = 0 

into (9), it can be shown that 𝑌1(𝑟 → 0) → ∞. As a result, 𝐶2in = 0. 𝐶1in can then be found by first finding the velocity 

of the outer edge 𝑟 = 𝑟𝑎 of this section. The vibration velocity 

is found by differentiating with respect to time the radial 

displacement (9) at the outer edge of the dot section, giving  𝑣1(𝑡) = 𝜕𝑢𝑟(𝑟𝑎)𝜕𝑡 = −j𝜔𝐶1inJ1(𝛽𝑟𝑎)𝑒j𝜔𝑡 (11) 

where j = √−1. Note that the minus sign in (11) is due to the 

direction of velocity being defined opposite to the radial 

coordinate.  Therefore, 𝐶1in is given by  𝐶1in = j𝑣1(𝑡)J1(𝛽𝑟𝑎)𝜔𝑒j𝜔𝑡 (12) 

Finally, substituting (12) and 𝐶2in = 0 into (9) gives the 

displacement of a point in the dot section, 𝑢𝑟in(𝑟, 𝑡) = 𝑣1(𝑡) j𝜔 J1(𝛽𝑟)J1(𝛽𝑟𝑎) (13) 

2) Electrical Equations  

Equations for the current flowing into the input section will 

now be derived. The charge on the input dot electrode, 𝑄in is 

given by Gauss’s law in terms of electric displacement, 𝐷𝑧,  𝑄in = 2𝜋 ∫ [𝐷𝑧in𝑟] 𝑑𝑟𝑟𝑎0  (14) 

Substituting equations (1)-(3) and (6)-(7) into (14), and with 

some manipulation, gives  𝑄in =  −2𝜋(1 − 𝜎)𝑠11E ∫ [𝑑31 (− 𝜕𝑢𝑟in𝜕𝑟 𝑟 − 𝑢𝑟in)𝑟𝑎0+ (2𝑑312− 𝑠11E 𝜀33T (1 − 𝜎)) 𝐸𝑧in𝑟] 𝑑𝑟 

(15) 

The current into the dot electrode 𝐼in, is given by,  𝐼in =  𝜕𝑄in𝜕𝑡 = j𝜔𝑄in  (16) 

assuming harmonic excitation, 𝑄in = 𝑄in0𝑒j𝜔𝑡
. Substituting 

(15) into (16), with (5) and (13) gives an equation for the 

magnitude of the input current,  𝐼in  =  j𝜔𝑟𝑎2𝜋 (2𝑑312 + 𝑠11E 𝜀33T (𝜎 − 1))ℎ(𝜎 − 1)𝑠11E 𝑉in− (2𝑟𝑎𝜋𝑑31)(𝜎 − 1)𝑠11E 𝑣1 

(17) 

where ℎ is the thickness of the disc. As in [28], a force factor 𝐴in can be defined. The force factor describes the conversion 

from mechanical to electrical energy (or from electrical to 

mechanical with respect to the output force factor 𝐴out). The 𝐴in force factor is defined as 𝐴in =  − 2𝑟𝑎𝜋𝑑31(1 − 𝜎)𝑠11E  (18) 

noting that 𝐴in has been written to emphasise that it is 

negative. Using 𝐴in, (17) can be further simplified to 𝐼in  = j𝜔𝐶in𝑉in − 𝐴in𝑣1 (19) 

where the input capacitance, 𝐶in, is given by 𝐶in =   𝑟𝑎2𝜋 (2𝑑312 + 𝑠11E 𝜀33T (𝜎 − 1))ℎ(𝜎 − 1)𝑠11E=    𝑟𝑎2𝜋𝜀33Tℎ (1 − 𝑘𝑝2) 

(20) 

and 𝑘𝑝 is given by  kp = √2√ 𝑑312(𝑒33𝑆11(1 − 𝜎))  (21) 

3) Mechanical Equations 

Observing Fig. 4, the force 𝐹1 acts inwards on the outer edge 

of the dot section. This force is given by,  𝐹1 = Area ⋅ Stress = [−2𝜋ℎ𝑟𝑎]𝑇𝑟in(𝑟𝑎) (22) 

again, noting the minus sign in (22) as the force is defined in 

the opposite direction to the 𝑟 coordinate. Substituting (1), (5)-

(7) in to (22) gives 
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 𝐹1  =  − 2𝜋𝑟𝑎ℎ𝑠11E (1 − 𝜎2) (𝜕𝑢𝑟in𝜕𝑟 + 𝜎𝑢𝑟in𝑟− 𝑑31𝑉in(1 + 𝜎)ℎ ) 

(23) 

Substituting (13) into (23) and using 
𝑑𝑑𝑥 J𝑛(𝑥) = 𝑛𝑥 J𝑛(𝑥) −J𝑛+1(𝑥) gives (26). Finally, using the previously defined 𝐴in 

force factor (18), equation (26) can be simplified to,  𝐹1 = 𝐴in𝑉in + 𝑣1𝑍𝑎 (24) 

where the impedance 𝑍𝑎 is defined as 𝑍𝑎 = 2𝜋jh𝑠11E (𝜎2 − 1)𝜔∙ ((𝜎 − 1)J1(𝛽𝑟𝑎) + J0(𝛽𝑟𝑎)𝑟𝑎𝛽)J1(𝛽𝑟𝑎)  

(25) 

4) Equivalent circuit 

Based on (19) and (24), and treating force in an analogous 

way to voltage and velocity in an analogous way to current, an 

equivalent circuit can be generated. Horsley et al [28], showed 

that 𝐴in can be modelled as an ideal transformer. Fig. 5 shows 

the equivalent circuit for the input dot section of the ring-dot 

PT. 

 

Fig. 5. Equivalent circuit for the dot section of the PT 

C. Inactive (gap) ring section 

The inactive ring is the section of the PT without electrodes 

and is the gap between the input and output sections of the PT. 

Fig. 6 shows vibration velocities, 𝑣1𝑔 and 𝑣2𝑔, and forces, 𝐹1𝑔 

and 𝐹2𝑔, acting on the inner and outer edges of the inactive ring 

section of the PT. 

It should be noted that 𝐹1𝑔 = −𝐹1 and 𝑣1𝑔 = −𝑣1, however, 

initially we will assume that these forces and velocities are 

independent in each section.  

 

Fig. 6. Forces and velocities acting on the inner-ring section of 

the PT 

1) Displacement 

Again, starting from the general solution to the equation of 

motion (9), constants 𝐶1gap and  𝐶2gap are found using the 

vibration velocities, 𝑣1𝑔 and 𝑣2𝑔. Observing Fig. 6, the 

vibration velocity acting on the inner edge, 𝑣1𝑔, can be found 

by differentiating the radial displacement at the inner edge (9) 

with respect to time, giving  𝑣1𝑔(𝑡) = 𝜕𝑢𝑟(𝑟𝑎)𝜕𝑡  (28) 𝑣1𝑔(𝑡) =  j𝜔 (𝐶1gapJ1(𝛽𝑟𝑎)+  𝐶2gapY1(𝛽𝑟𝑎)) 𝑒j𝜔𝑡 
(29) 

Similarly, vibration velocity on the outer edge, 𝑣2𝑔,  can be 

found by differentiating the radial displacement at the outer 

edge (9), giving 𝑣2𝑔(𝑡) = − 𝜕𝑢𝑟(𝑟𝑏)𝜕𝑡  (30) 𝑣2𝑔(𝑡) = −j𝜔 (𝐶1gapJ1(𝛽𝑟𝑏)+   𝐶2gapY1(𝛽𝑟𝑏)) 𝑒j𝜔𝑡 
(31) 

Again, note the minus sign in (31) due to 𝑣2𝑔 being defined 

in the opposite direction to the 𝑟 coordinate. As both (29) and 

(31) contain two unknowns, they will be solved simultaneously.  

Rearranging (29) and (31) for  𝐶2gap gives  𝐶2gap  = −J1(𝛽𝑟𝑎)𝐶1gap𝜔 −  j𝑒j𝜔𝑡𝑣1𝑔𝑌1(𝛽𝑟𝑎)𝜔  (32) 

𝐹1  =  − 2𝜋𝑟𝑎ℎ (− 𝑑31𝑉𝑖𝑛(1 + 𝜎)ℎ  + 𝑣1(𝐽0(𝑟𝛽)𝑟𝛽 + 𝜎𝐽1(𝑟𝛽) − 𝐽1(𝑟𝛽))𝑗𝐽1(𝛽𝑟𝑎)𝑟𝜔 )𝑠11𝐸 (−𝜎2  +  1)  
(26) 

𝑢𝑟gap (𝑟, 𝑡) = j𝜔 J1(𝛽𝑟𝑎)Y1(𝛽𝑟)𝑣2𝑔  +  J1(𝛽𝑟𝑏)Y1(𝛽𝑟)𝑣1𝑔 − J1(𝛽𝑟)Y1(𝛽𝑟𝑏)𝑣1𝑔  − J1(𝛽𝑟)Y1(𝛽𝑟𝑎)𝑣2𝑔J1(𝛽𝑟𝑎)Y1(𝛽𝑟𝑏) − Y1(𝛽𝑟𝑎)J1(𝛽𝑟𝑏)  (27) 
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  𝐶2gap  = −J1(𝛽𝑟𝑏)𝐶1gap𝜔 +  j𝑒j𝜔𝑡𝑣2𝑔𝑌1(𝛽𝑟𝑏)𝜔  (33) 

Equating (32) and (33), and solving for 𝐶1gap gives, 𝐶1gap = j (𝑣1𝑔Y1(𝛽𝑟𝑏)  +  𝑣2𝑔Y1(𝛽𝑟𝑎)) 𝑒−j𝜔𝑡𝜔(J1(𝛽𝑟𝑎)Y1(𝛽𝑟𝑏) − Y1(𝛽𝑟𝑎)J1(𝛽𝑟𝑏)) (34)  𝐶2gap is then found by substituting (34) into either (32) or 

(33) and simplifying, giving,  𝐶2gap = j(𝑣1𝑔J1(𝛽𝑟𝑏) + 𝑣2𝑔J1(𝛽𝑟𝑎) )𝑒−j𝜔𝑡𝜔(J1(𝛽𝑟𝑎)Y1(𝛽𝑟𝑏) − Y1(𝛽𝑟𝑎)J1(𝛽𝑟𝑏)) (35) 

Finally, substituting (34) and (35) into the general equation 

for radial displacement in (9), gives an equation for the 

displacement of a particle in the gap section of the device (27).  

2) Electrical Equations 

As there is no electrode in this section of the device, the 

external electric field across the thickness of the gap region is 

~0. To simplify the derivation of the equivalent circuit of the 

gap section it is assumed that the electric field through the 

thickness of the device is zero (𝐸𝑧𝑔𝑎𝑝 = 0) and a FEA 

simulation result will be shown later in the paper to support the 

validity of this assumption (Fig. 18).  It should be noted that if 

the gap region is made of polled piezoelectric material, other 

authors have found an electric field is generated across the 

thickness of the device [29]. To avoid this complexity, the gap 

region is assumed to be an elastic material with the same 

mechanical properties as the piezoelectric material and behaves 

like an electrical insulator. This simplification leads to 𝐷𝑧gap = 0, 𝐸𝑧𝑔𝑎𝑝 = 0 (36) 

and, by extension,  𝑄gap = 0, 𝐼gap = 0 (37) 

3) Mechanical Equations 

As seen in Fig. 6, the force 𝐹1𝑔 acts inwards on the inner 

radius and 𝐹2𝑔 acts inwards on the outer radius of the gap 

section. These forces are given by 𝐹1𝑔 = −[2𝜋ℎ𝑟𝑎]𝑇𝑟𝑔𝑎𝑝(𝑟𝑎) (38) 𝐹2𝑔 = −[2𝜋ℎ𝑟𝑏]𝑇𝑟gap(𝑟𝑏) (39) 

Substituting (1) into (38) and (39), using (36) and (37), and 

the equation for the radial displacement in the inactive inner 

ring (27), this gives equations for the forces 𝐹1𝑔 and 𝐹2𝑔,  𝐹1𝑔 = 𝑍1𝑣1𝑔 + 𝑍2𝑣2𝑔 (40) 𝐹2𝑔 = 𝑍2𝑣1𝑔 + 𝑍3𝑣2𝑔 (41) 

where impedances 𝑍1,2,3 are defined in (42) - (44), where 𝑥 

and 𝑦 are given by, 𝑍1 = 𝑦𝜋𝑥 [(𝜎 −  1)Y1(𝛽𝑟𝑎)+  𝑟𝑎Y0(𝛽𝑟𝑎)𝛽]J1(𝛽𝑟𝑏)−  Y1(𝛽𝑟𝑏)[(𝜎 −  1)J1(𝛽𝑟𝑎)+  J0(𝛽𝑟𝑎)𝑟𝑎𝛽] 

(42) 

𝑍2  = 2𝑦𝑥  (43) 

𝑍3  = 𝑦𝜋𝑥 [(𝜎 −  1)Y1(𝛽𝑟𝑏)+  𝑟𝑏Y0(𝛽𝑟𝑏)𝛽]J1(𝛽𝑟𝑎)− Y1(𝛽𝑟𝑎)[(𝜎 −  1)J1(𝛽𝑟𝑏)+  J0(𝛽𝑟𝑏)𝑟𝑏𝛽] 

(44) 

𝑥 =  J1(𝛽𝑟𝑎)Y1(𝛽𝑟𝑏) −  Y1(𝛽𝑟𝑎)J1(𝛽𝑟𝑏), 𝑦 = 2jℎ𝑠11E 𝜔(𝜎2  −  1) 
(45) 

4) Equivalent circuit 

In a similar manner to the dot section, an equivalent circuit 

can be created based on equations for the two forces, 𝐹1𝑔 and 𝐹2𝑔. An equivalent circuit for the inactive inner ring is shown 

in  Fig. 7.  

 

Fig. 7. Combined equivalent circuit for the inactive inner-ring 

section of the ring-dot PT 

where impedances 𝑍𝑏,𝑐,𝑑 are defined as,  𝑍𝑏 = 𝑍1 − 𝑍2 = 𝑦𝑥 [(𝜎 −  1)Y1(𝛽𝑟𝑎)+  𝑟𝑎Y0(𝛽𝑟𝑎)𝛽]𝜋J1(𝛽𝑟𝑏) −  2− 𝜋[(𝜎 −  1)J1(𝛽𝑟𝑎)+  J0(𝛽𝑟𝑎)𝑟𝑎𝛽]Y1(𝛽𝑟𝑏) 

(46) 

𝑍𝑐 = 𝑍2 = 2𝑦𝑥  (47) 

𝑍𝑑 = 𝑍3 − 𝑍2 = 𝑦𝑥 𝜋[(𝜎 −  1)Y1(𝛽𝑟𝑏)+  𝑟𝑏Y0(𝛽𝑟𝑏)𝛽]J1(𝛽𝑟𝑎) −  2− 𝜋[(𝜎 −  1)J1(𝛽𝑟𝑏)+  J0(𝛽𝑟𝑏)𝑟𝑏𝛽]Y1(𝛽𝑟𝑎) 

(48) 

 

D. Outer ring - Output 

The velocity and forces acting on the inner and outer edges 

of the outer-ring section of the PT are shown in Fig. 8. 
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Fig. 8. Forces and velocities acting on the outer-ring section of 

the ring-dot PT 

From the general solution of the equation of motion (9), 

constants 𝐶1out and 𝐶2out are again found using the vibration

velocities 𝑣2 and 𝑣3. Observing Fig. 8, the vibration velocity

acting on the inner edge, 𝑣2, is given by𝑣2(𝑡) = 𝜕𝑢𝑟out(𝑟𝑏)𝜕𝑡 (49) 

𝑣2(𝑡) =  j𝜔(𝐶1outJ1(𝛽𝑟𝑏) + 𝐶2outY1(𝛽𝑟𝑏))𝑒j𝜔𝑡 (50)

Similarly, vibration velocity on the outer edge, 𝑣3, is given

by 𝑣3(𝑡) = − 𝜕𝑢𝑟out(𝑎)𝜕𝑡 (51) 

𝑣3(𝑡) =  −j𝜔 (𝐶1outJ1(𝛽𝑎) +  𝐶2outY1(𝛽𝑎)) 𝑒j𝜔𝑡 (52)

Again, note the minus sign in (52) due to 𝑣2𝑔 being defined

in the opposite direction to the 𝑟 coordinate. Rearranging both 

(50) and (52) for 𝐶2out gives𝐶2out  = −J1(𝛽𝑟𝑏)𝐶1out𝜔 −  j𝑒−j𝜔𝑡𝑣2Y1(𝛽𝑟𝑏)𝜔 (53) 

𝐶2out  = −J1(𝛽𝑎)𝐶1out𝜔 +  j𝑒−j𝜔𝑡𝑣3Y1(𝛽𝑎)𝜔 (54) 

Then, solving (53) and (54) simultaneously for 𝐶1out gives

𝐶1out = j(𝑣2Y1(𝛽𝑎)  +  𝑣3Y1(𝛽𝑎))𝑒−j𝜔𝑡𝜔(J1(𝛽𝑎)Y1(𝛽𝑟𝑏) − Y1(𝛽𝑎)J1(𝛽𝑟𝑏)) (59) 𝐶2out can then be found by substituting (59) into either (53)

or (54) and simplifying to give  𝐶2out = −j(𝑣2J1(𝛽𝑎)  +  𝑣3J1(𝛽𝑟𝑏))𝑒−j𝜔𝑡𝜔(J1(𝛽𝑎)Y1(𝛽𝑟𝑏) − Y1(𝛽𝑎)J1(𝛽𝑟𝑏)) (60) 

Finally, substituting (59) and (60) into the general solution 

for the equation of motion (9), an equation for the displacement 

of a particle in the outer-ring section of the device is given in 

(55). 

1) Electrical Equations

The charge into the output ring electrode, 𝑄out is given by

Gauss’s law, 𝑄out = 2𝜋 ∫ [𝐷𝑧out𝑟]d𝑟𝑎
𝑟𝑏 (61) 

Substituting (1)-(3) and (6)-(7) into (61) gives 𝑄out = −2𝜋(1 − 𝜎)𝑠11E ∫ [𝑑31 (− 𝜕𝑢𝑟out𝜕𝑟 𝑟 − 𝑢𝑟out)𝑎
𝑟𝑏+ 𝑟 ( 2𝑑312+𝑠11E 𝜀33T (𝜎 − 1)) 𝐸𝑧out  ] d𝑟 (62) 

The current into outer ring electrode is then given by 𝐼out =  𝜕𝑄out𝜕𝑡 = j𝜔𝑄out (63) 

assuming harmonic excitation, 𝑄out = 𝑄out0𝑒j𝜔𝑡  . 
Substituting (62) into (63), with (5) and (55) gives an equation 

for the output current, 𝐼out  = j𝜋(𝑎2 − 𝑟𝑏2) (2𝑑312 + 𝑠11E 𝜀33T (𝜎 − 1)) 𝜔ℎ(𝜎 − 1)𝑠11E 𝑉out− 2𝜋𝑑31(1 − 𝜎)𝑠11E (𝑟𝑏𝑣2 + 𝑎𝑣3) 

(64) 

As with the input dot section, using the 𝐴out force factor

allows (64) to be further simplified to  

𝑢𝑟out(r, t) = j(J1(𝛽𝑟)Y1(𝛽𝑟𝑏)𝑣3 − J1(𝛽𝑎)Y1(𝛽𝑟)𝑣2 − J1(𝛽𝑟𝑏)Y1(𝛽𝑟)𝑣3 + J1(𝛽𝑟)Y1(𝛽𝑎)𝑣2)(J1(𝛽𝑎)Y1(𝛽𝑟𝑏) − Y1(𝛽𝑎)J1(𝛽𝑟𝑏))𝜔 (55) 

𝑍4  = 2jℎ𝜋𝑠11E (𝜎2  −  1)𝜔 (((𝜎 −  1)𝑌1(𝛽𝑟𝑏) + 𝑟𝑏𝑌0(𝛽𝑟𝑏)𝛽)𝐽1(𝛽𝑎) −  ((𝜎 −  1)𝐽1(𝛽𝑟𝑏) + 𝐽0(𝛽𝑟𝑏)𝑟𝑏𝛽)𝑌1(𝛽𝑎))𝑌1(𝛽𝑎)𝐽1(𝛽𝑟𝑏) −  𝑌1(𝛽𝑟𝑏)𝐽1(𝛽𝑎) (56) 

𝑍5  = 4jℎ𝑠11E 𝜔(𝜎2  −  1) 1𝑌1(𝛽𝑎)𝐽1(𝛽𝑟𝑏) − 𝑌1(𝛽𝑟𝑏)𝐽1(𝛽𝑎) (57) 

𝑍6  = 2jℎ𝜋𝑠11E (𝜎2  −  1)𝜔 (((𝜎 −  1)𝑌1(𝛽𝑎) +  𝑎𝑌0(𝛽𝑎)𝛽)𝐽1(𝛽𝑟𝑏) − 𝑌1(𝛽𝑟𝑏)((𝜎 −  1)𝐽1(𝛽𝑎) +  𝐽0(𝛽𝑎)𝛽𝑎)) 𝑌1(𝛽𝑎)𝐽1(𝛽𝑟𝑏) − 𝑌1(𝛽𝑟𝑏)𝐽1(𝛽𝑎) (58)
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𝐼out  = j𝜔𝐶out𝑉out − 𝐴out′ (𝑟𝑏𝑣2 + 𝑎𝑣3) (65) 

where 𝐴out′  is defined as 𝐴out′ =  2𝜋𝑑31(1 − 𝜎)𝑠11E (66) 

and the output capacitance is given by 𝐶out =  𝜋(𝑎2 − 𝑟𝑏2) (2𝑑312 + 𝑠11E 𝜀33T (𝜎 − 1))ℎ(𝜎 − 1)𝑠11E=  𝜋(𝑎2 − 𝑟𝑏2)𝜀33Tℎ (1 − 𝑘𝑝2) (67) 

It is important to note that the definition of 𝐴out′  in (66)

differs from 𝐴in in (18) because there are two edges to this

section and therefore two velocities, which complicates the 

definition of 𝐴out. This will be revisited in section III-F.

2) Mechanical Equations

Observing Fig. 8, the force 𝐹2 acts inwards on the inner

radius and 𝐹3 acts inward on the outer radius of the outer ring

section. These forces are given by 𝐹2 = −[2𝜋ℎ𝑟𝑏]𝑇𝑟out(𝑟𝑏) (68) 𝐹3 = −[2𝜋ℎ𝑎]𝑇𝑟out(𝑎) (69) 

Substituting (1) into (68) and (69), using (5)-(7) and the 

equation for the displacement of a particle in the outer ring 

section (55) gives equations for the forces 𝐹2 and 𝐹3,𝐹2 = 𝑍4𝑣2 + 𝑍5𝑣3 + 𝐴out′ 𝑉out𝑟𝑏 (70) 𝐹3 = 𝑍5𝑣2 + 𝑍6𝑣3 + 𝐴out′ 𝑉out𝑎 (71) 

where 𝑍4,5,6 are given by equations (56)-(58).

3) Equivalent Circuit

Several manipulations to (70), (71) and (65) must be

performed before a single equivalent circuit can be drawn. First, 

similar to [28], [30] we normalise the forces and velocities 𝐹2′ = 𝐹2𝑟𝑏  , 𝐹3′ = 𝐹3𝑎  , 𝑣2′ = 𝑣2𝑟𝑏 , 𝑣3′ = 𝑣3𝑎 (75) 

Therefore, (65) can be re-written as 𝐼out  = j𝜔𝐶out𝑉out − 𝐴out′ (𝑣2′ + 𝑣3′ ) (76) 

and (70) and (71) can be written as 𝐹2′ = 𝑍4𝑟𝑏2 𝑣2′ + 𝑍5𝑟𝑏𝑎 𝑣3′ + 𝐴out′ 𝑉out (77) 

𝐹3′ = 𝑍5𝑟𝑏𝑎 𝑣2′ + 𝑍6𝑎2 𝑣3′ + 𝐴out′ 𝑉out (78) 

As done in [31], the manipulations defined in (75) can be 

performed using ideal transformers. After performing a similar 

transformation to that used for the inactive gap section, a single 

equivalent circuit can be formed based on the forces in (77) and 

(78), as is shown in Fig. 10.  

Fig. 10. Equivalent circuit for the outer ring section of the ring-

dot PT 

Fig. 9. Full equivalent circuit for the ring-dot PT with 𝐹3 = 0
𝑍𝑒 = 𝑍4𝑟𝑏2 − 𝑍5𝑟𝑏𝑎 = 2jℎ𝑠11E 𝜔(𝜎2 − 1)𝑟𝑏2𝑎 ( 𝑎𝜋[(𝜎 − 1)Y1(𝛽𝑟𝑏) + 𝑟𝑏Y0(𝛽𝑟𝑏)𝛽]J1(𝛽𝑎)−𝑎𝜋[(𝜎 − 1)J1(𝛽𝑟𝑏) + J0(𝛽𝑟𝑏)𝑟𝑏𝛽]Y1(𝛽𝑎) − 2𝑟𝑏)Y1(𝛽𝑎)J1(𝛽𝑟𝑏) − Y1(𝛽𝑟𝑏)J1(𝛽𝑎) (72) 

𝑍𝑓 = 𝑍5𝑟𝑏𝑎 = 4jℎ𝑠11E 𝜔(𝜎2  −  1)𝑟𝑏𝑎 1Y1(𝛽𝑎)J1(𝛽𝑟𝑏) − Y1(𝛽𝑟𝑏)J1(𝛽𝑎) (73) 

𝑍𝑔 = 𝑍6𝑎2 − 𝑍5𝑟𝑏𝑎 = 2jℎ𝑠11E 𝜔(𝜎2 − 1)𝑎2𝑟𝑏
( 𝑟𝑏𝜋[(𝜎 − 1)Y1(𝛽𝑎) + 𝑎Y0(𝛽𝑎)𝛽]J1(𝛽𝑟𝑏)−𝑟𝑏𝜋[(𝜎 − 1)J1(𝛽𝑎) + J0(𝛽𝑎)𝛽𝑎]Y1(𝛽𝑟𝑏) − 2𝑎)Y1(𝛽𝑎)J1(𝛽𝑟𝑏) − Y1(𝛽𝑟𝑏)J1(𝛽𝑎) (74)
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The transformed impedances 𝑍𝑒,𝑓,𝑔 are defined as (72)-(74).

E. Full PT equivalent circuit

Assuming the forces and velocities at the boundaries between 

sections are equal (i.e. 𝐹1 = 𝐹1𝑔, 𝐹2𝑔 = 𝐹2, 𝑣1 = −𝑣1𝑔, 𝑣2𝑔 =−𝑣2), the three equivalent circuits can be combined into a single

circuit. It is assumed the PT is free to vibrate (free vibration

boundary condition), thus the force on the outer edge of the PT,𝐹3, is 0. Applying this condition and simplifying gives the

circuit shown in Fig. 9. 

F. Lumped equivalent circuit

The full equivalent circuit in Fig. 9 can now be simplified 

using several 𝜋-to-T and T-to-𝜋 circuit transformations, some 

manipulation and the Bessel function identity [31] given in 

equation (79). − 2𝜋 = 𝑋(J0(𝑋)Y1(𝑋) − J1(𝑋)Y0(𝑋)) (79) 

The full simplification process is derived in detail in the 

Appendix. The resulting simplified equivalent circuit is shown 

in Fig. 11,  

Fig. 11. Simplified the ring-dot equivalent circuit 

where impedances 𝑍4‑1, 𝑍4‑2 and 𝑍4‑3 are defined in terms of

the impedances 𝑍𝑎‑𝑔 and given in (80)-(82).

𝑍4‑1  = ([𝑍𝑔𝑟𝑏2𝛾 + (𝑍𝑐 + 𝜆)𝛾 − 𝑍𝑐2]𝑍𝑓−𝑍𝑔[(−𝑍𝑐 − 𝜆)𝛾 + 𝑍𝑐2] )𝑍𝑔𝜆 + 𝑍𝑓(𝑍𝑔𝑟𝑏2 + 𝑍𝑐 + 𝜆) (80) 

𝑍4‑2
= ([(𝑍𝑓 + 𝑍𝑔)𝑍𝑐 + (𝑍𝑓𝑟𝑏2 + 𝜆)𝑍𝑔 + 𝑍𝑓𝜆]𝛾−𝑍𝑐2[𝑍𝑓 + 𝑍𝑔] )𝑍𝑔𝑍𝑐

(81) 

𝑍4‑3  = ([ (−𝑍𝑓 − 𝑍𝑔)𝑍𝑐+(−𝑍𝑓𝑟𝑏2 − 𝜆)𝑍𝑔 − 𝑍𝑓𝜆] 𝛾+𝑍𝑐2[𝑍𝑓 + 𝑍𝑔] ) 𝑟𝑏2
(−𝑍𝑔𝑟𝑏2 − 𝑍𝑐 − 𝜆)𝛾 + 𝑍𝑐(𝑍𝑔𝑟𝑏2 + 𝑍𝑐) (82) 

and 𝜆 and 𝛾 are defined as  𝛾 = 𝑍𝑎 + 𝑍𝑏 + 𝑍𝑐  (83) 𝜆 = 𝑍𝑒𝑟𝑏2 + 𝑍𝑑 (84) 

And 𝐴out is given by𝐴out = 𝐴out′ 𝑟𝑏 (85) 

Substituting impedances 𝑍𝑎−𝑔 ((25), (46)-(48), (72)-(74))

into (80)-(82) with (83) and (84) gives the full expressions for 

𝑍4‑1,2,3 in terms of material and geometrical parameters. The

resulting equations have been omitted due to length but are 

trivial to derive. The equivalent circuit shown in Fig. 11 is now 

in a suitable format to be simulated using mathematical 

software tools. However, in this form the equivalent circuit is 

incompatible for use in circuit-based software tools such as 

SPICE since each impedance is defined in terms of Bessel 

functions and not modelled using traditional electrical 

components.  

G. Simplification to the Mason equivalent circuit

In this section, the circuit in Fig. 11 will be further simplified 

to the Mason equivalent form, which can then be simulated and 

emulated using traditional electronic components. 

1) Finding resonant frequencies

Observing the circuit in Fig. 11, the short circuit resonant

frequency of the PT occurs when the numerators of the three 

impedances are equal to zero (𝑍4‑1 = 𝑍4‑2 = 𝑍4‑3 = 0).

Solving the numerators of (80)-(82) equal to zero leads to the 

following equation, J0(𝛽𝑎)𝛽𝑎J1(𝛽𝑎) = J0(𝑅)𝑅J1(𝑅) = 1 − 𝜎 (86) 

where 𝛽𝑎 = 𝑅 is the first positive solution of (86). Since 

equation (86) is defined by Bessel functions it is transcendental 

and must be solved numerically. Using the first positive 

solution of 𝑅, the first radial resonant frequency of the PT can 

be found using  𝜔0  = 𝑅√𝑠11E 𝜌(1 − 𝜎2) 𝑎 (87) 

This agrees with the results reported by Horsley [28] for the 

radial mode Transoner PT. It is also notable that the resonant 

frequency is controlled exclusively by the outer radius of the 

device, and not by the internal radii.  

2) Lumped equivalent circuit

To simplify the circuit in Fig. 11 to the traditional lumped

Mason equivalent form, an approximation method will be used. 

First, a Taylor expansion of each impedance in Fig. 11 will be 

performed around the first radial resonance. The first two terms 

in the Taylor series for each impedance are  𝑍𝑇4‑1  ≈ 0 + 𝜒J1 (𝑅𝑟1𝑎 ) 𝜏𝑅2 (𝑟2J1 (𝑅𝑟1𝑎 ) + 𝜓) (88) 𝑍𝑇4‑2 ≈ 0 − 𝜒𝑅2𝜓𝜏J1 (𝑅𝑟1𝑎 ) (89) 𝑍𝑇4‑3  ≈ 0 + 𝑟2𝜒𝑅2𝜓𝜏 (𝑟2J1 (𝑅𝑟1𝑎 ) + 𝜓) (90) 

where 𝜓, 𝜏 and 𝜒 are defined as, 𝜓 = J1(𝑅)𝑎 − J1 (𝑅𝑟2𝑎 ) 𝑟2 (91) 

𝜏 =  (𝜎 − 1)Y1(𝑅) + 𝑅Y0(𝑅) (92)



10 

  

 𝜒 = 4j𝜌𝑟2 (J1 (𝑅𝑟2𝑎 ) 𝑟2 + 𝜓) ℎ(𝑅2 + 𝜎2 − 1)𝑎 (93) 

Then, using the circuit transformation in [32] the circuit in 

Fig. 11, becomes that shown in Fig. 12. 

 

Fig. 12. Simplified ring-dot equivalent circuit after circuit 

transformation defined in [32] is performed 

Where impedances 𝑍𝑅 and 𝑍𝑄, and turn ratio 𝑁𝑎 are given by 𝑍𝑅 = 𝑍𝑇4‑1 + 𝑍𝑇4‑2 (94) 

𝑍𝑄 = 𝑍𝑇4‑2(𝑍𝑇4‑1 + 𝑍𝑇4‑2)𝑍𝑇4‑1  (95) 

𝑁𝑎 = 𝑍𝑅𝑍𝑇4‑1 (96) 

The circuit in Fig. 12 can then be simplified by first 

recognising that 𝑍𝑅 + 𝑍𝑇4‑3 → 0 and 𝑍𝑅𝑍𝑇4‑3 → ∞ (97) 

Therefore, the parallel combination of 𝑍𝑅 and 𝑍𝑇4‑3 tends to ∞, leaving only the 𝑍𝑄 impedance. Then, the next obvious 

simplification to the circuit in Fig. 12, would be to combine 1: 𝐴in and 1: 𝑁𝑎 transformers. However, it is useful to be able 

to equate the resonant current in the equivalent circuit to the 

vibration velocity of the PT. While combining 𝐴in and 𝑁𝑎  

would allow that, the resonant current would be equal to 𝑣2 +𝑣3′ 𝑟2⁄  which is not possible to externally measure. Therefore, 

the remaining impedance, 𝑍𝑄, is referred across the 1: 𝑁𝑎 

transformer and then the 1: 𝑁𝑎 transformer combines with the 𝐴out: 1. This simplification means the resonant current is 

equivalent to the vibration velocity, 𝑣1 which is that at the outer 

edge of the inner-dot section, which is much easier to measure. 

The resulting circuit is shown in Fig. 13. 

 

Fig. 13. Simplified ring-dot equivalent circuit  

Finally, in order to transform the circuit in Fig. 13  to the 

Mason equivalent form, the impedance (𝑍𝑄 𝑁𝑎2⁄ ), should be 

converted to an LC equivalent circuit. First, the impedance of 

an LC circuit is defined as 𝑍eq = j𝜔𝐿𝑚 − j𝜔𝐶𝑚 (101) 

where 𝐿𝑚 and 𝐶𝑚 are the equivalent mechanical inductance 

and capacitance. Then a Taylor expansion of the equivalent 

impedance (𝑍eq) is taken around the resonant frequency of the 

LC circuit (𝜔0 = 1 √𝐿𝑚𝐶𝑚⁄ ), the first two elements of the 

resulting Taylor series are 𝑍𝑇eq ≈ 0 + 2j𝐿𝑚(𝜔 − 𝜔0) (102) 

Equating 𝑍𝑇eq and 𝑍𝑄 𝑁𝑎2⁄ , using (88)-(90), (96) and (95), 

and solving for 𝐿𝑚 gives (98). Then to find 𝐶𝑚, the resonant 

frequency of the equivalent circuit is used. After substituting in 

(87) and (98) to (𝜔0 = 1 √𝐿𝑚𝐶𝑚⁄ ), and rearranging for 𝐶𝑚 

gives (99). 

3) Damping 

In the Mason equivalent circuit model, it is typical to use a 

resistance in series with the LC circuit to model the losses in the 

system. The value of this damping resistance is influenced by 

several factors, including material choice and PT design, but 

also the physical construction of the device. Therefore, it is 

difficult to estimate its value. It is common to estimate damping 

resistance by measuring previous similar devices, made from 

similar materials. It is also common to define a Q factor for a 

device, rather than a specific damping resistance, therefore the 

value of the damping resistance will be defined in terms of the 

Q factor of the radial mode in a ring-dot device. Firstly, the Q 

factor of a series RLC circuit is 

𝐿𝑚  = 2ℎ𝑎2𝜌(𝑅2  + 𝜎2  −  1)𝑅2 J1(𝑅)((𝜎 −  1)Y1(𝑅) +  𝑅Y0(𝑅))J1 (𝑅𝑟𝑎𝑎 )2 (98) 

𝐶𝑚 = − 𝑠11E (𝜎2  −  1)2ℎ(𝑅2  + 𝜎2  −  1) (𝑅Y0(𝑅) + Y1(𝑅)𝜎 −  Y1(𝑅))J1 (𝑅𝑟𝑎𝑎 )2J1(𝑅)  
(99) 

𝑅𝑚 = 2𝑄 √− ℎ2J1(𝑅)2𝑎2(𝑅2  + 𝜎2  −  1)2𝜌(𝑅Y0(𝑅) +  Y1(𝑅)𝜎 − Y1(𝑅))2𝑅2J1 (𝑅𝑟𝑎𝑎 )4 𝑠11E (𝜎2  −  1) (100) 
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𝑄 = 1𝑅𝑚 √𝐿𝑚𝐶𝑚 (103) 

where 𝑅𝑚 is the damping resistance. Substituting (98) and

(99) into (103) and rearranging for 𝑅𝑚 gives (100). Using the

newly defined 𝐿𝑚, 𝐶𝑚 and 𝑅𝑚, the circuit in Fig. 13 can be

simplified to that shown in Fig. 14.

Fig. 14. Ring-dot PT equivalent circuit model transformed to 

the classic Mason equivalent circuit form 

4) Single transformer form

Whilst the circuit in Fig. 13 and accompanying equations

allow a ring-dot PT to be simulated and emulated, it is often 

inconvenient to have two transformers in the circuit. This is 

because it is difficult to experimentally measure the 𝐴in and𝐴out force factors. Unless a direct relationship between the

resonant current and the vibration velocity is required, it is more 

convenient to combine 𝐴in and 𝐴out transformers into a single

transformer, 𝑁1.

To achieve this, first the RLC circuit must be referred across 

the 1: 𝐴in transformer. The resulting RLC components are

given by 𝑅1 = 𝑅𝑚/𝐴in2 (104) 𝐿1 = 𝐿𝑚/𝐴in2 (105) 𝐶1 = 𝐶𝑚𝐴in2 (106) 

Then combining 𝐴in, 𝐴out and 𝑁𝑎 gives the equivalent turn

ratio 𝑁1𝑁1 = 𝐴in(𝐴out𝑁𝑎 )  =  − 𝑟𝑎J1 (𝑅𝑟𝑎𝑎 )J1(𝑅)𝑎 − 𝑟𝑏J1 (𝑅𝑟𝑏𝑎 ) (107) 

It is worth noting that the resulting turn ratios from (107) are 

negative, indicating that the 1:𝑁1 turn ratio causes a 180° phase

shift. The final ring-dot PT equivalent circuit with a single 

transformer is shown in Fig. 15. 

Fig. 15. Single transformer form of the ring-dot PT equivalent 

circuit 

IV. VALIDATION

The validation of the equivalent circuit models will be 

presented in two parts. Initially, COMSOL will be used to 

simulate a large number of ideal devices, the equivalent circuit 

component values extracted and compared to those estimated 

by the model derived here. Then, the model will be validated 

against experimental PT data. 

A. Representative set of piezoelectric transformers

273 ring-dot PTs were generated by varying 𝑟𝑎, 𝑟𝑏 and ℎ over

a suitable range. 𝑟𝑎 was varied in steps of 0.5mm from 1 −7mm, 𝑟𝑏 was varied in steps of 0.5mm from 1.5 − 7.5mm andℎ was varied in steps 0.5mm from 0.5 − 1.5mm. It should be 

noted that only variations where 𝑟𝑏 > 𝑟𝑎 + 0.5mm were

allowed. As the radius 𝑎 determines the resonant frequency (as 

shown in Equation (87)), its value was kept constant to allow a 

fixed frequency range to be used for the following FEA 

simulation.  

The PTs were made from PZT-4 material with key 

parameters given in Table 1. In the inactive section of the PT 

the same material is used; however, it is treated as an elastic 

material. Therefore, the PZT in this section acts as an elastic, 

electrically insulating material. 

Table 1 – PZT 4 material properties 𝑠11E (m2 N⁄ ) 𝜀33T 𝑑31(m V⁄ ) 𝜎 𝜌 (kg m3⁄ ) 1.23× 10−11 1300 
−1.23×10−10 0.329 7500 

B. Comparison to FEA

To get a baseline measurement of the model’s accuracy, 
COMSOL will be used to simulate the representative set of 

ring-dot PTs. For each PT the equivalent circuit parameters will 

be estimated using the equivalent circuit model derived here. 

For this simulation, a 2D axisymmetric model of the ring-dot 

PT was created and a frequency domain study was used to 

simulate each device at frequencies between 135 − 170kHz, in 

10Hz steps. The simulated PT was driven using a 10V 

sinusoidal signal and the impedance spectra calculated from the 

resulting currents measured at each frequency. The input 

section was first driven with the output electrode shorted to the 

output ground. Then, the output section driven with the input 

electrode shorted to ground. For all analysis, a free vibration 

boundary condition was used. 

For each PT, 𝐿1, 𝐶1, 𝐶in, 𝐶out and 𝑁1 were all extracted from the

frequency domain COMSOL analysis data using method 3 

described [17]. The equivalent circuit values were then 

estimated using equations (20), (105)-(107). For each PT, the 

error in the calculated parameter value, compared to the 

COMSOL simulation result, was calculated. For each 

parameter, Table 2 shows the mean of the absolute percentage 

error for each PT (the MAPE), and the standard deviation of the 

corresponding (signed) percentage errors. 
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Observing the results in Table 2, the equivalent circuit model 

very accurately estimates 𝐿1, 𝐶1 and 𝑁1 across the range of

tested values, with an average of less than 1% error in each of 

the three parameters, with a similarly low (<1%) standard 

deviation in the error. However, estimates of the input and 

output capacitances show large errors and with a large standard 

deviation in the results. This result agrees with the  findings of 

Horsley et al [28] for the radial mode Transoner PT. 

Interestingly, removing the piezoelectric element in the 

equation for these capacitances, gives rise to significant 

improvements in accuracy as shown in the last two rows of 

Table 2. 

Table 2. Average error and standard deviation in the estimated 

parameters 

Parameter MAPE (%) 

Standard deviation 

in percentage error 

(%) 𝐿1 0.45 0.37 𝐶1 0.65 0.35 𝑁1 0.38 0.45 𝐶in 32.3 12.9 𝐶out 30.7 8.1 𝐶in 1 − 𝑘𝑝2⁄ 10.4 7.6 𝐶out 1 − 𝑘𝑝2⁄ 6.3 5.2 

To further confirm the accuracy of the model, the input 

impedance spectra (with the output terminals shorted) of a 

sample PT can be extracted from the previous COMSOL 

simulation and compared to the input impedance estimated by 

the proposed model. An equation for the input impedance of the 

PT in terms of equivalent circuit components (with the output 

terminals shorted) is given by [33],  𝑍in= −j + 𝜔(𝜔𝐿1𝑗 + 𝑅1)𝐶1𝜔((𝐶in𝑅1𝜔j −  𝐶in𝐿1𝜔2  +  1)𝐶1  + 𝐶in) (108) 

A PT with dimensions, 𝑎 = 8mm, 𝑟𝑎 = 3mm, 𝑟𝑏 = 6mm

and ℎ = 1mm was chosen.  Fig. 16 shows the input impedance 

of the PT extracted from COMSOL, the input impedance 

predicted by the model using (108) and the input impedance 

predicted by the model with adjusted (× 11−𝑘𝑝2) 𝐶in values.

The results in Fig. 16 show the excellent accuracy of the 

model around the resonant frequency. At the anti-resonant 

frequency (impedance maximum), the results from the model 

show some disparity to those from COMSOL. However, using 

the adjusted 𝐶in value, a significantly more accurate result is

achieved.  

Fig. 16. Input impedance spectra from COMSOL and the model 

presented here 

Another factor influencing the accuracy of the input and 

output capacitance estimation is the occurrence of an additional 

parasitic capacitance occurring between the input and output 

electrodes (𝐶in‑to‑out), as shown in Fig. 17.

Fig. 17. Single transformer form of the ring-dot PT equivalent 

circuit with additional parasitic 𝐶in‑to‑out capacitance

A device with dimensions given in Table 3 was simulated in 

COMSOL to support the analysis in the paper. Fig. 18 shows 

the electric field 𝐸𝑧 at the intersection of a horizontal line

located at ℎ/2 extending from  0 < 𝑟 < 𝑎, during an input 

impedance measurement with the output connected in short 

circuit and operating very close to resonance. As is expected, 𝐸𝑧 ≈ −10V/mm in the dot section, which is being driven by a

10V source. The output section experiences 𝐸𝑧 ≈ 0, which is to

be expected as the output is connected in short circuit. As can 

be seen 𝐸𝑧 transitions within the gap section from −9V/mm to−1V/mm within 1mm. The authors consider this transition to

be sufficiently rapid to support the assumption that 𝐸𝑧𝑔𝑎𝑝 = 0,

for this PT. 
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Fig. 18. COMSOL predicted 𝐸𝑧 occurring along the radius of

the PT (dimensions in Table 3) at 𝑧 = ℎ/2 during input 

impedance measurement  

C. Practical PT validation

The lumped equivalent circuit model derived here is 

compared to experimental measurement of a practical ring-dot 

PT.  

Fig. 19. PZT based Ring-dot PT 

Table 3. Practical device dimensions 𝑟𝑎(mm) 𝑟𝑏(mm) 𝑎(mm) ℎ(mm) 3.4 6.1 8.2 1.1 

The device under test is made from PZT-P85 (Weifang Jude 

Electron) and with dimensions given in Table 3 is shown in Fig. 

19. The key material properties for PZT-P85 are shown in Table

4. It should be noted that the PT under test is both a fully poled

PT (gap volume is polled) and a 3-electrode device (common

electrode stretching across the gap), therefore, contains some

minor differences to the PT modelled here.

Table 4. PZT-P85 material properties 𝑠11E(m2 N⁄ ) 𝜀33T 𝑑31 (m V⁄ ) 𝜎 
𝜌 (kg m3⁄ ) Q 12.0× 10−12 

1700 
−180× 10−12 0.30 7600 200 

Equations (20), (105)-(107) can be used to estimate the 

equivalent components of the PT under test. Input and output 

impedance measurements (with output and input shorted, 

respectively) are then taken from the PT under test using an 

Omicron Bode 100 vector network analyser. The equivalent 

circuit parameters are then extracted from the various 

impedance measurements using the method presented in [33]. 

The resulting measured and estimated equivalent circuit 

components are shown in Table 5.  

Observing Table 5, a similar pattern to the FEA results can 

be observed, with estimated 𝐿1, 𝐶1 and 𝑁1 values showing good

accuracy compared to the experimental results. Again, similar 

to the FEA investigation, 𝐶in and 𝐶out both show considerable

errors compared to experimental results. However, again by 

removing the effect of the piezoelectric component of the 

capacitance, the results show significant improvements. Again, 

additional errors are to be expected in the input and output 

capacitance, due to not accounting for the parasitic input to 

output capacitance, which will falsely inflate the experimental 

input and output capacitance measurements. It should also be 

noted that, in most cases accurate values of both input and 

output capacitances are often not required, as accuracy in the 

estimation of the ratio of input to output capacitance is of much 

greater importance to PT design [18]. In this example, the 

percentage error in the input to output capacitance ratio is only 

4.3%. 

Table 5. Model estimated and experimental values from the 

ring-dot PT under test 

Parameter Experimental Model 𝐿1 16.3mH 14.4mH 𝐶1 83.4pF 92.1pF 𝜔0 137kHz 138kHz 𝑁1 1.06 1.03 𝐶in 0.54nF 0.24nF 𝐶out 1.45nF 0.63nF 𝐶in 1 − 𝑘𝑝2⁄ - 0.50nF 𝐶out 1 − 𝑘𝑝2⁄ - 1.29nF 

V. CONCLUSION 

A lumped equivalent circuit model for an electrically isolated 

ring-dot PT has been derived. This model includes the effect of 

the ‘gap’ region that occurs between the input dot and output 
ring electrodes and presented equations for the lumped 

equivalent circuit properties. The resulting model is then 
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validated against COMSOL simulations and experimental PT 

measurements, showing excellent accuracy in the extracted 

parameters. This model allows electronic engineers with 

minimal piezoelectric-specific knowledge to estimate the 

equivalent circuit properties and subsequently design PTs, 

lowering the barrier to entry for ring-dot PT based power 

converters.  
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VIII. APPENDIX

To simplify the equivalent circuit model in Fig. 9 to the 

traditional Mason equivalent circuit form, several circuit 

transformations will be used. Firstly, impedances 𝑍𝑒,𝑔,𝑓 will be

referred across the 𝑟𝑏: 1 transformer. This transformer will then

be combined with the 𝐴out′ : 1 transformer, this then gives𝐴out (85) a similar definition to 𝐴in. Additionally, 𝑍𝑎 and𝑍𝑏will be combined, as will 𝑍𝑑 and 𝑍𝑒 (after referring across𝑟𝑏) impedances. The resulting circuit is shown in Fig. A.1.

Fig. A.1. First stage of simplifications to the ring-dot equivalent 

circuit  

The impedances 𝑍1‑(1‑5) in  Fig. A.1 are given by,𝑍1‑1 = 𝑍𝑎 + 𝑍𝑏 (A.1) 

𝑍1‑2 = 𝑍𝑐  (A.2) 

𝑍1‑3 = 𝑍𝑑 + 𝑍𝑒𝑟𝑏2 (A.3) 

𝑍1‑4 = 𝑍𝑔𝑟𝑏2 (A.4) 

𝑍1‑5 = 𝑍𝑓𝑟𝑏2 (A.5) 

and 𝐴out is now defined as,𝐴out = 𝐴out′ 𝑟𝑏 (A.6) 

The next stage of simplification requires transforming 𝑍1−2,𝑍1‑3 and 𝑍1‑4 from a ‘𝜋’ circuit to a ‘tee’ circuit. The resulting
circuit is shown in Fig. A.2.  

Fig. A.2. Second stage of simplifications to the ring-dot 

equivalent circuit 

The impedances 𝑍2‑(1‑5) in Fig. A.2 are given by,𝑍2‑1 = 𝑍1‑1 (A.7) 

𝑍2‑2 = 𝑍1‑2𝑍1‑3𝑍1‑2 + 𝑍1‑3 + 𝑍1‑4 (A.8) 

𝑍2‑3 = 𝑍1‑2𝑍1‑4𝑍1‑2 + 𝑍1‑3 + 𝑍1‑4 (A.9) 

𝑍2‑4 = 𝑍1‑3𝑍1‑4𝑍1‑2 + 𝑍1‑3 + 𝑍1‑4 (A.10) 
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𝑍2‑5 = 𝑍1‑5 (A.11) 

Then, combining impedances 𝑍2‑1 + 𝑍2‑2 and 𝑍2‑4 + 𝑍2‑5,

leads to the equivalent circuit given in Fig. A.3.  

Fig. A.3. Third stage of simplification of the ring-dot equivalent 

circuit 

The impedances 𝑍3‑(1‑3) in Fig. A.3 are given by,𝑍3‑1 = 𝑍2‑1 + 𝑍2‑2 (A.12) 

𝑍3‑2 = 𝑍2‑3 (A.13) 

𝑍3‑3 = 𝑍2‑4 + 𝑍2‑5 (A.14) 

Again, a tee-to-𝜋 conversion will be performed on the three 

impedances 𝑍3‑(1‑3) to give each impedance the same resonant

frequency. This leads to the circuit shown in Fig. 11, with 

impedances 𝑍4‑(1‑3) given by𝑍4‑1 = (𝑍3‑1𝑍3‑2) + (𝑍3‑1𝑍3‑3) + (𝑍3‑2𝑍3‑3)𝑍3‑3 (A.15) 

𝑍4‑2 = (𝑍3‑1𝑍3‑2) + (𝑍3‑1𝑍3‑3) + (𝑍3‑2𝑍3‑3)𝑍3‑2 (A.16) 

𝑍4‑3 = (𝑍3‑1𝑍3‑2) + (𝑍3‑1𝑍3‑3) + (𝑍3‑2𝑍3‑3)𝑍3‑1 (A.17) 
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