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Abstract

Recent research efforts in lifelong learning propose to

grow a mixture of models to adapt to an increasing num-

ber of tasks. The proposed methodology shows promising

results in overcoming catastrophic forgetting. However, the

theory behind these successful models is still not well un-

derstood. In this paper, we perform the theoretical analy-

sis for lifelong learning models by deriving the risk bounds

based on the discrepancy distance between the probabilis-

tic representation of data generated by the model and that

corresponding to the target dataset. Inspired by the the-

oretical analysis, we introduce a new lifelong learning ap-

proach, namely the Lifelong Infinite Mixture (LIMix) model,

which can automatically expand its network architectures

or choose an appropriate component to adapt its param-

eters for learning a new task, while preserving its previ-

ously learnt information. We propose to incorporate the

knowledge by means of Dirichlet processes by using a gat-

ing mechanism which computes the dependence between

the knowledge learnt previously and stored in each com-

ponent, and a new set of data. Besides, we train a compact

Student model which can accumulate cross-domain repre-

sentations over time and make quick inferences. The code

is available at https://github.com/dtuzi123/

Lifelong-infinite-mixture-model.

1. Introduction

Lifelong learning (LLL) aims to learn successively a

series of tasks from their corresponding probabilistic rep-

resentations of specific databases. The objective of the

lifelong learning model is to implement all learnt tasks at

any given time. Modern deep learning approaches have

been successful in a variety of applications including image

translation [24], image synthesis [29] and object detection

[37], but all these models face a major challenge in the per-

formance, when applied on prior tasks, while learning mul-

tiple tasks, one after the other. This challenge is caused by

catastrophic forgetting which happens when a model adapts

its parameters in order to learn a new task [31].
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Figure 1. The process of forgetting the information from a certain

dataset after learning two additional tasks. The source distribution

generated by the Generative Replay Mechanims (GRM) is degen-

erated when learning a new task.

The Generative Replay Mechanism (GRM) [41] is a pop-

ular lifelong learning approach showing promising results

overcoming catastrophic forgetting [1, 33, 39, 48, 56]. A

generative replay model Gθ : Z → X , aims to transform a

low dimensional random variable Z into a high dimensional

variable X . Gθ can be an implicit generative model such

as a Generative Adversarial Network (GAN) [11] or an ex-

plicit latent model such as a Variational Autoencoder (VAE)

[16]. Once a task is learnt, Gθ generates data which then

can be combined with data sampled from a given database,

corresponding to a new task, to form a joint dataset used

for training. Some methods [1, 41] reduce the memory

size by only generating a batch of samples for each train-

ing step, by using only a copy Gθ′ of the GRM. However,

a major challenge for GRM based methods is that of grad-

ually losing knowledge across tasks since a GRM model

is trained on its own generations repeatedly. Another draw-

back, when GANs are used as GRMs, is that of facing mode

collapse [44]. Two solutions have been proposed to address

this problem. Rao et al. [34] enable GRMs with a network

expansion mechanism in which the model’s capacity is in-

creased when shifting data distributions. The other solu-

tion is to use the expansion mechanism [20] or an ensemble



structure [10, 14, 47] in which each expert is built on the top

of a shared module and only a single expert is updated dur-

ing the training. These approaches usually preserve the best

performance of previous tasks, but the theoretical analyse

behind these methods is not well understood.

In this paper, we provide the theoretical analysis for life-

long learning models, inspired by the idea illustrated in

Fig. 1. The forgetting behaviour of the model, when learn-

ing a certain task, is affected by an ever increasing upper

bound (solid line in Fig. 1) to the target-risk, during the life-

long leaning. This is mainly caused by the increased accu-

mulated errors when learning additional tasks while the dis-

crepancy between the target and source distribution is also

gradually increased. However, the optimal source-risk can

not guarantee a low target-risk since the source distribution

of the trained model is gradually degenerated. Inspired by

these results, the main idea of the proposed Lifelong In-

finite Mixture (LIMix) model is to automatically grow its

network architecture if the given task is sufficiently novel

when compared to the previously learned knowledge or up-

date an appropriate component that has a small discrepancy

to the given task. The Dirichlet process, which is usu-

ally computational expensive when using the expectation-

maximization algorithm to estimate component parameters

[8], can be used for these mechanisms. In order to reduce

the computational costs and make an accurate inference for

the selection and expansion of the model architecture, we

infer an indicator variable for each data sample by using a

gating mechanism based on the Dirichlet process that com-

putes the corrections between the knowledge stored in each

component and the new data. Furthermore, by accumulat-

ing knowledge, while enabling fast inference across data

domains, using a lightweight model is an attractive feature

in LLL, which does not appear in existing lifelong mixtures

or ensemble models [20, 47]. Our main contributions are :

• We analyse the forgetting behaviour during LLL by

evaluating the accumulated risk and find that the dis-

crepancy distance between the source and target distri-

bution is key to overcome forgetting.

• This is the first study to provide theory insights when

using mixture models for LLL. We also extend the the-

oretical analysis to explain the performance change for

a model when shifting the order of tasks.

• We propose a new lifelong mixture model with theo-

retical guarantees for LLL. We also explore training a

compact Student model from the mixture under LLL.

2. Related works

Artificial lifelong learning models are trained three dif-

ferent approaches: regularization, dynamic architectures

and memory replay. Regularization methods introduce an

auxiliary term in the loss function in order to penalize

changes in the network’s weights when learning a new task

[12, 15, 17, 23, 28, 38]. This can alleviate catastrophic for-

getting but can not guarantee the effective performance on

the previously learnt tasks. Dynamic architectures meth-

ods would grow the size of the network by adding process-

ing layers or increase the number of parameters in order to

adapt to a growing number of tasks [6, 20, 32, 40, 50, 59].

Lee et al. [20] used Dirichlet processes for expanding their

network architecture. However, their approach does not

provide any theoretical guarantees for the performance, and

mainly focuses on the generation and classification tasks

and still requires to store past samples.

Memory replay approaches would either use a genera-

tor [1, 34, 33, 41, 56, 51, 52, 55, 57] or a memory buffer

[2, 4, 46] as a replay mechanism generating data, which is

statistically consistent to the previously learnt knowledge.

Continual Unsupervised Representation Learning (CURL)

[34] is a memory replay method which trains a latent gener-

ative model in order to replay data consistent with the previ-

ously learnt information. CURL expands its architecture for

the inference component but not for the decoder. This can

lead to catastrophic forgetting when learning certain tasks.

Besides these three directions of research, there are other

methods such as [10, 53, 54] which create network architec-

tures consisting of a shared module and other multiple task-

specific modules. The shared module would not change

its parameters too much, while the task-specific modules

would only update their parameters when learning certain

tasks. These approaches may guarantee the full perfor-

mance on the previously learnt tasks but would still require

knowing the number of tasks and the task labels during both

training and testing phases. In this paper, we assume that

our lifelong learning model does not know the exact number

of tasks to be learnt while the task boundaries are only pro-

vided during the training phase. Although some methods

can be used in a task-free manner [34], they are still limited

to learning a sequence of tasks from a single domain.

3. Methodology

3.1. Problem setting

The lifelong artificial learning systems aim to learn a se-

quence of tasks, where each time we have a training set

DS = {(xi, yi)}
N
i=1 of N paired instances of data xi, con-

sidered as images, and their corresponding labels yi. Let

us consider the training of a model (classifier or generator)

Mt, sequentially, with t tasks, each defined by the train-

ing set and the testing set DT . The learning goal of Mt

is to make precise predictions for classification tasks on all

testing data sets {D1
T , . . . , D

t
T } after the training with a se-

quence of sets {D1
S , . . . , D

t
S}. When considering the unsu-

pervised learning setting, the learning goal of Mt is to learn

meaningful data representations without having any labels.



3.2. The lifelong infinite mixture (LIMix) model

In this section, we first introduce a mixture of deep learn-

ing networks for unsupervised learning, and then extend this

framework for a supervised setting. Let us define a deep

learning mixture of K components at the t-th task learning:

p (x, z | Θ, π1, . . . , πK) =

K∑

j=1

πjpθj (x | z) p (z) , (1)

where Θ = {θ1, . . . , θK} are the parameters of compo-

nents. x ∈ X and z ∈ Z are the observed and latent

variables where X and Z are the input and latent space.

Each pθj (x | z) is implemented as a Gaussian distribution

N (gθj (z),Σ) with Σ considered as a diagonal matrix, and

gθj represents the deterministic mapping that maps z into

the mean of pθj (x | z), implemented as a deep learning net-

work [53, 54]. πj is the mixing parameter for the j-th com-

ponent. p(z) is the prior, implemented by the normal distri-

bution. One approach for training this model is to maximize

the marginal likelihood of p(x, z | Θ,Ω, π1, . . . , πK) as:

p
(
x
1
1, . . . ,x

M
NM

| Θ, π1, . . . , πK
)
=

M∏

t=1

Nt∏

n=1

∫ K∑

j=1

πjpθj
(
x
t
n | z

)
p (z) dz ,

(2)

where M and Ni are the total number of tasks and the

number of data samples considered for each i-th task, i =
1, . . . ,M . This optimization problem is intractable in prac-

tice since we cannot access data samples from previous

tasks with associated training sets {Di
S | i = 1, . . . , t − 1}

after learning the t-th task. Furthermore, by maximizing

Eq. (2) when learning only a single task would cause the

mixture model to forget the information learnt previously,

as the network parameters are updated to new values dur-

ing the training with the data x
t
i ∼ Dt

S . To address this

problem, we propose to adapt the number of components

in the mixture according to the complexity of the tasks be-

ing learnt. The Dirichlet process is suitable for the selection

and expansion mechanisms for the mixture [35]. In this pa-

per we adapt a Dirichlet process by defining a probabilistic

measure of similarity in order to be able to train the same

mixing component with several tasks. We introduce an in-

dicator variable cti for each x
t
i which indicates which com-

ponent is assigned to x
t
i. Estimating the mixing weights

{π1, . . . πK} can be indirectly realized by the inference of

the indicator variable, [5] :

p
(
c11, . . . , c

K
NK

| π1, . . . , πK
)
=

K∏

j=1

π
Nj

j , (3)

where {π1, π2, . . . , πK} ∼ Dir (a) ,a = {a/1, ·, a/K}
and Dir(a) is a symmetric Dirchlet distribution with a its

parameter vector. Inferring a single indicator cti can be im-

plemented by integrating over πj and allowing K to in-

crease to infinity, [36] :

p
(
cti = j | ct−i, a

)
=

n−i,j

n− 1 + a
, (4)

where n−i,j is the number of samples that are associated

with the j-th component, excluding x
t
i, where the subscript

−i denotes all indices except i. Eq. (4) represents the proba-

bility for the i-th data sample to be associated with the j-th
component of the mixture. The hyperparameter vector a

can influence the prior probability of assigning a sample to

a new component and the total number of components after

training [36]. However, this probability does not infer prop-

erly cti given that it does not evaluate the consistency of the

new sample x
t
i with the information learnt by each compo-

nent. Comparing the previously learned knowledge with the

incoming data is useful for selecting the most suitable mix-

ture component in order to be updated, or for adding a new

component to the mixture. In this paper, instead of compar-

ing the new sample with those already stored [20, 36], we

propose to incorporate the knowledge learned by each com-

ponent for estimating n−i,j in order to consider the similar-

ity between the prior knowledge and the new sample :

n−i,j = (n− 1)×
e(1/Ki,j)

∑K
q=1 e

(1/Ki,q) + e(1/V)
, (5)

where V is a constant controlling the expansion of the mix-

ture model and

Ki,j =
∣
∣F

(
x
t
i | c

t
i, θj , ωj

)
− F

(
x
′
i,j | c

t
i, θj , ωj

)∣
∣ (6)

and F (· | cti, θj , ωj) is the log-likelihood function. n is the

total number of samples, and x
′
i,j is the i-th sample gen-

erated by the component j. We evaluate Ki,j between the

log-likelihood of the new sample x
t
i and the log-likelihood

of the generated sample x
′
i,j , estimated by the j-th compo-

nent. If Ki,j is very small, then x
t
i has a high likelihood

to be assigned to the j-th component. The probability of

generating a new component and of assigning the indicator

variable cti to x
t
i is then defined as:

p
(
cti = K + 1 | ct−i, a

)
=
a+ (n− 1)

(
exp(1/V)

Z

)

n− 1 + a
, (7)

where Z =
∑K

q=1 e
(1/Ki,q) + e(1/V) is denominator of (5).

Determining the indicator for a new task. By using the in-

ferring indicator variable for all samples when learning the

last given t-th task, is computationally intensive. We also

know that data samples from a database, characterizing a

certain task, share similar features. We consider only the

calculation of a single indicator variable for a task, after

each task switch, while the indicator variables for all data

samples within a task are identical. Suppose that we have

finished the (t− 1)-th task learning, we would like to infer

the indicator for the t-th task. Firstly, we randomly select a



group of samples {xt
1, . . . ,x

t
nG

} from the t-th training set

and then calculate the probability of each x
t
i belonging to

each j-th component p(cti = j | ct−i, a), ∀i = 1, . . . , nG,

where nG is the group size. Then we define the indicator ct

for the t-th task by :

ct = argmax
j=1,...,K+1

1

nG

∑nG

i=1
p
(
cti = j | ct−i, a

)
, (8)

Once ct is determined, at the t-th task learning we only

update the parameters of the chosen component instead of

updating the whole model Θ, by maximizing the sample

log-likelihood log
∫
pθct (x | z)p(z) dz which is intractable

in optimization since we need integrating over z. Similar to

[16], we introduce to maximize a lower bound to the sample

log-likelihood by using a variational distribution qωct
(z |x)

at t-th task learning :

log pθcr (x) ≥ Eqω
ct

(z|x)

[
log pθct (x | z)

]

−DKL

[
qωct

(z | x) || p(z)
]
,

(9)

where the right-hand side is our log-likelihood func-

tion F (· | ct, θct) , ωct), called the Evidence Lower Bound

(ELBO), used for training the model and the evaluation of

Eq. (6). pθct (x | z) and qωct
(z |x) are decoding and encod-

ing distributions, implemented by the network gθct : Z →
X and fωct

: X → Z , respectively, where the subscript de-

notes the component index. In Lemma 4 from Appendix-F

of the Supplementary Material (SM), we show how LIMix

can infer across domains by the selection process.

3.3. Learning prediction tasks

In this section, we extend LIMix model for prediction

tasks. Conditional VAEs [43] is one of the most used gen-

erative models for predictive tasks, defined by:

log pςct (y | x) ≥ Eqω
ct

(z|x,y)

[
log pςct (y | x, z)

]
−

DKL

(
qωct

(z | x, y) || pςct (z | x)
)
.

(10)

For classification, y belongs to the discrete domain (one-hot

vector), and pςct (y |x, z) is implemented as a classifier. We

represent pςct (z |x) as N (0, I) in Eq. (10) for reducing the

model size, and this results in the objective function:

LP = Eqω
ct

(z|x,y)

[
log pςct (y | x, z)

]

−DKL(qωct
(z | x, y) || p(z)) .

(11)

We also require each component to learn a generator in or-

der to overcome forgetting when reusing a selected compo-

nent to model more than one task. Therefore, we define the

ELBO for the generative model, pθct (x | y) as :

LG = Eqω
ct

(z|x,y)

[
log pθct (x | z, y)

]

−DKL(qωct
(z | x, y) || p(z)) .

(12)

Each component in the classification setting has three

models pςct (y |x, z), qωct
(z |x, y), pθct (x | y, z). The like-

lihood function F (· | ct, θct , ωct) for the classification is

only LG and the main objective function for optimizing the

ct-th component is to maximize LG + LP. In practice, we

optimize LP and LG separately, in the same mini-batch. In

Appendix-J from SM, we provide the framework for ap-

plying LIMix for Image-to-Image Translation tasks and in

Appendix-M we provide the experimental results.

3.4. Training a compressed Student model

In order to reduce the complexity of LIMix, we pro-

pose to share most parameters of the generator and the in-

ference models through a joint network, where the param-

eters θi = {θS , θ̃i} and ωi = {ωS , ω̃i} of each compo-

nent consists of the shared part {θS , ωS} and the individual

part {θ̃i, ω̃i} for each component. The mixing components

are built on top of the shared component. We also train a

compressed Student model under the unsupervised learning

only, aiming to embed knowledge from LIMix into one la-

tent space which supports interpolation across multiple do-

mains. The Student shares the same network architecture

with the component and is trained using the knowledge dis-

tillation (KD) loss along with the sample log-likelihood at

the t-th task learning :

Lstu = ESt,X
log pθstu (x)

︸ ︷︷ ︸

Log-likelihood

+

K∑

i=1

EPθi
log pθstu (x)

︸ ︷︷ ︸

knowledge distilltion

(13)

where θstu = {θS , θ̃stu} and θ̃stu is the individual set for

the Student. log pθstu(x) is estimated by ELBO and Pθi is

the distribution modelled by the i-th component in LIMix.

More details together with the LIMix model diagram are

provided in Appendix-J from SM. Additionally, this paper

does not focus on the improvement of KD and we find that

the Student is weaker than LIMix. This is theoretically ex-

plained in Appendix-I.2 from SM.

4. Theoretical analysis for lifelong learning

In this section, we first provide the theoretical analy-

sis for the proposed infinite mixture model that does not

grow its architecture during the lifelong learning. In this

case, the model uses GRM to overcome the catastrophic

forgetting and is seen as a single model represented by

M(θ, ς, ϕ), consisting of a generator gθ : Z → X and a

classifier hς : X → Y , where Y is an output space, which is

{−1, 1} for binary classification and {1, 2, . . . , n′}, n′ > 2
for multi-class classification. We assume that the model

also contains a task-inference network Uϕ : X → T where

T is the task domain. We then provide theoretical guaran-

tees for the convergence of LIMix. Eventually, we analyse

the forgetting behaviour of existing methods and the trade-

off between the model’s performance and complexity.



4.1. Preliminaries

Definition 1 (Approximation distribution). Let us define a

joint distribution S̃t approximated by the generator gθt and

the classifier hςt of M(θt, ςt, ϕt) trained on a sequence

of sets {D1
S , . . . , D

t
S}. We assume that we have a perfect

task-inference network Uϕ, which can exactly predict the

task label for a given sample x. With the optimal task-

inference network Uϕ, we can form several joint distribu-

tions {S̃t
1, . . . , S̃

1
t } where each S̃

(t−i+1)
i is made up of a set

of samples where each paired sample is drawn by using the

sampling process {x, hςt(x)} ∼ S̃t if Uϕ(x) = i. We use

the superscript (t − i + 1) in S̃
(t−i+1)
i to denote that S̃1

i is

refined for (t− i+1) times through the GRM processes af-

ter the t-th task learning. We further use S̃
(t−i+1)
i,X to denote

the marginal distribution of S̃
(t−i+1)
i . S̃n

i is formed by the

samples from Di
S if n = 1, otherwise, by samples drawn

from Gθn and hςn with the optimal task-inference network.

Definition 2 (Data distribution across tasks). Let Si rep-

resent the joint distribution characterizing the probabilistic

representation for the testing set in the i-th database Di
T ,

and Si,X is its marginal distribution along X .

Assumption 1 We assume τ : Y×Y → [0, 1] be a symmet-

ric and bounded loss function ∀(y, y′) ∈ Y2, τ(y, y′) ≤M ′

and τ(·, ·) obeys the triangle inequality, where M ′ is a pos-

itive number.

Definition 3 (Discrepancy distance). For two given joint

distributions S̃
(t−i+1)
i and Si over X ×Y and τ : Y×Y →

[0, 1] is a loss function satisfying Assumption 1. Let h, h′ ∈
H be two classifiers, where H is the space of all classifiers,

and we define the discrepancy distance Ψ between the two

marginals S̃
(t−i+1)
i,X and Si,X as:

Ψ
(

S̃
(t−i+1)
i,X , Si,X

)

= sup
(h,h′)∈H2

∣
∣
∣
∣ E

S̃
(t−i+1)
i,X

[τ (h′ (x) , h (x))]

− E
Si,X

[τ (h′ (x) , h(x))]

∣
∣
∣
∣
.

(14)

Definition 4 (Empirical risk). For a given loss function

τ : Y × Y → [0, 1] and a joint distribution Si, we form

an empirical set where we draw each paired sample as

{xi
j , y

i
j} ∼ Si. the empirical risk R(h, Si) for a given clas-

sifier h ∈ H, is evaluated by n number of independent runs.

R(h, Si) =
1

n

n∑

j=1

τ
(
h
(
x
i
j

)
, yij

)
. (15)

4.2. Risk bounds for lifelong learning

The discrepancy distance, defined through Eq. (14), was

used to derive generalization bounds for domain adaptation

methods [3, 7, 26] and also for matching generated and real

data distributions in the GAN’s discriminator during train-

ing [9, 21, 22]. In the following we derive the risk bound

for the lifelong learning model based on the discrepancy

distance. The main idea for analyzing the degenerated per-

formance of the model is to evaluate the risk between the

target and the dynamically degenerated source distribution

caused by the retraining process using GRMs. In this case,

the errors accumulated when learning each task can be mea-

sured in an explicit way.

Theorem 1 Let Si and S̃
(t−i+1)
i be two joint distributions

over X×Y . Let hi = argminh∈H R(h, Si) and h̃
(t−i+1)
i =

argminh∈H R(h, S̃
(t−i+1)
i ) represent the ideal classifiers

for Si and S̃
(t−i+1)
i , respectively, where H is the classifier

space. By satisfying Assumption 1, we have:

R
(
h, Si

)
≤ R′

(
h, h̃

(t−i+1)
i , S̃

(t−i+1)
i

)

+Ψ
(
Si,X , S̃

(t−i+1)
i,X

)
+ σ

(
Si, S̃

(t−i+1)
i

) (16)

where the optimal combined error is represented by

σ(Si, S̃
(t−i+1)
i ) = R′(h∗i , hi, Si)

+ R′(hi, h̃
(t−i+1)
i , S̃

(t−i+1)
i )

(17)

and

R′(h∗i , hi, Si) = Ex∼Si,X
τ(h∗i (x), hi(x)) , (18)

where h∗i is the true labeling function for Si.

We provide the proof in the Appendix-A from SM. This

theorem provides a way to measure the gap on the risk

bound for the model, after learning the t-th task, but does

not provide any insight on how the previously learnt knowl-

edge is forgotten. The following theorem provides an ex-

plicit way to measure the accumulated errors when learning

a certain task.

Theorem 2 Let S̃
(t−i+1)
i be the joint distribution over X ×

Y , and τ be a loss function which satisfies Assumption 1.

The accumulated errors in the knowledge associated with a

previously learnt, i-th task, after learning a given t-th task,

can be defined as :

R(h, Si) ≤ R′(h, h̃
(t−i+1)
i , S̃

(t−i+1)
i )+

t−i∑

k=0

(

Ψ(S̃
(k)
i,X , S̃

(k+1)
i,X ) + σ(S̃

(k)
i , S̃

(k+1)
i )

)

,
(19)

where the last term of the right hand side (RHS) is expressed

as :

σ(S̃
(k)
i , S̃

(k+1)
i ) = R′(h̃

(k)
i , h̃

∗(k)
i , S̃

(k)
i )

+ R′(h̃
(k)
i , h̃

(k+1)
i , S̃

(k+1)
i ) ,

(20)



where we use S̃
(0)
i to represent Si for simplicity. The proof

is provided in the Appendix-B from SM. Theorem 2 pro-

vides the analysis of forgetfulness of the previously learnt

knowledge in the model M(θt, ςt, ϕt), while learning the t-
th task. When i is small, i.e. a task which was learnt during

one of the initial training stages, then the accumulated terms
∑t−i

k=0 τ(S̃
(k)
i,X , S̃

(k+1)
i,X ) + σ(S̃

(k)
i , S̃

(k+1)
i ) lead to larger er-

rors. This explains that M(θt, ςt, ϕt) would tend to forget

the tasks learnt earlier during its lifelong learning process.

We visualize this forgetfulness process in Figure 1.

Lemma 1 Let us consider that we have Assumption 1, then

the accumulated error after learning the probabilistic rep-

resentations of all databases after t-th task learning is:

t∑

i=1

R(h, Si) ≤
t∑

i=1

(

R′(h, h̃
(t−i+1)
i , S̃

(t−i+1)
i )+

t−i∑

k=0

(

Ψ(S̃
(k)
i,X , S̃

(k+1)
i,X ) + σ(S̃

(k)
i , S̃

(k+1)
i )

))

.

(21)

We consider Theorem 2 and sum up the accumulated errors

from Eq. (19) for learning t tasks and this results in Eq. (21)

(Appendix-C from SM). Lemma 1 shows that minimizing

the discrepancy distance Ψ(S̃
(k)
i,X , S̃

(k+1)
i,X ) between the gen-

erated distribution approximated by the model and the target

distributions, when learning each task, plays an important

role in the improvement of the performance. However, the

accumulated errors of the model will increase significantly

when increasing the number of new tasks to be learnt. The

following lemma shows how a mixture or ensemble model

can address this problem and improve the performance.

Lemma 2 Let us consider Assumption 1 and assume that

we are training the LIMix model with K components onto

the t-th task learning. If K = t, then the accumulated er-

rors of the infinite mixture model for all tasks is defined as:

t∑

i=1

R(h, Si) ≤
t∑

i=1

(

R′(h, h̃1i , S̃
1
i )

+Ψ(Si,X , S̃
1
i,X) + σ(Si, S̃

1
i )
)

.

(22)

We provide the proof in Appendix-D from SM. Lemma 2

provides the framework for an optimal solution for LIMix

in which the lifelong learning problem is transformed into

a generalization problem under multiple target-source do-

mains where there is no forgetting error during the training.

h is implemented by the mixture of {hζ1 , . . . , hζK}, hζi ∈
H, i = 1, . . . ,K in LIMix and therefore the performance

on each target domain is relying on the generalization abil-

ity of the associated component. In practice, the number

of components is smaller than the number of tasks being

learnt. We investigate a specific case in Appendix-D from

SM. The following lemma provides an analysis of the rela-

tionship between the model’s performance and complexity.

Lemma 3 Let B = {b1, . . . , bj} represent the la-

bels for the tasks that the corresponding distributions

{S̃
(1)
b1
, .., S̃

(1)
bj

} are accessed only once after lifelong learn-

ing. Let B′ = {b′1, . . . , b
′
n} indicate which task was used

for re-training more than once. We also define a set B̂ =

{b̂1, . . . , b̂n} that records how many times each task was

used for re-training, where b̂i > 1 represents that the b′i-

th task has been retrained for (b̂i − 1) times S̃
(1)
b′
i

→ S̃
(b̂i)
b′
i

where S̃
(b̂i)
b′
i

represents the corresponding probabilistic rep-

resentation. For a given mixture model, we have :

t∑

i=1

R(h, Si) ≤

card(B)
∑

i=1

(

R′(h, h̃1bi , S̃
1
bi) + Ψ(Sbi,X , S̃

1
bi,X)

+σ(Sbi , S̃
1
bi)

)

+

card(B′)
∑

i=1

(

R′(h, h̃
(t−b̂i+1)
b′
i

, S̃
(t−b̂i+1)
b′
i

)

+

b̂i−1∑

k=0

(

Ψ(S̃k
b′
i
,X , S̃

(k+1)
b′
i
,X ) + σ(S̃k

b′
i
, S̃

(k+1)
b′
i

)
))

= Rmixture

(23)

where t > 1 represents the number of tasks being learnt.

card(·) denotes the cardinal number in the set which satis-

fies card(B) + card(B′) > K and 0 ≤ card(B) ≤ K, 0 ≤
card(B′) ≤ K, card(B′) = card(B̂), where K is the num-

ber of components used for training. The risk for a sin-

gle learnt model M(θt, ωt, ψt) is defined as Rsingle, as in

Eq. (21), while the risk for the mixture model, Rmixture is

the RHS of Eq. (23). From all these expressions we have

Rsingle ≥ Rmixture.

The proof is in the Appendix-E from SM. Lemma 3 does

not explicitly indicate which task is associated with the in-

formation recorded by a specific component of the LIMix

model. Nevertheless, we provide an explicit way to anal-

yse the risk bound for the mixture model in a more prac-

tical way, where we vary the number of components and

the number of times the model was trained for each task,

according to different learning settings such as by consid-

ering the learning order of tasks or their complexity. If

B′ = ∅, then Eq. (23) is reduced to Eq. (22), meaning

a smaller gap in the risk bound, while requiring additional

memory. On the other hand, if card(B) = 1 ⇒ B = {t},

the RHS of Eq. (23) becomes equal to that from Eq. (21),

meaning a large gap on the risk bound. We define the ratio

v = (K − card(B))/(K − card(B′)) as an index which

explains the trade-off between the model complexity and

its performance. When v increases, the model improves its

performance while also increasing its complexity. In con-

trast, when v is small, the model’s complexity is reduced



MSE SSMI PSNR

Datasets LGM CURL BE LIMix Stud LGM CURL BE LIMix Stud LGM CURL BE LIMix Stud

MNIST 129.93 211.21 19.24 26.66 176.82 0.45 0.46 0.92 0.88 0.42 14.52 13.27 22.57 21.09 13.72

Fashion 89.28 110.60 38.81 30.19 178.04 0.51 0.44 0.61 0.76 0.37 15.82 14.89 14.46 21.25 8.81

SVHN 169.55 102.06 39.57 35.07 146.70 0.24 0.26 0.66 0.65 0.47 8.11 10.86 18.90 14.92 13.58

IFashion 432.90 115.29 36.52 30.14 158.18 0.26 0.54 0.75 0.79 0.43 9.04 15.51 19.32 20.26 14.17

RMNIST 130.28 279.47 25.41 22.80 157.55 0.45 0.29 0.88 0.90 0.43 14.51 10.84 21.31 21.81 14.18

Average 190.38 163.72 31.91 28.97 163.45 0.38 0.39 0.76 0.79 0.42 12.40 13.07 19.31 19.86 12.89

Table 1. The performance of various models after the MSFIR lifelong learning.

while it accumulates more error terms when learning new

tasks. In the Appendix-G from SM, we use the proposed

theoretical framework to analyse the forgetting behaviour

for various models such as the classical GRM model [41], a

mixture model enabled with expansion mechanisms [34], an

ensemble model from [47] and an episodic memory model

[25, 30]. We also extend Lemmas 2 and 3 for analyzing the

risk bounds for a model when changing the order of tasks in

the Appendix-H from SM.

5. Experiments

5.1. Datasets and evaluation criteria

We consider the following experimental settings :

• For the unsupervised learning setting we create a

sequence of learning tasks corresponding to the

databases: MNIST [19], SVHN [27], Fashion [49],

InverseFashion (IFashion) and Rated MNIST (RM-

NIST), and this learning setting is named MSFIR.

• We add CIFAR10 [18] after MSFIR, as the last train-

ing task, resulting in MSFIRC sequence for supervised

classification. All images are resized to 32× 32× 3.

Evaluation criteria: In the classification tasks, we use the

average accuracy over all tasks as the performance crite-

rion. Although the proposed theoretical analysis is only

used in prediction tasks, LIMix can also achieve good per-

formance in the unsupervised setting where we use the

Mean Squared Error (MSE), the structural similarity index

measure (SSIM) [13] and the Peak-Signal-to-Noise Ratio

(PSNR) [13] for the reconstruction quality evaluation.

5.2. Unsupervised learning tasks

We firstly evaluate various methods on MSFIR lifelong

learning tasks and the results are provided in Table 1. We

compare our proposed LIMix model with three state of the

art methods: LGM [33], CURL [34] and BatchEnsemble

(BE) [47]. BE is designed to be used for classification

tasks and we implement BE as an ensemble made up of

VAE components, where each VAE has a tuple of trainable

vectors built on the top layer of a neural network which

does not update its parameters in the k-th task learning,

k = {2, 3, . . . ,K}. We use large neural networks, con-

taining more parameters, for LGM and BE, respectively, in

Dataset LGM [33] CURL [34] BE[47] LIMix MRGANs [48]

MNIST 90.54 91.30 99.40 91.16 91.24

SVHN 22.56 62.05 74.46 82.60 64.12

Fashion 68.29 79.18 88.95 89.14 80.10

IFashion 73.70 82.51 86.45 88.70 82.19

RMNIST 90.52 98.56 99.10 98.80 98.30

CIFAR10 57.43 67.34 52.48 54.66 67.19

Average 67.17 80.16 83.47 84.18 80.52

Table 2. Classification accuracy of various models after the MS-

FIRC lifelong learning.

order to ensure fair comparisons. The model size is pro-

vided in Appendix-L from SM. “Stud” denotes the perfor-

mance of the Student model which is worse than LIMix be-

cause the Student learns its knowledge from the generation

results of LMIX. Fig. 2a shows the absolute difference on

the log-likelihood between the incoming task and each com-

ponent Ki,j , as in Eq. (6), and the number of components

derived during MSFIR lifelong learning. We can observe

that the first component is reused when learning the fifth

task (RMNIST) and LIMix expands to 4 components after

LLL. We also evaluate the LIMix model when considering

more complicated tasks in the Appendix-K.2 from SM.

5.3. Classification tasks

In this section we present the results when considering

the lifelong learning of classification tasks. In order to use

LGM [33] for classification, we continually train an auxil-

iary classifier on the real data samples from successive tasks

and by also using paired data samples {xi, yi}
n
i=1, where

xi is generated by either the Teacher or Student in LGM

and each yi is inferred by the classifier during the last task

learning. Table 2 provides the LLL classification accuracy,

where it can be observed that LIMix achieves the best re-

sults. Unlike in the image reconstruction results, CURL

[34] also provides good results on the LLL of classification

tasks. CURL uses a single decoder which is continually up-

dated across multiple tasks and therefore leads to poor im-

age reconstructions, which explains the difference between

the reconstruction and the classification results for CURL.

Although the proposed LIMix is mainly designed for

cross-domain lifelong learning, we also apply LIMix to

the continuous learning benchmarks, Permuted MNIST and

Split MNIST [58] (see Appendix-K.4 from SM). Similar to

[30], we use a smaller network for the implementation of

each component and perform five independent runs for cal-
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Figure 2. (a) Absolute difference on the log-likelihood and the number of components under the MSFIR lifelong learning. (b) The change

of the model’s performance and complexity when using different thresholds during MSFIR lifelong learning. (c) The risk and discrepancy

for the first task (MNIST) by using LIMix without expansion. (d) The risk and discrepancy for MNIST by using LIMix with expansion.

Methods Permuted MNIST Split MNIST

DLP* [42] 82% 61.2%
EWC* [17] 84% 63.1%
SI* [58] 86% 98.9%
Improved VCL* [45] 93.1 ± 1% 98.4 ± 0.4%
FRCL-RND* [46] 94.2 ± 0.1% 97.1 ± 0.7%
FRCL-TR* [46] 94.3 ± 0.2% 97.8 ± 0.7%
FROMP* [30] 94.9 ± 0.1% 99.0 ± 0.1%

LIMix 96.46±0.03% (10 C) 99.21±0.04% (5 C)

LIMix 88.78% (7 C) 96.77% (4 C)

LIMix 95.25% (8 C) 91.37% (3 C)

Table 3. Results of continuous learning benchmark.

culating the mean and standard deviation. The results are

provided in Table 3 where ”*” means reporting the results

from [30] and ”5 C” means 5 components for LIMix. LIMix

achieves the best performance for the optimal solution, val-

idating Lemma 2, and would gradually loses performance

when reducing the model size, as discussed in Lemma 3.

5.4. Ablation study and theoretical results

We evaluate the performance of the LIMix model when

varying various hyperparameters and thresholds and the re-

sults are shown in Figures 2a and 2b. The performance is

improved by expanding the model’s architecture, but this

would increase its complexity, as discussed in Lemma 3.

We provide additional results for the hyperparameter pa-

rameter setting in the Appendix-K.1 from SM. We investi-

gate the theoretical results for Theorem 2 and train a single

model under MNIST, Fashion and SVHN (MFS) learning

setting and evaluate the source-risk, target-risk and discrep-

ancy on MNIST and present the results in Fig. 2c. We can

observe that the increase of the target-risk largely depends

on the discrepancy instead of the source-risk which keeps

stable when learning additional tasks. We also investigate

the results for LIMix under MFS lifelong learning and the

results are provided in Fig. 2d, where ”Source + Discrep-

ancy” represents the source-risk plus the discrepancy on

MNIST. The discrepancy does not increase for LIMix when

learning additional tasks. Besides, ”Source + Discrepancy”

is very close to the target-risk and the gap to the target-risk

is the combined error σ(S1, S̃
1
1), according to Eq. (19).

We also investigate the target-risk for LIMix, BE, and

(a) Target-risk (b) Average target-risk

Figure 3. Evaluation of MNIST target-risk for other datasets.

LGM and the results are shown in Fig 3a, where the target-

risk is evaluated on MNIST for each epoch. The target-

risk for BE does not change across the LLL of six tasks,

given that it does not accumulate any errors. LGM contin-

ually increases its target-risk, which is bounded by RSingle,

adding an error term after learning each task. LIMix only

increases the target-risk when it reuses a component, which

was updated when learning RMNIST after MNIST. These

results are explained by Lemma 3 and further explored in

Appendix-G from SM. We also estimate the average target-

risk for all tasks (20 epochs for each task) when reusing

a component trained on MNIST for learning a new task

and the results are shown in Fig. 3b. We find that a single

component would lead to a large degeneration in the perfor-

mance when learning an entirely different task (CIFAR10)

than a related task (RMNIST). This demonstrates that the

proposed selection mechanism can choose an appropriate

component minimizing the target-risk. Examples of image

reconstruction, generation and Image to Image translation

are shown in the Appendix-M from SM.

6. Conclusion

We propose a new theoretical analysis framework for

lifelong learning based on the discrepancy distance between

the probabilistic measures of the knowledge already learnt

by the model and a target distribution. We provide an in-

sight into how the model forgets some of the knowledge

acquired during LLL, through the analysis of the model’s

risk. Inspired by the analysis, we propose LIMix model

which performs better in cross-domain lifelong learning.
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