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ABSTRACT

This research study proposes a compatible encoder-enabled

video generating method. The encoder-enabled method adds

an inference mechanism for enhancing the ability of Gener-

ative Adversarial Networks (GAN) based video generators.

The proposed video generating method is called Encod-

ing GAN3 (EncGAN3) and decomposes the video into two

streams representing content and movement, respectively.

The proposed model consists of three processing modules,

representing Encoder, Generator and Discriminator, each

trained separately, by considering its own loss function. Enc-

GAN3 is shown to generate videos of high quality, according

to both visual and numerical results.

Index Terms— Video generation, Generative Adversar-

ial Network (GAN), Variational Autoencoder (VAE), Hybrid

VAE-GAN model.

1. INTRODUCTION

The Generative Adversarial Network (GAN) [1] and the Vari-

ational Autoencoder (VAE) [2] represent the two main deep

generative frameworks. GANs are able to generate sharp im-

ages but they are computationally expensive and sometimes

result in unexpected artifacts during the generation. Mean-

while, VAEs are enabled by an inference mechanism with re-

quire comparably less computational cost and are more sta-

ble during training but tend to yield images which are blurry

and of lower quality. The complementary characteristics of

GAN and VAE consequentially resulted in the design of Hy-

brid VAE-GAN models aiming to overcome the weaknesses

of both VAE and GAN models by combining their architec-

tures [3, 4, 5, 6]. Current video generators are based on VAEs

[7], GANs [8] as well as on their Hybrid architectures [9, 10].

In this paper, we propose a hybrid video generation

model, employing an inference mechanism implemented by

a compatible encoder for GAN-based generators aiming to

provide realistic and high quality videos. The model named

Encoding GAN3 (EncGAN3) uses an encoder for empower-

ing GAN3 [8] with appropriate latent spaces in the content

and movement spaces. The EncGAN3 model consists of a

two-stream Encoder processing content and motion through

two separate streams feeding a three-stream Generator en-

suring the spatial, temporal and spatio-temporal consistency,

as well as a two-stream Discriminator for image and video

quality evaluation. The content and movement streams are

processed separately and then fused at multiple scales into the

main spatio-temporal consistency reconstruction stream even-

tually resulting in the generated video. The Encoder’s dual

stream architecture follows the success in processing sepa-

rately content and motion for action recognition [11], as well

as in other video generation methods [8, 12, 13, 14, 15, 16].

The encoder enables an appropriate inference mechanism

to provide a representative latent space, instead of just us-

ing a random seed for the GAN generator. The useful infor-

mation estimated from real data by inference benefits GAN

models resulting in better video generation results. The pro-

posed method has a wide application range and can be used

in combination with most GAN-based video generators.

The contributions of this research study are as follows :

1. A new video generation approach by enabling GAN

generators with video inference mechanisms.

2. A dual stream video generative model, in content and

motion, namely Encoding GAN3 (EncGAN3).
3. Quantitative and qualitative results show the advan-

tages of EncGAN3 with respect to the visual quality

and diversity of generated videos.

2. RELATED WORKS

Hybrid VAE-GAN models in image generation attempt to

combine the complementary characteristics of the GAN and

VAE models for alleviating their weaknesses [3, 4, 5, 6].

VAE/GAN [4] uses the feature representation learned by

a VAE to improve the data reconstruction produced by a

GAN. However, when extending to video generation, these

VAE-GAN designs lack scalability for processing tempo-

ral synchronization of moving objects and regions between

consecutive frames.

Video generation methods initially followed the idea of

generating sequences of consecutive temporally images. The

Temporal Generative Adversarial Nets (TGAN) [13], Motion

and Content GAN (MoCoGAN) [15] and Temporal Shift

GAN (TS-GAN) [16] all use dual network architectures split-

ting the video generation process into image and sequence

generators. VideoVAE [7] adds an additional time-processing



Fig. 1. The architecture of EncGAN3: two Encoders, a three-stream Generator and two Discriminators for deciding the content

and movement information corresponding to the generated video.

module to the image encoded latent spaces for extending

VAE-enabled image generation to generating sequences of

images. TwoStreamVAN [10] is a model reconstructing

video frames from a generated content frame and a set of

difference maps between frames. G3AN [8] generates videos

using three streams representing motion, content and video

reconstruction based on the GAN architecture.

3. THE ARCHITECTURE OF ENCGAN3

This paper proposes a new model, EncGAN3, for video gen-

eration. EncGAN3 enables multiple generative streams, as

in G3AN [8], enabled by a dual inference mechanism, as

in [10]. The two mechanisms, of inference and generation,

are matched in the latent spaces corresponding to the video

content and its corresponding movement, represented by the

temporal frame differences. The inference module encodes

first frame of the input video to produce the content latent

space. Meanwhile, the features of all difference maps be-

tween consecutive frames are encoded to produce the motion

latent space. Separating the processing of motion and content

corresponds to spatio-temporal decomposition of the infor-

mation, which is widely used in video processing in applica-

tions for motion estimation, video compression, video classi-

fication and action recognition [11]. The motion stream en-

coder uses fully-connected layers to compress features from

all difference maps, resulting in latent space codes, instead of

using the Long Short Term Memory (LSTM) as in [10].

The architecture of EncGAN3, displayed in Fig. 1, con-

sists of three modules: Encoder (Enc), Generator (G) and

Discriminator (D). The video information is decomposed

into content and movement before it is input to the two-stream

Encoder resulting in content and motion latent codes, model-

ing probabilistic representations of video data. The Genera-

tor then transforms the two latent codes into three generation

streams corresponding to the content, motion and video re-

construction. The video reconstruction stream combines the

synchronized content and movement generation, resulting in a

consistent sequence of video frames. Each of the four stacked

modules, denoted as {G3
i |i = 0, . . . , 4} in G, fuses features

from the three streams at different scales, such as the one of

G3
0 shown in the upper middle dashed box in Fig. 1. A factor-

ized self-attention (F-SA) module [8] is placed between G3
3

and G3
4 aiming to improve the consistency of the generated

video stream. The F-SA module consists of a temporal-wise

followed by a spatial-wise self-attention module and enables

the generator to utilize cues from all spatio-temporal features

while modeling relationships between distinct regions. The

processing pipeline ends with a two-stream Discriminator de-

termining the realism of a randomly selected generated frame

as well as for the whole generated video, separately.

In order to ensure a realistic representation of the gener-

ated video, the Generator input should match the prior dis-

tribution assumption of the latent space from the VAE. For

ensuring this, we feed the Generator with the latent codes cre-

ated by the motion and content encoders and also with noise

data, sampled from a standard normal distribution, during the

training, as shown by the dashed line of data flow in Fig. 1.

4. ENCGAN3 LOSS FUNCTIONS

The loss function is characteristic of hybrid VAE-GAN mod-

els [4, 6] used for image generation. Each of the three mod-

ules in EncGAN3, visualized from left to right in Fig. 1, has

its own loss function and is trained individually.

First, the loss function of the two-stream encoder LEnc,

is defined as:

LEnc =
N∑

i=1

∥xi0 − x̂i0∥+
N∑

i=1

T∑

j=0

∥xij − x̂ij(v̂ij1 , x̂i0)∥

−DKL(qθx(zx|x)||p(zx))−DKL(qθv(zv|v)||p(zv))
(1)

where {xij} and {x̂ij} are the jth frame from the real i-

th video and its corresponding reconstruction, respectively.

j ∈ {0, · · · , T} while j1 ∈ {1, · · · , T}, where the latter rep-

resents the index of the difference map vij1 , calculated by

subtracting consecutive frames. The Kullack-Leibler (KL) di-

vergence DKL enforces content and motion encoders to pro-



(a) EncGAN3, UvA dataset (b) EncGAN3, Weizmann dataset (c) EncGAN3, KTH dataset

Fig. 2. Video frames generated by EncGAN3 on UvA, Weizmann and KTH datasets from left to right. Every other row in (a)

shows the difference maps used to represent the movement.

duce latent spaces qθx(zx|x) and qθv(zv|v) close to their as-

sumed prior distributions p(zx) and p(zv), when optimizing

parameters θx and θv for content and motion encoders. Both

prior distributions are set as standard Normal distributions,

N (0, I). The two-stream encoders trained together for better

performance, as in LEnc, rather than separate.

Secondly, the loss function of the Generator LG contains

both VAE and GAN loss components:

LG =Ex̂n∼G(zx,zv) log[D(x̂n)] + Ex̃n∼G(z̃x,z̃v) log[D(x̃n)]

+ Ezx∼qθx (zx|x),zv∼qθv (zv|v) log[D(G(zx, zv))]

+ Ez̃x∼N (0,I),z̃v∼N (0,I) log[D(G(z̃x, z̃v))]

+

N∑

i=1

∥xi0 − x̂i0∥+
N∑

i=1

T∑

j=0

∥xij − x̂ij(v̂ij1 , x̂i0)∥

(2)

where x̃n is a randomly picked frame from the video recon-

structed from the content and motion noises z̃x and z̃v. Both

random samples are sampled from the assumed Normal prior

distribution of the latent space, instead of being inferred from

the latent spaces provided by the encoder. By using random

variables z̃x and z̃v aims to enforce that G learns to recon-

struct well based on these inputs from prior distribution be-

cause LG does not have a KL divergence component. The

last two terms correspond to the reconstruction errors from

the VAE loss, which are also part of LEnc from Eq. (1), while

the other terms correspond to the GAN loss.

Thirdly, the loss function of the two-stream Discriminator

is an adversarial loss. Each of the three streams has its own

Discriminator while all three are trained in parallel. The loss

function of the image-stream Discriminator LDI
is :

LDI
=Exn∼p(x) log[D(xn)]

+ Ex̂n∼G(zx,zv) log[1−D(x̂n)]

+ Ex̃n∼G(z̃x,z̃v) log[1−D(x̃n)]

(3)

where xn ∼ p(x) is a frame sampled from the real video, x̂n

is from the video generated by latent codes and x̃n is the one

generated using N (0, I).

Eventually, there is the loss function LDV
for the video-

stream Discriminator :

LDV
=Ex0:T∼p(x0:T ) log[D(x0:T )]

+ Ez̃x∼N (0,I),z̃v∼N (0,I) log[1−D(G(z̃x, z̃v)]

+ Ex̂0:T∼p(x̂0:T ) log[1−D(x̂0:T )],

(4)

where x0:T = {x0, . . . ,xT } and x̂0:T = {x̂0, . . . , x̂T } rep-

resent the real videos and their reconstructions, while p(x0:T )
and p(x̂0:T ) are their probabilistic representations.

UvA Weizmann KTH

FID↓ FID↓ FID↓

VGAN* 235.01 158.04 -

TGAN* 216.41 99.85 -

MoCoGAN* 197.32 92.18 -

G3AN 91.77 98.27 111.99

EncGAN3 87.63 83.35 72.59

Table 1. FID↓ implies that lower FID means better visual

quality and spatio-temporal consistency. ”*” results are re-

ferred from [8].

IS↑ H(y)↑ H(y|x)↓ Dataset

85.44 6.041 1.593 UvA

G3AN 25.54 3.924 0.684 Weizmann

24.19 4.538 1.352 KTH

571.29 6.499 0.151 UvA

EncGAN3 42.60 3.959 0.207 Weizmann

50.48 4.812 0.891 KTH

Table 2. IS and its components for EncGAN3 and G3AN.

During the training, the Discriminator D is firstly updated

by optimizing LDI
and LDV

using equations (3) and (4), then

the Encoder using LEnc from Eq. (1), and eventually we re-

run the model with the optimized Discriminator and Encoder

on the same video and considering (z̃x, z̃v) as input to update

the Generator LG according to Eq. (2)

5. EXPERIMENTS

We generate video sequences of 16 frames (T = 15) and of

resolution 64×64 pixels, using EncGAN3, trained on the Py-

Torch deep learning platform, considering the learning rates



(a) zc1 ,zm1
(top) and (b) zc3 ,zm3

(top),

zc1 ,zm2
(bottom) zc4 ,zm4

(middle)

and their sum (bottom)

Fig. 3. Manipulating latent codes to generate related videos.

of 2 × 10−4. Frames generated by EncGAN3 after training

on UvA-NEMO [17], Weizmann [18] and KTH [19] datasets

are shown in Figures 2-a, b and c, respectively.

We evaluate EncGAN3 model performance using the

Fréchet Inception Distance (FID) [20] and Inception Score

(IS) [21]. Lower FID means better visual quality and spatio-

temporal consistency while higher IS represents better visual

quality and diversity. Inter-Entropy H(y) and Intra-Entropy

H(y|x) are components of the IS [7]. A higher H(y) indicates

better generated video diversity while lower H(y|x) means

better visual quality of generated videos. In Table 1, we com-

pare the FID for videos generated by EncGAN3 with G3AN

[8], VGAN [12], TGAN [13] and MoCoGAN [15]. Table 2

presents IS and its corresponding Inter-Entropy and Intra-

Entropy terms H(y) and H(y|x), where it can be observed that

EncGAN3 consistently achieves best results.

F-SA UvA Weizmann KTH

G3AN no 95.47 89.98 79.36

G3AN yes 91.77 88.08 75.38

EncGAN3(G) no 89.46 88.00 62.53

EncGAN3(G) yes 93.65 102.36 83.51

EncGAN3(Enc+G) no 87.52 82.43 73.79

EncGAN3(Enc+G) yes 87.16 83.36 72.59

Table 3. FID score when excluding some modules.

Architecture UvA Weizmann KTH

FID↓ IS↑ FID↓ IS↑ FID↓ IS↑

no GS ,GT 95.500 63.926 101.638 2.244 73.220 2.867

no GS 88.058 133.352 89.004 7.020 75.309 3.853

no GT 90.713 537.852 97.554 5.564 74.963 4.966

EncGAN3 87.16 571.29 78.935 8.906 70.448 5.986

Table 4. Contributions of the spatial GS and temporal GT

streams in the Generator G.

We perform an ablation study of specific components of

the EncGAN3. From Table 3 we observe that the presence

of the Encoder has a more substantial improvement than the

F-SA module, which only brings a small improvement. In

Table 3 EncGAN3 (G) would generate videos using only the

Generator while EncGAN3 (Enc+G) would use both Encoder

and Generator. We also evaluate the dual stream processing

by using generators GS and GT for content and movement

streams. From Table 4 the two auxiliary streams GS and GT

are necessary and clearly improving the model performance.

(a) KTH and Weizmann (b) UvA-NEMO

Fig. 4. Generated frames of 128× 128 pixel resolution.

Fig. 5. Generated videos with two moving objects.

We are also exploring the relationship between latent

codes and the generated frames as shown in Fig. 3. Frames

from the first and second rows of Fig. 3-a are generated from

the same content latent code but with different motion latent

codes based on videos from KTH dataset showing the same

person performing different movements. In Fig. 3-b, frames

from the third row are generated from the latent codes repre-

senting the sum of those used for the first and second rows. It

can be observed that the person in the third row inherits facial

properties from those shown in the rows above.

We test the EncGAN3 performance on generating videos

with the resolution of 128×128 pixels with the results shown

in Fig. 4, by adding a further G3 module to the previous struc-

ture used for generating 64× 64 pixels video frames. The top

two rows in Fig. 4-a show frames from KTH while the bottom

two rows from Weizmann. Fig. 4-b are from the UvA dataset

and the difference maps from under the face images in (b)

indicate the ability of EncGAN3 to generate subtle facial ex-

pression movement as in micro-expressions [22]. Unlike any

other video generation method, EncGAN3 is also able to gen-

erate complex videos with multiple moving objects, as shown

in Fig. 5 after being trained on the Weizmann dataset. Fig. 5

shows two persons doing either similar or different move-

ments at the same time in 128× 128 pixels videos.

6. CONCLUSION

In this research study, we propose to enable GAN-based video

generation models with inference mechanisms by embedding

an encoder, instead of the random generator. We consider

a dual stream generation process, for content and movement

streams, in both the encoder and generator within the Enc-

GAN3 model. The proposed model is shown to generate re-

alistic video sequences of resolutions up to 128 × 128, with

characteristics that can be controlled through latent codes and

even displaying multiple moving objects.
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