UNIVERSITYW

This is a repository copy of Task-Free Continual Learning via Online Discrepancy Distance
Learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/193130/

Version: Accepted Version

Proceedings Paper:

Ye, Fei and Bors, Adrian Gheorghe orcid.org/0000-0001-7838-0021 (2023) Task-Free
Continual Learning via Online Discrepancy Distance Learning. In: Advances in Neural
Information Processing Systems (NeurlPS). MIT Press , pp. 23675-23688.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/




Task-Free Continual Learning via
Online Discrepancy Distance Learning

Fei Ye and Adrian G. Bors

Department of Computer Science
University of York
York, YO10 5GH, UK
{fy689,adrian.bors}@york.ac.uk

Abstract

Learning from non-stationary data streams, also called Task-Free Continual Learn-
ing (TFCL) remains challenging due to the absence of explicit task information.
Although recently some methods have been proposed for TFCL, they lack theo-
retical guarantees. Moreover, forgetting analysis during TFCL was not studied
theoretically before. This paper develops a new theoretical analysis framework
which provides generalization bounds based on the discrepancy distance between
the visited samples and the entire information made available for training the model.
This analysis gives new insights into the forgetting behaviour in classification tasks.
Inspired by this theoretical model, we propose a new approach enabled by the
dynamic component expansion mechanism for a mixture model, namely the Online
Discrepancy Distance Learning (ODDL). ODDL estimates the discrepancy be-
tween the probabilistic representation of the current memory buffer and the already
accumulated knowledge and uses it as the expansion signal to ensure a compact
network architecture with optimal performance. We then propose a new sample se-
lection approach that selectively stores the most relevant samples into the memory
buffer through the discrepancy-based measure, further improving the performance.
We perform several TFCL experiments with the proposed methodology, which
demonstrate that the proposed approach achieves the state of the art performance.

1 Introduction

Continual learning (CL) and its extension to lifelong learning, represents one of the most desired
functions in an artificial intelligence system, representing the capability of learning new concepts
while preserving the knowledge of past experiences [32]. Such an ability can be used in many
real-time applications such as robotics, health investigative systems, autonomous vehicles [20] or for
guiding agents exploring artificial (meta) universes, requiring adapting to a changing environment.
Unfortunately, modern deep learning models suffer from a degenerated performance on past data
after learning novel knowledge, a phenomenon called catastrophic forgetting [13].

A popular attempt to relieve forgetting in CL is by employing a small memory buffer to preserve
a few past samples and replay them when training on a new task [1, 6]. However, when there
are restrictions on the available memory capacity, memory-based approaches would suffer from
degenerated performance on past tasks, especially when aiming to learn an infinite number of tasks.
Recently, the Dynamic Expansion Model (DEM) [51] has shown promising results in CL, aiming to
guarantee optimal performance by preserving the previously learnt knowledge through the parameters
of frozen components trained on past data, while adding a new component when learning a novel
task. However, such approaches require knowing where and when the knowledge associated with a
given task is changed, which is not always applicable in a real environment.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



In this paper, we address a more realistic scenario, called Task-Free Continual Learning (TFCL) [3],
where task identities are not available while the model can only access a small batch of samples
at a given time. Most existing CL methods requiring the task label can be adapted to TFCL by
removing the task information dependency. For instance, memory-based approaches can store a few
past samples from the data stream at each training time and replay them during later training steps
[8, 12]. However, such an approach requires to carefully design the sample selection criterion to
avoid memory overload. The key challenge for the memory-based approach is the negative backward
transfer caused by the stored samples that interfere with the model’s updating with incoming samples
[6]. This issue can be relieved by DEM in which previously learnt samples are preserved into
frozen components and do not interfere with the learning of probabilistic representations of new
data [24, 38]. However, these approaches do not provide any theoretical guarantees and there are no
studies analysing the trade-off between the model’s generalization and its complexity under TFCL.

Recent attempts have provided the theoretical analysis for CL from different perspectives including
the risk bound [46, 51], NP-hard problem [17], Teacher-Student framework [23, 58] and game theory
[37]. However all these approaches require strong assumptions, such as defining the task identities,
which is not available in TFCL. This inspires us to bridge the gaps between the underlying theory
and the algorithm implementation for TFCL. We propose a theoretical classification framework,
which provides new insights in the forgetting behaviour analysis and guidance for algorithm design
addressing catastrophic forgetting. The primary motivation behind the proposed theoretical framework
is that we can formulate forgetting as a generalization error in the domain adaptation theory. Based
on this analysis we extend the domain adaptation theory [29] to derive time-dependent generalization
risk bounds, explicitly explaining the forgetting process at each training step.

Inspired by the theory, we devise the Online Discrepancy Distance Learning (ODDL) method
which introduces a new expansion mechanism based on the discrepancy distance estimation for
implementing TFCL. The proposed expansion mechanism detects the data distribution shift by
evaluating the variance of the discrepancy distance during the training. This model enables a trade-off
mechanism between the model’s generalization and complexity. We also propose a new sample
selection approach based on the discrepancy-based criterion, which guides storing diverse samples
with respect to the already learnt knowledge, further improving performance. Our contributions are :

* This paper is the first research study to propose a new theoretical framework for TFCL, which
provides new insights into the forgetting behaviour of the model in classification tasks.

* Inspired by the theoretical analysis, we develop a novel dynamic expansion approach, which
ensures a compact model architecture enabled by optimal performance.

* We propose a new sample selection approach that selects appropriate data samples for the memory
buffer, further improving performance.

* The proposed method achieves state of the art results on TFCL benchmarks,

2 Related works

Continual learning defines a learning paradigm which aims to learn a sequence of tasks without
forgetting. Catastrophic forgetting is a major challenge in continual learning. One of the most popular
approaches to relieve forgetting is by imposing a regularization loss within the optimization procedure
[7, 11,13, 16, 19, 25, 26, 31, 34, 35, 40, 41, 57], where the network’s parameters which are important
to the past tasks are penalized when updating. Another kind of approaches for continual learning
focuses on the memory system, which usually employs a small memory buffer [1, 5, 6, 28, 36, 44, 59]
to store a few past data or trains a generator to provide the replay samples when learning new tasks
[38, 43, 46, 47, 52, 58, 53]. However, these approaches usually rely on knowing the task information,
which is not applicable in TFCL.

Task-free continual learning is a special scenario in CL where a model can only see one or very few
samples in each training step/time without having any task labels. Using a small memory buffer
to store past samples has shown benefits for TFCL and was firstly investigated in [3, 54, 56]. This
memory replay approach was then extended by employing Generative Replay Mechanisms (GRMs)
for training both a Variational Autoencoder (VAEs) [15] and a classifier, where a new retrieving
mechanism is used to select specific data samples, called the Maximal Interfered Retrieval (MIR), [2].
The Gradient Sample Selection (GSS) [1] is another sample selection approach that treats sample
selection as a constrained optimization reduction. More recently, a Learner-Evaluator framework



is proposed for TFCL, called the Continual Prototype Evolution (CoPE) [8] which stores the same
number of samples for each class in the memory in order to ensure the balance replay. Another
direction for the memory-based approaches is to edit the stored samples which would increase the
loss in the upcoming model updates, called the Gradient based Memory EDiting (GMED) [12], which
can be employed in the existing CL models to further enhance their performance.

Dynamic expansion models aim to automatically increase the model’s capacity to adapt to new tasks
by adding new hidden layers and units. Such an approach, called the Continual Unsupervised
Representation Learning (CURL) [38], dynamically builds new inference models when meeting the
expansion criterion. However, since CURL still requires a GRM to relieve forgetting, it would lead
to a negative knowledge transfer when updating the network’s parameters to adapt to a new task.
This issue can be addressed by using Dirichlet processes by adding new components while freezing
all previously learnt members, in a model called the Continual Neural Dirichlet Process Mixture
(CN-DPM), [24]. However, the expansion criterion used by these approaches relies on the change of
the loss when training each time, which does not have any theoretical guarantees.

3 Theoretical analysis of TFCL

In this section, we firstly introduce learning settings and notations, and then we analyze the forgetting
behaviour for a single as well as for a dynamic expansion model by deriving their Generalization
Bounds (GBs).

3.1 Preliminary

Let X be the input space and )Y represent the output space which is {—1,1} for binary classi-

T
fication and {1,2,...,n'},n’ > 2 for multi-class classification. Let DI = {XJT, JT}jv;l and

Dy = {x§, 45 }jvil represent the training and testing sets for the i-th dataset where x! € X’ and
y]T € ) are the image and the associated ground truth label. N} and N;° are the total number of
samples for DI and Dis , respectively. In the paper, we mainly focus on the task-free class-incremental

learning, described as follows.

Definition 1. (Data stream.) For a given ¢-th training dataset D7 with C data categories, let us
consider a data stream S which consists of samples Df ; from each category, expressed by S =

S
Uf;l Dy;. Let D] represent the set of samples drawn from the j-th category of Df. Let P}
and IF’E ; represent the distributions for DZ ; and Df ;> respectively. Let PZ}X represent the marginal
distribution over X.

Definition 2. (Learning setting.) Let 7; represent the i-th training step. For a given data stream
S, we assume that there are a total of n training steps for S, where each training step 7; is
associated with a small batch of paired samples {X% Y?} drawn from S, expressed by S =
Ui (X2, Y0}, {XE Y2} n {X5,YP} = @, where i # j and a model (classifier) can only
access {X?, Y%} at 7; while all previous batches are not available. After finishing all training steps,
we evaluate the classification accuracy of the model on the testing set D . In the following, we define
the model and the memory buffer.

Definition 3. (Model and memory.) Let us consider 4 a model implemented by a classifier, and
H ={h|h: X — Y} the space of classifiers. Let M; be a memory buffer at 7;. We assume that
M; randomly removes samples from the memory buffer while continually adding new data to its
memory at each training step. Let P4, represent the probabilistic representation of M; and | M;] its
cardinality.

3.2 Measuring the distribution shift

In TFCL, the distance between the target domain (testing set) and the source domain (memory)
would be dynamically changed during each training step. We can use the discrepancy distance [29]
to measure this gap through the analysis of the model’s risk.



Definition 4. (The risk.) For a given distribution IE”t o the risk of a model h is defined as R(h7 ]P’g j) 2

E{x,y}NPf,- [L(y, h(x))] where £L: Y x Y — [0,1] is the loss function.

Definition 5. (Discrepancy distance.) For two given distributions ]P’T and ]P’f o
tance L, is defined on two marginals as :

La (P?JX’ PS:JX) £ h :};EH‘Z Ex~]P’f_’f [E(h(x), h/(x))} - Ex~]P‘f’,’_7.X [E(h(x), h/(x))]

the discrepancy dis-

;o (D

where {h, h'} € H. In practice, the discrepancy distance L4(-, -) can be estimated as the upper bound
based on the Rademacher complexity which is used in the domain adaptation theory as a measure of
richness for a particular hypothesis space [30, 60].

Corollary 1. [29] For two given domains P; X and ]P’S X let Up and Up represent sample sets of
sizes mp and mp, drawn independently from IPT X and IF’S jX Let IE”TJX and IP’S X represent the

empirical distributions for Up and Up. Let £(x x) = |x — x|! be a loss functron (L1-Norm),
satisfying V(x,x’) € X, L(x,x’) > M, where M > 0. Then, with the probability 1 — J, we have :

4 4
E (PTX PSX)<£d(PTX PSX)+C*+3M \/log(é) +\/10g(5) , (2)

ti o bi o QTRP 2m[p>

where C* = 4q (Rey, (H) + Rey, (H)) and Rey,, (H) is the Rademacher complexity (Appendix-
B from Supplemental Material (SM)). Let £ (PP tTJX, IP’S X) represent the Right-Hand Side (RHS)
of Eq. (2). We also assume that £: ) x J — [0, 1] is a symmetric and bounded loss function
V(y,y') € Y2, L(y,y') < U’, and L(-,-) obeys the triangle inequality, where U’ is a positive number.

3.3 GB for a single model

Based on the definitions from Section 3.2, we firstly derive the GB that can describe the learning
process of a single model under TFCL.

Theorem 1. Let P; represent the distribution of all visited training samples (including all previous
batches) drawn from S at 7;. Let hp, = arg minpey R(h, P;) and haq, = arg mingey R(h, Pag,)
represent the ideal classifiers for P; and P4, respectively. We derive the GB between P; and P4, ,
based on the results from Corollary 1 :

R(h,Pi) < R(hhaty, Pagy) + L7(PE PR +0(Pi Pagy) (3)

where 7)(P;,Paq,) is the optimal combined error R(hp,,ham,, Pi) + R(hp,, h3, , P;) where
R(hp,s ha,, Pa,) is the risk, expressed by Exp,,, [C(hp; (X), ha; (x))] and b, is the true label-
ing function for P;.

The proof is provided in Appendix-A from the SM. Compared to the GB used in the domain adaptation
[29], Theorem 1 provides an explicit way to measure the gap between the model’s prediction and
the true labels in each training step (7;). During the initial training stages (when 7 is very small),
the memory M, can store all previous samples and GB is tight. However, as the number of training
steps increases, the discrepancy distance £3(P;*, P, ) would increase because M; would lose
the knowledge about previously learnt samples Th1s can lead to a degenerated performance on P;,
corresponding to the forgetting process. Next we extend Theorem 1 to analyze the generalization
performance on testing sets.

Theorem 2. For a given target domain Hﬂ:j, we derive the GB for a model at the training step 7; :

R(h L) < R(h ha, Bae) + LB PR, +n(BE, Par,) @
The proof is similar to that for Theorem 1. We can observe that the generalization performance on a
target domain P _j» by amodel h is relying mainly on the discrepancy distance between IP’ and
P r4,. In practice, we usually measure the generalization performance of h on several data categorles

where each category is represented by a different underlying distribution. In the following, we extend
Theorem 2 for multiple target distributions.

Lemma 1. For a given data stream S = U D75 ’; consisting of samples from Dy, let DI be the
corresponding testing set and IP ; represent the distribution of samples for the j-th category from



DI, we derive the GB for multiple target domains as:
i e
S {RMEE)} < X (R a) + £ PR + 0P Pa) f o O

where C/' represents the number of testing data streams.

Remarks. Lemma 1 had the following observations : 1) The optimal performance of the model h on
the testing set can be achieved by minimizing the discrepancy distance between each target domain
]P’T ¥ and the distribution P M, at the training step 7;. 2) [17] employs the set theory to theoretically
demonstrate that a perfect memory is crucial for CL. In contrast, we evaluate the memory quality
using the discrepancy distance in Eq. (5), which provides a practical way to investigate the relationship
between the memory and forgetting behaviour of existing approaches [6, 8] at each training step
without requiring any task information (See more details in Appendix-D from SM). 3) [51] introduces
a similar risk bound for forgetting analysis, which still requires the task information. In contrast,
the proposed GB can be used in a more realistic CL scenario. Moreover, we provide the theoretical
analysis for component diversity (Appendix-C from SM), which is missing in [51].

3.4 GB for the dynamic expansion mechanism

As discussed in Lemma 1, a memory of fixed capacity would lead to degenerated performance on all
target domains. The other problem for a single memory system is the negative backward transfer
[27] in which the performance of the model is decreased due to samples being drawn from entirely
different distributions [14]. A Dynamic Expansion Model (DEM) can address these limitations from
two aspects :1) DEM relieves the negative transfer by preserving the previously learnt knowledge into
a frozen component from a mixture system; 2) DEM would achieve better generalization performance
under TFCL by allowing each component to model one or only a few similar underlying data
distributions. We derive GB for DEM and show the advantages of DEM for TFCL.

Definition 7. (Dynamic expansion mechanism.) Let G represent a dynamic expansion model and G
represent the j-th component in G, implemented by a single classifier. G starts with training its first
component during the initial training phase and would add new components during the following
training steps. In order to overcome forgetting, only the newly created component is updated each
time, while all previously trained components have their parameters frozen.

Theorem 3. For a given data stream S = {X},--- , X%}, let P(s,5) represent the distribution of the
j-th training batch Xé’. (visited) drawn from S at 7;. We assume that G = {G1,--- , G} trained ¢

components at 7;. Let 7 = {Tx,,--- , Tk, } be a set of training steps, where G; was frozen at Ty,
We derive the GB for G at 7; as:

T2 ARMPap) <D0 {Fs(Pun )}, ©)
where Fg(-, ) is the selection function, defined as :
Fs (Pl 0) 2 min {R(bhae, Ba) + £4(PE B ) + (P Ban) | @)

where P r4, . represents the memory distribution at Tk, - The proof is provided in Appendix-B from
SM. It notes that F s(+,-) can be used for arbitrary distributions. We assume an ideal model selection
in Eq. (7), where always the component with the minimal risk is chosen. DEM can achieve the
minimal upper bound to the risk (Left Hand Side (LHS) of Eq. (6)) when comparing with a single
model (Theorem 3),. Then, we derive the GB for analyzing the generalization performance of G on
multiple target distributions.

S
Lemma 2. For a given data stream S = UJC’ Df ; consisting of samples from Dy, we have a set
of target sets {Df - , D] CT} where each Df; contains C} ; batches of samples. Let P{(d)
represent the dlstrlbutlon of the d-th batch of samples in DT . We assume that G consists of ¢
components trained on samples from S, at 7;. We derive the GB for multiple target domains as :

cl cy cr ,
t T t t,J T
YRR ORI AT D SR O B (NG
Remark. We have several observations from Lemma 2 : 1) The generahzation performance of G is
relying on the discrepancy distance between each target distribution IP ,; and the memory distribution



P a4, of the selected component (Also see details in Appendix-C from SM). 2) Eq. (8) provides the
analysis of the trade-off between the model’s complexity and generalization for DEM [24, 38]. By
adding new components, G would capture additional information of each target distribution and thus
improve its performance. On the other hand, the selection process ensures a probabilistic diversity of
stored information, aiming to capture more knowledge with a minimal number of components.

In practice, we usually perform the model selection for G by using a certain criterion that only
accesses the testing samples without task labels. Therefore, we introduce a selection criterion F(-, -),
implemented by comparing the sample log-likelihood :

ﬁ (Pg:_] (d)v g) é a;fg mZ‘X {]ExwlP’zjj (d) [f(X, ij )] }7 (9)

°15° 5 Re

where j = {1,---,¢} and f(-,-) is a pre-defined sample-log likelihood function. Then Eq. (9) is
used for model selection:

Fs(PL;(),G) = {R(h, har., Par,) + £3(Py5 (), PR, ) +0(PE(d), P, )|
s =PF(PL(d),0)}. (10)
We rewrite Eq. (8) using Eq. (10), resulting in :
o o

S AT RO @)} < ST T FsEL@9)} ) a

Compared with an ideal solution (Eq. (8)), Eq. (11) would involve the extra error terms caused by the

T b
selection process (Eq. (10)), expressed as Z;‘C£1 { Zi{ {Fs(Pf;(d),G) — Fs(PF,(d),G)} } In
Section 4, we introduce a new CL framework according to the theoretical analysis.

3.5 Parallels with other studies defining lifelong learning bounds

In this section, we discuss the differences between the results in this paper and those from other
studies proposing lifelong learning bounds. The bound (Theorem 1) in [30] assumes that the model is
trained on all previous samples, which is not practical under a TFCL setting. In contrast, in Theorem
1 from this paper, the model is trained on a memory buffer, which can be used in the context of
TFCL. In addition, the bounds in [30] mainly provide the theoretical guarantees for the performance
when learning a new data distribution (Theorem 1 from [30]), which does not provide an analysis
of the model’s forgetting. In contrast, this paper studies the forgetting analysis of our model and its
theoretical developments can be easily extended for analyzing the forgetting behaviour of a variety of
continual learning methods, while this cannot be said about the study from [30] (See Appendix-D
from supplemental material).

When comparing with [33], our theoretical analysis does not rely on explicit task boundaries, which
is a more realistic assumption for TFCL. In addition, [33] employs the KL divergence to measure the
distance between two distributions, which would require knowing the explicit distribution form and
is thus hard to evaluate in practice during the learning. However, our theory employs the discrepancy
distance, which can be reliably estimated. Moreover, the study from [33] does not develop a practical
algorithm to be used according to the theoretical analysis. In contrast, our theory provides guidelines
for the algorithm design under the TFCL assumption. Finally, inspired by the proposed theoretical
analysis, this paper develops a successful continual learning approach for TFCL.

Theorem 1 in [4], similarly to [30], assumes that the model is trained on uncertain data sets over
time, which would not be suitable for TFCL since the model can not access previously learnt samples
under TFCL. In contrast, Theorem 1 in our theory represents a realistic TFCL scenario in which the
model is trained on a fixed-length memory buffer and is evaluated on all previously seen samples.
Therefore, the analysis for the forgetting behaviour of the model under TFCL relies on Theorem 1
and its consequences. In addition, the study from [4], similarly to [30, 33], only provides a theoretical
guarantee for a single model. In contrast, we extend our theoretical analysis to the dynamic expansion
model, which motivates us to develop a novel continual learning approach for TFCL. Moreover, this
paper is the first work to provide the theoretical analysis for the diversity of knowledge recorded by
different components (See Appendix-C from supplemental material). This analysis indicates that
by maintaining the knowledge diversity among different components we ensure a good trade-off
between the model’s complexity and generalization performance, thus providing invaluable insights
into algorithm design for TFCL.



4 Methodology

4.1 Network architecture

Each component G; € G consists of a classifier 4; implemented by a neural network f_, (x) with
trainable parameters Sj, and a variational autoencoder (VAE) model implemented by an encodlng
network enc,,; as well as the corresponding decoding network decg,, with trainable parameters
{wj,0;}. Due to its robust generation and inference mechanisms, VAE has been widely used in
many applications [48, 55, 49, 50, 51, 61]. This paper employs a VAE for discrepancy estimation
and component selection. The loss function for the j-th component at 7; is defined as :

| M|
Eclass(G]aM |M | Z {‘Cce )73/75)}; (12)

Lyap(Gj, M;) 2 Eq., (s [0gDe; (x¢|2)] — Dt [qw; (2| %) || p(2)] , (13)

where {x;,y.} ~ M,;, where |M;]| is the memory buffer size, and L..(-) is the cross-entropy
loss. Ly ag(-,-) is the VAE loss [15], ps, (x¢|2) and q,,; (z | x;) are the encoding and decoding
distributions, implemented by enc,,; and decy,, respectively. We also implement f (+,+) in Eq. (9) by
—Lyv ag(+, ) for the component selection at the testing phase. The training algorithm for the proposed
ODDL consists of three stages (See more information in Appendix-E from SM). In the initial training
stage, we aim to learn the initial knowledge of the data stream and preserve it into a frozen component
G'1, which can provide information for the dynamic expansion and sample selection evaluation in
the subsequent learning. During the evaluator training stage we train the current component as the
evaluator that estimates the discrepancy distance between each previously learnt component and the
memory buffer, providing appropriate signals for the model expansion. In the sample selection stage,
we train the current component with new data, while we aim to promote knowledge diversity among
components.

In the following, we firstly propose a new dynamic expansion mechanism based on the discrep-
ancy criterion. Then we introduce a new sample selection approach that can further improve the
performance of the model. Finally, we provide the detailed algorithm implementation.

4.2 Discrepancy based mixture model expansion

From Lemma 2, we observe that the probabilistic diversity of trained components in G can ensure a
compact network architecture while maintaining a good generalization performance (See Theorem
4 in Appendix-C from SM). In order to achieve this, we maximize the discrepancy between each
trained component of G and the current memory buffer, during the training, by using the discrepancy
distance (notations are defined in Theorem 3), expressed as :

M* —argmaxz {E ]P’Mk ,IP’fAi)}, (14)

where ¢ = k. + 1,--- ,n represents the index of the training steps and k. is the c-th component
trained at 7, . M™* is the optimal memory. Eq. (14) can be seen as a recursive optimization problem
when G dynamically adds new components (c is increased) during the training. In order to provide a
practical way to solve Eq. (14) while balancing the model’s complexity and performance, we derive
an expansion criterion based on the discrepancy distance :

min{c (IPMk,IP’f/“)U:l,---,c}Z)\, (15)

where A € [0,4] is an architecture expansion threshold. If the current memory distribution Py,
is sufficiently different from each component (satisfies Eq. (15)), G will add a new component to
preserve the knowledge of the current memory M, while also encouraging the probabilistic diversity
among the trained components.

In the following, we describe the implementation. We start by training the first component Gy which
consists of a classifier h; (classification task) and a VAE model v; (model selection at the testing
phase). We also train an additional component called the evaluator G, = {h.,v.}, at the initial
training stage, which aims to capture the future information about the data stream. Once the memory
M reaches its maximum size at 7;, we freeze the weights of the first component to preserve the
previously learnt knowledge while continually training the evaluator during the following training



steps. Since the evaluator continually captures the knowledge from the current memory M;, we
check the model expansion using Eq. (15) at 7; :

Li(PRa,,»PAr,) = A (16)
It notes that we can not access the previously learnt memory distribution Pj\(/lkl and we approximate it
by using the auxiliary distribution ]P’fj formed by samples drawn from v{ of G, where the superscript
j represents the first component 4ﬁnisllling the training at 7;. £3(-, -) is the estimator of the discrepancy
distance, achieved by h% and h7.
Eprr [£(](0).1(0)] ~ Exery, [£(h00. )] a7)

1

B INE

If Eq. (16) is fulfilled, then we add G? into the model G while building a new evaluator (Gt = G4t1)
at T;41; otherwise, we train G2 — G4 at the next training step, 7;1. Furthermore, for satisfying
the diversity of knowledge in the components from the mixture model (See Lemma 2), we clear the
memory M, when performing the expansion in order to ensure that we would learn non-overlapping
distributions during the following training steps. We can also extend Eq. (16) to the expansion
criterion for G = {Gq,--- ,Gs_1} that has already preserved (s — 1) components, illustrated in
Fig. 1:

nﬁn{ﬁQ&f@,Pﬁ)\j::L-~,s—]};zA, (18)
J

v
J

where IP’ij is the distribution of the generated samples by ij and denote S; = L} (]P’X,cj P Mi)‘

4.3 Sample selection

According to Lemma 2, the probabilistic diver-
sity of the knowledge accumulated in the com-
ponents is crucial for the performance. In the
following, we also introduce a novel sample se-
lection approach from the memory buffer that
further encourages component diversity. The
primary motivation behind the proposed sample
selection approach is that we desire to store in
the memory buffer those samples that are com-
pletely different from the data used for training Figure 1: We generate the knowledge by using the
the other components. This mechanism enables VAE (V}) of each previous component G ] =
the currently created component to capture a 1, ,s — 1, which is used to evaluate the discrep-
different underlying data distribution. To im- ancy distance S; = L3 (PZ‘Z ) PMi) at 7; (Eq. (17))
plement this goal, we estimate the discrepancy between G; and the memory buffer. Then we use
distance on a pair of samples as the diversity these discrepancy scores {S1, -+ ,Ss_1} to check

score : ) the model expansion (Eq. (18))
A

L£3(G.xc) = Do, [ (xe) B (xe)) = Ly (x5), e (%))
where x. and Xft are the c-th sample from M, and the generated one drawn from Gf*, respectively.
hft (+) is the classifier of Gf‘ in G. Eq. (19) evaluates the average discrepancy distance between the
knowledge generated by each trained component and the stored samples, which guides for the sample
selection at the training step (7;) as :

Expand the network
Architecture

Perform the sample
selection

19)

b

IMil=b
M= Milil, (20)

where M, is the sorted memory that satisfies the condition £3(G, M[a]) > L3(G, M[q]) fora < q.
M. [j] represents the j-th stored sample and b = 10 is the batch size. We name the approach with
sample selection as ODDL-S.

4.4 Algorithm implementation

We provide the pseudocode (Algorithm 1) in Appendix-E from SM. The algorithm has three main
stages :
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Figure 2: The forgetting analysis of a single model and DEM in (a) and (b) where the batch size is
64 in the data stream. Data distribution shift and increasing the number of components in ODDL-S
during the training in (c).

* (Initial training). We start by building two components {G1, G2} where we only add G; in G and
consider Gy = G, as the Evaluator. G; and G4 are trained jointly using Eq. (13) and Eq. (12)
during the initial training stage until the memory M reaches its maximum size |M|™%" at a
certain training step 7;. Then we freeze the first component GG; and perform the second stage.

¢ (Evaluator training). In this stage, we only update the Evaluator using Eq. (13) and Eq. (12) on
M at Tipr. I | Mjq| > |[M]™", then we evaluate the discrepancy distance using Eq. (17)
to check the expansion (Eq. (18)). If the expansion criterion is satisfied then we add G, to G and
build a new Evaluator while cleaning up the memory M, otherwise, we perform the sample
selection.

* (Sample selection). We evaluate the diversity score for each stored sample in M1, using Eq. (19).
We then perform the sample selection for M using Eq. (20) and return back to the second
stage.

S Experiments

We perform the experiments to address the following research questions: 1) What factors would
cause the model’s forgetting, and how to explain such behaviour? 2) How efficient is the proposed
ODDL-S under TFCL benchmarks? 3) How important is each module in OODL-S?

In this experiment, we adapt the TFCL setting from [8] which employs several datasets including Split
MNIST [22], Split CIFAR10 [18] and Split CIFAR100 [18]. The detailed information for datasets,
hyperparameters and network architectures is provided in Appendix-F from the supplementary
material. The code is available at https://dtuzil23.github.io/0DDL/.

5.1 Empirical results for the forgetting analysis

In this section, we investigate the forgetting be- Table 1: The accuracy of various continual learn-
haviour of the model according to the proposed ing models for five independent runs.
theoretical framework. Firstly, we train a single

classifier A under Spht MNIST database’ as a base- Methods Split MNIST Split CIFAR10 Split CIFAR100
line, with a memory buffer of the maximum size of  fipetyne* 1975 4 0.05 1855+ 034  3.53 4+ 0.04
2000, and we randomly remove a batch of stored GEm* 93254036 24.13+£246 11124248
samples (batch size is 10) when the memory is full. iCARL* 83.95+021 3732+£2.66 10.80+£0.37
Then we estimate R (h, P;) (target risk on all vis- eservoir 9216 £ 075 4248 £3.04  19.57£1.79
MIR* 93204036 42.80+222  20.00 £ 0.57

ited training samples), R(h, hat,, Paq,) (source o, 9247 £092 3845+ 141 1310+ 094
risk on the memory). We plot the results in Fig. 2-  cope-cE+ 9177 £087 3073 4+226 1833+ 1.52
a, where “Random (Source risk)” represents the = CoPE* 93.94 4020 4892+ 132  21.62 =+ 0.69
source risk of a single classifier. The results show ER+GMED{ 82.67+ 190 34.84+£220 2093+ 1.60
that the source risk always keeps stable, and the ~FRe + GMEDf 8221£290 47474320 19.60 +1.50
isk is small for a few initial training steps  Cone. 9239 E066 ]
target risk 1s sma ' & SepS  \ppwm 93234009 4521 +0.18 2010+ 0.12
since the memory can capture all information of = pyramic-ocM 9402 +£023 49.16 + 152 2179 + 0.68
visited samples. However, as the number of train- 5550 9485 1002 S48 L1012 26201072
ing steps grows, the target risk is increased, which  opprs 9575 + 005 52694+ 0.11 2721+ 0.87
is caused by the memory that loses previous sam-




ples, theoretically explained in Theorem 1. We also evaluate the risk of the baseline on all testing sets
(target risk) and plot the results in Fig. 2-b where it is observed that the single model always leads to
a large target risk during the training.

We evaluate the source and target risks for the proposed ODDL under Split MNIST and plot the
results in Fig. 2. The performance of ODDL on the distribution P; (Target risk) does not degenerate
during the whole training phase. At the same time, the baseline tends to increase the target risk on P;
as the training steps increase, as shown in Fig. 2-a. Finally, the risk on all target distributions (all
categories in the testing set) from each training step is shown in Fig. 2-b, where the proposed ODDL
minimizes the target risk as gaining more knowledge during the training. In contrast, the baseline
invariably leads to a large target risk even when the number of training steps increases. These results
show that ODDL can relieve forgetting and achieve better generalization than the random approach
on all target sets.

5.2 Results on TFCL benchmark

We provide the results in Tab. 1 where * and T denote the results cited from [8] and [12], respectively.
We compare with several baselines including: finetune that directly trains a classifier on the data
stream, GSS [1], Dynamic-OCM [54], MIR [2], Gradient Episodic Memory (GEM) [27], Incremental
Classifier and Representation Learning (iCARL) [39], Reservoir [45], CURL, CNDPM, CoPE, ER +
GMED and ER, + GMED [12] where ER is the Experience Replay [42] and ER,, is ER with data
augmentation. The number of components in ODDL-S and ODDL for Split MNIST, Split CIFAR10
and Split CIFAR100 is 7, 9, 7, respectively. The proposed approach outperforms CNDPM, which
uses more parameters, on all datasets and achieves state-of-the-art performance.

In the following, we also evaluate the performance of Table 2: Classification accuracy for
the proposed approach on the large-scale dataset (MINI- 20 runs when testing various mod-
ImageNet [21]), and Permuted MNIST [9]. We split MINI- els on Split MImageNet and Permuted
ImageNet into 20 tasks (See details in Appendix-F1 from MNIST.

SM), namely Split MImageNet. We follow the setting from

[2] where the maximum memory size is 10K, and a smaller ~Methods Split MImageNet = Permuted MNIST
version of ResNet-18 [10] is used as the classifier. The hy- ggr, 2500 4+ 12 78.11 + 0.7
perparameter A used for learning Split MINI-ImageNet and ER+GMED 2727418 78.86 + 0.7
Permuted MNIST is equal to 1.2 and 1.5, respectively. We MIR+GMED  26.50 & 1.3 79.25+ 0.8
compare with several state-of-the-art methods under Split 1(\;41{1[]{3 ot 2257211211252 ;3(1,; i g;
MImggeNet, re.ported in Tab. 2, where the results of other e = ‘45 = 0‘9 82'33 = 0‘6
baselines are cited from [12]. These results show that the ODDL.S 3868 4 15 8356 £ 0.5

proposed ODDL-S outperforms different baselines under
the challenging dataset.

5.3 Ablation study

We investigate whether the proposed discrepancy-based criterion can provide better signals for the
expansion of ODDL-S. We train ODDL-S on Split MNIST, where we record the variance of tasks
and the number of components in each training step. We plot the results in Fig. 2-c where “task”
represents the number of tasks in each training step. We observe that the proposed discrepancy-based
criterion can detect the data distribution shift accurately, allowing ODDL-S to expand the network
architecture each time when detecting the data distribution shift. This also encourages the proposed
ODDL-S to use a minimal number of components while achieving optimal performance, as discussed
in Lemma 2. We also provide the analysis of how to maximize the memory bound in Appendix-F2.2,
while more ablation study results are provided in Appendix-F.2 from the supplementary material.

6 Conclusion

In this paper, we develop a novel theoretical framework for Task-Free Continual Learning (TFCL), by
defining a statistical discrepancy distance. Inspired by the theoretical analysis, we propose the Online
Discrepancy Distance Learning enabled by a memory buffer sampling (ODDL-S) model, which trades
off between the model’s complexity and performance. The memory buffer sampling mechanism
ensures the information diversity learning. The proposed theoretical analysis provides new insights
into the model’s forgetting behaviour during each training step of TFCL. Experimental results on
several TFCL benchmarks show that the proposed ODDL-S achieves state-of-the-art performance.

10



References

(1]

2

—

3

—

[4

—_

(5

—

[6

—_

[7

—

[8

—

[9

[

(10]

(11]

[12]

(13]

[14]

(15]
[16]

(17]

(18]

(19]

(20]

R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient based sample selection for online continual learn-
ing. In Advances in Neural Information Processing Systems (NeurIPS), arXiv preprint arXiv:1903.08671,
2019.

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin, and
Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. In Advances in Neural
Information Processing Systems (NeurlPS), arXiv preprint arXiv:1908.04742, 2019.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Proc. of
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pages 11254-11263, 2019.

Verénica Alvarez, Santiago Mazuelas, and José Antonio Lozano. Minimax classification under concept
drift with multidimensional adaptation and performance guarantees. In Proc. International Conference on
Machine Learning (ICML), vol. PMLR 162, pages 486499, 2022.

Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow memory:
Continual learning with a memory of diverse samples. In Proc. of IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 8218-8227, 2021.

A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. Dokania, P. H. S. Torr, and M.’ A. Ranzato. On
tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486, 2019.

W. Dai, Q. Yang, G. R. Xue, and Y. Yu. Boosting for transfer learning. In Proc. Int Conf. on Machine
Learning (ICML), pages 193-200, 2007.

Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from non-
stationary data streams. In Proc. of the IEEE/CVF Int. Conf. on Computer Vision (ICCV), pages 8250-8259,
2021.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. In arXiv preprint arXiv:1312.6211, 2014.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. of IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pages 770-778, 2016.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In Proc. NIPS Deep
Learning Workshop, arXiv preprint arXiv:1503.02531, 2014.

Xisen Jin, Arka Sadhu, Junyi Du, and Xiang Ren. Gradient-based editing of memory examples for online
task-free continual learning. In Advances in Neural Information Processing Systems (NeurIPS), arXiv
preprint arXiv:2006.15294, 2021.

H. Jung, J. Ju, M. Jung, and J. Kim. Less-forgetting learning in deep neural networks. In Proc. AAAI Conf.
on Artificial Intelligence, volume 32, pages 3358-3365, 2018.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu. Achieving forgetting prevention and knowledge
transfer in continual learning. Advances in Neural Information Processing Systems, 34, 2021.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114, 2013.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan,
T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell. Overcom-
ing catastrophic forgetting in neural networks. Proc. of the National Academy of Sciences (PNAS),
114(13):3521-3526, 2017.

Jeremias Knoblauch, Hisham Husain, and Tom Diethe. Optimal continual learning has perfect memory
and is NP-hard. In Proc. Int. Conf. on Machine Learning (ICML), vol PMLR 119, pages 5327-5337, 2020.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical
report, Univ. of Toronto, 2009.

Richard Kurle, Botond Cseke, Alexej Klushyn, Patrick van der Smagt, and Stephan Giinnemann. Continual
learning with Bayesian neural networks for non-stationary data. In Int. Conf. on Learning Representations
(ICLR), 2020.

Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber Fallah. A survey of deep learning
applications to autonomous vehicle control. IEEE Transactions on Intelligent Transportation Systems,
22(2):712-733, 2020.

11



[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

[41]

Ya Le and Xuan Yang. Tiny imageNet visual recognition challenge. Technical report, Univ. of Stanford,
2015.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proc. of the IEEE, 86(11):2278-2324, 1998.

Sebastian Lee, Sebastian Goldt, and Andrew Saxe. Continual learning in the teacher-student setup: Impact
of task similarity. In Proc. Int. Conf. on Machine Learning (ICML), vol. PMLR 139, pages 6109-6119,
2021.

Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural Dirichlet process mixture model
for task-free continual learning. In Int. Conf. on Learning Representations (ICLR), arXiv preprint
arXiv:2001.00689, 2020.

Z. Li and D. Hoiem. Learning without forgetting. [EEE Trans. on Pattern Analysis and Machine
Intelligence, 40(12):2935-2947, 2017.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. TRGP: Trust region gradient projection for continual
learning. In Int. Conf. on Learning Representations (ICLR), arXiv preprint arXiv:2202.02931, 2022.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pages 6467-6476, 2017.

Divyam Madaan, Jaechong Yoon, Yuanchun Li, Yunxin Liu, and Sung Ju Hwang. Representational
continuity for unsupervised continual learning. In Int. Conf. on Learning Representations (ICLR), arXiv
preprint arXiv:2110.06976, 2022.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds and
algorithms. In Proc. Conf. on Learning Theory (COLT), arXiv preprint arXiv:2002.06715, 2009.

Mehryar Mohri and Andres Munoz Medina. New analysis and algorithm for learning with drifting
distributions. In International Conference on Algorithmic Learning Theory, pages 124—138. Springer,
2012.

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning. In Int.
Conf. on Learning Representations (ICLR), arXiv preprint arXiv:1710.10628, 2018.

G. L. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning with neural
networks: A review. Neural Networks, 113:54-71, 2019.

Anastasia Pentina and Christoph H Lampert. Lifelong learning with non-iid tasks. In Proc. Advances in
Neural Information Processing Systems (NIPS), pages 1540-1548, 2015.

R. Polikar, L. Upda, S. S. Upda, and Vasant Honavar. Learn++: An incremental learning algorithm for
supervised neural networks. /IEEE Trans. on Systems Man and Cybernetics, Part C, 31(4):497-508, 2001.

Mozhgan PourKeshavarzi, Guoying Zhao, and Mohammad Sabokrou. Looking back on learned experiences
for class/task incremental learning. In Int. Conf. on Learning Representations (ICLR), 2022.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. GDumb: A simple approach that questions our
progress in continual learning. In Proc. European Conference on Computer Vision (ECCV), vol. LNCS
12347, pages 524-540, 2020.

Krishnan Raghavan and Prasanna Balaprakash. Formalizing the generalization-forgetting trade-off in
continual learning. Advances in Neural Information Processing Systems, 34, 2021.

Dushyant Rao, Francesco Visin, Andrei A. Rusu, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell.
Continual unsupervised representation learning. In Proc. Neural Inf. Proc. Systems (NIPS), pages 7645—
7655, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL: Incre-
mental classifier and representation learning. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 2001-2010, 2017.

B. Ren, H. Wang, J. Li, and H. Gao. Life-long learning based on dynamic combination model. Applied
Soft Computing, 56:398-404, 2017.

Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured Laplace approximations for
overcoming catastrophic forgetting. In Advances in Neural Information Processing Systems (NeurIPS),
volume 31, pages 3742-3752, 2018.

12



[42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

(591

(60]

[61]

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Gregory Wayne. Experience
replay for continual learning. In Advances in Neural Information Processing Systems 34 (NeurIPS), pages
348-358, 2019.

H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning with deep generative replay. In Advances in
Neural Inf. Proc. Systems (NIPS), pages 2990-2999, 2017.

Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, and Michalis Titsias. Information-theoretic
online memory selection for continual learning. In Int. Conf. on Learning Representations (ICLR), arXiv
preprint arXiv:2204.04763, 2022.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS),
11(1):37-57, 1985.

Fei Ye and Adrian G. Bors. Learning latent representations across multiple data domains using lifelong
VAEGAN. In Proc. European Conf. on Computer Vision (ECCV), vol. LNCS 12365, pages 777-795, 2020.

Fei Ye and Adrian G. Bors. Lifelong learning of interpretable image representations. In Proc. Int. Conf. on
Image Processing Theory, Tools and Applications (IPTA), pages 1-6, 2020.

Fei Ye and Adrian G Bors. Mixtures of variational autoencoders. In Proc. Int. Conf. on Image Processing
Theory, Tools and Applications (IPTA), pages 1-6, 2020.

Fei Ye and Adrian G. Bors. InfoVAEGAN: Learning joint interpretable representations by information
maximization and maximum likelihood. In Proc. IEEE Int. Conf. on Image Processing (ICIP), pages
749-753, 2021.

Fei Ye and Adrian G Bors. Learning joint latent representations based on information maximization.
Information Sciences, 567:216-236, 2021.

Fei Ye and Adrian G. Bors. Lifelong infinite mixture model based on knowledge-driven Dirichlet process.
In Proc. of the IEEE Int. Conf. on Computer Vision (ICCV), pages 10695-10704, 2021.

Fei Ye and Adrian G. Bors. Lifelong mixture of variational autoencoders. IEEE Transactions on Neural
Networks and Learning Systems, pages 1-14, 2021.

Fei Ye and Adrian G. Bors. Lifelong twin generative adversarial networks. In Proc. IEEE Int. Conf. on
Image Processing (ICIP), pages 1289-1293, 2021.

Fei Ye and Adrian G Bors. Continual variational autoencoder learning via online cooperative memorization.
arXiv preprint arXiv:2207.10131, 2022.

Fei Ye and Adrian G. Bors. Deep mixture generative autoencoders. IEEE Transactions on Neural Networks
and Learning Systems, 33(10):5789-5803, 2022.

Fei Ye and Adrian G Bors. Learning an evolved mixture model for task-free continual learning. arXiv
preprint arXiv:2207.05080, 2022.

Fei Ye and Adrian G. Bors. Lifelong generative modelling using dynamic expansion graph model.
Proceedings of the AAAI Conference on Artificial Intelligence, 36(8):8857-8865, Jun. 2022.

Fei Ye and Adrian G. Bors. Lifelong teacher-student network learning. /IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(10):6280-6296, 2022.

Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju Hwang. Online coreset selection for
rehearsal-based continual learning. In Int. Conf. on Learning Representations (ICLR), arXiv preprint
arXiv:2106.01085, 2022.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm for
domain adaptation. In Proc. International Conference on Machine Learning (ICML), vol. PMLR 97, pages
7404-7413, 2019.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. InfoVAE: Balancing learning and inference in variational
autoencoders. In Proc. AAAI Conf. on Artif. Intel., volume 33, pages 5885-5892, 2019.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14



	Introduction
	Related works
	Theoretical analysis of TFCL
	Preliminary
	Measuring the distribution shift
	GB for a single model
	GB for the dynamic expansion mechanism
	Parallels with other studies defining lifelong learning bounds

	Methodology
	Network architecture
	Discrepancy based mixture model expansion
	Sample selection
	Algorithm implementation

	Experiments
	Empirical results for the forgetting analysis
	Results on TFCL benchmark
	Ablation study

	Conclusion

