

This is a repository copy of *Probabilistic modelling and verification, and Animation in RoboChart*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/193112/

Version: Published Version

Conference or Workshop Item:

Ye, Kangfeng (2022) Probabilistic modelling and verification, and Animation in RoboChart. In: YorRobots and RoboStar Industry Exhibition, 11-12 Oct 2022, University of York.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don't have to license any derivative works on the same terms. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Probabilistic modelling and verification, and Animation in RoboChart

Probabilistic Modelling

- Probabilistic choice is made at probabilistic junctions.
- Each outgoing transition must have a probability value (inside p{ }) between 0.0 and 1.0.

• Probability values of all outgoing transitions from a probabilistic junction sum to 1.0.

Probabilistic Property Language

- Based on the PRISM's
 property language (PCTL*) for
 DTMC and MDP
- Allow to specify properties

using variables,
expressions, states,
events, functions,
operations, etc.
from RoboChart

models.

 Properties are specified in a particular constant

prob property P_1:

Forall [Globally (Finally (fd==2) and (Next (fd==0)))]

configuration, function definitions, or uncertain environment.

Formally Verified Animation for RoboChart

- Operational semantics of RoboChart given in interaction trees
 - (mechanised in Isabelle/HOL)
- Generated Haskell code for animation (on terminal now)
- Able to animate a state machine, an operation, a controller, or a whole model

Animation of a chemical detector model in a scenario detected an intensive gas.

Probabilistic Model Checking

- RoboChart's probabilistic semantics given in MDP and automated generation of semantics for PRISM in RoboTool
- Formalised translation from RoboChart to PRISM
- Run multiple instances of PRISM: one for each property
- Easily extended to other probabilistic model checkers like Storm and MODEST.

Statistic Model Checking

- Approximate results
- Analyse properties on a large number of (Monte Carlo) simulations
- Able to analyse big models
- Illustrations and debugging problems
- Design space exploration (DSE)
- Generate test cases that satisfy or

Theorem Proving

- Denotational semantics of probabilistic programs in UTP
- Both epistemic and aleatoric uncertainty
- Mechanised in Isabelle/UTP

• Able to reason about large models with an infinite state space

For any $N \geq 1$, $\left(\begin{aligned} &\text{true} \vdash \left(& (\forall j \bullet j < (N-1) \Rightarrow (prob' \left(\mathbf{v}[j, false/i, c] = 1/N) \right)) \land \\ & prob' \left(\mathbf{v}[(N-1), true/i, c] \right) = 1/N \end{aligned} \right) \right)$ $\sqsubseteq ChooseUniform(N)$

Bayesian belief model

Localisation: robot's belief in its current position changed after 3 sensor readings and two movements: very likely (nearly 90%) it is in front of wall now.

